WO2015186790A1 - Piston ring - Google Patents

Piston ring Download PDF

Info

Publication number
WO2015186790A1
WO2015186790A1 PCT/JP2015/066201 JP2015066201W WO2015186790A1 WO 2015186790 A1 WO2015186790 A1 WO 2015186790A1 JP 2015066201 W JP2015066201 W JP 2015066201W WO 2015186790 A1 WO2015186790 A1 WO 2015186790A1
Authority
WO
WIPO (PCT)
Prior art keywords
crn
tin
film
metal
piston ring
Prior art date
Application number
PCT/JP2015/066201
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 佐藤
祐一 村山
琢磨 関矢
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Publication of WO2015186790A1 publication Critical patent/WO2015186790A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present invention relates to a piston ring for an automobile engine, and more particularly to a piston ring in which a laminated hard film excellent in scuffing resistance, abrasion resistance and film peeling resistance is coated with PVD (Physical Vapor Deposition).
  • PVD Physical Vapor Deposition
  • piston rings have increased in combustion temperature and surface pressure load due to higher engine output and compliance with exhaust gas regulations, the use of low-viscosity lubricants, diversification of fuels such as bioethanol, Due to high-pressure fuel injection and the like, the usage environment has become severe year by year.
  • a hard chromium nitride (CrN) coated piston ring with ion plating which is said to have the best scuffing and wear resistance, there is a situation where sufficient performance cannot be achieved due to film peeling problems including cracks and chipping. It has come to be scattered. Accordingly, there is a strong demand for a piston ring that is superior in scuff resistance, wear resistance, and film peeling resistance.
  • Chromium nitride by the above ion plating generally has a problem that it is hard but easily chipped.
  • crystal orientation, structure control, porosity (porosity) control, or addition of a third element, coating Various improvements have been made, such as stacking of layers.
  • JP-A-62-265023 teaches to dissolve oxygen (O) and JP-A-6-300130 to dissolve carbon (C) in order to improve the toughness of CrN. ing.
  • the chromium nitride film has a columnar shape toward the film surface, the carbon concentration is 4 to 8% by weight with respect to the total of the main components consisting of chromium, nitrogen and carbon, and the Vickers hardness is A CrCN film with excellent wear resistance of 1600 or more and fracture toughness of 3 MPa ⁇ m or more is disclosed.
  • a film is disclosed.
  • JP 2005-187859 from a similar viewpoint, for example, for a composite nitride film of CrSiN or TiSiN, a high bias voltage condition that allows columnar crystals and a low bias voltage condition that does not allow columnar crystals are set at regular intervals.
  • a stress relaxation layer of the composite nitride having a structure that is not a columnar crystal having a constant thickness is sandwiched in a hard film of a columnar crystal composite nitride at regular intervals to reduce internal stress, and high A hard thick film having adhesion is disclosed.
  • JP-A-8-312779 and JP-A-2005-187859 both have different structures (columnar structure layer / non-columnar structure layer or porous structure layer / dense structure layer) within the same nitride range.
  • JP-A-2005-82822 discloses a laminate film containing different compositions using a metal layer as a stress relaxation layer, as disclosed in JP-A-2005-187859.
  • Patent 5372760 was proposed for the purpose of providing a piston ring having a laminated film with excellent crack resistance, and by introducing a metal layer into the laminated film of two or more different types of nitrides, It is taught that since the progress is suppressed and the crack extends, it extends only to the nearest phase boundary, so that it is difficult to cause large peeling across the entire laminated film.
  • the metal layer is intended to suppress the progress of cracks by introducing a metal layer into a laminate film of two or more different types of nitrides
  • the metal layer is Ti, Zr, Hf, Since it is selected from V, Nb, Ta, Cr, Mo and W, the metal layer tends to partially change due to diffusion of nitrogen (N) from the adjacent nitride, for example, adjacent to the CrN layer.
  • N nitrogen
  • Ti 2 N and Cr 2 N are formed, and these have a hard and brittle property and have a problem that cracks are likely to progress.
  • the present invention solves the above-described problems and provides a laminated hard film excellent in scuffing resistance, abrasion resistance, and film peeling resistance that can be used in an environment where the mechanical and thermal loads of the engine are high.
  • the object is to provide a piston ring coated with PVD.
  • the present inventors have introduced a metal layer in addition to a CrN / TiN laminated hard film, particularly for a PVD laminated hard film excellent in scuffing resistance, abrasion resistance, and film peeling resistance coated on a piston ring.
  • a metal layer in addition to a CrN / TiN laminated hard film, particularly for a PVD laminated hard film excellent in scuffing resistance, abrasion resistance, and film peeling resistance coated on a piston ring.
  • the piston ring of the present invention is a piston ring whose outer peripheral sliding surface is coated with a hard film
  • the hard film includes a film in which CrN type chromium nitride and TiN type titanium nitride are alternately laminated
  • the laminated film has at least one metal layer composed of at least one kind of metal M, and the standard formation free energy ⁇ G MN of the metal nitride and the standard formation free energy ⁇ G CrN of the chromium nitride are ⁇ G MN > It is characterized by satisfying the relationship of ⁇ G CrN .
  • the metal M is preferably at least one selected from Co, Ni and Cu.
  • the thickness of the metal layer is preferably 10 to 1000 nm.
  • the metal layer-containing CrN / TiN laminated hard film-coated piston ring having excellent scuff resistance, abrasion resistance and film peeling resistance of the present invention is, for example, a metal layer-containing laminated nitride film-coated piston ring disclosed in Patent 5372760.
  • the standard free energy of formation ⁇ G CrN is lower and more stable than the standard free energy of formation of metal M nitride, ⁇ G MN (more stable because the standard free energy of formation of TiN ⁇ G TiN is lower than ⁇ G CrN ).
  • Nitrogen diffusion to the layer does not occur ( ⁇ G TiN is lower than ⁇ G CrN , so nitrogen diffusion from the TiN layer to the metal layer does not naturally occur), so maintain the original stress relaxation characteristics of the metal layer
  • the film peel resistance can be further improved.
  • the piston ring of the present invention is a piston ring in which a hard film is coated on an outer peripheral sliding surface, and the hard film includes a laminated film in which CrN type chromium nitride and TiN type titanium nitride are alternately laminated. . Further, the piston ring of the present invention has at least one metal layer composed of at least one kind of metal M in the laminated film, and a standard free energy of formation ⁇ G MN of the nitride of the metal M and a standard of the chromium nitride. The free energy of generation ⁇ G CrN satisfies the relationship of ⁇ G MN > ⁇ G CrN .
  • the CrN / TiN multilayer coating is formed by arc ion plating (hereinafter also referred to as “AIP”), but in the present invention, a metal layer made of metal M during the manufacturing process of the CrN / TiN multilayer coating.
  • a CrN / TiN laminated hard film containing a metal layer is formed by introducing the formation process of
  • the metal layer composed of the metal M of the present invention has a standard formation free energy ⁇ G MN of the nitride MN larger than the standard formation free energy ⁇ G CrN of CrN , so even if the metal layer is formed adjacent to the CrN layer, the CrN layer Is thermodynamically stable and is formed as a metal layer made of metal M without diffusion of nitrogen from the CrN layer to the metal layer. Since the TiN layer is thermodynamically more stable than the CrN layer, naturally, even if the metal layer is adjacent to the TiN layer, nitrogen does not diffuse from the TiN layer to the metal layer.
  • ⁇ G MN is at least one selected from Co, Ni and Cu as the metal M which is larger than ⁇ G CrN . If Cu is selected as the metal M, a metal layer with extremely high thermal conductivity is more preferable.
  • FIG. 1 is a diagram schematically showing a cross section of a piston ring of the present invention, in which a CrN / TiN laminated film (2) is formed on a base material (1), and is composed of metal M therein. At least one metal layer (3) in FIG. 1 is formed.
  • Metal layer (3) is CrN / TiN / M / CrN / TiN / M ..., CrN / TiN / CrN / M / TiN / CrN / TiN / M ..., CrN / TiN / CrN / TiN ... / M / Any arrangement of CrN / TiN... / M / CrN / TiN...
  • the thickness of the metal layer (3) is preferably 10 to 1000 nm.
  • the thickness of the metal layer (3) is more preferably 25 to 500 nm, and further preferably 50 to 300 nm.
  • the metal layer (3) emphasizes the function as a stress relaxation layer, and in order to reduce the residual stress (compressive stress) of the entire hard coating and suppress crack propagation, it is preferable to have a thickness exceeding 100 nm.
  • the CrN / TiN multilayer coating consisting of alternating CrN type chromium nitride and TiN type titanium nitride, which form the basis of the hard coating of the present invention, has a higher thermal conductivity than the CrN coating and a high piston ring thermal conductivity function A film that contributes to That is, not only the heat of the piston head is efficiently released to the cooled cylinder wall, but also the reduction of the generated thermal stress is suppressed, and the generation of cracks and chips is suppressed.
  • CrN type chromium nitride means that the main chromium nitride may be CrN type although it may contain Cr 2 N type chromium nitride, and TiN type titanium nitride means Ti 2 N type nitride. Although it may contain titanium, it means that the main titanium nitride is of the TiN type.
  • the crack is caused by the tensile stress on the outermost surface of the film generated by sliding or the shear stress inside the film, starting from defects on the surface or inside of the film. Propagates and breaks down in the form of chipping, dropping or peeling of the film.
  • a laminated film in which different phases are laminated generally tends to cause cracks to propagate along the interface because strain remains at the interface.
  • the CrN / TiN multilayer coating forms a strong interface with high consistency because the lattice constants of CrN and TiN are very close to 0.414 nm and 0.424 nm, respectively.
  • the unit thickness of the layer consisting of the sum of the thickness of each layer in the CrN / TiN multilayer coating that is, the sum of the thickness of one CrN layer and the thickness of one TiN layer is 20 to 100 nm. It is preferable. From the viewpoint of crack resistance propagation, it is preferably 20 to 80 nm, and more preferably 20 to 60 nm. Furthermore, if the thicknesses of the CrN layer and the TiN layer correspond to the crystallite size of CrN and TiN, it can be regarded as a single crystal at least in the film thickness direction, and the rigidity is remarkably improved as compared with the polycrystal.
  • the stack unit thickness composed of one CrN layer and one TiN layer is preferably 1 to 1.3 times the sum of the crystallite sizes of CrN and TiN.
  • the CrN / TiN laminated film having excellent crack propagation resistance described above has at least one metal layer made of metal M in order to further improve the crack propagation resistance.
  • the CrN layer and the metal layer in which nitrogen is not diffused from the TiN layer have sufficient ductility, and even if the crack propagates through the CrN / TiN laminated film, the presence of the metal layer is the crack at the interface. Propagation is stopped, and it is possible to avoid chipping or falling off of the film.
  • the laminated unit thickness is set to 20 to 100 nm, and 1 to 1.3 times the sum of the crystallite sizes of CrN and TiN. It is preferable.
  • the inclusion of a metal layer having a higher thermal conductivity in the CrN / TiN multilayer coating also contributes to further improving the thermal conductivity of the hard coating.
  • the thermal conductivity of CrN and TiN formed by AIP is 0.0261 to 0.0307 cal / cm ⁇ sec ⁇ deg (SI unit), respectively, according to Oki (Surface Technology, Vol. 41, No. 5, (1990), pages 464-470). 10.9-12.9 W / m ⁇ K) and 0.07 cal / cm ⁇ sec ⁇ deg (29.3 W / m ⁇ K when converted to SI), and TiN is about 2.5 times higher than CrN. .
  • TiN has a problem that it is inferior in corrosion resistance compared to CrN. Therefore, it is preferable to increase the titanium ratio if the thermal conductivity is considered, and increase the chromium ratio if the corrosion resistance is considered. Considering the balance between the two, it is more preferable that the range is 3: 7 to 7: 3.
  • the growth orientation of the stacked CrN layer and TiN layer varies depending on the film formation conditions. Although not particularly limited, it is preferable that the CrN layer has the maximum diffraction intensity on the (200) plane, and the TiN layer also has the maximum diffraction intensity on the (200) plane.
  • the piston ring of the present invention preferably has a composite structure composed of CrN and TiN or a composite structure composed of CrN, TiN and metal M on the outermost sliding surface.
  • a composite structure composed of CrN and TiN or a composite structure composed of CrN, TiN and metal M on the outermost sliding surface.
  • the metal-containing CrN / TiN multilayer coating basically exhibits a composite structure composed of CrN, TiN and metal M on the outermost surface. That is, as shown in FIG.
  • the composite structure consisting of CrN (5), TiN (6) and metal M (7) appearing on the outermost surface depends on the lamination thickness, the angle between the lamination surface and the polishing surface, the wavelength of the wavy laminated film, etc. It is preferable to include a contoured structure. If the conditions are set, a layered ring shape is obtained.
  • a metal intermediate layer (4) for improving the adhesion may be formed between the laminated film and the substrate.
  • the metal intermediate layer (4) is preferably made of Cr.
  • the hardness of the hard coating of the piston ring of the present invention is preferably 1000 ⁇ ⁇ HV0.1 or more.
  • the high hardness side is preferably 1450 HV0.1 or less. 1100 ⁇ ⁇ HV0.1 to 1300 HV0.1 is more preferable.
  • the residual stress of the film is preferably -500 to 1500 MPa (compressive residual stress). It is more preferable if it is -600 MPa to -1400 MPa. Such a balanced compressive residual stress of the coating reduces the tensile stress and shear stress due to friction and suppresses the propagation of cracks.
  • the metal-containing CrN / TiN laminated hard coating is formed using, for example, a PVD apparatus having a schematic diagram (plan view from above) as shown in FIG.
  • a PVD apparatus having a schematic diagram (plan view from above) as shown in FIG.
  • a workpiece (18) (with a piston ring superimposed) is set in a vacuum vessel (10) having a process gas inlet (11) and a process gas outlet (12), and a rotary table.
  • the metal Cr cathode (13) and metal Ti cathode (14) of arc ion plating and the cathode (15, 16) of metal M of sputtering are arranged at positions facing each other with (17) interposed therebetween.
  • the rotary table (17) has a mechanism for rotating the workpiece (18), and is further connected to a bias power source (not shown).
  • a heater (19) is installed on the wall of the apparatus.
  • nitrogen (N 2 ) gas is introduced into the vacuum vessel (10), and an arc is generated on the surface of the metal Cr cathode and / or the metal Ti cathode in a low-pressure atmosphere, so that the metal Cr and / or Metal Ti is instantaneously dissolved, ionized in nitrogen plasma, and drawn into the coated surface as chromium ions, titanium ions, or CrN or TiN reacted with nitrogen plasma by a negative bias voltage applied to the workpiece (18).
  • This is a method of forming a CrN layer or a TiN layer.
  • a high ionization rate of metallic Cr and metallic Ti can be achieved with a high energy density. Therefore, a high film formation rate can be obtained, and the film formation of 10 to 60 ⁇ m required for the piston ring can be industrially performed.
  • Sputtering is a glow discharge plasma generated by applying a high voltage to a metal cathode while introducing an inert gas such as Ar. , The metal atoms / molecules are blown off and deposited on the object to be processed (18) to form a film. If magnetron sputtering using a magnetic field (not shown) placed on the back side of the metal cathode (15, 16) is used to generate a non-equilibrium magnetic field in which the magnetic field of the outer magnetic pole is stronger than that of the inner magnetic pole, it converges near the target.
  • a magnetic field not shown
  • a part of the plasma that has been used is easily diffused to the vicinity of the substrate along the magnetic field lines, increasing the plasma density in the vicinity of the workpiece (18), and irradiating the workpiece (18) during film formation
  • the amount of ions can be increased to enhance the film interface.
  • the CrN / TiN multilayer coating can be formed alternately by performing arc discharge at the metal Cr cathode and arc discharge at the metal Ti cathode at different times. In order to increase the speed and productivity, it is preferable to perform arc discharge of the metal Cr cathode and the metal Ti cathode simultaneously.
  • the metal (M) layer is formed by stopping the arc discharge of the metal Cr cathode and the metal Ti cathode, replacing the N 2 atmosphere with the Ar atmosphere, and performing glow discharge of the metal M cathode for a predetermined time.
  • the composition of chromium nitride and titanium nitride is determined by the amount of evaporation from the metal Cr cathode and metal Ti cathode and the nitrogen gas partial pressure, it is adjusted in the present invention to be mainly composed of CrN type chromium nitride and TiN type titanium nitride. .
  • the amount of metal evaporation from the cathode depends on the vapor pressure and arc current (temperature) at the metal's inherent melting point, so the composition does not change (for example, the CrN-based composition does not become the Cr 2 N-based composition).
  • the ratio of Cr and Ti can be changed by changing the arc current.
  • the thicknesses of the CrN layer and the TiN layer can be controlled by the arc current and the rotation speed of the rotary table (17).
  • the thickness of the CrN layer and the TiN layer can be measured by direct observation using FE-SEM (Field Emission-Scanning Electron Microscope), etc., but at least the sum of the CrN layer and the TiN layer, that is, the rotary table is 1
  • the thickness of the stacked unit formed during the rotation is a value obtained by dividing the film formation speed ( ⁇ m / min) by the rotation speed (rpm) of the table.
  • the unit thickness of the stack decreases as the arc current is decreased or the rotation speed of the table is increased.
  • the film thickness and film quality of the metal layer formed by sputtering depend on the sputtering power and the pressure of the atmospheric gas. In general, if the sputtering power is increased and the pressure of the atmospheric gas is reduced, collision and scattering with the atmospheric gas are reduced and the film formation rate is increased.
  • the crystal structure of the film formed by PVD can generally be adjusted by the furnace pressure and bias voltage.
  • the furnace pressure When the furnace pressure is raised and the bias voltage is lowered, it becomes columnar crystals, and conversely, the furnace pressure is lowered and the bias voltage is lowered. It is said that a granular structure can be obtained by increasing the value.
  • a bias voltage when a bias voltage is increased, a columnar crystal is formed.
  • the film deposition environment for ion plating and sputtering is very complex.For example, if the same discharge power, furnace pressure, and bias voltage are selected, there is no guarantee that the same structure can be obtained if the equipment is changed. It is a fact.
  • the structure in the furnace (arrangement of workpiece and cathode, etc.) has a relatively large influence, and the film formation conditions are the equipment. Must be set every time.
  • Example 1 A piston ring with a rectangular face with a nominal diameter (d) of 96 mm, radial thickness (a1) of 3.8 mm, and axial width (h1) of 2.5 mm from a wire equivalent to SWOSC-V. 50 piston rings were stacked, the outer peripheral surface was adjusted to a surface roughness (Ry) of several ⁇ m by shot blasting, and set in a composite apparatus having both arc ion plating and sputtering functions. The target was 99.9% pure metal Cr, 99.9% pure metal Ti, and 99.9% pure metal Cu.
  • the inside of the apparatus was evacuated to 1.0 ⁇ 10 ⁇ 2 Pa, Ar gas was introduced to 1.0 Pa, and a bias voltage of ⁇ 900 V was applied to clean the outer peripheral surface of the piston ring as a base material by bombardment treatment. Ar gas having a purity of 99.99% was used. Then, N 2 gas with a purity of 99.999% was introduced up to 4 Pa, the arc current of the metal Cr cathode was 120 A, the arc current of the metal Ti cathode was 170 A, the bias voltage was -9 V, the table rotation speed was 2 rpm, 100 A CrN / TiN multilayer coating was formed by ion plating for a minute.
  • the arc discharge of the metal Cr cathode and the metal Ti cathode was stopped, the N 2 gas was evacuated, Ar gas was introduced to 0.4 Pa, the metal Cu cathode voltage was 400 V, and UBM (Unbalanced Magnetron) sputtering.
  • a metal layer of metal Cu was formed by treatment.
  • the processing time was set to 5 minutes without changing the bias voltage and the table rotation speed.
  • CrN / TiN multilayer coating by ion plating and Cu metal layer formation by sputtering were repeated, and finally a hard coating containing two Cu metal layers in the CrN / TiN multilayer coating was coated.
  • a piston ring was made.
  • a metal intermediate Cr layer was formed between the substrate and the laminated film.
  • the obtained metal (Cu) layer-containing CrN / TiN laminated hard film-coated piston ring was subjected to the following various measurements.
  • Thickness measurement was performed by measuring the length from the substrate surface to the surface of the coating on a mirror-polished piston ring cross section perpendicular to the coated surface, using a scanning electron microscope (SEM) photograph. Film thickness.
  • the film thickness of Example 1 was 22.8 ⁇ m, and the thicknesses of the Cu metal layer observed at a high magnification were 0.16 ⁇ m (160 nm) and 0.14 ⁇ m (140 nm).
  • the film thickness of the CrN / TiN multilayer coating is 22.5 ⁇ m, and the unit thickness of the stack (one chromium nitride layer + one titanium nitride layer) formed during one rotation of the rotary table is 22.5 ⁇ m and the coating time ( It was calculated to be 0.0375 ⁇ m (37.5 nm) from 300 minutes) and the number of rotations of the table (2 rpm).
  • Hardness measurement was performed on a surface parallel to the mirror-polished coating surface using a micro Vickers hardness tester with a test force of 0.9807 N.
  • the hardness of the metal layer-containing CrN / TiN laminated hard film of Example 1 was 1210 HV0.1.
  • the X-ray diffraction pattern of the metal layer-containing CrN / TiN laminated hard film of Example 1 shows the maximum peak intensity on the TiN (200) plane, followed by the CrN (200) plane, TiN (111) plane, CrN (111) The diffraction peak of the Cu (111) surface was also detected, although it was slight, followed by the surface, the TiN (220) surface, and the CrN (220) surface.
  • the crystallite size D hkl was calculated using the following Scherrer equation on the TiN (200) plane and the CrN (200) plane.
  • D hkl K ⁇ / ⁇ cos ⁇ ....2016........................................ (2)
  • K is Scherrer's constant of 0.94
  • is the X-ray wavelength (Cu: 1.5406 ⁇ )
  • is the full width at half maximum (FWHM)
  • is the Bragg angle.
  • the crystallite size of the CrN layer of Example 1 is 10.2 nm
  • the crystallite size of the TiN layer is 20.8 nm. Therefore, the sum of the crystallite sizes of the CrN layer and the TiN layer is 31.0 nm.
  • the laminated unit thickness 37.5 nm calculated from the film thickness was 1.21 times the sum of the crystallite sizes of chromium nitride and titanium nitride.
  • Test piece Metal ring containing CrN / TiN multilayer coating coated piston ring cut piece, Load: 98-196 N, sine curve 50 Hz, Counterpart material (drum): 80 mm diameter SUJ2 material, Sliding speed: Forward / reverse rotation pattern operation ( ⁇ 2 m / sec), hold for 10 seconds at speed ⁇ 2 m / sec. Acceleration 0.08 m / sec 2, Lubricant: pure water, 4 cc / min, Temperature: drum surface temperature 80 °C, Test time: 1 hour. In addition, the test result was determined by the presence or absence of film removal. As a result of the rolling sliding fatigue test of Example 1, there was no film falling off.
  • a metal (Cu) layer-containing CrN / TiN laminated hard film was formed under the same conditions as in Example 1 except that it was changed to 5 times (Example 2) and 1 minute ⁇ 59 times (Example 3).
  • Example 4 Under the same conditions as in Example 2, except that the arc current in ion plating was changed to 160 A for the metal Cr cathode, 130 A for the metal Ti cathode, and the deposition time and frequency of the Cu metal layer to 10 minutes x 5 times. A (Cu) layer-containing CrN / TiN laminated hard film was formed.
  • Example 5 A CrN / TiN laminated hard material containing a metal (Ni) layer under the same conditions as in Example 4 except that the sputtering target was changed from Cu to Ni, the cathode voltage was changed to 500 V, and the deposition time and number of times were changed to 5 minutes ⁇ 5. A film was formed.
  • Example 6 A metal (Co) layer-containing CrN / TiN laminated hard film was formed under the same conditions as in Example 5 except that the sputtering target was changed from Ni to Co.
  • Table 1 shows the film forming conditions of Examples 1 to 6 above.
  • the bias voltage was ⁇ 9 V and the table rotation speed was 2 rpm.
  • Table 2 shows the results of film thickness measurement
  • Table 3 shows the results of X-ray diffraction measurement
  • Table 4 shows the results of composition measurement of CrN / TiN laminated film by EPMA. Crystals of film hardness, residual stress, and lamination unit thickness
  • Table 5 shows the ratio of the child size to the sum (T / S) and the results of the rolling sliding fatigue test.
  • the composition measurement of the CrN / TiN multilayer coating was performed only for Examples 1 and 4 with different ion plating conditions.
  • the thickness of one metal layer of Examples 2 to 4 is a value estimated from the measured value of Example 1 based on the film formation time.
  • T / S indicates (stacking unit thickness / sum of crystallite sizes of CrN and TiN).
  • each of the CrN / TiN multilayer coatings in Examples 1 to 6 is 600 units, and the thickness of the metal layer is 2 to 59 in the range of 30 to 300 mm by changing the deposition time.
  • the thickness of the entire film was 19.7 to 24.8 ⁇ m.
  • the laminated unit thickness calculated from the film thickness of the CrN / TiN laminated film part excluding the metal layer was 31.8-39.1 nm.
  • the film structure is composed of CrN type chromium nitride and TiN type titanium nitride and metal Cu, metal Ni or metal Co in each example, chromium nitride is CrN (200) face, titanium nitride is TiN (200) and has the maximum peak. was gotten.
  • the crystallite sizes of CrN and TiN were 10.2 to 15.8 nm for CrN and 11.5 to 22.4 nm for TiN. The sum of the crystallite sizes of CrN and TiN was 25.7 to 37.9 nm.
  • composition ratio of Cr and Ti in the CrN / TiN multilayer coating was an atomic ratio, and Example 1 was 3.7: 6.3 and Example 4 was 5: 5.
  • the film hardness is 1072 HV0.1 ⁇ 1276 HV0.1, the residual stress is -682 ⁇ -1170 MPa (negative symbol indicates compression), and the thickness of the metal layer in Example 4 is 300 nm And the residual stress was the smallest.
  • the ratio (T / S) of the stack unit thickness to the sum of the crystallite sizes of CrN and TiN was between 1.03 and 1.26.
  • Comparative Examples 1 and 2 As Comparative Examples 1 and 2, using a commercially available piston ring coated with CrN and TiN instead of the metal layer-containing CrN / TiN laminated hard film, film thickness measurement, hardness measurement, residual stress measurement, X-ray diffraction measurement A rolling sliding fatigue test was conducted. The results are shown in Table 6. Comparative Example 1 is a film having a relatively high porosity, which is said to be excellent in chipping resistance, and the film hardness is as low as Hv 930, while Comparative Example 2 is a film having a relatively high film hardness. In both cases, film falling off was observed in rolling sliding fatigue tests under severe conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The objective of the present invention is to provide a laminated hard-film-coated piston ring which can be used in an environment in which an engine is subjected to high mechanical and thermal loads, and which has superior scuffing resistance, abrasion resistance, and resistance to coating film separation. Therefore, a hard film is deposited on the outer circumferential surface of a piston ring, said hard film containing at least one layer which is a metal layer comprising at least one type of a metal (M) in a CrN/TiN laminated film formed by alternately laminating a CrN-type chromium nitride and a TiN-type titanium nitride. In this case, the metal (M) is selected such that the standard free energy of formation (ΔGM-N) of the nitride of the metal (M) and the standard free energy of formation (ΔGCrN) of the chromium nitride satisfy the relationship ΔGM-N > ΔGCrN.

Description

ピストンリングpiston ring
 本発明は、自動車エンジン用ピストンリングに関し、特に、耐スカッフ性、耐摩耗性、さらに耐皮膜剥離性に優れた積層硬質皮膜をPVD(Physical Vapor Deposition)により被覆したピストンリングに関する。 The present invention relates to a piston ring for an automobile engine, and more particularly to a piston ring in which a laminated hard film excellent in scuffing resistance, abrasion resistance and film peeling resistance is coated with PVD (Physical Vapor Deposition).
 近年、ピストンリングは、エンジンの高出力化や排気ガス規制対応に伴う燃焼温度の高温化や面圧負荷の増大、また、低粘度潤滑油の採用、バイオエタノール等の燃料の多様化、さらには高圧燃料噴射等により、その使用環境は年々過酷になってきている。耐スカッフ性及び耐摩耗性が最も優れるといわれているイオンプレーティングによる硬質窒化クロム(CrN)被覆ピストンリングでも、クラックや欠けの発生を含む皮膜剥離の問題により、十分な性能を発揮できない状況が散見されるようになってきた。従って、従来になく、耐スカッフ性、耐摩耗性、さらに耐皮膜剥離性に優れたピストンリングが強く求められている。 In recent years, piston rings have increased in combustion temperature and surface pressure load due to higher engine output and compliance with exhaust gas regulations, the use of low-viscosity lubricants, diversification of fuels such as bioethanol, Due to high-pressure fuel injection and the like, the usage environment has become severe year by year. Even with a hard chromium nitride (CrN) coated piston ring with ion plating, which is said to have the best scuffing and wear resistance, there is a situation where sufficient performance cannot be achieved due to film peeling problems including cracks and chipping. It has come to be scattered. Accordingly, there is a strong demand for a piston ring that is superior in scuff resistance, wear resistance, and film peeling resistance.
 上記のイオンプレーティングによる窒化クロムは、一般的には、硬いが欠けやすいという課題があり、これまで、結晶方位、組織制御、空隙率(空孔率)制御、あるいは第三元素の添加、皮膜の積層化等、様々な改良がなされてきた。 Chromium nitride by the above ion plating generally has a problem that it is hard but easily chipped. Until now, crystal orientation, structure control, porosity (porosity) control, or addition of a third element, coating Various improvements have been made, such as stacking of layers.
 窒化クロムへの第三元素の添加については、CrNの靱性を向上させるため、特開平6-265023は酸素(O)を、特開平6-300130は炭素(C)を固溶させることを教示している。さらに国際公開第2008/059791は、窒化クロム皮膜が皮膜表面に向かって柱状の形態を有し、クロムと窒素と炭素からなる主成分の合計に対する炭素濃度が4~8重量%で、ビッカース硬度が1600以上、破壊靱性値が3 MPa√m以上の耐摩耗性に優れ、欠けの発生しにくいCrCN皮膜を開示している。 Regarding the addition of the third element to chromium nitride, JP-A-62-265023 teaches to dissolve oxygen (O) and JP-A-6-300130 to dissolve carbon (C) in order to improve the toughness of CrN. ing. Furthermore, in WO 2008/059791, the chromium nitride film has a columnar shape toward the film surface, the carbon concentration is 4 to 8% by weight with respect to the total of the main components consisting of chromium, nitrogen and carbon, and the Vickers hardness is A CrCN film with excellent wear resistance of 1600 or more and fracture toughness of 3 MPa√m or more is disclosed.
 また、皮膜の積層化については、例えば、特開平8-312779には、ピストンリング外周皮膜表面のピッチング疲労に起因する欠け状剥離の問題を解決するため、皮膜破断面のCrN結晶が基材面から皮膜表面の方向に向かう柱状層と平滑状層を交互に積層させた皮膜、又は、空孔率0~0.5体積%の層と空孔率1.5~20体積%の層を交互に積層させた皮膜を開示している。さらに、特開2005-187859には、同様な観点で、例えば、CrSiNやTiSiNの複合窒化物皮膜について、柱状晶ができる高バイアス電圧条件と、柱状晶ができない低バイアス電圧条件を一定時間毎に交互に繰り返して、柱状晶の複合窒化物の硬質皮膜の中に、一定間隔毎に一定厚みの柱状晶ではない構造の該複合窒化物の応力緩和層を挟み込んで、内部応力を低減し、高い密着力をもった硬質厚膜皮膜を開示している。 Regarding the lamination of the film, for example, in Japanese Patent Laid-Open No. 8-312779, in order to solve the problem of chip-like peeling due to pitting fatigue on the surface of the outer peripheral film of the piston ring, A film in which a columnar layer and a smooth layer are alternately laminated in the direction from the surface to the film surface, or a layer having a porosity of 0 to 0.5% by volume and a layer having a porosity of 1.5 to 20% by volume are alternately laminated. A film is disclosed. Furthermore, in JP 2005-187859, from a similar viewpoint, for example, for a composite nitride film of CrSiN or TiSiN, a high bias voltage condition that allows columnar crystals and a low bias voltage condition that does not allow columnar crystals are set at regular intervals. By repeating alternately, a stress relaxation layer of the composite nitride having a structure that is not a columnar crystal having a constant thickness is sandwiched in a hard film of a columnar crystal composite nitride at regular intervals to reduce internal stress, and high A hard thick film having adhesion is disclosed.
 上記の特開平8-312779及び特開2005-187859は、いずれも、同じ窒化物の範囲内で、異なる組織(柱状組織層/非柱状組織層、又は多孔質組織層/緻密質組織層)の窒化物層を積層したものであるが、特開2005-82822には、特開2005-187859でいう応力緩和層として金属層を利用した異なる組成を含む積層皮膜が開示されている。 JP-A-8-312779 and JP-A-2005-187859 both have different structures (columnar structure layer / non-columnar structure layer or porous structure layer / dense structure layer) within the same nitride range. JP-A-2005-82822 discloses a laminate film containing different compositions using a metal layer as a stress relaxation layer, as disclosed in JP-A-2005-187859.
 特許5372760は、耐クラック性に優れた積層皮膜を有するピストンリングを提供することを目的に提案されたもので、異なる2種以上の窒化物の積層皮膜中に金属層を導入することでクラックの進展が抑制され、クラックが生じても最も近い相境界のみに拡張するため、積層皮膜全体に亘った大きな剥離に至りにくいことが教示されている。 Patent 5372760 was proposed for the purpose of providing a piston ring having a laminated film with excellent crack resistance, and by introducing a metal layer into the laminated film of two or more different types of nitrides, It is taught that since the progress is suppressed and the crack extends, it extends only to the nearest phase boundary, so that it is difficult to cause large peeling across the entire laminated film.
 しかし、上記特許5372760においては、異なる2種以上の窒化物の積層皮膜中に金属層を導入することによってクラックの進展を抑制することを意図しているものの、金属層がTi、Zr、Hf、V、Nb、Ta、Cr、Mo及びWから選択されるため、隣接する窒化物からの窒素(N)の拡散により、金属層が一部変質する傾向があり、例えば、CrN層に隣接して金属Ti層が導入された場合、Ti2NやCr2Nが形成され、これらは硬く脆い性質を有しており、クラックが進展しやすくなるという問題を有している。 However, in the above patent 5372760, although the metal layer is intended to suppress the progress of cracks by introducing a metal layer into a laminate film of two or more different types of nitrides, the metal layer is Ti, Zr, Hf, Since it is selected from V, Nb, Ta, Cr, Mo and W, the metal layer tends to partially change due to diffusion of nitrogen (N) from the adjacent nitride, for example, adjacent to the CrN layer. When a metal Ti layer is introduced, Ti 2 N and Cr 2 N are formed, and these have a hard and brittle property and have a problem that cracks are likely to progress.
 本発明は、上記問題を解決し、エンジンの機械的及び熱的負荷の高い環境で使用することが可能な、耐スカッフ性、耐摩耗性、さらには耐皮膜剥離性に優れた積層硬質皮膜をPVDにより被覆したピストンリングを提供することを課題とする。 The present invention solves the above-described problems and provides a laminated hard film excellent in scuffing resistance, abrasion resistance, and film peeling resistance that can be used in an environment where the mechanical and thermal loads of the engine are high. The object is to provide a piston ring coated with PVD.
 本発明者らは、ピストンリングに被覆した耐スカッフ性、耐摩耗性、及び耐皮膜剥離性に優れたPVD積層硬質皮膜について、特にCrN/TiN積層硬質皮膜にさらに金属層を導入して耐皮膜剥離性を改善するべく鋭意研究した結果、CrN及びTiNと隣接しても窒素がCrN及びTiNから拡散しない金属層を導入することによって、さらに耐皮膜剥離性に優れた積層硬質皮膜を被覆したピストンリングとすることができることに想到した。 The present inventors have introduced a metal layer in addition to a CrN / TiN laminated hard film, particularly for a PVD laminated hard film excellent in scuffing resistance, abrasion resistance, and film peeling resistance coated on a piston ring. As a result of diligent research to improve peelability, pistons coated with a laminated hard film with excellent film peel resistance by introducing a metal layer that does not diffuse from CrN and TiN even when adjacent to CrN and TiN. I came up with the idea that it could be a ring.
 すなわち、本発明のピストンリングは、外周摺動面に硬質皮膜が被覆されたピストンリングであって、前記硬質皮膜がCrN型の窒化クロムとTiN型の窒化チタンを交互に積層した皮膜を含み、前記積層皮膜中に少なくとも1種の金属Mからなる少なくとも1層の金属層を有し、前記金属の窒化物の標準生成自由エネルギーΔGM-Nと前記窒化クロムの標準生成自由エネルギーΔGCrNがΔGM-N>ΔGCrNの関係を満たすことを特徴とする。 That is, the piston ring of the present invention is a piston ring whose outer peripheral sliding surface is coated with a hard film, and the hard film includes a film in which CrN type chromium nitride and TiN type titanium nitride are alternately laminated, The laminated film has at least one metal layer composed of at least one kind of metal M, and the standard formation free energy ΔG MN of the metal nitride and the standard formation free energy ΔG CrN of the chromium nitride are ΔG MN > It is characterized by satisfying the relationship of ΔG CrN .
 前記金属MはCo、Ni及びCuから選択された少なくとも1種であることが好ましい。また前記金属層の厚さは10~1000 nmであることが好ましい。 The metal M is preferably at least one selected from Co, Ni and Cu. The thickness of the metal layer is preferably 10 to 1000 nm.
 本発明の耐スカッフ性、耐摩耗性及び耐皮膜剥離性に優れた金属層含有CrN/TiN積層硬質皮膜被覆ピストンリングは、例えば、特許5372760に開示された金属層含有積層窒化物皮膜被覆ピストンリングと異なり、CrNの標準生成自由エネルギーΔGCrNが金属Mの窒化物の標準生成自由エネルギーΔGM-Nより低く安定(TiNの標準生成自由エネルギーΔGTiNはΔGCrNより低いのでさらに安定)で、CrNから金属層への窒素の拡散が起こらない(ΔGTiNはΔGCrNより低いのでTiN層から金属層への窒素の拡散は当然に起こらない)ため、金属層本来の応力緩和層としての特性を維持することができ、耐皮膜剥離性をさらに改善することができる。 The metal layer-containing CrN / TiN laminated hard film-coated piston ring having excellent scuff resistance, abrasion resistance and film peeling resistance of the present invention is, for example, a metal layer-containing laminated nitride film-coated piston ring disclosed in Patent 5372760. Unlike CrN, the standard free energy of formation ΔG CrN is lower and more stable than the standard free energy of formation of metal M nitride, ΔG MN (more stable because the standard free energy of formation of TiN ΔG TiN is lower than ΔG CrN ). Nitrogen diffusion to the layer does not occur (ΔG TiN is lower than ΔG CrN , so nitrogen diffusion from the TiN layer to the metal layer does not naturally occur), so maintain the original stress relaxation characteristics of the metal layer The film peel resistance can be further improved.
本発明の金属層含有CrN/TiN積層硬質皮膜被覆ピストンリングの皮膜断面の一例を模式的に示した図である。It is the figure which showed typically an example of the film | membrane cross section of the metal layer containing CrN / TiN lamination | stacking hard film coating | coated piston ring of this invention. 本発明の金属層含有CrN/TiN積層硬質皮膜被覆ピストンリングの皮膜断面の別の一例を模式的に示した図である。It is the figure which showed typically another example of the film cross section of the metal layer containing CrN / TiN lamination | stacking hard film coating piston ring of this invention. 本発明で使用するPVD装置の概略図である。It is the schematic of the PVD apparatus used by this invention. 転動すべり疲労試験機の概略図である。It is the schematic of a rolling sliding fatigue testing machine.
 本発明のピストンリングは、外周摺動面に硬質皮膜が被覆されたピストンリングであって、前記硬質皮膜がCrN型の窒化クロムとTiN型の窒化チタンが交互に積層した積層皮膜を含んでいる。さらに本発明のピストンリングは、前記積層皮膜中に少なくとも1種の金属Mからなる少なくとも1層の金属層を有し、前記金属Mの窒化物の標準生成自由エネルギーΔGM-Nと前記窒化クロムの標準生成自由エネルギーΔGCrNがΔGM-N>ΔGCrNの関係を満たすことを特徴としている。 The piston ring of the present invention is a piston ring in which a hard film is coated on an outer peripheral sliding surface, and the hard film includes a laminated film in which CrN type chromium nitride and TiN type titanium nitride are alternately laminated. . Further, the piston ring of the present invention has at least one metal layer composed of at least one kind of metal M in the laminated film, and a standard free energy of formation ΔG MN of the nitride of the metal M and a standard of the chromium nitride. The free energy of generation ΔG CrN satisfies the relationship of ΔG MN > ΔG CrN .
 CrN/TiN積層皮膜は、アークイオンプレーティング(Arc Ion Plating、以下「AIP」ともいう。)により形成されるが、本発明では、CrN/TiN積層皮膜の製造プロセス中に金属Mからなる金属層の形成プロセスを導入することによって金属層含有CrN/TiN積層硬質皮膜を形成する。本発明の金属Mからなる金属層は、その窒化物M-Nの標準生成自由エネルギーΔGM-NがCrNの標準生成自由エネルギーΔGCrNより大きいので、CrN層に隣接して金属層を形成してもCrN層は熱力学的に安定であり、CrN層から金属層に窒素が拡散することなく金属Mからなる金属層として形成される。TiN層はCrN層よりも熱力学的にさらに安定であるので、前記金属層がTiN層と隣接しても当然にTiN層から前記金属層に窒素が拡散することはない。 The CrN / TiN multilayer coating is formed by arc ion plating (hereinafter also referred to as “AIP”), but in the present invention, a metal layer made of metal M during the manufacturing process of the CrN / TiN multilayer coating. A CrN / TiN laminated hard film containing a metal layer is formed by introducing the formation process of The metal layer composed of the metal M of the present invention has a standard formation free energy ΔG MN of the nitride MN larger than the standard formation free energy ΔG CrN of CrN , so even if the metal layer is formed adjacent to the CrN layer, the CrN layer Is thermodynamically stable and is formed as a metal layer made of metal M without diffusion of nitrogen from the CrN layer to the metal layer. Since the TiN layer is thermodynamically more stable than the CrN layer, naturally, even if the metal layer is adjacent to the TiN layer, nitrogen does not diffuse from the TiN layer to the metal layer.
 ΔGM-NがΔGCrNより大きい金属Mとして、特にCo、Ni及びCuから選択された少なくとも1種であることが好ましい。金属MとしてCuを選択すれば、極めて高い熱伝導率の金属層となってさらに好ましい。 It is preferable that ΔG MN is at least one selected from Co, Ni and Cu as the metal M which is larger than ΔG CrN . If Cu is selected as the metal M, a metal layer with extremely high thermal conductivity is more preferable.
 図1は、本発明のピストンリングの皮膜断面を模式的に示した図であるが、基材(1)の上にCrN/TiN積層皮膜(2)が形成され、その中に金属Mからなる少なくとも1層(図1では3層)の金属層(3)が形成されている。金属層(3)は、CrN/TiN/M/CrN/TiN/M…や、CrN/TiN/CrN/M/TiN/CrN/TiN/M…や、CrN/TiN/CrN/TiN…/M/CrN/TiN…/M/CrN/TiN…、等のどのような配置でも良く、また金属層(3)の厚さは10~1000 nmであることが好ましい。金属層(3)の厚さは25~500 nmがより好ましく、50~300 nmがさらに好ましい。金属層(3)は、応力緩和層としての機能を重視し、硬質皮膜全体の残留応力(圧縮応力)を下げ、またクラック伝播を抑えるには、100 nmを超える厚さとすることが好ましい。本発明の硬質皮膜全体として、CrN/TiN積層皮膜の耐スカッフ性及び耐摩耗性を生かし、金属層によるさらなる耐皮膜剥離性の向上を図るには、(3~10μmのCrN/TiN積層皮膜)/(10~1000 nmの金属層)を繰り返した硬質皮膜とすることが好ましい。 FIG. 1 is a diagram schematically showing a cross section of a piston ring of the present invention, in which a CrN / TiN laminated film (2) is formed on a base material (1), and is composed of metal M therein. At least one metal layer (3) in FIG. 1 is formed. Metal layer (3) is CrN / TiN / M / CrN / TiN / M ..., CrN / TiN / CrN / M / TiN / CrN / TiN / M ..., CrN / TiN / CrN / TiN ... / M / Any arrangement of CrN / TiN... / M / CrN / TiN... May be used, and the thickness of the metal layer (3) is preferably 10 to 1000 nm. The thickness of the metal layer (3) is more preferably 25 to 500 nm, and further preferably 50 to 300 nm. The metal layer (3) emphasizes the function as a stress relaxation layer, and in order to reduce the residual stress (compressive stress) of the entire hard coating and suppress crack propagation, it is preferable to have a thickness exceeding 100 nm. In order to further improve the film peeling resistance by the metal layer by utilizing the scuff resistance and wear resistance of the CrN / TiN multilayer coating as the entire hard coating of the present invention (3-10 μm CrN / TiN multilayer coating) It is preferable to form a hard film in which / (a metal layer of 10 to 1000 nm) is repeated.
 本発明の硬質皮膜の基礎を構成するCrN型の窒化クロムとTiN型の窒化チタンが交互に積層したCrN/TiN積層皮膜は、CrN皮膜に比べ熱伝導率が高く、ピストンリングが高い熱伝導機能を発揮するのに貢献する皮膜である。すなわち、ピストンヘッドの熱を冷却されたシリンダ壁に効率よく逃すだけでなく、発生する熱応力の低減にも繋げ、クラックや欠けの発生を抑える。ここで、CrN型の窒化クロムとは、Cr2N型の窒化クロムを含んでもよいが主たる窒化クロムがCrN型であることを意味し、TiN型の窒化チタンとは、Ti2N型の窒化チタンを含んでもよいが主たる窒化チタンがTiN型であることを意味する。 The CrN / TiN multilayer coating consisting of alternating CrN type chromium nitride and TiN type titanium nitride, which form the basis of the hard coating of the present invention, has a higher thermal conductivity than the CrN coating and a high piston ring thermal conductivity function A film that contributes to That is, not only the heat of the piston head is efficiently released to the cooled cylinder wall, but also the reduction of the generated thermal stress is suppressed, and the generation of cracks and chips is suppressed. Here, CrN type chromium nitride means that the main chromium nitride may be CrN type although it may contain Cr 2 N type chromium nitride, and TiN type titanium nitride means Ti 2 N type nitride. Although it may contain titanium, it means that the main titanium nitride is of the TiN type.
 PVDによりピストンリングに被覆した硬質皮膜にクラック又は欠けが発生する場合、皮膜表面又は内部に存在する欠陥を起点とし、摺動によって発生する皮膜最表面の引張応力又は皮膜内部の剪断応力によりクラックが伝播し、皮膜の欠けや脱落あるいは皮膜剥離という形態で破壊に至る。また、異なる相を積層した積層皮膜は、一般には、その界面に歪みが残るため界面に沿ってクラックが伝播しやすい。しかし、本発明では、CrN/TiN積層皮膜は、CrNとTiNも格子常数がそれぞれ0.414 nm、0.424 nmと非常に近いため、整合性の高い、強い界面を形成する。ここで、CrN/TiN積層皮膜における各1層当たりの厚さの和からなる積層単位厚さ、すなわち、CrN層1層の厚さとTiN層1層の厚さの和は20~100 nmであることが好ましい。耐クラック伝搬の観点では20~80 nmが好ましく、20~60 nmがさらに好ましい。さらに、CrN層及びTiN層の厚さがCrN及びTiNの結晶子サイズに相当すれば、少なくとも膜厚方向には単結晶と見なすことができ、多結晶に比べ、剛性が格段に向上する。被覆面に平行な方向には小傾角境界をもつ多結晶と考えられ、これらの構成は、積層皮膜の界面、層内の両方でのクラックの伝播を抑制する。結晶子サイズに注目すれば、CrN層1層とTiN層1層からなる積層単位厚さは、CrNとTiNの各結晶子サイズの和の1~1.3倍であることが好ましい。 When cracks or chipping occur in the hard film coated on the piston ring by PVD, the crack is caused by the tensile stress on the outermost surface of the film generated by sliding or the shear stress inside the film, starting from defects on the surface or inside of the film. Propagates and breaks down in the form of chipping, dropping or peeling of the film. In addition, a laminated film in which different phases are laminated generally tends to cause cracks to propagate along the interface because strain remains at the interface. However, in the present invention, the CrN / TiN multilayer coating forms a strong interface with high consistency because the lattice constants of CrN and TiN are very close to 0.414 nm and 0.424 nm, respectively. Here, the unit thickness of the layer consisting of the sum of the thickness of each layer in the CrN / TiN multilayer coating, that is, the sum of the thickness of one CrN layer and the thickness of one TiN layer is 20 to 100 nm. It is preferable. From the viewpoint of crack resistance propagation, it is preferably 20 to 80 nm, and more preferably 20 to 60 nm. Furthermore, if the thicknesses of the CrN layer and the TiN layer correspond to the crystallite size of CrN and TiN, it can be regarded as a single crystal at least in the film thickness direction, and the rigidity is remarkably improved as compared with the polycrystal. It is considered as a polycrystal having a small tilt boundary in the direction parallel to the coating surface, and these configurations suppress the propagation of cracks both at the interface of the laminated film and within the layer. When paying attention to the crystallite size, the stack unit thickness composed of one CrN layer and one TiN layer is preferably 1 to 1.3 times the sum of the crystallite sizes of CrN and TiN.
 本発明では、上述した耐クラック伝播性に優れたCrN/TiN積層皮膜中に、さらに耐クラック伝播性を向上させるため、金属Mからなる少なくとも1層の金属層を有している。CrN層及びTiN層から窒素が拡散していない金属層は十分な延性を有しており、クラックが万が一CrN/TiN積層皮膜中を伝播してきたとしても、金属層の存在がその界面でクラックの伝播を止め、皮膜の欠けや脱落を回避することを可能とする。 In the present invention, the CrN / TiN laminated film having excellent crack propagation resistance described above has at least one metal layer made of metal M in order to further improve the crack propagation resistance. The CrN layer and the metal layer in which nitrogen is not diffused from the TiN layer have sufficient ductility, and even if the crack propagates through the CrN / TiN laminated film, the presence of the metal layer is the crack at the interface. Propagation is stopped, and it is possible to avoid chipping or falling off of the film.
 CrN層及びTiN層の厚さが、それぞれCrNとTiNの結晶子サイズに近づくことは、前述したように、欠陥の少ないCrN層及びTiN層を形成するためヤング率や強度を向上させる。さらに、粒界によるフォノン散乱を低減し、熱伝導率を向上させる。よって、本発明では、強度的な観点だけでなく、熱伝導率の観点からも、積層単位厚さを20~100 nmとし、CrNとTiNの各結晶子サイズの和の1~1.3倍とすることが好ましい。CrN/TiN積層皮膜が熱伝導率のさらに高い金属層を含むことは、硬質皮膜の熱伝導率をさらに向上させることにも貢献する。 When the thickness of the CrN layer and TiN layer approaches the crystallite size of CrN and TiN, respectively, as described above, the CrN layer and the TiN layer with few defects are formed, so that the Young's modulus and strength are improved. Furthermore, phonon scattering due to grain boundaries is reduced, and thermal conductivity is improved. Therefore, in the present invention, not only from the viewpoint of strength but also from the viewpoint of thermal conductivity, the laminated unit thickness is set to 20 to 100 nm, and 1 to 1.3 times the sum of the crystallite sizes of CrN and TiN. It is preferable. The inclusion of a metal layer having a higher thermal conductivity in the CrN / TiN multilayer coating also contributes to further improving the thermal conductivity of the hard coating.
 AIPにより形成したCrNとTiNの熱伝導率は、沖(表面技術、41巻5号(1990)、464-470頁)によれば、それぞれ、0.0261~0.0307 cal/cm・sec・deg(SI単位に換算すると10.9~12.9 W/m・Kとなる)と0.07 cal/cm・sec・deg(SI単位に換算すると29.3 W/m・Kとなる)であり、TiNのほうがCrNの約2.5倍高い。一方、TiNはCrNに比べ耐腐食性に劣るという問題点も有している。よって、熱伝導率を考慮すればチタンの比率を増やし、耐腐食性を考慮すればクロムの比率を増やすことが好ましい。両者のバランスを考慮すれば3:7~7:3の範囲とすることがさらに好ましい。 The thermal conductivity of CrN and TiN formed by AIP is 0.0261 to 0.0307 cal / cm · sec · deg (SI unit), respectively, according to Oki (Surface Technology, Vol. 41, No. 5, (1990), pages 464-470). 10.9-12.9 W / m · K) and 0.07 cal / cm · sec · deg (29.3 W / m · K when converted to SI), and TiN is about 2.5 times higher than CrN. . On the other hand, TiN has a problem that it is inferior in corrosion resistance compared to CrN. Therefore, it is preferable to increase the titanium ratio if the thermal conductivity is considered, and increase the chromium ratio if the corrosion resistance is considered. Considering the balance between the two, it is more preferable that the range is 3: 7 to 7: 3.
 積層したCrN層とTiN層の成長方位は、成膜条件によって異なる。特に限定するものではないが、CrN層は(200)面で最大となり、TiN層も(200)面で最大の回折強度となることが好ましい。 The growth orientation of the stacked CrN layer and TiN layer varies depending on the film formation conditions. Although not particularly limited, it is preferable that the CrN layer has the maximum diffraction intensity on the (200) plane, and the TiN layer also has the maximum diffraction intensity on the (200) plane.
 また、本発明のピストンリングは、その外周摺動面の最表面がCrN及びTiNからなる複合組織、又はCrN、TiN及び金属Mからなる複合組織を有することが好ましい。また、耐スカッフ性や耐摩耗性を考慮すれば、金属Mからなる金属層のみ最表面に露出することがないようにすべきである。その点、金属層の厚さがCrN層及びTiN層の厚さに近づけば、金属含有CrN/TiN積層皮膜は、最表面で基本的にCrN、TiN及び金属Mからなる複合組織を示す。すなわち、図2に示すように、凹凸を形成した基材(1)面に積層皮膜を形成すれば、積層皮膜も波状に形成され、外周摺動面を平面に研磨すれば、CrN(5)とTiN(6)金属M(7)からなる複合組織がその最表面に得られる。一般に、基材面に凹凸を形成し、その上に金属層含有CrN/TiN積層硬質皮膜を形成することが好ましい。 Further, the piston ring of the present invention preferably has a composite structure composed of CrN and TiN or a composite structure composed of CrN, TiN and metal M on the outermost sliding surface. In consideration of scuff resistance and wear resistance, only the metal layer made of metal M should be exposed on the outermost surface. In that respect, if the thickness of the metal layer is close to the thickness of the CrN layer and the TiN layer, the metal-containing CrN / TiN multilayer coating basically exhibits a composite structure composed of CrN, TiN and metal M on the outermost surface. That is, as shown in FIG. 2, if a laminated film is formed on the surface of the substrate (1) on which irregularities are formed, the laminated film is also formed in a wave shape, and if the outer peripheral sliding surface is polished to a flat surface, CrN (5) A composite structure consisting of TiN (6) metal M (7) is obtained on the outermost surface. In general, it is preferable to form irregularities on the substrate surface and form a metal layer-containing CrN / TiN laminated hard film thereon.
 最表面に現れるCrN(5)とTiN(6)と金属M(7)からなる複合組織は、積層厚さ、積層面と研磨面との角度、波状積層膜の波長、等に依存するが、等高線状の組織を含むことが好ましい。条件が整えば、層状のリング状形態となる。 The composite structure consisting of CrN (5), TiN (6) and metal M (7) appearing on the outermost surface depends on the lamination thickness, the angle between the lamination surface and the polishing surface, the wavelength of the wavy laminated film, etc. It is preferable to include a contoured structure. If the conditions are set, a layered ring shape is obtained.
 なお、積層皮膜と基材との間に、その密着性を改善するための金属中間層(4)を形成してもよい。金属中間層(4)はCrからなることが好ましい。 A metal intermediate layer (4) for improving the adhesion may be formed between the laminated film and the substrate. The metal intermediate layer (4) is preferably made of Cr.
 さらに、本発明のピストンリングの硬質皮膜の硬度は1000 HV0.1以上であることが好ましい。高硬度側は、好ましくは1450 HV0.1以下とする。1100 HV0.1~1300 HV0.1であればより好ましい。また、皮膜の残留応力は-500 MPa~-1500 MPa(圧縮残留応力)であることが好ましい。-600 MPa~-1400 MPaであればより好ましい。このようなバランスのとれた皮膜の圧縮残留応力は、摩擦による引張応力や剪断応力を低減し、クラックの伝播を抑制する。 Furthermore, the hardness of the hard coating of the piston ring of the present invention is preferably 1000 あ る HV0.1 or more. The high hardness side is preferably 1450 HV0.1 or less. 1100 よ り HV0.1 to 1300 HV0.1 is more preferable. The residual stress of the film is preferably -500 to 1500 MPa (compressive residual stress). It is more preferable if it is -600 MPa to -1400 MPa. Such a balanced compressive residual stress of the coating reduces the tensile stress and shear stress due to friction and suppresses the propagation of cracks.
 本発明では、金属含有CrN/TiN積層硬質皮膜は、例えば、図3に示すような概略図(上から見た平面図)のPVD装置を用いて形成する。このPVD装置では、プロセスガス導入口(11)とプロセスガス排出口(12)を有する真空容器(10)中に、被処理物(18)(ピストンリングを重ねたもの)をセットし、回転テーブル(17)を挟んで対向した位置に、アークイオンプレーティングの金属Crカソード(13)と金属Tiカソード(14)を、及び、スパッタリングの金属Mのカソード(15,16)を配置している。回転テーブル(17)は被処理物(18)が自転する機構を有しており、さらに(図示しない)バイアス電源に接続されている。また装置の壁面にはヒーター(19)が設置されている。 In the present invention, the metal-containing CrN / TiN laminated hard coating is formed using, for example, a PVD apparatus having a schematic diagram (plan view from above) as shown in FIG. In this PVD system, a workpiece (18) (with a piston ring superimposed) is set in a vacuum vessel (10) having a process gas inlet (11) and a process gas outlet (12), and a rotary table. The metal Cr cathode (13) and metal Ti cathode (14) of arc ion plating and the cathode (15, 16) of metal M of sputtering are arranged at positions facing each other with (17) interposed therebetween. The rotary table (17) has a mechanism for rotating the workpiece (18), and is further connected to a bias power source (not shown). A heater (19) is installed on the wall of the apparatus.
 アークイオンプレーティング法は、真空容器(10)中に窒素(N2)ガスを導入し、低圧雰囲気下で、金属Crカソード及び/又は金属Tiカソード表面にアークを発生させ、金属Cr及び/又は金属Tiを瞬時に溶解、窒素プラズマ中でイオン化し、被処理物(18)に印加した負のバイアス電圧によってクロムイオン、チタンイオン、あるいは窒素プラズマと反応したCrNやTiNとして被覆面に引き込むことで、CrN層やTiN層を形成する方法である。アークイオンプレーティングでは、高いエネルギー密度により、金属Cr及び金属Tiの高イオン化率を達成できる。よって、高い成膜速度が得られ、ピストンリングに要求される10~60μmの成膜が工業的に可能となる。 In the arc ion plating method, nitrogen (N 2 ) gas is introduced into the vacuum vessel (10), and an arc is generated on the surface of the metal Cr cathode and / or the metal Ti cathode in a low-pressure atmosphere, so that the metal Cr and / or Metal Ti is instantaneously dissolved, ionized in nitrogen plasma, and drawn into the coated surface as chromium ions, titanium ions, or CrN or TiN reacted with nitrogen plasma by a negative bias voltage applied to the workpiece (18). This is a method of forming a CrN layer or a TiN layer. In arc ion plating, a high ionization rate of metallic Cr and metallic Ti can be achieved with a high energy density. Therefore, a high film formation rate can be obtained, and the film formation of 10 to 60 μm required for the piston ring can be industrially performed.
 また、スパッタリング法は、Arなどの不活性ガスを導入しながら、金属カソードに高電圧を印加して発生するグロー放電プラズマ中で、Arイオンが高エネルギーで金属カソード(15,16)(ターゲット)に衝突して、金属原子/分子を弾き飛ばし、それらを被処理物(18)上に堆積させて皮膜を形成する方法である。金属カソード(15,16)裏面に配置された(図示しない)磁石による磁場を利用したマグネトロンスパッタリングで、外側磁極の磁場を内側磁極の磁場より強くした非平衡磁場を生成すれば、ターゲット近傍に収束していたプラズマの一部が磁力線に沿って基材近傍まで拡散しやすくなり、被処理物(18)近傍のプラズマ密度を増大し、皮膜形成中に被処理物(18)に照射されるArイオン量を増大させて、皮膜界面の強化を図ることができる。 Sputtering is a glow discharge plasma generated by applying a high voltage to a metal cathode while introducing an inert gas such as Ar. , The metal atoms / molecules are blown off and deposited on the object to be processed (18) to form a film. If magnetron sputtering using a magnetic field (not shown) placed on the back side of the metal cathode (15, 16) is used to generate a non-equilibrium magnetic field in which the magnetic field of the outer magnetic pole is stronger than that of the inner magnetic pole, it converges near the target. A part of the plasma that has been used is easily diffused to the vicinity of the substrate along the magnetic field lines, increasing the plasma density in the vicinity of the workpiece (18), and irradiating the workpiece (18) during film formation The amount of ions can be increased to enhance the film interface.
 CrN/TiN積層皮膜の成膜は、金属Crカソードにおけるアーク放電と金属Tiカソードにおけるアーク放電を、時間をずらして行うことによりCrNの形成とTiNの形成を交互に行っても良いが、成膜速度を高め、生産性を高めるには、金属Crカソードと金属Tiカソードのアーク放電を同時に行うことが好ましい。金属(M)層は、金属Crカソードと金属Tiカソードのアーク放電を止め、N2雰囲気からAr雰囲気に置換して、所定の時間、金属Mカソードのグロー放電を行うことによって形成する。 The CrN / TiN multilayer coating can be formed alternately by performing arc discharge at the metal Cr cathode and arc discharge at the metal Ti cathode at different times. In order to increase the speed and productivity, it is preferable to perform arc discharge of the metal Cr cathode and the metal Ti cathode simultaneously. The metal (M) layer is formed by stopping the arc discharge of the metal Cr cathode and the metal Ti cathode, replacing the N 2 atmosphere with the Ar atmosphere, and performing glow discharge of the metal M cathode for a predetermined time.
 窒化クロムと窒化チタンの組成は、金属Crカソード及び金属Tiカソードからの蒸発量と窒素ガス分圧によって決まるので、本発明では、CrN型窒化クロムとTiN型窒化チタンが主体となるように調整する。また、カソードからの金属の蒸発量は金属固有の融点における蒸気圧とアーク電流(温度)に依存するので、組成が変わらない(例えば、CrN主体の組成がCr2N主体の組成にならない)範囲内でアーク電流を変化させ、CrとTiの比率を変えることができる。よって、CrN層とTiN層の各層の厚さは、アーク電流と回転テーブル(17)の回転速度により制御可能である。CrN層とTiN層の厚さは、FE-SEM(Field Emission - Scanning Electron Microscope)等を利用した直接観察により測定できるが、少なくともCrN層1層とTiN層1層の和、すなわち回転テーブルが1回転する間に形成された積層単位厚さは、成膜速度(μm/min)をテーブルの回転速度(rpm)で除した値となる。ここで、成膜速度はアーク電流を上げると増加するので、アーク電流を下げるか又はテーブルの回転速度を上げれば積層単位厚さは小さくなる。 Since the composition of chromium nitride and titanium nitride is determined by the amount of evaporation from the metal Cr cathode and metal Ti cathode and the nitrogen gas partial pressure, it is adjusted in the present invention to be mainly composed of CrN type chromium nitride and TiN type titanium nitride. . In addition, the amount of metal evaporation from the cathode depends on the vapor pressure and arc current (temperature) at the metal's inherent melting point, so the composition does not change (for example, the CrN-based composition does not become the Cr 2 N-based composition). The ratio of Cr and Ti can be changed by changing the arc current. Therefore, the thicknesses of the CrN layer and the TiN layer can be controlled by the arc current and the rotation speed of the rotary table (17). The thickness of the CrN layer and the TiN layer can be measured by direct observation using FE-SEM (Field Emission-Scanning Electron Microscope), etc., but at least the sum of the CrN layer and the TiN layer, that is, the rotary table is 1 The thickness of the stacked unit formed during the rotation is a value obtained by dividing the film formation speed (μm / min) by the rotation speed (rpm) of the table. Here, since the film formation rate increases as the arc current increases, the unit thickness of the stack decreases as the arc current is decreased or the rotation speed of the table is increased.
 スパッタリングで形成した金属層の膜厚や膜質は、スパッタ電力や雰囲気ガスの圧力に依存する。一般に、スパッタ電力を上げ、雰囲気ガスの圧力を低圧にすれば、雰囲気ガスとの衝突、散乱が少なくなって成膜速度は増加する。 The film thickness and film quality of the metal layer formed by sputtering depend on the sputtering power and the pressure of the atmospheric gas. In general, if the sputtering power is increased and the pressure of the atmospheric gas is reduced, collision and scattering with the atmospheric gas are reduced and the film formation rate is increased.
 PVDによって形成した皮膜の結晶組織は、一般に、炉内圧やバイアス電圧により調整可能であり、炉内圧を高くし、バイアス電圧を低くすると柱状晶になり、逆に炉内圧を低くし、バイアス電圧を高くすると粒状組織が得られると言われている。しかし、特開平6-300130にあるようにバイアス電圧を高くすると柱状晶になるという教示もあり、一概にそういえないのが現実である。イオンプレーティングやスパッタリングの成膜環境は非常に複雑であり、例えば、装置を変更すれば、同じ放電電力、炉内圧、バイアス電圧を選択したとしても、同じ組織が得られる保証が全くないのが実情である。もちろん、基材の材質、結晶構造、温度、表面状態等にも関係するが、炉内の構造(被処理物とカソードの配置等)も比較的大きな影響を及ぼしており、成膜条件は装置毎に設定されなければならない。 The crystal structure of the film formed by PVD can generally be adjusted by the furnace pressure and bias voltage. When the furnace pressure is raised and the bias voltage is lowered, it becomes columnar crystals, and conversely, the furnace pressure is lowered and the bias voltage is lowered. It is said that a granular structure can be obtained by increasing the value. However, as disclosed in Japanese Patent Laid-Open No. 6-300130, there is a teaching that when a bias voltage is increased, a columnar crystal is formed. The film deposition environment for ion plating and sputtering is very complex.For example, if the same discharge power, furnace pressure, and bias voltage are selected, there is no guarantee that the same structure can be obtained if the equipment is changed. It is a fact. Of course, although it is also related to the material of the base material, crystal structure, temperature, surface condition, etc., the structure in the furnace (arrangement of workpiece and cathode, etc.) has a relatively large influence, and the film formation conditions are the equipment. Must be set every time.
実施例1
 SWOSC-V相当材の線材から呼称径(d)96 mm、径方向厚さ(a1)3.8 mm、軸方向幅(h1)2.5 mmの矩形断面で、外周面をバレルフェイス形状としたピストンリングを作製し、このピストンリングを50本重ね、外周面をショットブラストにより数μmの表面粗さ(Ry)に調整し、アークイオンプレーティングとスパッタリングの機能を併せ持つ複合装置内にセットした。ターゲットは、純度99.9%の金属Crと純度99.9%の金属Ti、純度99.9%の金属Cuを使用した。装置内を1.0×10-2 Paまで真空引きした後、Arガスを1.0 Paまで導入、-900 Vのバイアス電圧を印加してボンバードメント処理により基材となるピストンリング外周面を清浄化した。Arガスは99.99%の純度のものを用いた。その後、純度99.999%のN2ガスを4 Paまで導入し、金属Crカソードのアーク電流を120 A、金属Tiカソードのアーク電流を170 A、バイアス電圧-9 V、テーブル回転速度2 rpmで、100分間のイオンプレーティング処理によるCrN/TiN積層皮膜の形成を行った。続いて、金属Crカソードと金属Tiカソードのアーク放電を停止し、N2ガスを真空排除した後、Arガスを0.4 Paまで導入、金属Cuカソードの電圧を400 Vとして、UBM(Unbalanced Magnetron)スパッタリング処理による金属Cuの金属層の形成を行った。ここで、バイアス電圧とテーブル回転速度は変更せずに、処理時間は5分間とした。上記の条件で、イオンプレーティングによるCrN/TiN積層皮膜の形成とスパッタリングによるCu金属層の形成を繰り返し、最終的に、CrN/TiN積層皮膜の中にCu金属層を2層含む硬質皮膜を被覆したピストンリングを作製した。なお、密着性改善を目的とし、基材と積層皮膜との間に金属中間Cr層を形成した。得られた金属(Cu)層含有CrN/TiN積層硬質皮膜被覆ピストンリングは、次の各種測定に供した。
Example 1
A piston ring with a rectangular face with a nominal diameter (d) of 96 mm, radial thickness (a1) of 3.8 mm, and axial width (h1) of 2.5 mm from a wire equivalent to SWOSC-V. 50 piston rings were stacked, the outer peripheral surface was adjusted to a surface roughness (Ry) of several μm by shot blasting, and set in a composite apparatus having both arc ion plating and sputtering functions. The target was 99.9% pure metal Cr, 99.9% pure metal Ti, and 99.9% pure metal Cu. The inside of the apparatus was evacuated to 1.0 × 10 −2 Pa, Ar gas was introduced to 1.0 Pa, and a bias voltage of −900 V was applied to clean the outer peripheral surface of the piston ring as a base material by bombardment treatment. Ar gas having a purity of 99.99% was used. Then, N 2 gas with a purity of 99.999% was introduced up to 4 Pa, the arc current of the metal Cr cathode was 120 A, the arc current of the metal Ti cathode was 170 A, the bias voltage was -9 V, the table rotation speed was 2 rpm, 100 A CrN / TiN multilayer coating was formed by ion plating for a minute. Subsequently, the arc discharge of the metal Cr cathode and the metal Ti cathode was stopped, the N 2 gas was evacuated, Ar gas was introduced to 0.4 Pa, the metal Cu cathode voltage was 400 V, and UBM (Unbalanced Magnetron) sputtering. A metal layer of metal Cu was formed by treatment. Here, the processing time was set to 5 minutes without changing the bias voltage and the table rotation speed. Under the above conditions, CrN / TiN multilayer coating by ion plating and Cu metal layer formation by sputtering were repeated, and finally a hard coating containing two Cu metal layers in the CrN / TiN multilayer coating was coated. A piston ring was made. For the purpose of improving adhesion, a metal intermediate Cr layer was formed between the substrate and the laminated film. The obtained metal (Cu) layer-containing CrN / TiN laminated hard film-coated piston ring was subjected to the following various measurements.
[1] 膜厚測定
 膜厚測定は、被覆面に垂直な鏡面研磨したピストンリング断面について、走査電子顕微鏡(SEM)による写真から、皮膜の基材面から表面までの長さを測定し、試料の膜厚とした。実施例1の膜厚は22.8μmであり、また、高倍率で観察したCu金属層の厚さは0.16μm(160 nm)と0.14μm(140 nm)であった。CrN/TiN積層皮膜の膜厚は22.5μmとなり、回転テーブルが1回転する間に形成された積層単位厚さ(窒化クロム1層+窒化チタン1層)は、上記膜厚22.5μmとコーティング時間(300分間)とテーブルの回転数(2 rpm)から0.0375μm(37.5 nm)と算出された。
[1] Thickness measurement Thickness measurement was performed by measuring the length from the substrate surface to the surface of the coating on a mirror-polished piston ring cross section perpendicular to the coated surface, using a scanning electron microscope (SEM) photograph. Film thickness. The film thickness of Example 1 was 22.8 μm, and the thicknesses of the Cu metal layer observed at a high magnification were 0.16 μm (160 nm) and 0.14 μm (140 nm). The film thickness of the CrN / TiN multilayer coating is 22.5μm, and the unit thickness of the stack (one chromium nitride layer + one titanium nitride layer) formed during one rotation of the rotary table is 22.5μm and the coating time ( It was calculated to be 0.0375 μm (37.5 nm) from 300 minutes) and the number of rotations of the table (2 rpm).
[2] 硬度測定
 硬度測定は、鏡面研磨した被覆面に平行な表面について、マイクロビッカース硬度計を使用し、試験力0.9807 Nで行った。実施例1の金属層含有CrN/TiN積層硬質皮膜の硬度は1210 HV0.1であった。
[2] Hardness measurement Hardness measurement was performed on a surface parallel to the mirror-polished coating surface using a micro Vickers hardness tester with a test force of 0.9807 N. The hardness of the metal layer-containing CrN / TiN laminated hard film of Example 1 was 1210 HV0.1.
[3] 残留応力測定
 皮膜の残留応力σは、次のStoneyの式により算出した。
     σ = -{Es(1-νs)hs 2}/6hfΔ R ……………………………………(1)
ここで、Esは基材のヤング率(N/mm2)、νsは基材のポアソン比、hsは基材の厚さ、hfは皮膜厚さ、Δ Rは曲率変化量である。なお、Es及びνsは、それぞれ、200,000 N/mm2及び0.3とした。実施例1の金属層含有CrN/TiN積層硬質皮膜の残留応力は-1170 MPa(圧縮で1170 MPa)であった。
[3] Residual Stress Measurement The residual stress σ of the film was calculated by the following Stoney equation.
σ =-{E s (1-ν s ) h s 2 } / 6h f Δ R …………………………………… (1)
Where E s is the Young's modulus (N / mm 2 ) of the substrate, ν s is the Poisson's ratio of the substrate, h s is the thickness of the substrate, h f is the film thickness, and ΔR is the amount of change in curvature. is there. Incidentally, E s and [nu s, respectively, was 200,000 N / mm 2 and 0.3. The residual stress of the metal layer-containing CrN / TiN laminated hard film of Example 1 was -1170 MPa (1170 MPa in compression).
[4] X線回折測定
 X線回折強度は、鏡面研磨した被覆面に平行な表面について、管電圧40 kV、管電流30mAのCu-Kα 線を使用して2θ = 35~70°の範囲で測定した。実施例1の金属層含有CrN/TiN積層硬質皮膜のX線回折パターンは、TiN(200)面で最大ピーク強度を示し、続いてCrN(200)面、TiN(111)面、CrN(111)面、TiN(220)面、CrN(220)面と続き、僅かであったがCu(111)面の回折ピークも検出された。また、TiN(200)面とCrN(200)面にて、次のScherrerの式を用いて結晶子サイズDhklを算出した。
     Dhkl=Kλ /β cosθ…………………………………………………(2)
ここで、KはScherrerの定数で0.94、λ はX線の波長(Cu:1.5406Å)、β は半値全幅(FWHM)、θ はBragg角である。実施例1のCrN層の結晶子サイズは10.2 nm 、TiN層の結晶子サイズは20.8 nmであり、よってCrN層とTiN層の結晶子サイズの和は31.0 nmとなる。膜厚から計算した積層単位厚さ37.5 nmは、窒化クロムと窒化チタンの各結晶子サイズの和の1.21倍であった。
[4] X-ray diffraction measurement X-ray diffraction intensity is measured in the range of 2θ = 35 to 70 ° using Cu-Kα rays with a tube voltage of 40 kV and a tube current of 30 mA on the surface parallel to the mirror-polished coated surface. It was measured. The X-ray diffraction pattern of the metal layer-containing CrN / TiN laminated hard film of Example 1 shows the maximum peak intensity on the TiN (200) plane, followed by the CrN (200) plane, TiN (111) plane, CrN (111) The diffraction peak of the Cu (111) surface was also detected, although it was slight, followed by the surface, the TiN (220) surface, and the CrN (220) surface. The crystallite size D hkl was calculated using the following Scherrer equation on the TiN (200) plane and the CrN (200) plane.
D hkl = Kλ / β cosθ …………………………………………………… (2)
Here, K is Scherrer's constant of 0.94, λ is the X-ray wavelength (Cu: 1.5406Å), β is the full width at half maximum (FWHM), and θ is the Bragg angle. The crystallite size of the CrN layer of Example 1 is 10.2 nm, and the crystallite size of the TiN layer is 20.8 nm. Therefore, the sum of the crystallite sizes of the CrN layer and the TiN layer is 31.0 nm. The laminated unit thickness 37.5 nm calculated from the film thickness was 1.21 times the sum of the crystallite sizes of chromium nitride and titanium nitride.
[5] 皮膜組成測定
 CrN/TiN積層皮膜における組成の分析は、EPMA(Electron Probe Micro Analyzer)を用いて行った。Cr:Ti:Nは原子比率で17.2:29.3:53.5であり、CrとTiの原子比率は3.7:6.3であった。
[5] Coating composition measurement The composition of the CrN / TiN multilayer coating was analyzed using EPMA (Electron Probe Micro Analyzer). The atomic ratio of Cr: Ti: N was 17.2: 29.3: 53.5, and the atomic ratio of Cr and Ti was 3.7: 6.3.
[6] 転動すべり疲労試験
 実機試験での皮膜脱落を再現可能とする評価として、転動すべり疲労試験を行った。図4に試験機の概略を示すが、転動すべり疲労試験では、回転するドラム(21)と摺動する試験片(20)に、繰り返し荷重が加えられ、比較的短時間で皮膜の脱落が再現される。皮膜の脱落は、同一潤滑条件下においては、摩擦係数と荷重(最大ヘルツ応力)と繰り返し回数に依存する。試験条件は、次のとおりである。
 試験片:金属層含有CrN/TiN積層皮膜被覆ピストンリング切断片、
 荷重:98~196 N、サインカーブ 50 Hz、
 相手材(ドラム):直径80 mmのSUJ2材、
 摺動速度:正転逆転パターン運転(±2 m/秒)、速度±2 m/秒で10秒保持、
 加速度0.08 m/秒2、 
 潤滑剤:純水、4 cc/min、
 温度:ドラム表面温度80℃、
 試験時間:1時間。
なお、試験結果は、皮膜脱落の有無で判定した。実施例1の転動すべり疲労試験の結果、皮膜脱落は無かった。
[6] Rolling sliding fatigue test A rolling sliding fatigue test was conducted as an evaluation to make it possible to reproduce the film dropout in the actual machine test. Fig. 4 shows the outline of the testing machine. In the rolling sliding fatigue test, a repeated load was applied to the rotating drum (21) and the sliding test piece (20), and the film was removed in a relatively short time. It is reproduced. The removal of the film depends on the friction coefficient, the load (maximum Hertz stress) and the number of repetitions under the same lubrication condition. The test conditions are as follows.
Test piece: Metal ring containing CrN / TiN multilayer coating coated piston ring cut piece,
Load: 98-196 N, sine curve 50 Hz,
Counterpart material (drum): 80 mm diameter SUJ2 material,
Sliding speed: Forward / reverse rotation pattern operation (± 2 m / sec), hold for 10 seconds at speed ± 2 m / sec.
Acceleration 0.08 m / sec 2,
Lubricant: pure water, 4 cc / min,
Temperature: drum surface temperature 80 ℃,
Test time: 1 hour.
In addition, the test result was determined by the presence or absence of film removal. As a result of the rolling sliding fatigue test of Example 1, there was no film falling off.
実施例2~3
 CrN/TiN積層皮膜の成膜時間と回数をそれぞれ50分×6回(実施例2)、5分×60回(実施例3)、及びCu金属層の成膜時間と回数をそれぞれ5分×5回(実施例2)、1分×59回(実施例3)に変更した以外は実施例1と同じ条件で、金属(Cu)層含有CrN/TiN積層硬質皮膜の成膜を行った。
Examples 2-3
CrN / TiN multilayer film deposition time and number of times 50 minutes x 6 times (Example 2), 5 minutes x 60 times (Example 3), and Cu metal layer deposition time and number of times 5 minutes each x A metal (Cu) layer-containing CrN / TiN laminated hard film was formed under the same conditions as in Example 1 except that it was changed to 5 times (Example 2) and 1 minute × 59 times (Example 3).
実施例4
 イオンプレーティングにおけるアーク電流を金属Crカソードで160 A、金属Tiカソードで130 A、Cu金属層の成膜時間と回数を10分×5回に変更した以外は実施例2と同じ条件で、金属(Cu)層含有CrN/TiN積層硬質皮膜の成膜を行った。
Example 4
Under the same conditions as in Example 2, except that the arc current in ion plating was changed to 160 A for the metal Cr cathode, 130 A for the metal Ti cathode, and the deposition time and frequency of the Cu metal layer to 10 minutes x 5 times. A (Cu) layer-containing CrN / TiN laminated hard film was formed.
実施例5
 スパッタリングのターゲットをCuからNiに、カソード電圧を500 Vに、成膜時間と回数を5分×5に変更した以外は実施例4と同じ条件で、金属(Ni)層含有CrN/TiN積層硬質皮膜の成膜を行った。
Example 5
A CrN / TiN laminated hard material containing a metal (Ni) layer under the same conditions as in Example 4 except that the sputtering target was changed from Cu to Ni, the cathode voltage was changed to 500 V, and the deposition time and number of times were changed to 5 minutes × 5. A film was formed.
実施例6
 スパッタリングのターゲットをNiからCoに変更した以外は実施例5と同じ条件で、金属(Co)層含有CrN/TiN積層硬質皮膜の成膜を行った。
Example 6
A metal (Co) layer-containing CrN / TiN laminated hard film was formed under the same conditions as in Example 5 except that the sputtering target was changed from Ni to Co.
 上記実施例1~6の成膜条件について表1に示す。 Table 1 shows the film forming conditions of Examples 1 to 6 above.
Figure JPOXMLDOC01-appb-T000001
いずれの実施例においても、バイアス電圧は -9 V、テーブル回転数は2 rpmであった。 
Figure JPOXMLDOC01-appb-T000001
In all examples, the bias voltage was −9 V and the table rotation speed was 2 rpm.
 膜厚測定の結果を表2に、X線回折測定の結果を表3に、EPMAによるCrN/TiN積層皮膜の組成測定の結果を表4に、皮膜硬度、残留応力、積層単位厚さの結晶子サイズの和に対する比(T/S)、及び転動すべり疲労試験の結果を表5に示す。但し、CrN/TiN積層皮膜の組成測定は、イオンプレーティング条件の異なる実施例1及び4についてのみ行った。 Table 2 shows the results of film thickness measurement, Table 3 shows the results of X-ray diffraction measurement, and Table 4 shows the results of composition measurement of CrN / TiN laminated film by EPMA. Crystals of film hardness, residual stress, and lamination unit thickness Table 5 shows the ratio of the child size to the sum (T / S) and the results of the rolling sliding fatigue test. However, the composition measurement of the CrN / TiN multilayer coating was performed only for Examples 1 and 4 with different ion plating conditions.
Figure JPOXMLDOC01-appb-T000002
* 実施例2~4の金属層1層の厚さは、実施例1の測定値から成膜時間に基づき推定した値である。
Figure JPOXMLDOC01-appb-T000002
* The thickness of one metal layer of Examples 2 to 4 is a value estimated from the measured value of Example 1 based on the film formation time.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
*  T/Sは(積層単位厚さ/CrNとTiNの結晶子サイズの和)を示す。
Figure JPOXMLDOC01-appb-T000005
* T / S indicates (stacking unit thickness / sum of crystallite sizes of CrN and TiN).
 膜厚は、実施例1~6において、CrN/TiN積層皮膜はいずれも600積層単位を積んでおり、また金属層の厚さは成膜時間を変えて30~300 nmの範囲で2~59層を含む構成であり、皮膜全体の厚さとして19.7~24.8μmであった。金属層を差し引いたCrN/TiN積層皮膜部分の膜厚から計算した積層単位厚さは31.8~39.1 nmであった。 The thickness of each of the CrN / TiN multilayer coatings in Examples 1 to 6 is 600 units, and the thickness of the metal layer is 2 to 59 in the range of 30 to 300 mm by changing the deposition time. The thickness of the entire film was 19.7 to 24.8 μm. The laminated unit thickness calculated from the film thickness of the CrN / TiN laminated film part excluding the metal layer was 31.8-39.1 nm.
 皮膜構造は、各実施例で、CrN型窒化クロム及びTiN型窒化チタン並びに金属Cu又は金属Ni又は金属Coから構成され、窒化クロムはCrN(200)面、窒化チタンはTiN(200)で最大ピークが得られた。また、CrNとTiNの結晶子サイズは、CrNで10.2~15.8 nm、TiNで11.5~22.4 nmが得られ、CrNとTiNの結晶子サイズの和は25.7~37.9 nmであった。 The film structure is composed of CrN type chromium nitride and TiN type titanium nitride and metal Cu, metal Ni or metal Co in each example, chromium nitride is CrN (200) face, titanium nitride is TiN (200) and has the maximum peak. was gotten. The crystallite sizes of CrN and TiN were 10.2 to 15.8 nm for CrN and 11.5 to 22.4 nm for TiN. The sum of the crystallite sizes of CrN and TiN was 25.7 to 37.9 nm.
 CrN/TiN積層皮膜におけるCrとTiの組成比は、原子比率で、実施例1は3.7:6.3、実施例4は5:5であった。 The composition ratio of Cr and Ti in the CrN / TiN multilayer coating was an atomic ratio, and Example 1 was 3.7: 6.3 and Example 4 was 5: 5.
 皮膜硬度は、1072 HV0.1~1276 HV0.1、残留応力は-682~-1170 MPa(負の記号は圧縮を示す)であり、金属層の厚さが300 nmの実施例4で皮膜硬度と残留応力が最も小さかった。なお、積層単位厚さのCrNとTiNの結晶子サイズの和に対する比(T/S)は、1.03~1.26の間にあった。転動すべり疲労試験の結果としては、いずれの実施例も、微少脱落も表面クラックも生じなかった。 The film hardness is 1072 HV0.1 ~ 1276 HV0.1, the residual stress is -682 ~ -1170 MPa (negative symbol indicates compression), and the thickness of the metal layer in Example 4 is 300 nm And the residual stress was the smallest. The ratio (T / S) of the stack unit thickness to the sum of the crystallite sizes of CrN and TiN was between 1.03 and 1.26. As a result of the rolling sliding fatigue test, none of the examples produced minute dropouts or surface cracks.
比較例1及び2
 比較例1及び2として、金属層含有CrN/TiN積層硬質皮膜の代わりに、それぞれCrN及びTiNを被覆した市販のピストンリングを用いて、膜厚測定、硬度測定、残留応力測定、X線回折測定、転動すべり疲労試験を行った。その結果を表6に示す。比較例1は耐欠け性に優れると言われている比較的気孔率の高い皮膜で、皮膜硬度がHv 930と低く、一方、比較例2は、皮膜硬度は比較的高めの皮膜であった。いずれも厳しい条件の転動すべり疲労試験において皮膜脱落が観察された。
Comparative Examples 1 and 2
As Comparative Examples 1 and 2, using a commercially available piston ring coated with CrN and TiN instead of the metal layer-containing CrN / TiN laminated hard film, film thickness measurement, hardness measurement, residual stress measurement, X-ray diffraction measurement A rolling sliding fatigue test was conducted. The results are shown in Table 6. Comparative Example 1 is a film having a relatively high porosity, which is said to be excellent in chipping resistance, and the film hardness is as low as Hv 930, while Comparative Example 2 is a film having a relatively high film hardness. In both cases, film falling off was observed in rolling sliding fatigue tests under severe conditions.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (8)

  1. 外周摺動面に硬質皮膜が被覆されたピストンリングであって、前記硬質皮膜がCrN型の窒化クロムとTiN型の窒化チタンを交互に積層した積層皮膜を含み、前記積層皮膜中に少なくとも1種の金属Mからなる少なくとも1層の金属層を有し、前記金属Mの窒化物の標準生成自由エネルギーΔGM-Nと前記窒化クロムの標準生成自由エネルギーΔGCrNがΔGM-N>ΔGCrNの関係を満たすことを特徴とするピストンリング。 A piston ring in which a hard coating is coated on an outer peripheral sliding surface, wherein the hard coating includes a laminated coating in which CrN type chromium nitride and TiN type titanium nitride are alternately laminated, and at least one kind in the laminated coating A standard formation free energy ΔG MN of the nitride of the metal M and a standard formation free energy ΔG CrN of the chromium nitride satisfy a relationship of ΔG MN > ΔG CrN. Piston ring characterized by
  2. 請求項1に記載のピストンリングにおいて、前記金属MがCo、Ni及びCuから選択された少なくとも1種であることを特徴とするピストンリング。 2. The piston ring according to claim 1, wherein the metal M is at least one selected from Co, Ni and Cu.
  3. 請求項1又は2に記載のピストンリングにおいて、前記金属層の厚さが10~1000 nmであることを特徴とするピストンリング。 3. The piston ring according to claim 1, wherein the metal layer has a thickness of 10 to 1000 nm.
  4. 請求項1~3のいずれかに記載のピストンリングにおいて、積層した前記窒化クロムと前記窒化チタンの各1層当たりの厚さの和からなる積層単位厚さが20~100 nmであり、前記窒化クロムと前記窒化チタンの各結晶子サイズの和の1~1.3倍であることを特徴とするピストンリング。 The piston ring according to any one of claims 1 to 3, wherein a lamination unit thickness composed of a sum of thicknesses of each of the laminated chromium nitride and titanium nitride is 20 to 100 nm, and the nitride A piston ring characterized by being 1 to 1.3 times the sum of the crystallite sizes of chromium and titanium nitride.
  5. 請求項1~4のいずれかに記載のピストンリングにおいて、前記積層皮膜のクロムとチタンの原子比率が3:7~7:3であることを特徴とするピストンリング。 5. The piston ring according to claim 1, wherein an atomic ratio of chromium to titanium in the laminated film is 3: 7 to 7: 3.
  6. 請求項1~5のいずれかに記載のピストンリングにおいて、前記積層皮膜の被覆面のX線回折強度が、窒化クロムはCrN(200)面で最大となり、窒化チタンはTiN(200)面で最大となることを特徴とするピストンリング。 6. The piston ring according to claim 1, wherein the X-ray diffraction intensity of the coated surface of the multilayer coating is maximized on the CrN (200) surface for chromium nitride and maximized on the TiN (200) surface for titanium nitride. Piston ring characterized by
  7. 請求項1~6のいずれかに記載のピストンリングにおいて、前記硬質皮膜の残留応力が-500 MPa~-1500 MPaであることを特徴とするピストンリング。 The piston ring according to any one of claims 1 to 6, wherein the residual stress of the hard film is -500 to 1500 MPa.
  8. 請求項1~7のいずれかに記載のピストンリングにおいて、前記硬質皮膜の硬度が1000 HV0.1以上であることを特徴とするピストンリング。 The piston ring according to any one of claims 1 to 7, wherein the hardness of the hard coating is 1000 HV0.1 or more.
PCT/JP2015/066201 2014-06-06 2015-06-04 Piston ring WO2015186790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-117819 2014-06-06
JP2014117819A JP5980841B2 (en) 2014-06-06 2014-06-06 piston ring

Publications (1)

Publication Number Publication Date
WO2015186790A1 true WO2015186790A1 (en) 2015-12-10

Family

ID=54766858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066201 WO2015186790A1 (en) 2014-06-06 2015-06-04 Piston ring

Country Status (2)

Country Link
JP (1) JP5980841B2 (en)
WO (1) WO2015186790A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923639A (en) * 2019-12-30 2020-03-27 岭南师范学院 MoTiCrWN composite coating attached to surface of piston ring, piston ring and preparation method of MoTiCrWN composite coating
EP3577252B1 (en) * 2017-02-02 2023-08-16 Schaeffler Technologies AG & Co. KG Layer system and component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283258A (en) * 1986-05-31 1987-12-09 Riken Corp Piston ring
JPH0474584B2 (en) * 1986-02-13 1992-11-26
JP2013155420A (en) * 2012-01-31 2013-08-15 Nippon Piston Ring Co Ltd Sliding member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265023A (en) * 1993-03-15 1994-09-20 Teikoku Piston Ring Co Ltd Rigid convering material, slide member covered therewith, and manufacture thereof
JPH06300130A (en) * 1993-04-08 1994-10-28 Teikoku Piston Ring Co Ltd Hard coating material, sliding member coated with it, and its manufacture
JP2730571B2 (en) * 1995-05-16 1998-03-25 株式会社リケン Sliding material and piston ring
JP2005082822A (en) * 2003-09-05 2005-03-31 Ion Engineering Research Institute Corp Hard thick film, and method for forming the same
JP2005187859A (en) * 2003-12-25 2005-07-14 Ion Engineering Research Institute Corp Hard thick film, and method for forming the same
DE102006046917C5 (en) * 2006-10-04 2014-03-20 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
CN101680078B (en) * 2006-11-14 2012-05-30 株式会社理研 Chromium nitride coating film by ion plating, process for producing the same, and piston ring for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474584B2 (en) * 1986-02-13 1992-11-26
JPS62283258A (en) * 1986-05-31 1987-12-09 Riken Corp Piston ring
JP2013155420A (en) * 2012-01-31 2013-08-15 Nippon Piston Ring Co Ltd Sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3577252B1 (en) * 2017-02-02 2023-08-16 Schaeffler Technologies AG & Co. KG Layer system and component
CN110923639A (en) * 2019-12-30 2020-03-27 岭南师范学院 MoTiCrWN composite coating attached to surface of piston ring, piston ring and preparation method of MoTiCrWN composite coating

Also Published As

Publication number Publication date
JP5980841B2 (en) 2016-08-31
JP2015230086A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP6325455B2 (en) piston ring
JP5965378B2 (en) Piston ring and manufacturing method thereof
JP6339784B2 (en) piston ring
CN111032915B (en) Wear-resistant PVD tool coating containing TiAlN nano-layer film
US11465214B2 (en) Coated cutting tool
WO2019098363A1 (en) Coated cutting tool
JP2008162008A (en) Coated cutting tool
JP2008001951A (en) Diamond-like carbon film and method for forming the same
JP2014098184A (en) Slide member having multilayer dlc film
WO2015186790A1 (en) Piston ring
JP5065756B2 (en) Coated cutting tool
JP6498986B2 (en) piston ring
WO2016111288A1 (en) Diamond-like carbon layered laminate and method for manufacturing same
JP5065758B2 (en) Coated cutting tool
JP6385243B2 (en) Coated cutting tool
Rahman et al. Investigation of mechanical properties of TiN+ MoSx coating on plasma-nitrided substrate
WO2015046437A1 (en) Piston ring
JP4304179B2 (en) Hard coating and method for producing the same
JP2007056354A (en) Hard film and its manufacturing method
JP2003260606A (en) Hard film covered tool, and method for manufacturing the same
JP2007056355A (en) Hard film and its manufacturing method
JP2007056356A (en) Hard film and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802443

Country of ref document: EP

Kind code of ref document: A1