JP6385243B2 - Coated cutting tool - Google Patents

Coated cutting tool Download PDF

Info

Publication number
JP6385243B2
JP6385243B2 JP2014221299A JP2014221299A JP6385243B2 JP 6385243 B2 JP6385243 B2 JP 6385243B2 JP 2014221299 A JP2014221299 A JP 2014221299A JP 2014221299 A JP2014221299 A JP 2014221299A JP 6385243 B2 JP6385243 B2 JP 6385243B2
Authority
JP
Japan
Prior art keywords
layer
atomic
film
tool
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014221299A
Other languages
Japanese (ja)
Other versions
JP2015110259A (en
Inventor
秀峰 小関
秀峰 小関
佳奈 森下
佳奈 森下
謙一 井上
謙一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Moldino Tool Engineering Ltd
Original Assignee
Mitsubishi Hitachi Tool Engineering Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Tool Engineering Ltd, Hitachi Metals Ltd filed Critical Mitsubishi Hitachi Tool Engineering Ltd
Priority to JP2014221299A priority Critical patent/JP6385243B2/en
Publication of JP2015110259A publication Critical patent/JP2015110259A/en
Application granted granted Critical
Publication of JP6385243B2 publication Critical patent/JP6385243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば、高硬度鋼や超耐熱合金等の切削加工に適用される硬質皮膜を被覆した被覆切削工具に関する。   The present invention relates to a coated cutting tool coated with a hard coating applied to, for example, cutting of high-hardness steel or super heat-resistant alloy.

従来、切削工具の耐久性を改善するために、アークイオンプレーティング法で硬質皮膜を被覆した被覆切削工具が広く適用されている。硬質皮膜の中でもAlとTiの複合窒化物皮膜(以下、AlTiNと記載する場合がある。)は優れた耐摩耗性を有することから広く適用されている。通常、AlTiNは、Alの含有量が多いと耐熱性がより高まる傾向にある。しかし、Alの含有量を増加させ過ぎると脆弱なhcp構造(hcp構造:六方最密充填構造)のAlNが増加するため硬度が低下することが知られている。例えば、特許文献1には、金属元素の総量に対し、Alの含有比率(原子%)が60%以上となることでAlTiNの硬度が低下し始めることが開示されている。   Conventionally, in order to improve the durability of a cutting tool, a coated cutting tool coated with a hard film by an arc ion plating method has been widely applied. Among hard coatings, composite nitride coatings of Al and Ti (hereinafter sometimes referred to as AlTiN) are widely applied because they have excellent wear resistance. Usually, AlTiN tends to have higher heat resistance when the content of Al is large. However, it is known that when the Al content is excessively increased, the hardness decreases because AlN having a fragile hcp structure (hcp structure: hexagonal close-packed structure) increases. For example, Patent Document 1 discloses that the hardness of AlTiN starts to decrease when the Al content ratio (atomic%) is 60% or more with respect to the total amount of metal elements.

一方、特許文献2には、Al含有量の増加に伴うAlTiNの耐摩耗性の低下を補完するために、Alの含有量が多いAlTiNとAlの含有量が少ないAlTiNを交互に積層させ、相互積層皮膜の全体組成としてAlリッチとした被覆切削工具が開示されている。特許文献2には、相互積層皮膜を適用することで、単層皮膜からなるAlTiNよりも工具の耐久性を改善できることが開示されている。   On the other hand, in Patent Document 2, in order to supplement the decrease in wear resistance of AlTiN accompanying an increase in Al content, AlTiN having a high Al content and AlTiN having a low Al content are alternately laminated, A coated cutting tool in which the overall composition of the laminated film is Al-rich is disclosed. Patent Document 2 discloses that the durability of a tool can be improved by applying an interlaminar film as compared with AlTiN made of a single layer film.

特開平8−209333号公報JP-A-8-209333 特開平11−216601号公報JP-A-11-216601

近年では、高硬度鋼や超耐熱合金等の高速加工が要求されており、切削工具の使用環境はより過酷なものとなっている。特に、熱処理によって60HRC以上の高硬度に調整された冷間工具鋼やNi基超耐熱合金等の難削材を加工する場合、工具の皮膜剥離や工具摩耗の進行が早期に生じ易い。このような難削材の切削加工では、特許文献1、2のような単層皮膜や相互積層皮膜を被覆した被覆切削工具では耐久性の改善が十分ではなかった。
本発明は上記のような事情に鑑み行われたものであり、高硬度な冷間工具鋼や超耐熱合金等の加工において、耐久性に優れる被覆切削工具を提供することを目的とする。
In recent years, high-speed machining of high-hardness steel, super heat-resistant alloys, and the like has been demanded, and the usage environment of cutting tools has become more severe. In particular, when machining difficult-to-cut materials such as cold tool steel and Ni-base superheat-resistant alloy adjusted to a high hardness of 60 HRC or higher by heat treatment, peeling of the tool and progress of tool wear tend to occur at an early stage. In such a difficult-to-cut material, the coated cutting tool coated with a single-layer coating or an inter-laminate coating as described in Patent Documents 1 and 2 has not been sufficiently improved in durability.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coated cutting tool that is excellent in durability in processing of a high hardness cold tool steel, a super heat resistant alloy, or the like.

本発明者は、AlTi系の窒化物または炭窒化物からなる相互積層皮膜において、相互積層皮膜の全体組成でAlの含有比率を高めたとしても、相互積層皮膜の個々の皮膜の組成差が大きい場合には工具寿命が短くなることを確認した。そして、高硬度鋼や超耐熱合金の切削加工においても優れた耐久性を示す具体的な皮膜構造があることを見出して本発明に到達した。   The inventor of the present invention has a large compositional difference between the individual films of the multi-layered film even if the Al content ratio is increased in the overall composition of the multi-layered film in the multi-layered film made of AlTi-based nitride or carbonitride. In some cases, it was confirmed that the tool life was shortened. Then, the present inventors have found that there is a specific film structure showing excellent durability even in the cutting of high-hardness steel and super heat-resistant alloy, and have reached the present invention.

すなわち本発明は、基材と、前記基材の上に配置され、ナノビーム回折パターンがWCの結晶構造に指数付けされ、WとTiを含有する炭化物からなるa層と、前記a層の上に配置される相互積層皮膜と、を有し、前記a層は、膜厚が1nm以上10nm以下であり、
前記相互積層皮膜は、金属元素(半金属を含む)の総量に対し、Alの含有比率(原子%)が50%以上70%以下のAlとTiの窒化物または炭窒化物からなるb層と、
金属元素(半金属を含む)の総量に対し、Alの含有比率(原子%)が70%以上のAlとTiの窒化物または炭窒化物からなるc層とが交互に形成されたものであり、
前記b層と前記c層のAlの含有比率(原子%)の差が10%以上30%以下である被覆切削工具である。
That is, the present invention includes a base material, an a layer that is disposed on the base material, the nanobeam diffraction pattern is indexed to the crystal structure of WC, and is composed of a carbide containing W and Ti, and the a layer. And the a layer has a film thickness of 1 nm or more and 10 nm or less,
The mutual laminated film includes an Al and Ti nitride or carbonitride b layer having an Al content ratio (atomic%) of 50% to 70% with respect to the total amount of metal elements (including metalloid). ,
Al with 70% or more of Al content (atomic%) with respect to the total amount of metal elements (including metalloids) and c layers made of Ti nitride or carbonitride are alternately formed. ,
It is a coated cutting tool in which the difference in the Al content ratio (atomic%) between the b layer and the c layer is 10% or more and 30% or less.

前記b層と前記c層の個々の膜厚は50nm以下であることが好ましい。
前記相互積層皮膜の上に、前記b層または前記c層と組成が異なる窒化物または炭窒化物からなるd層を設けてもよい。前記d層は、金属元素の総量に対し、Tiの含有比率(原子%)が60%以上80%以下、Siの含有比率(原子%)が20%以上40%以下の窒化物または炭窒化物であることが好ましい。
The individual film thicknesses of the b layer and the c layer are preferably 50 nm or less.
A d layer made of nitride or carbonitride having a composition different from that of the b layer or the c layer may be provided on the mutual laminated film. The d layer has a Ti content (atomic%) of 60% to 80% and a Si content (atomic%) of 20% to 40% with respect to the total amount of metal elements. It is preferable that

本発明によれば、熱処理により60HRC以上の高硬度に調整された冷間工具鋼やNi基超耐熱合金等を加工する場合でも被覆切削工具の耐久性を大幅に改善することが可能となる。更には、溶着が発生し易いSUS材等の切削加工に用いても優れた耐久性を示す。そのため、幅広い被加工材において、加工能率の向上及び加工コストの低減を実現することができる。   According to the present invention, it is possible to greatly improve the durability of a coated cutting tool even when a cold tool steel, a Ni-base superalloy and the like adjusted to a high hardness of 60 HRC or higher are processed by heat treatment. Furthermore, even if it uses for cutting of SUS material etc. which are easy to generate | occur | produce welding, the outstanding durability is shown. Therefore, it is possible to realize an improvement in machining efficiency and a reduction in machining cost in a wide range of workpieces.

本発明者の検討によれば、AlTi系の窒化物または炭窒化物に含まれるAlの含有量を増加させることで、皮膜自体の耐熱性が高まるだけでなく、加工中の工具刃先への溶着が減少し、切削抵抗が低減することを確認した。但し、AlTi系の窒化物または炭窒化物に含まれるAlの含有量が増加すると、脆弱なhcp構造のAlNの含有量が増大するため工具の耐久性が低下する傾向にある。そこで、本発明では、工具の耐久性を低下させずに、硬質皮膜に含まれるAlの含有量を高める検討をしたところ、特定組成のAlTi系の窒化物または炭窒化物を相互積層させることで、hcp構造のAlNが形成され難くなることを確認した。そして、被覆切削工具の耐久性を高めるためには、相互積層皮膜の個々の皮膜の組成差を制御することが重要であり、耐久性が優れる具体的な皮膜構造を見出したことで本発明に到達した。以下、本発明の構成要件について説明をする。   According to the inventor's study, increasing the Al content in AlTi-based nitrides or carbonitrides not only increases the heat resistance of the coating itself, but also welds it to the tool edge during processing. It was confirmed that the cutting resistance was reduced. However, when the content of Al contained in the AlTi nitride or carbonitride increases, the content of AlN having a fragile hcp structure increases, so that the durability of the tool tends to decrease. Therefore, in the present invention, when the study was made to increase the Al content contained in the hard coating without reducing the durability of the tool, an AlTi nitride or carbonitride having a specific composition was laminated to each other. It was confirmed that AlN having an hcp structure is hardly formed. And in order to improve the durability of the coated cutting tool, it is important to control the compositional difference between the individual films of the mutual laminated film, and the present invention has been found by finding a specific film structure with excellent durability. Reached. Hereinafter, the configuration requirements of the present invention will be described.

本発明の相互積層皮膜は、金属元素の総量に対し、Alの含有比率(原子%)が50%以上70%以下のAlとTiの窒化物または炭窒化物からなるb層と、金属元素の総量に対し、Alの含有比率(原子%)が70%以上のAlとTiの窒化物または炭窒化物からなるc層とが交互に形成されたものである。
b層は、相互積層皮膜の結晶構造の主体をfcc構造(fcc構造:面心立方格子構造)とするための皮膜である。b層のAlの含有比率(原子%)が70%よりも大きくなると相互積層皮膜の全体に含まれるhcp構造のAlNが増加して工具の耐久性が低下する。但し、b層のAlの含有比率(原子%)が50%よりも小さくなれば、相互積層皮膜の全体に含まれるAlの含有量が低下することで、耐熱性が低下するとともに、工具刃先への溶着が増加して、加工中の切削抵抗も増加する傾向にある。
相互積層皮膜のAlの含有比率(原子%)を高めつつ結晶構造をfcc構造主体として、被覆切削工具の耐久性を向上させるため、本発明のb層は、金属元素の総量に対し、Alの含有比率(原子%)が50%以上70%以下のAlとTiの窒化物または炭窒化物とする。
The mutual laminated film of the present invention comprises an Al content ratio (atomic%) of 50% to 70% with respect to the total amount of metal elements, a b layer made of a nitride of Al and Ti or carbonitride, and a metal element. Al having an Al content ratio (atomic%) of 70% or more and c layers made of Ti nitride or carbonitride are alternately formed with respect to the total amount.
The b layer is a film for making the main body of the crystal structure of the mutual laminated film an fcc structure (fcc structure: face-centered cubic lattice structure). When the Al content ratio (atomic%) of the b layer is larger than 70%, the AlN of the hcp structure contained in the entire multilayer coating increases and the durability of the tool decreases. However, if the Al content ratio (atomic%) of the b layer is less than 50%, the Al content contained in the whole of the multilayer coating is reduced, so that the heat resistance is lowered and the tool blade edge is reduced. There is a tendency that the welding resistance increases and the cutting resistance during processing also increases.
In order to improve the durability of the coated cutting tool with the crystal structure as the main component of the fcc structure while increasing the Al content ratio (atomic%) in the mutual laminated film, the b layer of the present invention is made of Al with respect to the total amount of metal elements. Al and Ti nitride or carbonitride having a content ratio (atomic%) of 50% or more and 70% or less is used.

b層は、Alの含有比率(原子%)が65%以下であることが好ましい。更には、Alの含有比率(原子%)が60%以下であることが好ましい。相互積層皮膜の結晶構造をfcc構造を主体にするためは、b層は金属元素の総量に対し、Tiの含有比率(原子%)が30%以上であることが好ましい。b層は、Tiが35%以上であることが好ましく、更には、40%以上であることが好ましい。   The b layer preferably has an Al content (atomic%) of 65% or less. Further, the Al content ratio (atomic%) is preferably 60% or less. In order that the crystal structure of the mutual laminated film is mainly composed of the fcc structure, the b layer preferably has a Ti content (atomic%) of 30% or more with respect to the total amount of metal elements. The b layer preferably has a Ti content of 35% or more, and more preferably 40% or more.

c層は、相互積層皮膜のAlの含有比率(原子%)を高めるための皮膜である。c層のAlの含有比率(原子%)が小さくなると、相互積層皮膜の全体でAl含有量が低下するため、加工中の切削抵抗が増加する傾向にある。そのため、c層は、金属元素の総量に対し、Alの含有比率(原子%)が70%以上のAlとTiの窒化物または炭窒化物とする。c層のAlの含有比率(原子%)を70%以上にすることで、相互積層皮膜の全体組成でAl含有量が高まり、切削加工中の工具刃先への溶着が抑制されて、切削抵抗を低減することができる。
c層は、相互積層皮膜の耐摩耗性を高めるため、金属元素の総量に対し、Tiの含有比率(原子%)を5%以上とすることが好ましい。更には、Tiの含有比率(原子%)は10%以上とすることが好ましい。
The c layer is a film for increasing the Al content ratio (atomic%) of the mutual laminated film. When the Al content ratio (atomic%) of the c layer is reduced, the Al content is reduced in the entire multilayer coating, and therefore the cutting resistance during processing tends to increase. Therefore, the c layer is made of Al or Ti nitride or carbonitride having an Al content ratio (atomic%) of 70% or more with respect to the total amount of metal elements. By setting the Al content ratio (atomic%) of the c layer to 70% or more, the Al content is increased in the overall composition of the mutual laminated coating, and welding to the tool edge during cutting is suppressed, thereby reducing the cutting resistance. Can be reduced.
The c layer preferably has a Ti content (atomic%) of 5% or more with respect to the total amount of metal elements in order to improve the wear resistance of the multilayered coating. Furthermore, the Ti content ratio (atomic%) is preferably 10% or more.

本発明者は、相互積層皮膜の結晶構造がfcc構造となっても、b層とc層のAlの含有比率(原子%)の差が大きくなれば各層の格子定数の差異が大きくなり、b層とc層の連続性が保ち難くなることで工具の耐久性が低下することを確認した。そして、本発明者の検討によると、b層とc層のAlの含有比率(原子%)の差を30%以下とすることで各層の格子定数の整合性が高まり、優れた耐久性を発揮できることを確認した。また、b層とc層のAlの含有比率(原子%)の差が小さくなれば、脆弱なhcp構造のAlNが増大して工具の耐久性が低下するため、b層とc層のAlの含有比率(原子%)の差を10%以上とする。   The present inventor has found that even if the crystal structure of the mutual laminated film has an fcc structure, if the difference in the Al content ratio (atomic%) of the b layer and the c layer increases, the difference in the lattice constant of each layer increases. It was confirmed that the durability of the tool was lowered due to difficulty in maintaining the continuity between the layer and the c layer. According to the study of the present inventor, the difference in the Al content ratio (atomic%) between the b layer and the c layer is 30% or less, so that the consistency of the lattice constant of each layer is increased and excellent durability is exhibited. I confirmed that I can do it. In addition, if the difference in the Al content ratio (atomic%) between the b layer and the c layer is reduced, the fragile hcp-structured AlN increases and the durability of the tool decreases. The difference in content ratio (atomic%) is set to 10% or more.

b層とc層のAlの含有比率の差を制御した上で、相互積層皮膜における個々の膜厚を一定以下にすることが好ましい。b層とc層の個々の膜厚が大きくなるとhcp構造のAlNが増大し易くなり工具の耐久性が低下する傾向にある。そのため、b層とc層の個々の膜厚は50nm以下とすることが好ましい。より好ましい膜厚は20nm以下である。工具性能をより安定化させるには、b層とc層の個々の膜厚は5nm以上とすることが好ましく、更には10nm以上とすることが好ましい。
b層とc層は、耐熱性が優れる皮膜種である窒化物であることがより好ましい。また、b層の膜厚をc層よりも厚膜とすることで、相互積層皮膜の結晶構造がfcc構造が主体となり易い傾向にある。
It is preferable to control the difference in the Al content ratio between the b-layer and the c-layer, and to make the individual film thicknesses in the multilayered coating less than a certain value. When the individual film thicknesses of the b layer and the c layer are increased, the AlN of the hcp structure tends to increase and the durability of the tool tends to be lowered. For this reason, the individual film thicknesses of the b layer and the c layer are preferably 50 nm or less. A more preferable film thickness is 20 nm or less. In order to further stabilize the tool performance, the individual film thicknesses of the b layer and the c layer are preferably 5 nm or more, and more preferably 10 nm or more.
The b layer and the c layer are more preferably nitrides which are film types with excellent heat resistance. Further, by making the thickness of the b layer thicker than that of the c layer, the crystal structure of the mutual laminated film tends to be mainly the fcc structure.

相互積層皮膜の全体組成は、金属元素の総量に対し、Alの含有比率(原子%)が60%以上とすることが好ましい。Alの含有比率(原子%)を65%以上とすることが好ましく、更にはAlを70%以上とすることが好ましい。また、相互積層皮膜の全体組成は、Alの含有比率(原子%)を85%以下とすることが好ましく、更にはAlを80%以下とすることが好ましい。
本発明の相互積層皮膜は、X線回折等で特定される結晶構造において、fcc構造に対応するピーク強度が最大であれば、hcp構造に起因するピークが確認されてもよい。本発明において、fcc構造が主体とは、例えば、X線回折においてfcc構造に対応するピーク強度が最大であることをいう。X線回折による結晶構造の同定が困難な場合、透過電子顕微鏡(TEM)を用いた制限視野回折法によって結晶構造の同定することができる。
The overall composition of the mutual laminated coating is preferably such that the Al content ratio (atomic%) is 60% or more with respect to the total amount of metal elements. The Al content ratio (atomic%) is preferably 65% or more, and more preferably 70% or more. Further, the overall composition of the mutual laminated film is preferably such that the Al content ratio (atomic%) is 85% or less, and more preferably Al is 80% or less.
If the peak intensity corresponding to the fcc structure is the maximum in the crystal structure specified by X-ray diffraction or the like, the peak resulting from the hcp structure may be confirmed. In the present invention, “mainly fcc structure” means that, for example, the peak intensity corresponding to the fcc structure is maximum in X-ray diffraction. When it is difficult to identify a crystal structure by X-ray diffraction, the crystal structure can be identified by a limited field diffraction method using a transmission electron microscope (TEM).

本発明のb層とc層は、金属元素の総量に対して、周期律表の4a族(Tiを除く)、5a族、6a族の金属元素およびSi、Bから選択される1種または2種以上の元素の合計を10%以下で含有することができる。また、b層とc層は、窒化物または炭窒化物であれば、皮膜の一部に酸素等の非金属元素を含有してもよい。   The b layer and c layer of the present invention are one or two selected from Group 4a (excluding Ti), Group 5a, Group 6a and Si, B of the periodic table with respect to the total amount of metal elements. The total of the elements of the seeds or more can be contained at 10% or less. In addition, if the b layer and the c layer are nitrides or carbonitrides, a part of the film may contain a nonmetallic element such as oxygen.

相互積層皮膜の全体の膜厚が薄くなり過ぎても、厚くなり過ぎても被覆切削工具の耐久性を向上する効果が小さい場合がある。そのため、相互積層皮膜の全体の膜厚は1μm以上5μm以下とすることが好ましい。本発明においては、相互積層皮膜の上層にb層またはc層と組成が異なる窒化物または炭窒化物からなるd層を被覆してもよい。   There are cases where the effect of improving the durability of the coated cutting tool is small even if the overall film thickness of the mutual laminated film becomes too thin or too thick. Therefore, it is preferable that the total film thickness of the mutual laminated film is 1 μm to 5 μm. In the present invention, a d layer made of a nitride or carbonitride having a composition different from that of the b layer or the c layer may be coated on the upper layer of the mutual laminated film.

d層は、高硬度鋼の切削加工においてより優れた耐久性を実現するために、Tiの含有比率(原子%)が60%以上80%以下、Siの含有比率(原子%)が20%以上40%以下の窒化物または炭窒化物であることが好ましい。高い圧縮残留応力を有する組成のd層を設けることで、過酷な使用環境下においても耐摩耗性が向上して工具の損傷が抑制される傾向にある。d層は、耐熱性の優れる膜種である窒化物であることがより好ましい。   The d layer has a Ti content (atomic%) of 60% or more and 80% or less, and a Si content (atomic%) of 20% or more in order to achieve superior durability in cutting of hard steel. It is preferably 40% or less of nitride or carbonitride. By providing a d layer having a composition having a high compressive residual stress, wear resistance tends to be improved even in a severe use environment, and damage to the tool tends to be suppressed. The d layer is more preferably a nitride which is a film type with excellent heat resistance.

本発明の被覆切削工具は、WC基超硬合金を基材に適用することができる。そして、上述した相互積層皮膜の効果を発揮するためには基材と相互積層皮膜の間に特別な層を設けることが必要となる。つまり、基材の上に配置され、ナノビーム回折パターンがWCの結晶構造に指数付けされ、W(タングステン)とTi(チタン)を含有する炭化物からなるa層を設けることで被覆切削工具の耐久性が著しく向上することを確認した。
a層が、ナノビーム回折パターンがWCの結晶構造に指数付けされ、Wを含んだ炭化物であれば基材であるWC基超硬合金との親和性が強くなり密着性が優れると考えられる。また、a層がTiを含有することで、相互積層皮膜がfcc結晶構造となり易く工具の耐久性が改善されると考えられる。a層は、金属元素の総量に対してTiの含有比率(原子%)が10%以上25%以下であることが好ましい。
但し、a層が薄くなり過ぎたり、厚くなり過ぎれば基材との密着性を向上させるのに十分でない。よって、a層は1nm以上10nm以下とする。a層は2nm以上であることが好ましい。a層は5nm以下であることが好ましい。
The coated cutting tool of the present invention can apply a WC-based cemented carbide to a substrate. And in order to exhibit the effect of the mutual laminated film mentioned above, it is necessary to provide a special layer between the base material and the mutual laminated film. That is, the durability of the coated cutting tool is provided by providing a layer of carbide that is disposed on the substrate, the nanobeam diffraction pattern is indexed to the crystal structure of WC, and contains W (tungsten) and Ti (titanium). Has been confirmed to be significantly improved.
If the a layer has a nanobeam diffraction pattern indexed to the crystal structure of WC and a carbide containing W, it is considered that the affinity with the WC-based cemented carbide, which is the base material, becomes strong and the adhesion is excellent. In addition, it is considered that the durability of the tool is improved because the a-layer contains Ti, so that the laminated film easily has an fcc crystal structure. The a layer preferably has a Ti content ratio (atomic%) of 10% to 25% with respect to the total amount of metal elements.
However, if the a layer becomes too thin or too thick, it is not sufficient to improve the adhesion to the substrate. Therefore, the a layer is 1 nm or more and 10 nm or less. The a layer is preferably 2 nm or more. The a layer is preferably 5 nm or less.

a層は、WおよびTi以外に皮膜成分および基材成分を含有しても良い。例えば、a層は、基材に含有される成分のCoやb層のAlやNが含まれ得るが、a層はナノビーム回折パターンがWCの結晶構造に指数付けされ、WとTiを含有する炭化物とすることで本発明の効果は発揮される。
a層は、工具刃先の透過型電子顕微鏡観察による断面観察、組成分析、ナノビーム回折パターンより確認することができる。
The a layer may contain a film component and a base material component in addition to W and Ti. For example, the a layer may include the components Co contained in the base material and Al or N of the b layer, but the a layer has a nanobeam diffraction pattern indexed to the WC crystal structure and contains W and Ti. The effect of this invention is exhibited by using a carbide.
The a layer can be confirmed by cross-sectional observation, composition analysis, and nanobeam diffraction pattern of the tool edge by observation with a transmission electron microscope.

a層の直上には、相互積層皮膜を直接被覆することが好ましいが、a層と相互積層皮膜の間には、b層またはc層と組成の異なる窒化物または炭窒化物からなる硬質皮膜を設けてもよい。この場合、a層と相互積層皮膜の間に設ける硬質皮膜の膜厚は1μm以下であることが好ましく、更には0.5μm以下であることがより好ましい。   It is preferable to directly coat the laminated film directly on the a layer, but between the a layer and the laminated film, a hard film made of nitride or carbonitride having a composition different from that of the b layer or c layer is formed. It may be provided. In this case, the film thickness of the hard film provided between the a layer and the mutual laminated film is preferably 1 μm or less, and more preferably 0.5 μm or less.

本発明のa層を形成するためには、ターゲットの外周にコイル磁石を配備してアークスポットをターゲット内部に閉じ込めるような磁場構成としたカソードを用いてTiボンバードを実施することが好ましい。このようなカソードを用いて炭化物を形成し易い元素種であるTiでボンバード処理することで、基材表面の酸化物が除去されて清浄化されると共にボンバードされたTiイオンが基材表面のWCに拡散して、ナノビーム回折パターンがWCの結晶構造に指数付けされ、WおよびTiを含む炭化物が形成され易くなる。
また、Tiボンバードの際に基材に印加する負のバイアス電圧およびターゲットへ投入する電流が低いとWおよびTiを含む炭化物が形成され難い。そのため、基材に印加する負のバイアス電圧は−1000V〜−700Vとすることが好ましい。また、ターゲットへ投入する電流は80A〜180Aとすることが好ましい。
ボンバードはアルゴンガス、窒素ガス、水素ガス、炭化水素系ガス等を導入しながら実施してもよいが、炉内雰囲気を1.0×10−2Pa以下の真空下で実施することで基材表面が清浄化され、更には拡散層が形成され易くなるため好ましい。
In order to form the a layer of the present invention, Ti bombardment is preferably carried out using a cathode having a magnetic field configuration in which a coil magnet is provided on the outer periphery of the target to confine the arc spot inside the target. By using such a cathode and bombarding with Ti, which is an element species that easily forms carbides, the oxide on the substrate surface is removed and cleaned, and the bombarded Ti ions are converted into WC on the substrate surface. And the nanobeam diffraction pattern is indexed to the crystal structure of WC, and carbides containing W and Ti are easily formed.
Further, when the negative bias voltage applied to the base material during Ti bombardment and the current applied to the target are low, carbides containing W and Ti are hardly formed. Therefore, the negative bias voltage applied to the substrate is preferably −1000 V to −700 V. Further, the current supplied to the target is preferably 80A to 180A.
Bombarding may be carried out while introducing argon gas, nitrogen gas, hydrogen gas, hydrocarbon-based gas, etc., but the substrate is formed by carrying out the furnace atmosphere under a vacuum of 1.0 × 10 −2 Pa or less. It is preferable because the surface is cleaned and a diffusion layer is easily formed.

本発明の被覆切削工具は、外周刃を主に使用するラジアスエンドミルやスクエアエンドミル等の工具に適用するのが特に有効である。また、被覆切削工具の基材は、硬度が91.0HRA以上94.5HRA以下であることが好ましい。基材の硬度がこれよりも低くなると耐摩耗性が低下する場合がある。また、基材の硬度がこれよりも高くなると靭性が低下する場合がある。   The coated cutting tool of the present invention is particularly effective when applied to a tool such as a radius end mill or a square end mill that mainly uses an outer peripheral blade. Moreover, it is preferable that the base material of the coated cutting tool has a hardness of 91.0 HRA or more and 94.5 HRA or less. When the hardness of the substrate is lower than this, the wear resistance may be lowered. Moreover, when the hardness of a base material becomes higher than this, toughness may fall.

基材として、WC基超硬合金からなるソリッドエンドミルとインサート式エンドミルを用い、各条件で硬質皮膜を被覆して被覆切削工具を作製し、その特性評価を行った。硬質皮膜の成膜にはアークイオンプレーティング成膜装置を用いた。真空容器内に設置した基材にはバイアス電源が接続されおり、基材に負のDCバイアス電圧を印加して硬質皮膜を被覆した。
表1に成膜に用いたカソードおよびバイアス条件について示す。本発明のb層、c層を被覆するには、ターゲットの外周および背面に永久磁石を配備し、20.2mTの平均磁束密度のカソード(以下、C1、C2と記載する。)を用いた。メタルボンバード処理には、ターゲットの外周にコイル磁石を配備したカソード(以下、C3と記載する。)を用いた。
Using a solid end mill made of a WC-based cemented carbide and an insert type end mill as a base material, a coated cutting tool was prepared by coating a hard film under each condition, and its characteristics were evaluated. An arc ion plating film forming apparatus was used for forming the hard film. A bias power source was connected to the base material installed in the vacuum vessel, and a negative DC bias voltage was applied to the base material to coat the hard film.
Table 1 shows cathodes and bias conditions used for film formation. In order to cover the b layer and the c layer of the present invention, permanent magnets were provided on the outer periphery and the back surface of the target, and cathodes having an average magnetic flux density of 20.2 mT (hereinafter referred to as C1 and C2) were used. In the metal bombardment treatment, a cathode (hereinafter referred to as C3) having a coil magnet provided on the outer periphery of the target was used.

基材を真空容器内のパイプ状治具に固定し、約500℃、1×10−3Paの真空中で加熱脱ガスを行った後、Arプラズマによるクリーニングを行った。そして、8×10−3Pa以下になるように真空排気して、C3に150Aのアーク電流を供給してTiボンバード処理を4分間実施した。
その後、炉内に窒素ガスを導入し、C1に電力を投入して、窒化物からなる硬質皮膜を約300nm被覆した。その後に、b層とc層の個々の膜厚が20nmになるようにC1とC2に電力を投入して、約2.5μmの相互積層皮膜を被覆して本発明例1〜3、比較例1を作製した。
比較例2〜4は単層皮膜からなるAlTiの窒化物を約2.5μm被覆して作製した。
The substrate was fixed to a pipe-shaped jig in a vacuum vessel, heated and degassed in a vacuum of about 500 ° C. and 1 × 10 −3 Pa, and then cleaned with Ar plasma. And it vacuum-evacuated so that it might become 8 * 10 < -3 > Pa or less, The arc current of 150 A was supplied to C3, and Ti bombarding process was implemented for 4 minutes.
Thereafter, nitrogen gas was introduced into the furnace, power was applied to C1, and a hard film made of nitride was coated with a thickness of about 300 nm. Thereafter, power is applied to C1 and C2 so that the individual film thicknesses of the b layer and the c layer become 20 nm, and a mutual laminated film of about 2.5 μm is coated, and Examples 1 to 3 of the present invention and comparative examples 1 was produced.
Comparative Examples 2 to 4 were prepared by coating about 2.5 μm of AlTi nitride composed of a single layer coating.

Figure 0006385243
Figure 0006385243

日本電子株式会社製の電界放出型透過電子顕微鏡(型番:JEM−2010F型)を用いて分析用のインサート式エンドミルを加工してTEM解析を行った。各層(a層、b層、c層)の組成分析は、付属のUTW型Si(Li)半導体検出器を用いてビーム径1nmで分析して求めた。またa層の結晶構造を確認するため、カメラ長50cmとし、2nm以下のビーム径によるナノビーム回折を行った。   A TEM analysis was performed by processing an insert-type end mill for analysis using a field emission transmission electron microscope (model number: JEM-2010F type) manufactured by JEOL Ltd. The composition analysis of each layer (a layer, b layer, c layer) was obtained by analyzing with a beam diameter of 1 nm using an attached UTW type Si (Li) semiconductor detector. Further, in order to confirm the crystal structure of the a layer, nanobeam diffraction was performed with a camera length of 50 cm and a beam diameter of 2 nm or less.

EDSスペクトル分析結果から、本発明例のa層は、金属元素の含有比率(原子%)でWを最も多く含有し、次いでTiを多く含有することを確認した。金属元素の含有比率(原子%)でWの含有比率(原子%)は約80%であった。また、Tiの含有比率(原子%)は約15%であった。また、WおよびTi以外には硬質皮膜の成分であるAl、Nを含有していた。また、母材成分であるCoも僅かに含有していた。そして、本発明例のa層はナノビーム回折パターンからWCの結晶構造に指数付けが可能であった。
EDSスペクトル分析およびナノビーム回折パターンから、本発明例のa層はWCの結晶構造に指数付けされ、タングステン(W)とチタン(Ti)を含有する炭化物であることを確認した。a層の膜厚は断面観察における5視野以上の平均から求めた。何れの試料もa層の膜厚は3nmであることを確認した。
From the EDS spectrum analysis results, it was confirmed that the layer a of the present invention example contained the largest amount of W in the metal element content ratio (atomic%), and then contained a large amount of Ti. The content ratio (atomic%) of W was about 80% with the content ratio (atomic%) of the metal element. The Ti content ratio (atomic%) was about 15%. In addition to W and Ti, Al and N, which are hard film components, were contained. Further, Co, which is a base material component, was also slightly contained. The a layer of the present invention example could be indexed to the WC crystal structure from the nanobeam diffraction pattern.
From the EDS spectrum analysis and the nanobeam diffraction pattern, it was confirmed that the layer a of the example of the present invention was indexed to the crystal structure of WC and was a carbide containing tungsten (W) and titanium (Ti). The film thickness of the a layer was obtained from an average of 5 fields or more in cross-sectional observation. In any sample, it was confirmed that the film thickness of the a layer was 3 nm.

株式会社日本電子製の電子プローブマイクロアナライザー装置(型番:JXA−8500F)を用いて、付属の波長分散型電子プローブ微小分析(WDS−EPMA)で相互積層皮膜の全体組成を測定した。この皮膜組成の分析は、分析用のインサート式エンドミルを加工して断面観察し、各層を加速電圧10kV、照射電流5×10−8A、取り込み時間10秒、分析領域直径1μmで5点測定してその平均から組成を求めることにより行った。 Using an electronic probe microanalyzer device (model number: JXA-8500F) manufactured by JEOL Ltd., the total composition of the mutual laminated coating was measured by the attached wavelength dispersion electron probe microanalysis (WDS-EPMA). This film composition was analyzed by processing an insert type end mill for analysis and observing a cross section, and measuring each layer at five points with an acceleration voltage of 10 kV, an irradiation current of 5 × 10 −8 A, an acquisition time of 10 seconds, and an analysis region diameter of 1 μm. Then, the composition was determined from the average.

株式会社エリオニクス製のナノインデンテーション装置(型番:ENT−1100a)を用いて皮膜硬度を測定した。この硬度測定は、分析用のインサート式エンドミルの表面から、押込み荷重49mN、最大荷重保持時間1秒、荷重負荷後の除去速度0.49mN/秒の測定条件で10点測定し、その平均値を求めた。測定前には、標準試料である単結晶Siを測定し、その硬さが12GPaであることを確認した。   Film hardness was measured using a nanoindentation device (model number: ENT-1100a) manufactured by Elionix Corporation. This hardness measurement is carried out by measuring 10 points from the surface of the insert type end mill for analysis under the measurement conditions of an indentation load of 49 mN, a maximum load holding time of 1 second, and a removal speed after loading of 0.49 mN / second. Asked. Before the measurement, single crystal Si as a standard sample was measured, and it was confirmed that its hardness was 12 GPa.

株式会社リガク製のX線回折装置(型番:RINT2500V−PSRC/MDG)を用いて皮膜の結晶構造を測定した。このX線回折は、分析用のインサート式エンドミルを用いて、管電圧40kV、管電流300mA、X線源Cukα(λ=0.15418nm)、2θが30〜70度の測定条件で実施した。それぞれの分析結果を表2に示す。   The crystal structure of the film was measured using an X-ray diffractometer (model number: RINT2500V-PSRC / MDG) manufactured by Rigaku Corporation. This X-ray diffraction was carried out by using an insert type end mill for analysis under measurement conditions of a tube voltage of 40 kV, a tube current of 300 mA, an X-ray source Cukα (λ = 0.15418 nm), and 2θ of 30 to 70 degrees. Each analysis result is shown in Table 2.

Figure 0006385243
Figure 0006385243

本発明例1、2は、X線回折からfcc構造とhcp構造に起因するピークが確認され、fcc構造に起因するピークが最大強度を示した。本発明例3は、X線回折からfcc構造に起因するピークのみ確認された。
比較例1〜3は、X線回折からfcc構造とhcp構造に起因するピークが確認され、hcp構造に起因するピークが最大強度を示した。本発明例1と比較例3の皮膜全体のAlの含有比率は同程度であるが、相互積層皮膜とした本発明例1はfcc構造が主体となり、一方で単層皮膜である比較例3はhcp構造が主体となった。
比較例4は、X線回折からfcc構造に起因するピークのみ確認された。
hcp構造に起因するピーク強度が確認されなかった本発明例3と比較例4は、他の試料に比べて硬度が高くなった。
In Examples 1 and 2 of the present invention, peaks attributed to the fcc structure and the hcp structure were confirmed from X-ray diffraction, and the peak attributed to the fcc structure showed the maximum intensity. In Invention Example 3, only a peak attributed to the fcc structure was confirmed from X-ray diffraction.
In Comparative Examples 1 to 3, the peak due to the fcc structure and the hcp structure was confirmed from the X-ray diffraction, and the peak due to the hcp structure showed the maximum intensity. Although the Al content ratios of the entire coatings of Invention Example 1 and Comparative Example 3 are about the same, Invention Example 1 as an interlaminar film is mainly composed of an fcc structure, while Comparative Example 3 which is a single-layer film is The hcp structure was the main component.
In Comparative Example 4, only the peak due to the fcc structure was confirmed from the X-ray diffraction.
Inventive Example 3 and Comparative Example 4 in which the peak intensity due to the hcp structure was not confirmed were higher in hardness than other samples.

表2に示した硬質皮膜を被覆した被覆切削工具を用いて、以下の条件で切削試験を行った。試験結果を表3に示す。
<切削試験 条件1>
工具:ソリッドエンドミル
φ10×2枚刃(日立ツール株式会社製 HES2100)
基材:WC(bal.)−Co(11質量%)−TaC(0.4質量%)−Cr(0.9質量%)、WC平均粒径0.6μm、硬度92.4HRAの超硬合金
切削方法:側面切削
被削材:質量%で、Ni−19%Cr−18.7%Fe−3.0%Mo−5.0%(Nd+Ta)−0.8%Ti−0.5%Al−0.03%Cの組成を有するNi基合金(時効硬化処理済み)
切込み:軸方向6mm、径方向0.3mm
切削速度:40m/min
一刃送り量:0.04mm/tooth
切削油:水溶性切削油
切削距離:0.2m
Using the coated cutting tool coated with the hard coating shown in Table 2, a cutting test was performed under the following conditions. The test results are shown in Table 3.
<Cutting test condition 1>
Tool: Solid end mill φ10 × 2 flute (HES2100 manufactured by Hitachi Tool Co., Ltd.)
Base material: WC (bal.)-Co (11 mass%)-TaC (0.4 mass%)-Cr 3 C 2 (0.9 mass%), WC average particle diameter 0.6 μm, hardness 92.4HRA Cemented carbide cutting method: side cutting Work material: Ni-19% Cr-18.7% Fe-3.0% Mo-5.0% (Nd + Ta) -0.8% Ti-0. Ni-based alloy having a composition of 5% Al-0.03% C (age-hardened)
Cutting depth: 6mm in the axial direction, 0.3mm in the radial direction
Cutting speed: 40 m / min
Single blade feed rate: 0.04mm / tooth
Cutting oil: Water-soluble cutting oil Cutting distance: 0.2m

<切削試験 条件2>
工具:インサート式ラジアスエンドミル
φ12×R2×3枚刃(日立ツール株式会社製)
基材:組成が、WC(bal.)−Co(8質量%)−TaC(0.25質量%)−Cr(0.9質量%)であり、WC平均粒径0.6μm、硬度93.4HRAの超硬合金
カッター型番:ASRM−1012R−3−M6
インサート型番:EPHN0402TN−2
切削方法:底面切削
被削材:SKD11(60HRC)
切込み:軸方向0.15mm、径方向6mm
切削速度:180m/min
一刃送り量:0.4mm/tooth
切削油:エアーブロー
切削距離:25m
<Cutting test condition 2>
Tool: Insert type radius end mill φ12 × R2 × 3 flute (manufactured by Hitachi Tool Co., Ltd.)
Substrate: The composition is WC (bal.)-Co (8 mass%)-TaC (0.25 mass%)-Cr 3 C 2 (0.9 mass%), and the WC average particle diameter is 0.6 μm, Cemented carbide with a hardness of 93.4HRA Cutter Model Number: ASRM-1012R-3-M6
Insert model number: EPHN0402TN-2
Cutting method: Bottom cutting Work material: SKD11 (60HRC)
Cutting depth: 0.15mm in the axial direction, 6mm in the radial direction
Cutting speed: 180 m / min
Single blade feed rate: 0.4 mm / tooth
Cutting oil: Air blow Cutting distance: 25m

<切削試験 条件3>
工具:インサート式ラジアスエンドミル
φ32×R8×5枚刃(日立ツール株式会社製)
基材:組成が、WC(bal.)−Co(8質量%)−TaC(0.25質量%)−Cr(0.9質量%)であり、WC平均粒径0.6μm、硬度93.4HRAの超硬合金
カッター型番:ASRS2032R−5
インサート型番:EPMT0603EN−8LF
切削方法:底面切削
被削材:SUS304(180HB)
切込み:軸方向0.5mm、径方向22mm
切削速度:180m/min
一刃送り量:0.5mm/tooth
切削油:エアーブロー
切削距離:12.5m
<Cutting test condition 3>
Tool: Insert type radius end mill φ32 × R8 × 5 flute (manufactured by Hitachi Tool Co., Ltd.)
Substrate: The composition is WC (bal.)-Co (8 mass%)-TaC (0.25 mass%)-Cr 3 C 2 (0.9 mass%), and the WC average particle diameter is 0.6 μm, Cemented carbide with a hardness of 93.4HRA Cutter Model Number: ASRS2032R-5
Insert model number: EPMT0603EN-8LF
Cutting method: Bottom cutting Work material: SUS304 (180HB)
Cutting depth: 0.5mm in the axial direction, 22mm in the radial direction
Cutting speed: 180 m / min
Single blade feed: 0.5mm / tooth
Cutting oil: Air blow Cutting distance: 12.5m

Figure 0006385243
Figure 0006385243

本発明例1〜3は、Al含有量が多くfcc構造が主体の相互積層皮膜であり、切削抵抗が小さく、工具刃先の摩耗が抑制された。特に本発明例1は相互積層皮膜の全体に含まれるAl含有量が多いため切削抵抗が小さく工具刃先の摩耗が少なくなった。
比較例1は、Al含有量が多いfcc構造が主体の相互積層皮膜であるが、相互積層皮膜を構成する個々の皮膜のAl含有量の差が大きいためb層とc層の整合性が悪く、切削中の機械的負荷に皮膜の強度が耐えられずに破壊損傷した。
比較例2、3はhcp構造が主体の単層皮膜であり、切削中の機械的負荷に皮膜の強度が耐えられずに破壊損傷した。
比較例4は安定なfcc構造であり硬度も高いが、皮膜中のAl含有量が少ないため、本発明例に比べて切削抵抗が高くなり工具摩耗が大きくなった。
Examples 1 to 3 of the present invention are mutual laminated films having a high Al content and mainly an fcc structure, have low cutting resistance, and suppress wear of the tool edge. In particular, Example 1 of the present invention had a small cutting resistance due to a large amount of Al contained in the entire laminated film, and the tool edge was less worn.
Comparative Example 1 is a mutual laminated film mainly composed of an fcc structure having a large Al content, but the consistency between the b layer and the c layer is poor due to a large difference in the Al content of the individual films constituting the mutual laminated film. The film was unable to withstand the mechanical load during cutting, and was damaged due to fracture.
Comparative Examples 2 and 3 were single-layer coatings mainly composed of hcp structures, and the coatings were not able to withstand the mechanical load during cutting and were damaged due to damage.
Comparative Example 4 had a stable fcc structure and high hardness, but the Al content in the film was small, so that the cutting resistance was higher and the tool wear was larger than in the inventive example.

実施例2では、表4に示すカソードを用いて試料を作製した。
本発明例20は、Tiボンバード処理後に、炉内に窒素ガスを導入し、個々の膜厚が20nmになるようにC1とC2に電力を投入して、a層の直上に約2.5μmの相互積層皮膜を直接被覆した。
本発明例21は、Tiボンバード処理後に、炉内に窒素ガスを導入し、C1に電力を投入して、約300nmの窒化物からなる硬質皮膜を被覆した後に、個々の膜厚が20nmになるようにC1とC2に電力を投入して、約2.5μmの相互積層皮膜を被覆した。
本発明例22は、Tiボンバード処理後に、炉内に窒素ガスを導入し、C2に電力を投入して、約300nmの窒化物からなる硬質皮膜を被覆した後に、個々の膜厚が20nmになるようにC1とC2に電力を投入して、約2.5μmの相互積層皮膜を被覆した。
比較例20は、Tiボンバード処理をせずに、Arプラズマによるクリーニングを行った後に炉内に窒素ガスを導入し、基材の直上に個々の膜厚が20nmになるようにC1とC2に電力を投入して、約2.5μmの相互積層皮膜を被覆した。
そして、実施例1の条件3と同じ条件で切削試験を実施した。試験結果を表5に示す。
In Example 2, a sample was prepared using the cathode shown in Table 4.
In Example 20 of the present invention, after Ti bombardment, nitrogen gas was introduced into the furnace, and power was applied to C1 and C2 so that each film thickness was 20 nm. The laminated film was coated directly.
In Invention Example 21, after Ti bombarding, nitrogen gas was introduced into the furnace, power was applied to C1, and a hard film made of a nitride of about 300 nm was coated, and then the individual film thickness became 20 nm. Thus, electric power was applied to C1 and C2 to coat a laminated film of about 2.5 μm.
In Example 22 of the present invention, after Ti bombarding, nitrogen gas was introduced into the furnace, power was applied to C2, and a hard film made of a nitride of about 300 nm was coated, and then the individual film thickness became 20 nm. Thus, electric power was applied to C1 and C2 to coat a laminated film of about 2.5 μm.
In Comparative Example 20, without cleaning with Ti bombardment, nitrogen gas was introduced into the furnace after cleaning with Ar plasma, and power was supplied to C1 and C2 so that the individual film thickness was 20 nm directly above the substrate. Was applied to coat a laminated film of about 2.5 μm.
Then, the cutting test was performed under the same conditions as the condition 3 of Example 1. The test results are shown in Table 5.

Figure 0006385243
Figure 0006385243

Figure 0006385243
Figure 0006385243

a層を設けた相互積層皮膜である本発明例は何れも優れた耐久性を示した。特に、a層の直上に個々の膜厚が50nm以下の相互積層皮膜を設けた本発明例20は工具刃先の最大摩耗幅が小さくなる傾向にあった。
本発明例21、22は、a層と個々の膜厚が50nm以下の相互積層皮膜の間に、膜厚が200nmのb層またはc層を設けた皮膜構造であるが、a層を設けていない比較例に比べて最大摩耗幅が小さくなることが確認された。
一方、比較例20は、相互積層皮膜は本発明例20と同じであるが、a層を設けていないため工具刃先の最大摩耗幅が大きくなった。
All of the examples of the present invention which were the mutual laminated films provided with the a layer exhibited excellent durability. In particular, Example 20 of the present invention in which an individual laminated film having an individual film thickness of 50 nm or less was provided immediately above the a layer tended to reduce the maximum wear width of the tool edge.
Invention Examples 21 and 22 are film structures in which a b layer or a c layer having a film thickness of 200 nm is provided between the a layer and the mutual laminated film having an individual film thickness of 50 nm or less, but the a layer is provided. It was confirmed that the maximum wear width was smaller than that of the comparative example without.
On the other hand, in Comparative Example 20, the mutual laminated film is the same as Example 20 of the present invention, but since the a layer was not provided, the maximum wear width of the tool blade edge was increased.

実施例3では、実施例1で評価した本発明例1、3と比較例3について、相互積層皮膜の上にTi75Si25N(数値は原子比率)を約1.0μm設けた試料を準備した。
本発明例1の上にTi75Si25Nを設けた試料を、本発明例30とした。本発明例3の上にTi75Si25Nを設けた試料を、本発明例31とした。比較例3の上にTi75Si25Nを設けた試料を、比較例30とした。そして、実施例1と同様の試験条件で評価した。
試験結果を表6に示す。
In Example 3, for Inventive Examples 1 and 3 and Comparative Example 3 evaluated in Example 1, a sample in which about 75 μm of Ti 75 Si 25 N (the numerical value is an atomic ratio) is provided on the mutual laminated film is prepared. did.
A sample in which Ti 75 Si 25 N was provided on Invention Example 1 was designated as Invention Example 30. A sample in which Ti 75 Si 25 N was provided on Invention Example 3 was designated as Invention Example 31. A sample in which Ti 75 Si 25 N was provided on Comparative Example 3 was designated as Comparative Example 30. And it evaluated on the test conditions similar to Example 1. FIG.
The test results are shown in Table 6.

Figure 0006385243
Figure 0006385243

本発明例の相互積層皮膜の上に保護皮膜であるd層を設けた場合、単層のAlTiNの上層に保護皮膜を設ける場合よりも、加工初期における最大摩耗幅が抑制されることを確認した。d層を設けた本発明例を過酷なより加工条件に適用することで、工具寿命の向上効果がより発揮されると推定される。

It was confirmed that when the d layer as the protective film was provided on the mutual laminated film of the example of the present invention, the maximum wear width at the initial stage of processing was suppressed as compared with the case where the protective film was provided on the single layer of AlTiN. . It is presumed that the effect of improving the tool life is further exhibited by applying the present invention example provided with the d layer to more severe processing conditions.

Claims (4)

基材と、前記基材の上に配置され、ナノビーム回折パターンがWCの結晶構造に指数付けされ、WとTiを含有する炭化物からなるa層と、前記a層の上に配置される相互積層皮膜と、を有し、
前記a層は、膜厚が1nm以上10nm以下であり、
前記相互積層皮膜は、金属元素(半金属を含む)の総量に対し、Alの含有比率(原子%)が50%以上70%以下のAlとTiの窒化物または炭窒化物からなるb層と、
金属元素(半金属を含む)の総量に対し、Alの含有比率(原子%)が70%以上のAlとTiの窒化物または炭窒化物からなるc層とが交互に形成されたものであり、
前記b層と前記c層のAlの含有比率(原子%)の差が10%以上30%以下である被覆切削工具。
A substrate, an a layer made of a carbide containing W and Ti, wherein the nanobeam diffraction pattern is indexed to a WC crystal structure, and an interlaminate disposed on the a layer And having a film
The a layer has a thickness of 1 nm or more and 10 nm or less,
The mutual laminated film includes an Al and Ti nitride or carbonitride b layer having an Al content ratio (atomic%) of 50% to 70% with respect to the total amount of metal elements (including metalloid). ,
Al with 70% or more of Al content (atomic%) with respect to the total amount of metal elements (including metalloids) and c layers made of Ti nitride or carbonitride are alternately formed. ,
The coated cutting tool whose difference of the Al content rate (atomic%) of the said b layer and the said c layer is 10% or more and 30% or less.
前記b層と前記c層の個々の膜厚は50nm以下である請求項1に記載の被覆切削工具。   The coated cutting tool according to claim 1, wherein the film thickness of each of the b layer and the c layer is 50 nm or less. 前記相互積層皮膜の上に、前記b層または前記c層と組成が異なる窒化物または炭窒化物からなるd層を設けた請求項1または2に記載の被覆切削工具。   The coated cutting tool according to claim 1 or 2, wherein a d layer made of a nitride or carbonitride having a composition different from that of the b layer or the c layer is provided on the mutual laminated film. 前記d層は、金属元素(半金属を含む)の総量に対し、Tiの含有比率(原子%)が60%以上80%以下、Siの含有比率(原子%)が20%以上40%以下の窒化物または炭窒化物である請求項3に記載の被覆切削工具。

The d layer has a Ti content ratio (atomic%) of 60% to 80% and an Si content ratio (atomic%) of 20% to 40% with respect to the total amount of metal elements (including metalloids). The coated cutting tool according to claim 3, which is a nitride or a carbonitride.

JP2014221299A 2013-11-05 2014-10-30 Coated cutting tool Active JP6385243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014221299A JP6385243B2 (en) 2013-11-05 2014-10-30 Coated cutting tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013229285 2013-11-05
JP2013229285 2013-11-05
JP2014221299A JP6385243B2 (en) 2013-11-05 2014-10-30 Coated cutting tool

Publications (2)

Publication Number Publication Date
JP2015110259A JP2015110259A (en) 2015-06-18
JP6385243B2 true JP6385243B2 (en) 2018-09-05

Family

ID=53525577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014221299A Active JP6385243B2 (en) 2013-11-05 2014-10-30 Coated cutting tool

Country Status (1)

Country Link
JP (1) JP6385243B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6604136B2 (en) * 2015-10-20 2019-11-13 三菱マテリアル株式会社 Surface-coated cutting tool having excellent chipping resistance and wear resistance with a hard coating layer and method for producing the same
JP6604138B2 (en) * 2015-10-22 2019-11-13 三菱マテリアル株式会社 Surface-coated cutting tool having excellent chipping resistance and wear resistance with a hard coating layer and method for producing the same
JP2017206756A (en) * 2016-05-20 2017-11-24 株式会社神戸製鋼所 Hard film and mold

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194159A (en) * 1988-03-24 1990-07-31 Kobe Steel Ltd Formation of wear resistant coating film
JPH11216601A (en) * 1998-02-04 1999-08-10 Osg Corp Coating tool with hard laminate film
JPH11254241A (en) * 1998-03-09 1999-09-21 Sumitomo Metal Mining Co Ltd Tool coated with oxidation and abrasion resistant film
JP4211500B2 (en) * 2003-06-11 2009-01-21 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4211508B2 (en) * 2003-07-07 2009-01-21 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of difficult-to-cut materials
JP4747268B2 (en) * 2005-05-25 2011-08-17 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with high temperature strength with excellent hard coating layer
JP4693002B2 (en) * 2005-10-17 2011-06-01 株式会社神戸製鋼所 Arc ion plating equipment
EP2743016B1 (en) * 2011-08-01 2018-04-11 Hitachi Tool Engineering, Ltd. Surface-modified wc-based cemented carbide member and method for producing surface-modified wc-based cemented carbide member

Also Published As

Publication number Publication date
JP2015110259A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
US10556273B2 (en) Surface-coated cutting tool having excellent chipping resistance and wear resistance
JP5673904B1 (en) Coated cutting tool and manufacturing method thereof
JP4707541B2 (en) Hard coating coated member
JP2017001147A (en) Coated cutting tool
JP2016032861A (en) Coated tool
JP6163141B2 (en) Hard coating
JP6555796B2 (en) Coated cutting tool
JP6385243B2 (en) Coated cutting tool
JP5700171B2 (en) Coated cutting tool
JP6529262B2 (en) Coated tools
JPWO2020075356A1 (en) Cutting tools and their manufacturing methods
JP6385233B2 (en) Coated cutting tool
WO2016167032A1 (en) Hard coating film
US11298748B2 (en) Surface coated cutting tool and method for manufacturing the same
KR102623142B1 (en) covered cutting tools
WO2019035219A1 (en) Coated cutting tool
WO2019188967A1 (en) Surface-coated cutting tool
WO2020075356A1 (en) Cutting tool and manufacturing method therefor
JPWO2020075355A1 (en) Cutting tools and their manufacturing methods
JPWO2020070967A1 (en) Surface coating cutting tool and its manufacturing method
JP2015174196A (en) Manufacturing method of coated cutting tool
JP6385237B2 (en) Coated cutting tool
JP2019171482A (en) Surface-coated cutting tool
JP2019171483A (en) Surface-coated cutting tool
KR102480241B1 (en) cloth cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180807

R150 Certificate of patent or registration of utility model

Ref document number: 6385243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350