JP2010106311A - Formed article with hard multilayer film and method for producing the same - Google Patents

Formed article with hard multilayer film and method for producing the same Download PDF

Info

Publication number
JP2010106311A
JP2010106311A JP2008278852A JP2008278852A JP2010106311A JP 2010106311 A JP2010106311 A JP 2010106311A JP 2008278852 A JP2008278852 A JP 2008278852A JP 2008278852 A JP2008278852 A JP 2008278852A JP 2010106311 A JP2010106311 A JP 2010106311A
Authority
JP
Japan
Prior art keywords
layer
stress relaxation
multilayer film
intermediate layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008278852A
Other languages
Japanese (ja)
Other versions
JP5393108B2 (en
Inventor
Akinari Ohira
晃也 大平
Naoko Ito
直子 伊藤
Yoji Sato
洋司 佐藤
Hideyuki Tsutsui
英之 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008278852A priority Critical patent/JP5393108B2/en
Priority to PCT/JP2009/068555 priority patent/WO2010050542A1/en
Priority to EP09823652.4A priority patent/EP2362000B1/en
Priority to US12/998,426 priority patent/US8728621B2/en
Priority to CN200980143061.0A priority patent/CN102216487B/en
Publication of JP2010106311A publication Critical patent/JP2010106311A/en
Application granted granted Critical
Publication of JP5393108B2 publication Critical patent/JP5393108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a formed article with a hard multilayer film, which includes an intermediate layer excellent in adhesion with a base material and a DLC layer being a surface layer having excellent wear resistance, does not cause exfoliation between the lowermost part of the DLC layer and the intermediate layer, and is also excellent in wear resistance, and to provide a method for producing the same. <P>SOLUTION: The formed article 1 with a hard multilayer film is obtained by forming the multilayer film on the surface of a base material formed of a cemented carbide material or an iron-based material. The multilayer film includes (1) a film which is formed as a surface layer 5 of the multilayers and composed mainly of DLC deposited by using only graphite of a solid target as a carbon supply source to suppress mixing of hydrogen, (2) an intermediate layer 3 which is formed between the surface layer 5 and the base material 2 and composed mainly of at least chromium or tungsten, and (3) a stress relaxing layer 4 which is formed between the intermediate layer 3 and the surface layer 5 and composed mainly of carbon. The stress relaxing layer 4 is a graded layer in which the hardness is continuously or stepwisely increased from the intermediate 3 side to the surface layer 5 side. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、自動車部品等の耐摩耗性機械部品等において、特に基材として鉄系材料に対して良好な密着性を示すと共に、優れた耐摩耗性を有するダイヤモンドライクカーボン膜を表面層とする硬質多層膜成形体、およびその製造方法に関する。   The present invention provides a surface layer made of a diamond-like carbon film that exhibits excellent adhesion to an iron-based material as a base material and has excellent wear resistance in wear-resistant machine parts such as automobile parts. The present invention relates to a molded article of a hard multilayer film and a manufacturing method thereof.

硬質カーボン膜は、一般にダイヤモンドライクカーボン(以下、DLCと記す)と呼ばれている硬質膜である。硬質カーボンはその他にも、硬質非晶質炭素、無定形炭素、硬質無定形型炭素、i−カーボン、ダイヤモンド状炭素等、様々な呼称があるが、これらの用語は明確に区別されていない。   The hard carbon film is a hard film generally called diamond-like carbon (hereinafter referred to as DLC). In addition, hard carbon has various names such as hard amorphous carbon, amorphous carbon, hard amorphous carbon, i-carbon, diamond-like carbon, etc., but these terms are not clearly distinguished.

このような用語が用いられるDLCの本質は、構造的にはダイヤモンドとグラファイトが混ざり合った両者の中間構造を有するものであり、ダイヤモンドと同等に硬度が高く、耐摩耗性、固体潤滑性、熱伝導性、化学安定性等に優れることから、例えば、金型・工具類、耐摩耗性機械部品、研磨材、摺動部材、磁気・光学部品等の保護膜として利用されつつある。こうしたDLC膜を形成する方法として、スパッタリング法やイオンプレーティング法等の物理的蒸着(以下、PVDと記す)法、および化学的蒸着(以下、CVDと記す)法等が採用されているが、通常DLC膜は膜形成時に極めて大きな内部応力が発生し、また高い硬度およびヤング率を持つ反面、変形能が極めて小さいことから、基材との密着性が弱く、剥離しやすい等の欠点を持っている。   The essence of DLC in which such terms are used is structurally an intermediate structure in which diamond and graphite are mixed, and has the same hardness as diamond, wear resistance, solid lubricity, heat Because of its excellent conductivity and chemical stability, it is being used as a protective film for molds / tools, wear-resistant mechanical parts, abrasives, sliding members, magnetic / optical parts, and the like. As a method for forming such a DLC film, a physical vapor deposition (hereinafter referred to as PVD) method such as a sputtering method or an ion plating method, a chemical vapor deposition (hereinafter referred to as CVD) method, or the like is employed. In general, DLC films generate extremely large internal stress during film formation, and have high hardness and Young's modulus, but their deformability is extremely small, so they have weaknesses such as poor adhesion to the substrate and easy peeling. ing.

基材との密着性を改良する手段として、(1)膜応力を制御する方法、(2)基材と炭素膜の間に中間層を設ける方法の2つが挙げられる。しかしながら、これらの技術では、以下に示す問題があり、改善されることが望まれているのが実情である。まず、上記(1)の方法では、基本的には基材とDLC膜を組織および機械的特性において両者の中間的な層を持つ層をもって糊付け層として結合するという観点から、その中間層として硬質の脆性材料を含むものを採用するものであるが、上記PVD法やCVD法によって成膜されたDLC膜における巨大な内部応力によって、特に数μmにおよぶ厚膜を形成した場合やダイヤモンド成分の多い硬度40GPaをこえるような硬い膜を形成した場合には、密着性不良の問題は顕著である。   As means for improving the adhesion to the substrate, there are two methods: (1) a method for controlling the film stress, and (2) a method for providing an intermediate layer between the substrate and the carbon film. However, these techniques have the following problems, and it is actually desired to be improved. First, in the method of (1), basically, the intermediate layer and the DLC film are hard as an intermediate layer from the viewpoint of bonding a layer having an intermediate layer between the two in terms of structure and mechanical properties. However, when the DLC film formed by the PVD method or the CVD method has a large internal stress, a thick film having a thickness of several μm is formed, or there is a large amount of diamond components. When a hard film having a hardness exceeding 40 GPa is formed, the problem of poor adhesion is significant.

この問題に対して、スクラッチ試験において50N以上の密着性を示すDLC膜を最表面層とするDLC硬質多層膜成形体がが知られている(特許文献1参照)。この技術はDLC膜を最表面層とし、基材と最表面層の間の中間層として、W、Ta、MoおよびNbからなる群から選択される1種類以上の金属元素と炭素を含む非晶質層からなる最表面層側の第2層からなる2層構造としたDLC硬質多層膜成形体に関するものである。そして、こうした膜構造を有するDLC硬質多層膜成形体では、WC−Co等の超硬合金製基材に対するDLC膜の良好な密着性が提示されている。しかしながら、この技術においても以下のような解決すべき問題があった。   In order to solve this problem, there is known a DLC hard multilayer film molded body having a DLC film having an adhesion of 50 N or more in a scratch test as an outermost surface layer (see Patent Document 1). This technique uses a DLC film as the outermost surface layer, and an amorphous layer containing one or more metal elements selected from the group consisting of W, Ta, Mo, and Nb and carbon as an intermediate layer between the base material and the outermost surface layer. The present invention relates to a DLC hard multilayer film molded body having a two-layer structure composed of a second layer on the outermost surface layer side composed of a porous layer. And in the DLC hard multilayer film molding having such a film structure, good adhesion of the DLC film to a substrate made of a cemented carbide such as WC-Co is presented. However, this technique also has the following problems to be solved.

上記技術は、基本的にWC−Co基材等の超硬合金を基材として使用する場合を想定しており、上記WC−Co系超硬合金およびSiやAl等の絶縁材を基材として用いた場合には、上記中間層は基材との良好な密着性を確保できたのであるが、高速度工具鋼のような鉄系材料を基材として用いた場合には、上記中間層と基材の相性が必ずしも良好であるとは限らず、中間層と基材の間で密着性が悪くなり、DLC膜の剥離が生じやすいという問題があった。また、耐摩耗性に優れる最上層DLC膜の成膜条件の最適化が行なわれておらず、改善の余地があった。 The above technology basically assumes the case where a cemented carbide such as a WC-Co substrate is used as a substrate, and the WC-Co based cemented carbide and an insulating material such as Si or Al 2 O 3 are used. When used as a base material, the intermediate layer was able to ensure good adhesion with the base material, but when an iron-based material such as high-speed tool steel was used as the base material, The compatibility between the intermediate layer and the substrate is not always good, and there is a problem that the adhesion between the intermediate layer and the substrate is deteriorated and the DLC film is easily peeled off. Further, the film forming conditions of the uppermost DLC film having excellent wear resistance have not been optimized, and there is room for improvement.

この密着性の改良技術として、低硬度の鉄系材料の基材にDLC膜を密着性良く被覆する技術として、比較的厚く形成しても優れた密着性を発揮させる技術(特許文献2参照)が知られている。この技術はDLCを主体とする膜を最表面層とし、さらに中間層および基材を含んでおり、この基材は鉄系材料から成ると共に、上記中間層を下記(1)〜(4)の4層構造とするものである。
(1)Crおよび/またはAlの金属層からなる第1層
(2)Crおよび/またはAlの金属と、W、Ta、MoおよびNbよりなる群から選択される1種類以上の金属の混合層からなる第2層
(3)W、Ta、MoおよびNbからなる群から選択される1種類以上の金属層からなる第3層
(4)W、Ta、MoおよびNbよりなる群から選択される1種類以上の金属と炭素を含む非晶質層からなる第4層
As a technique for improving the adhesion, as a technique for coating a DLC film with good adhesion on a base material of a low hardness iron-based material, a technique for exerting excellent adhesion even when formed relatively thick (see Patent Document 2) It has been known. In this technique, a film mainly composed of DLC is used as an outermost surface layer, and further includes an intermediate layer and a base material. The base material is made of an iron-based material, and the intermediate layer is formed from the following (1) to (4). It has a four-layer structure.
(1) First layer composed of a Cr and / or Al metal layer (2) Mixed layer of Cr and / or Al metal and one or more metals selected from the group consisting of W, Ta, Mo and Nb The second layer (3) consisting of W, Ta, Mo and Nb. The third layer (4) consisting of one or more metal layers selected from the group consisting of W, Ta, Mo and Nb. A fourth layer comprising an amorphous layer containing one or more metals and carbon

特に前記第2層は、Crおよび/またはAlの含有量が、最表面層側に向けて段階的または連続的に減少する傾斜層を有するように構成されたものであることが好ましい。また、上記第4層は、W、Ta、Mo、Nbよりなる群から選択される1種類以上の金属の含有量が最表面層側に向けて段階的または連続的に減少する傾斜組成を有するように構成されたものであることが好ましい。また同様に上記第2層、上記第3層および第4層の成分であるW、Ta、MoおよびNbよりなる群から選択される1種類以上の金属の代わりに、WCを主成分とする化合物を用いることもできる。   In particular, the second layer is preferably configured to have a gradient layer in which the content of Cr and / or Al decreases stepwise or continuously toward the outermost surface layer side. The fourth layer has a graded composition in which the content of one or more metals selected from the group consisting of W, Ta, Mo, and Nb decreases stepwise or continuously toward the outermost surface layer side. It is preferable that it is comprised as follows. Similarly, a compound containing WC as a main component instead of one or more kinds of metals selected from the group consisting of W, Ta, Mo and Nb, which are components of the second layer, the third layer and the fourth layer. Can also be used.

なお、これらのDLC膜多層成膜体を製造するに当たり、DLC膜はアンバランスト・マグネトロン・スパッタリング(以下、UBMSと記す)法によって形成することが好ましく、基材温度を100〜300℃に制御しつつ形成することが好ましい、と記載されている。
特開2000−119843号公報 特開2003−171758号公報
In producing these multilayer DLC film bodies, the DLC film is preferably formed by an unbalanced magnetron sputtering (hereinafter referred to as UBMS) method, and the substrate temperature is controlled to 100 to 300 ° C. However, it is described that it is preferably formed.
JP 2000-119843 A JP 2003-171758 A

しかしながら、特許文献1および特許文献2の技術を用いた場合でも、最表面層であるDLC層の構造を最適化しない場合、DLC層と中間層との間で、剥離が生じるという問題がある。また、密着性が良好でかつ耐摩耗性に優れるDLC膜を形成する条件を裏付ける耐摩耗性に関するデータが得られていないという問題がある。   However, even when the techniques of Patent Document 1 and Patent Document 2 are used, if the structure of the DLC layer that is the outermost surface layer is not optimized, there is a problem that peeling occurs between the DLC layer and the intermediate layer. In addition, there is a problem in that data relating to wear resistance supporting conditions for forming a DLC film having good adhesion and excellent wear resistance is not obtained.

本発明はこのような問題に対処するためになされたものであり、基材と密着性に優れる中間層と、耐摩耗性に優れる表面層であるDLC層とを備え、DLC層最下部と中間層との間でも剥離を生じることがなく、耐摩耗性にも優れる硬質多層膜成形体、およびその製造方法を提供することを目的とする。   The present invention has been made in order to cope with such a problem, and includes an intermediate layer having excellent adhesion to the base material and a DLC layer which is a surface layer having excellent wear resistance. It is an object of the present invention to provide a hard multilayer film molded article which does not cause peeling between layers and is excellent in wear resistance, and a method for producing the same.

本発明の硬質多層膜成形体は、超硬合金材料または鉄系材料からなる基材の表面に多層の膜を形成してなる硬質多層膜成形体であって、上記多層の膜は、(1)この多層の表面層として形成される、炭素供給源として固体ターゲットのグラファイトのみを使用し、水素混入量を抑えて成膜したDLCを主体とする膜と、(2)この表面層と上記基材との間に形成される、少なくともクロム(Cr)またはタングステン(W)を主体とする中間層と、(3)この中間層と上記表面層との間に形成される炭素(C)を主体とする応力緩和層とからなり、上記応力緩和層は、その硬度が上記中間層側から上記表面層側へ連続的または段階的に上昇する傾斜層であることを特徴とする。   The hard multilayer film molded body of the present invention is a hard multilayer film molded body formed by forming a multilayer film on the surface of a substrate made of a cemented carbide material or an iron-based material, and the multilayer film is (1 (2) a film composed mainly of DLC formed as a multilayer surface layer using only solid target graphite as a carbon source and suppressing the amount of mixed hydrogen; (2) the surface layer and the above-mentioned base layer An intermediate layer mainly composed of at least chromium (Cr) or tungsten (W), and (3) mainly composed of carbon (C) formed between the intermediate layer and the surface layer. The stress relaxation layer is an inclined layer whose hardness increases continuously or stepwise from the intermediate layer side to the surface layer side.

上記中間層は組成の異なる複数の層からなる構造であり、一方が上記応力緩和層と隣接する層は、他方で隣接する層の主体となる金属と、Cとを主体とすることを特徴とする。   The intermediate layer has a structure composed of a plurality of layers having different compositions, wherein one of the layers adjacent to the stress relaxation layer is mainly composed of a metal that is a main component of the adjacent layer and C. To do.

上記中間層が、上記基材と隣接するWを主体とする層と、該層と一方で隣接するとともに他方で上記応力緩和層と隣接する、CおよびWを主体とする層とからなる2層構造であることを特徴とする。また、上記中間層が、上記基材と隣接するCrを主体とする層と、該層と隣接するWを主体とする層と、該層と一方で隣接するとともに他方で上記応力緩和層と隣接する、CおよびWを主体とする層とからなる3層構造であることを特徴とする。   The intermediate layer is composed of a layer mainly composed of W adjacent to the base material, and a layer mainly composed of C and W adjacent to the layer and adjacent to the stress relaxation layer on the other side. It is a structure. In addition, the intermediate layer is adjacent to the base material mainly composed of Cr, adjacent to the layer mainly composed of W, adjacent to the layer on one side, and adjacent to the stress relaxation layer on the other side. It has a three-layer structure composed of layers mainly composed of C and W.

上記多層の膜厚の合計が、0.5〜3.0μmであることを特徴とする。また、上記硬質多層膜成形体は、ロックウェル硬さ試験機にて、150kgの荷重によるダイヤモンド圧子の打ち込み時にできる圧痕周囲に剥離が生じない密着性を有することを特徴とする。   The total thickness of the multilayer is 0.5 to 3.0 μm. Further, the hard multilayer film molded article is characterized in that it has an adhesive property that does not cause peeling around an indentation formed when a diamond indenter is driven with a load of 150 kg by a Rockwell hardness tester.

本発明の硬質多層膜成形体の製造方法は、基材上に上記中間層を形成する中間層形成工程と、中間層上に上記応力緩和層を形成する応力緩和層形成工程と、応力緩和層上に上記表面層を形成する表面層形成工程とを有し、上記表面層形成工程は、UBMS法を用いて、炭素供給源として固体ターゲットのグラファイトのみを使用し、水素供給源となるスパッタリングガスは使用せずにDLCを主体とする膜を形成する工程であり、上記応力緩和層形成工程は、UBMS法を用いて、バイアス電圧を連続的または段階的に上昇させて上記傾斜層を形成する工程であることを特徴とする。   The method for producing a hard multilayer film molded body of the present invention includes an intermediate layer forming step for forming the intermediate layer on a substrate, a stress relaxation layer forming step for forming the stress relaxation layer on the intermediate layer, and a stress relaxation layer. A surface layer forming step for forming the surface layer on the surface, wherein the surface layer forming step uses a UBMS method and uses only a solid target graphite as a carbon supply source, and a sputtering gas serving as a hydrogen supply source Is a step of forming a film mainly composed of DLC without using it, and the stress relaxation layer forming step forms the gradient layer by increasing the bias voltage continuously or stepwise using the UBMS method. It is a process.

上記応力緩和層形成工程において、上記バイアス電圧を段階的に上昇させる場合のステップ幅が50V以下であることを特徴とする。また、上記表面層形成工程において、上記バイアス電圧を250V以上に印加して成膜することを特徴とする。なお、基材に対するバイアスの電位は、アース電位に対してマイナスとなるように印加しており、バイアス電圧250Vとは、アース電位に対して基材のバイアス電位が−250Vであることを示す。   In the stress relaxation layer forming step, the step width when the bias voltage is increased stepwise is 50 V or less. In the surface layer forming step, the bias voltage is applied to 250 V or more to form a film. The bias potential applied to the base material is applied so as to be negative with respect to the ground potential, and the bias voltage 250V indicates that the bias potential of the base material is −250V with respect to the ground potential.

また、上記各工程において、基材温度を100〜300℃に制御することを特徴とする。   Moreover, in each said process, base-material temperature is controlled to 100-300 degreeC, It is characterized by the above-mentioned.

本発明の硬質多層膜成形体は、超硬合金材料または鉄系材料からなる基材の表面に多層の膜を形成してなる硬質多層膜成形体であって、基材と密着性に優れる中間層と、炭素供給源として固体ターゲットのグラファイトのみを使用して成膜した、耐摩耗性に優れる表面層であるDLC層とを備え、中間層と表面層との間に、中間層側から表面層側に硬度が連続的または段階的に上昇する傾斜層を有するので、成形体の表面が水素含有量を低くしたDLC層となり耐摩耗性に優れるとともに、DLC層最下部の応力緩和層(傾斜層)と中間層との間でも剥離を生じることがない。   The hard multilayer film molded body of the present invention is a hard multilayer film molded body in which a multilayer film is formed on the surface of a substrate made of a cemented carbide material or an iron-based material, and is an intermediate having excellent adhesion to the substrate. And a DLC layer, which is a surface layer having excellent wear resistance, formed using only a solid target graphite as a carbon source, and the surface from the intermediate layer side between the intermediate layer and the surface layer. Since it has a graded layer whose hardness increases continuously or stepwise on the layer side, the surface of the molded body becomes a DLC layer with a low hydrogen content and has excellent wear resistance, and a stress relaxation layer (gradient) at the bottom of the DLC layer. No peeling occurs between the layer) and the intermediate layer.

また、中間層を組成の異なる複数の層からなる構造とし、一方が応力緩和層と隣接する層を、他方で隣接する層の主体となる金属と、Cとを主体とすることで、この中間層と応力緩和層との間の密着性を向上できる。   In addition, the intermediate layer has a structure composed of a plurality of layers having different compositions, one of which is adjacent to the stress relaxation layer, and the other is a metal which is the main component of the adjacent layer and C. The adhesion between the layer and the stress relaxation layer can be improved.

また、硬質多層膜成形体は、ロックウェル硬さ試験機にて、150kgの荷重によるダイヤモンド圧子の打ち込み時にできる圧痕周囲に剥離が生じない程度の優れた密着性を有する。   Further, the hard multilayer film molded article has excellent adhesion that does not cause peeling around the indentation formed when a diamond indenter is driven by a load of 150 kg with a Rockwell hardness tester.

本発明の硬質多層膜成形体の製造方法は、中間層形成工程と、応力緩和層形成工程と、表面層形成工程とを有し、上記表面層形成工程は、UBMS法を用いて、炭素供給源として固体ターゲットのグラファイトのみを使用し、水素供給源となるスパッタリングガスは使用せずにDLCを主体とする膜を形成する工程であり、上記応力緩和層形成工程は、UBMS法を用いて、バイアス電圧を連続的または段階的に上昇させて上記傾斜層を形成する工程であるので、水素含有量を低くした耐摩耗性に優れるDLC層を成形体表面に形成でき、また、DLC層最下部の応力緩和層(傾斜層)と中間層との間の密着性に優れる硬質多層膜成形体を容易に製造することができる。   The manufacturing method of the hard multilayer film molded body of the present invention includes an intermediate layer forming step, a stress relaxation layer forming step, and a surface layer forming step, and the surface layer forming step uses a UBMS method to supply carbon. It is a step of forming a film mainly composed of DLC without using a sputtering gas as a hydrogen supply source, using only a solid target graphite as a source, and the stress relaxation layer forming step uses a UBMS method. Since the gradient layer is formed by increasing the bias voltage continuously or stepwise, a DLC layer having a low hydrogen content and excellent wear resistance can be formed on the surface of the molded body. It is possible to easily produce a hard multilayer film molded article having excellent adhesion between the stress relaxation layer (gradient layer) and the intermediate layer.

また、上記応力緩和層形成工程において、バイアス電圧を段階的に変化させる場合のステップ幅を50V以下とすることで、応力緩和層(傾斜層)の密度および硬度を細かく段階的に変化させることができ、密着性を向上させることができる。   Further, in the stress relaxation layer forming step, the density and hardness of the stress relaxation layer (gradient layer) can be changed finely and stepwise by setting the step width when the bias voltage is changed stepwise to 50 V or less. And adhesion can be improved.

また、上記表面層形成工程において、バイアス電圧を最終的に250V以上に印加して成膜することで、Ar等の希ガスイオンのアシスト効果を高めて、基材との衝突エネルギーを増大させることにより、緻密で高硬度な耐摩耗性に優れるDLC膜を形成することができる。   In the surface layer forming step, the bias voltage is finally applied to 250 V or more to form a film, thereby enhancing the assist effect of rare gas ions such as Ar and increasing the collision energy with the substrate. Thus, a DLC film having high density and high hardness and excellent wear resistance can be formed.

また、上記製造方法において、基材温度を100〜300℃に制御することで、基材に対する多層膜の密着性を向上させることができる。   Moreover, in the said manufacturing method, the adhesiveness of the multilayer film with respect to a base material can be improved by controlling base-material temperature to 100-300 degreeC.

DLC膜からなる表面層の密着性と耐摩耗性とに優れる硬質多層膜成形体を得るべく鋭意検討の結果、基材と密着性に優れる中間層を選定し、かつ表面層であるDLC膜に優れた耐摩耗性を付与するために成膜条件を選定し、特に、DLC層形成時の基材に対するバイアス電圧を連続的または段階的に変化させてDLC層最下部にDLCの密度および硬度が連続的または段階的に変化する応力緩和層(傾斜層)を形成することで、中間層最上部と、DLC層最下部の応力緩和層(傾斜層)との間の密着性が向上し、剥離を防止できることを見出した。本発明はこのような知見に基づきなされたものである。   As a result of intensive studies to obtain a hard multilayer film molded article having excellent adhesion and wear resistance of the surface layer made of DLC film, an intermediate layer excellent in adhesion with the substrate was selected, and the DLC film as the surface layer was selected. In order to provide excellent wear resistance, the film forming conditions are selected. In particular, the density and hardness of the DLC at the bottom of the DLC layer are changed by continuously or stepwise changing the bias voltage with respect to the substrate when forming the DLC layer. By forming a stress relaxation layer (gradient layer) that changes continuously or stepwise, the adhesion between the uppermost part of the intermediate layer and the stress relaxation layer (gradient layer) at the bottom of the DLC layer is improved, and peeling It was found that can be prevented. The present invention has been made based on such findings.

本発明の硬質多層膜成形体を図面に基づいて説明する。図1は本発明の硬質多層膜成形体の構成を示す断面図である。図1に示すように、本発明の硬質多層膜成形体1は、基材2の表面に多層の膜を形成してなり、この多層の膜は、(1)表面層5として形成される、炭素供給源として固体ターゲットのグラファイトのみを使用し、水素混入量を抑えたDLCを主体とする膜と、(2)表面層5と基材2との間に形成される、少なくともCrまたはWを主体とする中間層3と、(3)中間層3と表面層5との間に形成される応力緩和層4とからなる。   The hard multilayer film molded product of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the configuration of the hard multilayer film molded article of the present invention. As shown in FIG. 1, the hard multilayer film molded article 1 of the present invention is formed by forming a multilayer film on the surface of a base material 2, and this multilayer film is formed as (1) a surface layer 5. A film mainly composed of DLC using only a solid target graphite as a carbon supply source and suppressing the amount of hydrogen contamination, and (2) at least Cr or W formed between the surface layer 5 and the substrate 2 It consists of an intermediate layer 3 as a main component, and (3) a stress relaxation layer 4 formed between the intermediate layer 3 and the surface layer 5.

基材2としては、超硬合金材料または鉄系材料からなる基材であれば用いることができる。超硬合金材料としては機械的特性が最も優れるWC−Co系合金の他に、切削工具として、耐酸化性を向上させた、WC−TiC−Co系合金、WC−TaC−Co系合金、WC−TiC−TaC−Co系合金等を挙げることができる。鉄系材料としては炭素工具鋼、高速度工具鋼、合金工具鋼、ステンレス鋼、軸受鋼、快削鋼等を挙げることができる。本発明では、安価な鉄系材料を基材に用いた場合でも、DLCに相当する硬質多層膜成形体を製造することができる。   As the base material 2, any base material made of a cemented carbide material or an iron-based material can be used. In addition to the WC-Co alloy with the most excellent mechanical properties as a cemented carbide material, the WC-TiC-Co alloy, WC-TaC-Co alloy, and WC have improved oxidation resistance as cutting tools. -TiC-TaC-Co based alloy and the like. Examples of the iron-based material include carbon tool steel, high speed tool steel, alloy tool steel, stainless steel, bearing steel, free cutting steel and the like. In the present invention, even when an inexpensive iron-based material is used as a base material, a hard multilayer film molded body corresponding to DLC can be produced.

中間層3は、組成の異なる複数の層からなる構造であり、図1では3a〜3cの3層構造を例示している。例えば、基材2の表面にCrを主体とする層3cを形成し、その上にWを主体とする層3bを形成し、その上にWおよびCを主体とする層3aを形成する。図1では3層構造を例示したが、中間層3は、必要に応じて、これ以下または以上の数の層からなるものであってもよい。   The intermediate layer 3 has a structure composed of a plurality of layers having different compositions, and FIG. 1 illustrates a three-layer structure of 3a to 3c. For example, the layer 3c mainly composed of Cr is formed on the surface of the substrate 2, the layer 3b mainly composed of W is formed thereon, and the layer 3a mainly composed of W and C is formed thereon. Although the three-layer structure is illustrated in FIG. 1, the intermediate layer 3 may be composed of a number of layers equal to or less than this, if necessary.

応力緩和層4に隣接する層3aは、他方で隣接する層3bの主体となる金属と、炭素とを主体することで、中間層3と応力緩和層4との間の密着性を向上できる。例えば、層3aがWとCとを主体とする場合、Wを主体とする中間層3b側からCを主体とする応力緩和層4側に向けて、Wの含有量を減少させ、一方、Cの含有量を増加させる(組成傾斜)ことで、より密着性の向上が図れる。   The layer 3a adjacent to the stress relaxation layer 4 can improve the adhesion between the intermediate layer 3 and the stress relaxation layer 4 by mainly including the metal that is the main component of the adjacent layer 3b and carbon. For example, when the layer 3a is mainly composed of W and C, the content of W is decreased from the intermediate layer 3b side mainly composed of W toward the stress relaxation layer 4 side mainly composed of C, while C By increasing the content of (composition gradient), the adhesion can be further improved.

応力緩和層4は、Cを主体とし、その硬度が中間層3側から表面層5側へ連続的または段階的に上昇する傾斜層である。具体的には、UBMS法においてグラファイト製ターゲットを用い、基材に対するバイアス電圧を連続的または段階的に上昇させて成膜することで得られるDLC傾斜層である。硬度が連続的または段階的に上昇するのは、DLC構造におけるグラファイト構造(SP)とダイヤモンド構造(SP)との構成比率が、バイアス電圧の上昇により後者に偏っていくためである。 The stress relaxation layer 4 is an inclined layer whose main component is C and whose hardness increases continuously or stepwise from the intermediate layer 3 side to the surface layer 5 side. Specifically, it is a DLC gradient layer obtained by forming a film by using a graphite target in the UBMS method and increasing the bias voltage with respect to the substrate continuously or stepwise. The reason why the hardness increases continuously or stepwise is that the constituent ratio of the graphite structure (SP 2 ) and the diamond structure (SP 3 ) in the DLC structure is biased toward the latter as the bias voltage increases.

表面層5は、応力緩和層4の延長で形成されるDLCを主体とする膜であり、特に、構造中の水素含有量を低減したDLC膜である。水素含有量を低減させたことで、耐摩耗性が向上する。このようなDLC膜を形成するためには、例えばUBMS法を用いて、スパッタリング処理に用いる原料およびスパッタリングガス中に水素および水素を含む化合物を混入させない方法を用いる。   The surface layer 5 is a film mainly composed of DLC formed by extension of the stress relaxation layer 4, and in particular, a DLC film with a reduced hydrogen content in the structure. Abrasion resistance is improved by reducing the hydrogen content. In order to form such a DLC film, for example, a method in which hydrogen and a compound containing hydrogen are not mixed into a raw material used for the sputtering process and a sputtering gas by using the UBMS method is used.

応力緩和層4および表面層5の成膜法に関して、UBMS法を用いる場合を例示したが、硬度を連続的または段階的に変化させることができる成膜法であれば、その他公知の成膜法を採用することができる。   The case of using the UBMS method has been exemplified for the film formation method of the stress relaxation layer 4 and the surface layer 5, but any other known film formation method can be used as long as the film thickness can be changed continuously or stepwise. Can be adopted.

硬質多層膜成形体1において、中間層3と、応力緩和層4と、表面層5とからなる多層の膜厚の合計が0.5〜3.0μmとすることが好ましい。膜厚の合計が0.5m未満であれば、耐摩耗性および機械的強度に劣り、3.0μmをこえると剥離し易くなるので好ましくない。   In the hard multilayer film molded body 1, the total thickness of the multilayer composed of the intermediate layer 3, the stress relaxation layer 4, and the surface layer 5 is preferably 0.5 to 3.0 μm. If the total film thickness is less than 0.5 m, the abrasion resistance and mechanical strength are inferior, and if it exceeds 3.0 μm, it tends to peel off, which is not preferable.

硬質多層膜成形体1は、その密着性が、ロックウェル硬さ試験機にて、150kgの荷重によるダイヤモンド圧子の打ち込み時にできる圧痕周囲に剥離が生じない程度であることが好ましい。ここで、「圧痕周囲に剥離が生じない」とは、例えば、図3(a)に示すような状態をいう。   It is preferable that the adhesiveness of the hard multilayer film molded body 1 is such that no peeling occurs around the indentation formed when the diamond indenter is driven with a load of 150 kg by a Rockwell hardness tester. Here, “there is no peeling around the indentation” means, for example, a state as shown in FIG.

本発明の硬質多層膜成形体の製造方法は、(1)基材2上に中間層3を形成する中間層形成工程と、(2)中間層3上に応力緩和層4を形成する応力緩和層形成工程と、(3)応力緩和層4上に表面層5を形成する表面層形成工程とからなる。各工程において、密着性を向上させるために、基材温度を100〜300℃に制御して各層の被膜を形成させることが好ましい。基材や被膜を形成された基材の温度が100℃未満であれば、膜の緻密化が進行し難い。また、300℃をこえるとDLC層がダメージを受けるので好ましくない。   The method for producing a hard multilayer film molded body of the present invention includes (1) an intermediate layer forming step of forming an intermediate layer 3 on a substrate 2 and (2) stress relaxation of forming a stress relaxation layer 4 on the intermediate layer 3. A layer forming step and (3) a surface layer forming step of forming the surface layer 5 on the stress relaxation layer 4. In each step, in order to improve adhesion, it is preferable to form a coating of each layer by controlling the substrate temperature to 100 to 300 ° C. If the temperature of the substrate or the substrate on which the film is formed is less than 100 ° C., the densification of the film is difficult to proceed. Further, if the temperature exceeds 300 ° C., the DLC layer is damaged, which is not preferable.

(1)中間層形成工程は、CrやWを主体とする中間層を形成する工程であり、成膜法は特に限定されないが、以下の各層の形成を連続して行なえることから、UBMS法を採用し、ターゲットを逐次取り替えて中間層3、応力緩和層4、表面層5を連続して成膜することが好ましい。なお、UBMS法において、組成傾斜(2種)の中間層を形成する場合は、ターゲットを2種類用い、それぞれのターゲットに印加するスパッタ電力を調整することで組成比を傾斜できる。   (1) The intermediate layer forming step is a step of forming an intermediate layer mainly composed of Cr or W, and the film forming method is not particularly limited. However, since the following layers can be formed continuously, the UBMS method is used. It is preferable that the intermediate layer 3, the stress relaxation layer 4, and the surface layer 5 are successively formed by successively changing the target. In the UBMS method, when forming an intermediate layer having two composition gradients (two types), the composition ratio can be tilted by using two types of targets and adjusting the sputtering power applied to each target.

(2)応力緩和層形成工程は、UBMS法においてグラファイト製ターゲットを用い、基材に対するバイアス電圧を連続的または段階的に上昇させて応力緩和層(傾斜層)4を形成する工程である。この工程において、バイアス電圧を段階的に変化させる場合のステップ幅を50V以下(例えば、25V、50V)とすることが好ましい。ステップ幅を50V以下とすることで、応力緩和層4の密度および硬度を細かく段階的に変化でき密着性を向上させることができる。ステップ幅が50Vをこえると、密着性に劣り応力緩和層内での剥離が起こる等のおそれがある。   (2) The stress relaxation layer forming step is a step of forming the stress relaxation layer (gradient layer) 4 by using a graphite target in the UBMS method and increasing the bias voltage with respect to the substrate continuously or stepwise. In this step, it is preferable that the step width when changing the bias voltage stepwise is 50 V or less (for example, 25 V, 50 V). By setting the step width to 50 V or less, the density and hardness of the stress relaxation layer 4 can be finely changed stepwise and the adhesion can be improved. If the step width exceeds 50 V, the adhesion is inferior and peeling in the stress relaxation layer may occur.

(3)表面層形成工程は、UBMS法を用いて、炭素供給源として固体ターゲットのグラファイトのみを使用し、メタン(CH4)等の水素供給源となるスパッタリングガスは使用せずにDLCを主体とする膜を形成する工程である。スパッタリングガスとしては、He、Ar、Xe等の希ガスを用いることができる。希ガス成分は単独でも、2種類以上を混合して用いてもよい。この工程では、基材に対するバイアス電圧を250V以上に印加して成膜することが好ましい。バイアス電圧を250V以上とすることで、Ar等の希ガスイオンのアシスト効果が高まり、基材との衝突エネルギーを増大させることにより、緻密で高硬度な耐摩耗性に優れるDLC膜を形成できる(後述の表2および図4参照)。 (3) The surface layer forming step uses UBMS method, using only graphite as a solid target as a carbon source, and mainly using DLC without using a sputtering gas as a hydrogen source such as methane (CH 4 ). Is a step of forming a film. As the sputtering gas, a rare gas such as He, Ar, or Xe can be used. The rare gas components may be used alone or in combination of two or more. In this step, it is preferable to form a film by applying a bias voltage to the substrate to 250 V or higher. By setting the bias voltage to 250 V or more, the assist effect of rare gas ions such as Ar is enhanced, and by increasing the collision energy with the base material, a dense and high hardness DLC film excellent in wear resistance can be formed ( (See Table 2 and FIG. 4 below).

各実施例および比較例に用いた基材、UBMS装置、スパッタリングガス、多層膜形成条件は以下のとおりである。
(1)基材;鏡面(Ra=0.005μm程度の)30mm角、厚さ5mmのSUS440C
(2)UBMS装置:神戸製鋼所製;UBMS202/AIP複合装置
(3)スパッタリングガス:Arガス
(4)中間層形成条件
Cr層:5×10−3Pa程度まで真空引きし、ヒータで基材を所定の温度でベーキングして、Arプラズマにて基材表面をエッチング後、UBMS法にてCr層を形成した。
W層:5×10−3Pa程度まで真空引きし、ヒータで基材を所定の温度でベーキングして、Arプラズマにて基材表面をエッチング後、UBMS法にてW層を形成した。
W−C層:Wとグラファイトに印加するスパッタ電力を調整し、WとCの組成比を傾斜させた。
(5)応力緩和層(傾斜層)形成条件
傾斜層:一定電力でスパッタし、DCバイアス電圧を以下に示すステップ幅で変化させて、膜密度を傾斜させた。
バイアス電圧のステップ幅:スタートから終点のバイアス電圧までの間を、段階的に変化させる電圧の幅として、25V、50V、100Vの3種類から選択
各ステップ維持時間:5分間
(6)最表面層形成条件
成膜時間:180分間
The base material, UBMS apparatus, sputtering gas, and multilayer film forming conditions used in each example and comparative example are as follows.
(1) Base material: SUS440C with a mirror surface (Ra = 0.005 μm or so) 30 mm square and 5 mm thickness
(2) UBMS device: manufactured by Kobe Steel; UBMS202 / AIP composite device (3) Sputtering gas: Ar gas (4) Intermediate layer formation condition Cr layer: vacuumed to about 5 × 10 −3 Pa, and base material with heater Was baked at a predetermined temperature, and after etching the substrate surface with Ar plasma, a Cr layer was formed by the UBMS method.
W layer: Vacuum was drawn to about 5 × 10 −3 Pa, the substrate was baked at a predetermined temperature with a heater, the substrate surface was etched with Ar plasma, and a W layer was formed by UBMS.
WC layer: The sputtering power applied to W and graphite was adjusted, and the composition ratio of W and C was inclined.
(5) Stress relaxation layer (graded layer) formation conditions Gradient layer: Sputtered at a constant power, and the DC bias voltage was changed with the step width shown below to tilt the film density.
Step width of bias voltage: Select from three types of voltage of 25V, 50V, and 100V as stepwise changing voltage width from start to end bias voltage. Each step maintaining time: 5 minutes (6) Outermost surface layer Formation conditions Film formation time: 180 minutes

実施例1〜実施例7、比較例5、比較例6および比較例8〜比較例11
アセトンで超音波洗浄し、乾燥させた上記基板を、表1に示す中間層を上記中間層形成条件で形成した。次に、上記傾斜層形成条件の25Vステップにて傾斜層を形成した。最後に表1に示すDLC層の基板バイアス電圧にて180分間成膜しDLC層を形成して、硬質多層膜成形体の試験片を得た。得られた試験片の膜厚を測定するとともに、この試験片を以下に示すロックウェル圧痕試験と摩耗試験に供し、密着性および耐摩耗性を評価した。結果を表1に併記する。
Examples 1 to 7, Comparative Example 5, Comparative Example 6, and Comparative Example 8 to Comparative Example 11
The intermediate layer shown in Table 1 was formed under the intermediate layer formation conditions on the substrate that had been ultrasonically cleaned with acetone and dried. Next, an inclined layer was formed by the 25V step of the inclined layer forming condition. Finally, a DLC layer was formed for 180 minutes with the substrate bias voltage of the DLC layer shown in Table 1 to form a DLC layer test piece. While measuring the film thickness of the obtained test piece, the test piece was subjected to the following Rockwell indentation test and wear test to evaluate adhesion and wear resistance. The results are also shown in Table 1.

<ロックウェル圧痕試験>
ダイヤモンド圧子を150kgの荷重で試験片基材に打ち込んだ際、その圧痕周囲の剥離発生状況を観察した。観察した剥離発生状況を図3に示す評価基準により、試験片の密着性を評価した。剥離発生量が図3(a)に示すように軽微であれば密着性に優れると評価して「○」印を、剥離が図3(b)に示すように部分的に発生している場合は密着性が劣ると評価して「△」印を、剥離が図3(c)に示すように全周に発生している場合は密着性に著しく劣ると評価して「×」印を記録する。
<Rockwell indentation test>
When the diamond indenter was driven into the test piece substrate with a load of 150 kg, the state of occurrence of peeling around the indentation was observed. The adhesion of the test piece was evaluated according to the evaluation criteria shown in FIG. When the amount of peeling generated is small as shown in FIG. 3 (a), it is evaluated that the adhesiveness is excellent, and “◯” mark is shown, and peeling occurs partially as shown in FIG. 3 (b). Is evaluated as having poor adhesion, and “△” mark is recorded, and when peeling occurs all around as shown in FIG. To do.

<摩擦試験>
得られた試験片を、図2に示す摩擦試験機用いて摩擦試験を行なった。図2(a)は正面図を、図2(b)は側面図を、それぞれ表す。表面粗さRaが0.01μm以下であり、ビッカース硬度Hvが780であるSUJ2焼入れ鋼を相手材7として回転軸11に取り付け、試験片6をアーム部8に固定して所定の荷重9を図面上方から印加して、ヘルツの最大接触面圧0.5GPa、室温下、0.05m/sの回転速度で60分間、相手材7を回転させたときに相手材7と試験片6との間に発生する摩擦力をロードセル10により検出する。比摩耗量が100×10−10mm/(N・m)未満の場合、耐摩耗性に優れると評価して「○」印を、100−10mm/(N・m)以上、300−10mm/(N・m)以下の場合、耐摩耗性に劣ると評価して「△」印を、300−10mm/(N・m)をこえる場合、耐摩耗性に著しく劣ると評価して「×」印を、それぞれ記録する。
<Friction test>
The obtained specimen was subjected to a friction test using a friction tester shown in FIG. 2A is a front view, and FIG. 2B is a side view. A SUJ2 hardened steel having a surface roughness Ra of 0.01 μm or less and a Vickers hardness Hv of 780 is attached to the rotating shaft 11 as a mating member 7, and the test piece 6 is fixed to the arm portion 8 to draw a predetermined load 9. When the mating material 7 is rotated for 60 minutes at a rotation speed of 0.05 m / s at room temperature under a maximum contact surface pressure of 0.5 GPa at a Hertz applied from above, between the mating material 7 and the test piece 6 The friction force generated in the load cell 10 is detected. When the specific wear amount is less than 100 × 10 −10 mm 3 / (N · m), it is evaluated that the wear resistance is excellent, and “◯” mark is given to 100 −10 mm 3 / (N · m) or more, 300 If it is -10 mm 3 / (N · m) or less, it is evaluated as being inferior in wear resistance, and if it exceeds “−” mark and exceeds 300 −10 mm 3 / (N · m), the wear resistance is remarkably inferior. And “x” marks are recorded respectively.

実施例8〜実施例14
アセトンで超音波洗浄し、乾燥させた上記基板を、表1に示す中間層を上記中間層形成条件で形成した。次に、上記傾斜層形成条件の50Vステップにて傾斜層を形成した。最後に表1に示すDLC層の基板バイアス電圧にて180分間成膜しDLC層を形成して、硬質多層膜成形体の試験片を得た。得られた試験片の膜厚を測定するとともに、この試験片を上述のロックウェル圧痕試験と摩耗試験に供し、密着性および耐摩耗性を評価した。結果を表1に併記する。
Examples 8 to 14
The intermediate layer shown in Table 1 was formed under the intermediate layer formation conditions on the substrate that had been ultrasonically cleaned with acetone and dried. Next, a graded layer was formed by the 50V step of the graded layer formation conditions. Finally, a DLC layer was formed for 180 minutes with the substrate bias voltage of the DLC layer shown in Table 1 to form a DLC layer test piece. While measuring the film thickness of the obtained test piece, the test piece was subjected to the above-mentioned Rockwell indentation test and wear test to evaluate the adhesion and wear resistance. The results are also shown in Table 1.

比較例1および比較例3
Ar100体積部に対してメタンガスを表1に示す割合でスパッタリングガスとして併用したこと以外は実施例1と同様の処理および評価を実施した。結果を表1に併記する。
Comparative Example 1 and Comparative Example 3
The same treatment and evaluation as in Example 1 were performed except that methane gas was used as a sputtering gas in a proportion shown in Table 1 with respect to 100 parts by volume of Ar. The results are also shown in Table 1.

比較例2
アセトンで超音波洗浄し、乾燥させた上記基板を、表1に示す中間層を上記中間層形成条件で形成した。次に、上記傾斜層形成条件の100Vステップにて傾斜層を形成した。最後に表1に示すDLC層の基板バイアス電圧にて180分間成膜しDLC層を形成して、硬質多層膜成形体の試験片を得た。得られた試験片の膜厚を測定するとともに、この試験片を上述のロックウェル圧痕試験と摩耗試験に供し、密着性および耐摩耗性を評価した。結果を表1に併記する。
Comparative Example 2
The intermediate layer shown in Table 1 was formed under the intermediate layer formation conditions on the substrate that had been ultrasonically cleaned with acetone and dried. Next, an inclined layer was formed at a step of 100 V under the inclined layer forming conditions. Finally, a DLC layer was formed for 180 minutes with the substrate bias voltage of the DLC layer shown in Table 1 to form a DLC layer test piece. While measuring the film thickness of the obtained test piece, the test piece was subjected to the above-mentioned Rockwell indentation test and wear test to evaluate the adhesion and wear resistance. The results are also shown in Table 1.

比較例4
アセトンで超音波洗浄し、乾燥させた上記基板を、表1に示す中間層を上記中間層形成条件で形成した。次に、表1に示すDLC層の基板バイアス電圧にて180分間成膜しDLC層を形成して、硬質多層膜成形体の試験片を得た。得られた試験片の膜厚を測定するとともに、この試験片を上述のロックウェル圧痕試験と摩耗試験に供し、密着性および耐摩耗性を評価した。結果を表1に併記する。
Comparative Example 4
The intermediate layer shown in Table 1 was formed under the intermediate layer formation conditions on the substrate that had been ultrasonically cleaned with acetone and dried. Next, a DLC layer was formed by forming a DLC layer for 180 minutes at the substrate bias voltage of the DLC layer shown in Table 1 to obtain a test piece of a hard multilayer film molded body. While measuring the film thickness of the obtained test piece, the test piece was subjected to the above-mentioned Rockwell indentation test and wear test to evaluate the adhesion and wear resistance. The results are also shown in Table 1.

比較例7
アセトンで超音波洗浄し、乾燥させた上記基板を試験片とした。得られた試験片の膜厚を測定するとともに、この試験片を上述のロックウェル圧痕試験と摩耗試験に供し、密着性および耐摩耗性を評価した。結果を表1に併記する。
Comparative Example 7
The substrate that had been ultrasonically cleaned with acetone and dried was used as a test piece. While measuring the film thickness of the obtained test piece, the test piece was subjected to the above-mentioned Rockwell indentation test and wear test to evaluate the adhesion and wear resistance. The results are also shown in Table 1.

応力緩和層(傾斜層)を形成する際、バイアス電圧のステップ幅を50V以下とし、表面層形成時のバイアス電圧を250V以上の条件で成膜した実施例1〜実施例14の硬質多層膜成形体は、優れた耐摩耗性を示した。一方、傾斜層を形成(25Vステップ)し、スパッタリングガスとしてArとメタンガスとを併用した比較例1は、バイアス電圧が300Vと高いにも関わらず、耐摩耗性が劣っていた。バイアス電圧が300Vと高いにも関わらず、傾斜層のステップ幅を100Vと広くした比較例2の場合、密着性、耐摩耗性共に劣っていた。傾斜層を形成(25Vステップ)し、スパッタリングガスとしてArとメタンガスとを併用し、バイアス電圧を200Vとした比較例3は密着性、耐摩耗性共に劣っていた。傾斜層を設けない比較例4の場合、密着性が著しく劣っていた。中間層にW層とW−C層を用い、バイアス電圧を200Vで成膜した比較例5は、密着性、耐摩耗性共に劣っていた。中間層にW−C層のみ使用し、傾斜層を設けた比較例6、中間層なしで傾斜層もない比較例7は密着性が著しく劣っていた。傾斜層を形成(25Vステップ)し、基板バイアス電圧を100Vで成膜した比較例8は耐摩耗性が著しく劣っていた。傾斜層を形成(25Vステップ)し、基板バイアス電圧を200Vで成膜した比較例9は耐摩耗性が劣っていた。傾斜層を形成(25Vステップ)し、基板バイアス電圧を300V、基材の温度を50℃で成膜した比較例10は耐摩耗性が劣っていた。DLC傾斜層を形成(25Vステップ)し、基板バイアス電圧を300V、基材の温度を350℃で成膜した比較例11は耐摩耗性が著しく劣っていた。   Hard multilayer film forming of Examples 1 to 14 in which the step width of the bias voltage was set to 50 V or less when forming the stress relaxation layer (graded layer) and the bias voltage at the time of forming the surface layer was set to 250 V or more. The body showed excellent wear resistance. On the other hand, Comparative Example 1 in which an inclined layer was formed (25 V step) and Ar and methane gas were used in combination as sputtering gas had poor wear resistance despite a high bias voltage of 300 V. In spite of the high bias voltage of 300V, in Comparative Example 2 in which the step width of the gradient layer was widened to 100V, both the adhesion and the wear resistance were inferior. In Comparative Example 3 in which an inclined layer was formed (25 V step), Ar and methane gas were used in combination as the sputtering gas, and the bias voltage was 200 V, both adhesion and wear resistance were inferior. In the case of Comparative Example 4 in which the inclined layer was not provided, the adhesion was remarkably inferior. Comparative Example 5 in which the W layer and the WC layer were used as the intermediate layer and the bias voltage was 200 V was inferior in both adhesion and wear resistance. Adhesiveness was remarkably inferior in Comparative Example 6 in which only the WC layer was used as the intermediate layer and the inclined layer was provided, and in Comparative Example 7 without the intermediate layer and without the inclined layer. In Comparative Example 8 in which the inclined layer was formed (25 V step) and the substrate bias voltage was 100 V, the wear resistance was remarkably inferior. Comparative Example 9 in which the gradient layer was formed (25 V step) and the substrate bias voltage was 200 V was inferior in wear resistance. Comparative Example 10 in which the inclined layer was formed (25 V step), the substrate bias voltage was 300 V, and the base material temperature was 50 ° C., was inferior in wear resistance. In Comparative Example 11 in which the DLC gradient layer was formed (25 V step), the substrate bias voltage was 300 V, and the base material temperature was 350 ° C., the wear resistance was extremely inferior.

また、表面層形成時のバイアス電圧と、上記摩擦試験における比摩耗量との関係を表2および図4に示す。   Table 2 and FIG. 4 show the relationship between the bias voltage when forming the surface layer and the specific wear amount in the friction test.

表2および図4に示すように、表面層(DLC層)形成時のバイアス電圧を250V以上とすることで、比摩耗量を大幅に低減できることがわかる。   As shown in Table 2 and FIG. 4, it can be seen that the specific wear amount can be significantly reduced by setting the bias voltage when forming the surface layer (DLC layer) to 250 V or more.

本発明の硬質多層膜成形体は、所定の構成により基材と密着性に優れる中間層と、耐摩耗性に優れる表面層であるDLC層とを備えるので、優れた耐剥離性や耐摩耗性などが要求される軸受などの機械部品に好適に利用できる。   The hard multilayer film molded article of the present invention comprises an intermediate layer having excellent adhesion to the substrate and a DLC layer, which is a surface layer having excellent wear resistance, according to a predetermined configuration, and therefore has excellent peeling resistance and wear resistance. It can be suitably used for mechanical parts such as bearings that are required.

本発明の硬質多層膜成形体の構成を示す断面図である。It is sectional drawing which shows the structure of the hard multilayer film molded object of this invention. 摩擦試験機を示す図である。It is a figure which shows a friction tester. 密着性評価基準を示す図である。It is a figure which shows adhesive evaluation criteria. バイアス電圧と、表面の比摩耗量との関係を示す図である。It is a figure which shows the relationship between a bias voltage and the specific wear amount of a surface.

符号の説明Explanation of symbols

1 硬質多層膜成形体
2 基材
3 中間層
3a WおよびCを主体とする層
3b Wを主体とする層
3c Crを主体とする層
4 応力緩和層(傾斜層)
5 表面層(DLCを主体とする膜)
6 試験片
7 相手材
8 アーム部
9 荷重
10 ロードセル
11 回転軸
DESCRIPTION OF SYMBOLS 1 Hard multilayer film molded object 2 Base material 3 Intermediate | middle layer 3a Layer mainly composed of W and C 3b Layer mainly composed of W 3c Layer mainly composed of Cr 4 Stress relaxation layer (gradient layer)
5 Surface layer (film mainly composed of DLC)
6 Test piece 7 Counterpart 8 Arm part 9 Load 10 Load cell 11 Rotating shaft

Claims (10)

超硬合金材料または鉄系材料からなる基材の表面に多層の膜を形成してなる硬質多層膜成形体であって、
前記多層の膜は、(1)この多層の表面層として形成される、炭素供給源として固体ターゲットのグラファイトのみを使用し、水素混入量を抑えて成膜したダイヤモンドライクカーボンを主体とする膜と、(2)この表面層と前記基材との間に形成される、少なくともクロムまたはタングステンを主体とする中間層と、(3)この中間層と前記表面層との間に形成される炭素を主体とする応力緩和層とからなり、
前記応力緩和層は、その硬度が前記中間層側から前記表面層側へ連続的または段階的に上昇する傾斜層であることを特徴とする硬質多層膜成形体。
A hard multilayer film molded body in which a multilayer film is formed on the surface of a base material made of a cemented carbide material or an iron-based material,
The multilayer film is (1) a film mainly composed of diamond-like carbon formed as a multilayer surface layer using only solid target graphite as a carbon supply source and suppressing the amount of hydrogen contamination. (2) an intermediate layer mainly composed of at least chromium or tungsten formed between the surface layer and the substrate; and (3) carbon formed between the intermediate layer and the surface layer. It consists of a stress relaxation layer as the main component,
The stress relaxation layer is an inclined layer whose hardness increases continuously or stepwise from the intermediate layer side to the surface layer side.
前記中間層は組成の異なる複数の層からなる構造であり、一方が前記応力緩和層と隣接する層は、他方で隣接する層の主体となる金属と、炭素とを主体とすることを特徴とする請求項1記載の硬質多層膜成形体。   The intermediate layer has a structure composed of a plurality of layers having different compositions, and one of the layers adjacent to the stress relaxation layer is mainly composed of a metal that is a main component of the adjacent layer and carbon. The hard multilayer film molded article according to claim 1. 前記中間層が、前記基材と隣接するタングステンを主体とする層と、該層と一方で隣接するとともに他方で前記応力緩和層と隣接する、炭素およびタングステンを主体とする層とからなる2層構造であることを特徴とする請求項1または請求項2記載の硬質多層膜成形体。   The intermediate layer is composed of a layer mainly composed of tungsten adjacent to the substrate and a layer mainly composed of carbon and tungsten adjacent to the layer and adjacent to the stress relaxation layer on the other side. The hard multilayer molded article according to claim 1 or 2, wherein the molded article has a structure. 前記中間層が、前記基材と隣接するクロムを主体とする層と、該層と隣接するタングステンを主体とする層と、該層と一方で隣接するとともに他方で前記応力緩和層と隣接する、炭素およびタングステンを主体とする層とからなる3層構造であることを特徴とする請求項1、請求項2または請求項3記載の硬質多層膜成形体。   The intermediate layer is adjacent to the base material mainly composed of chromium, adjacent to the layer mainly composed of tungsten, adjacent to the layer on one side and adjacent to the stress relaxation layer on the other side, The hard multilayer film molded article according to claim 1, 2, or 3, which has a three-layer structure comprising layers mainly composed of carbon and tungsten. 前記多層の膜厚の合計が、0.5〜3.0μmであることを特徴とする請求項1ないし請求項4のいずれか一項記載の硬質多層膜成形体。   The hard multilayer molded article according to any one of claims 1 to 4, wherein the total film thickness of the multilayers is 0.5 to 3.0 µm. 前記硬質多層膜成形体は、ロックウェル硬さ試験機にて、150kgの荷重によるダイヤモンド圧子の打ち込み時にできる圧痕周囲に剥離が生じない密着性を有することを特徴とする請求項1ないし請求項5のいずれか一項記載の硬質多層膜成形体。   6. The hard multilayer film molded article has adhesion that does not cause peeling around an indentation formed when a diamond indenter is driven with a load of 150 kg by a Rockwell hardness tester. The hard multilayer film molded article according to any one of the above. 請求項1ないし請求項6のいずれか一項記載の硬質多層膜成形体を製造するための製造方法であって、
この製造方法は、基材上に前記中間層を形成する中間層形成工程と、前記中間層上に前記応力緩和層を形成する応力緩和層形成工程と、前記応力緩和層上に前記表面層を形成する表面層形成工程とを有し、
前記表面層形成工程は、アンバランスト・マグネトロン・スパッタリング法を用いて、炭素供給源として固体ターゲットのグラファイトのみを使用し、水素供給源となるスパッタリングガスは使用せずにダイヤモンドライクカーボンを主体とする膜を形成する工程であり、
前記応力緩和層形成工程は、アンバランスト・マグネトロン・スパッタリング法を用いて、バイアス電圧を連続的または段階的に上昇させて前記傾斜層を形成する工程であることを特徴とする硬質多層膜成形体の製造方法。
A manufacturing method for manufacturing the hard multilayer film molded article according to any one of claims 1 to 6,
The manufacturing method includes an intermediate layer forming step of forming the intermediate layer on a substrate, a stress relaxation layer forming step of forming the stress relaxation layer on the intermediate layer, and the surface layer on the stress relaxation layer. A surface layer forming step to be formed,
The surface layer forming step uses an unbalanced magnetron sputtering method, uses only a solid target graphite as a carbon supply source, and mainly uses diamond-like carbon without using a sputtering gas as a hydrogen supply source. Forming a film to be
The stress relaxation layer forming step is a step of forming the inclined layer by increasing a bias voltage continuously or stepwise using an unbalanced magnetron sputtering method. Body manufacturing method.
前記応力緩和層形成工程において、前記バイアス電圧を段階的に上昇させる場合のステップ幅が50V以下であることを特徴とする請求項7記載の硬質多層膜成形体の製造方法。   8. The method of manufacturing a hard multilayer molded article according to claim 7, wherein in the stress relaxation layer forming step, a step width when the bias voltage is increased stepwise is 50 V or less. 前記表面層形成工程において、前記バイアス電圧を250V以上に印加して成膜することを特徴とする請求項7または請求項8記載の硬質多層膜成形体の製造方法。   9. The method for producing a hard multilayer molded article according to claim 7, wherein in the surface layer forming step, the bias voltage is applied to 250 V or more to form a film. 前記各工程において、基材温度を100〜300℃に制御することを特徴とする請求項7、請求項8または請求項9記載の硬質多層膜成形体の製造方法。   The method for producing a hard multilayer molded article according to claim 7, wherein the substrate temperature is controlled to 100 to 300 ° C. in each of the steps.
JP2008278852A 2008-10-29 2008-10-29 Manufacturing method of hard multilayer film molded body Expired - Fee Related JP5393108B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008278852A JP5393108B2 (en) 2008-10-29 2008-10-29 Manufacturing method of hard multilayer film molded body
PCT/JP2009/068555 WO2010050542A1 (en) 2008-10-29 2009-10-29 Hard multilayer film formed body and method for manufacturing same
EP09823652.4A EP2362000B1 (en) 2008-10-29 2009-10-29 Hard multilayer film formed body and method for manufacturing same
US12/998,426 US8728621B2 (en) 2008-10-29 2009-10-29 Hard multilayer film formed body and method for manufacturing same
CN200980143061.0A CN102216487B (en) 2008-10-29 2009-10-29 Hard multilayer film formed body and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278852A JP5393108B2 (en) 2008-10-29 2008-10-29 Manufacturing method of hard multilayer film molded body

Publications (2)

Publication Number Publication Date
JP2010106311A true JP2010106311A (en) 2010-05-13
JP5393108B2 JP5393108B2 (en) 2014-01-22

Family

ID=42296049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278852A Expired - Fee Related JP5393108B2 (en) 2008-10-29 2008-10-29 Manufacturing method of hard multilayer film molded body

Country Status (1)

Country Link
JP (1) JP5393108B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208781A (en) * 2010-03-30 2011-10-20 Ntn Corp Anti-friction bearing
WO2012014838A1 (en) * 2010-07-30 2012-02-02 Ntn株式会社 Medical actuator
WO2013042765A1 (en) * 2011-09-22 2013-03-28 Ntn株式会社 Hard film, hard film formed body, and rolling bearing
JP2013079445A (en) * 2011-09-22 2013-05-02 Ntn Corp Hard film and hard film formed body
CN103547707A (en) * 2011-05-19 2014-01-29 H.E.F.公司 Part having a dlc coating and method for applying the dlc coating
JP2015514911A (en) * 2012-04-20 2015-05-21 イートン コーポレーションEaton Corporation Rocker assembly with improved durability
JP2016511798A (en) * 2013-02-21 2016-04-21 エリコン サーフェス ソリューションズ アーゲー、 トリュープバッハ DLC coating with introductory layer
US9581058B2 (en) 2010-08-13 2017-02-28 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US9664075B2 (en) 2011-03-18 2017-05-30 Eaton Corporation Custom VVA rocker arms for left hand and right hand orientations
US9708942B2 (en) 2010-03-19 2017-07-18 Eaton Corporation Rocker arm assembly and components therefor
US9869211B2 (en) 2014-03-03 2018-01-16 Eaton Corporation Valve actuating device and method of making same
US9874122B2 (en) 2010-03-19 2018-01-23 Eaton Corporation Rocker assembly having improved durability
US9885258B2 (en) 2010-03-19 2018-02-06 Eaton Corporation Latch interface for a valve actuating device
US9938865B2 (en) 2008-07-22 2018-04-10 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US10087790B2 (en) 2009-07-22 2018-10-02 Eaton Corporation Cylinder head arrangement for variable valve actuation rocker arm assemblies
WO2019013220A1 (en) * 2017-07-12 2019-01-17 Thk株式会社 Rolling device
US10415439B2 (en) 2008-07-22 2019-09-17 Eaton Intelligent Power Limited Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
CN111979544A (en) * 2020-09-22 2020-11-24 南京航空航天大学 Method for multi-stage regulation of cutter coating stress by using thermotropic phase change film as stress regulation layer
US11085338B2 (en) 2010-03-19 2021-08-10 Eaton Intelligent Power Limited Systems, methods and devices for rocker arm position sensing
WO2021192554A1 (en) * 2020-03-27 2021-09-30 三菱重工業株式会社 Oxidation-resistant alloy, and method for producing oxidation-resistant alloy
US11181013B2 (en) 2009-07-22 2021-11-23 Eaton Intelligent Power Limited Cylinder head arrangement for variable valve actuation rocker arm assemblies
US11788439B2 (en) 2010-03-19 2023-10-17 Eaton Intelligent Power Limited Development of a switching roller finger follower for cylinder deactivation in internal combustion engines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256415A (en) * 2001-03-06 2002-09-11 Kobe Steel Ltd Compact with hard multilayer of diamond-like carbon, and manufacturing method therefor
JP2003171758A (en) * 2001-12-06 2003-06-20 Denso Corp Diamondlike carbon hard multilayer film formed body, and production method therefor
JP2006138404A (en) * 2004-11-12 2006-06-01 Kobe Steel Ltd Sliding member with excellent abrasion resistance in wet environment
JP2007070667A (en) * 2005-09-05 2007-03-22 Kobe Steel Ltd Formed article with hard multilayer film of diamond-like carbon, and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256415A (en) * 2001-03-06 2002-09-11 Kobe Steel Ltd Compact with hard multilayer of diamond-like carbon, and manufacturing method therefor
JP2003171758A (en) * 2001-12-06 2003-06-20 Denso Corp Diamondlike carbon hard multilayer film formed body, and production method therefor
JP2006138404A (en) * 2004-11-12 2006-06-01 Kobe Steel Ltd Sliding member with excellent abrasion resistance in wet environment
JP2007070667A (en) * 2005-09-05 2007-03-22 Kobe Steel Ltd Formed article with hard multilayer film of diamond-like carbon, and production method therefor

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938865B2 (en) 2008-07-22 2018-04-10 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US10415439B2 (en) 2008-07-22 2019-09-17 Eaton Intelligent Power Limited Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US11181013B2 (en) 2009-07-22 2021-11-23 Eaton Intelligent Power Limited Cylinder head arrangement for variable valve actuation rocker arm assemblies
US10087790B2 (en) 2009-07-22 2018-10-02 Eaton Corporation Cylinder head arrangement for variable valve actuation rocker arm assemblies
US10570786B2 (en) 2010-03-19 2020-02-25 Eaton Intelligent Power Limited Rocker assembly having improved durability
US9726052B2 (en) 2010-03-19 2017-08-08 Eaton Corporation Rocker arm assembly and components therefor
US11788439B2 (en) 2010-03-19 2023-10-17 Eaton Intelligent Power Limited Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US11530630B2 (en) 2010-03-19 2022-12-20 Eaton Intelligent Power Limited Systems, methods, and devices for rocker arm position sensing
US9874122B2 (en) 2010-03-19 2018-01-23 Eaton Corporation Rocker assembly having improved durability
US11085338B2 (en) 2010-03-19 2021-08-10 Eaton Intelligent Power Limited Systems, methods and devices for rocker arm position sensing
US10890086B2 (en) 2010-03-19 2021-01-12 Eaton Intelligent Power Limited Latch interface for a valve actuating device
US9885258B2 (en) 2010-03-19 2018-02-06 Eaton Corporation Latch interface for a valve actuating device
US9915180B2 (en) 2010-03-19 2018-03-13 Eaton Corporation Latch interface for a valve actuating device
US10180087B2 (en) 2010-03-19 2019-01-15 Eaton Corporation Rocker arm assembly and components therefor
US9708942B2 (en) 2010-03-19 2017-07-18 Eaton Corporation Rocker arm assembly and components therefor
JP2011208781A (en) * 2010-03-30 2011-10-20 Ntn Corp Anti-friction bearing
WO2012014838A1 (en) * 2010-07-30 2012-02-02 Ntn株式会社 Medical actuator
US9581058B2 (en) 2010-08-13 2017-02-28 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US9664075B2 (en) 2011-03-18 2017-05-30 Eaton Corporation Custom VVA rocker arms for left hand and right hand orientations
US10329970B2 (en) 2011-03-18 2019-06-25 Eaton Corporation Custom VVA rocker arms for left hand and right hand orientations
JP2014517150A (en) * 2011-05-19 2014-07-17 アッシュ・ウー・エフ Parts having a DLC coating and method for applying a DLC coating
CN103547707A (en) * 2011-05-19 2014-01-29 H.E.F.公司 Part having a dlc coating and method for applying the dlc coating
JP2013079445A (en) * 2011-09-22 2013-05-02 Ntn Corp Hard film and hard film formed body
CN103814150A (en) * 2011-09-22 2014-05-21 Ntn株式会社 Hard film, hard film formed body, and rolling bearing
WO2013042765A1 (en) * 2011-09-22 2013-03-28 Ntn株式会社 Hard film, hard film formed body, and rolling bearing
US9347491B2 (en) 2011-09-22 2016-05-24 Ntn Corporation Hard film, hard film formed body, and rolling bearing
CN103814150B (en) * 2011-09-22 2015-11-25 Ntn株式会社 Hard films, hard films organizer and rolling bearing
EP2839124A4 (en) * 2012-04-20 2016-03-16 Eaton Corp Rocker assembly having improved durability
JP2015514911A (en) * 2012-04-20 2015-05-21 イートン コーポレーションEaton Corporation Rocker assembly with improved durability
JP2016511798A (en) * 2013-02-21 2016-04-21 エリコン サーフェス ソリューションズ アーゲー、 トリュープバッハ DLC coating with introductory layer
US9995183B2 (en) 2014-03-03 2018-06-12 Eaton Corporation Valve actuating device and method of making same
US9869211B2 (en) 2014-03-03 2018-01-16 Eaton Corporation Valve actuating device and method of making same
WO2019013220A1 (en) * 2017-07-12 2019-01-17 Thk株式会社 Rolling device
JP2021155807A (en) * 2020-03-27 2021-10-07 三菱重工業株式会社 Antioxidation alloy, and production method of antioxidation alloy
WO2021192554A1 (en) * 2020-03-27 2021-09-30 三菱重工業株式会社 Oxidation-resistant alloy, and method for producing oxidation-resistant alloy
JP7438812B2 (en) 2020-03-27 2024-02-27 三菱重工業株式会社 Oxidation-resistant alloy and method for producing oxidation-resistant alloy
US11951546B2 (en) 2020-03-27 2024-04-09 Mitsubishi Heavy Industries, Ltd. Oxidation resistant alloy and manufacturing method of oxidation resistant alloy
CN111979544B (en) * 2020-09-22 2022-11-15 南京航空航天大学 Method for multi-stage adjustment of tool coating stress by adopting thermotropic phase change film as stress regulation layer
CN111979544A (en) * 2020-09-22 2020-11-24 南京航空航天大学 Method for multi-stage regulation of cutter coating stress by using thermotropic phase change film as stress regulation layer

Also Published As

Publication number Publication date
JP5393108B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5393108B2 (en) Manufacturing method of hard multilayer film molded body
WO2010050542A1 (en) Hard multilayer film formed body and method for manufacturing same
KR100845372B1 (en) Diamondlike carbon hard multilayer film formed body and method for producing the same
JP4022048B2 (en) Diamond-like carbon hard multilayer film molded body and method for producing the same
JP3737291B2 (en) Diamond-like carbon hard multilayer film molded body
JP3621943B2 (en) High wear resistance and high hardness coating
EP2233602B1 (en) DLC film and coated member
JP5592625B2 (en) Hard film forming method and hard film
JP3995900B2 (en) Diamond-like carbon multilayer film
JP4139102B2 (en) Diamond-like carbon hard multilayer film molded body and method for producing the same
JP2009167512A (en) Diamond-like carbon film for sliding component and method for manufacturing the same
JP5424103B2 (en) Covering mold for plastic working
JP2007169698A (en) Amorphous hard carbon coating film
JP2007291484A (en) Amorphous carbon-based hard multi-layered film, and hard surface member with the film deposited on its surface
JP2004169137A (en) Sliding member
JP5592626B2 (en) Hard film forming method and hard film
JP5226826B2 (en) Method for producing diamond-like carbon hard multilayer film molded body
JPH07205362A (en) Surface coating member excellent in wear resistance
JP5938321B2 (en) Hard film and film forming method thereof, hard film forming body and manufacturing method thereof
JP4827204B2 (en) Coated mold for plastic working and manufacturing method thereof
WO2016111288A1 (en) Diamond-like carbon layered laminate and method for manufacturing same
JP5592627B2 (en) Hard film forming method and hard film
JP2010202978A (en) Amorphous carbon covered member
JP2012136775A (en) Coated mold excellent in adhesion resistance and method for manufacturing the same
JP6330359B2 (en) Carbide tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees