JPH10237627A - Hard carbon coating-coated member - Google Patents

Hard carbon coating-coated member

Info

Publication number
JPH10237627A
JPH10237627A JP3924897A JP3924897A JPH10237627A JP H10237627 A JPH10237627 A JP H10237627A JP 3924897 A JP3924897 A JP 3924897A JP 3924897 A JP3924897 A JP 3924897A JP H10237627 A JPH10237627 A JP H10237627A
Authority
JP
Japan
Prior art keywords
hard carbon
carbon film
metal
film
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3924897A
Other languages
Japanese (ja)
Inventor
Kazuhiko Oda
一彦 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3924897A priority Critical patent/JPH10237627A/en
Publication of JPH10237627A publication Critical patent/JPH10237627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard carbon coating-coated member excellent in adhesion with a base material, adhesion between coating, wear resistance, durability or the like. SOLUTION: In a member coated with hard carbon coating, coating layers are formed in such a manner that hard carbon coating added with at least one kind of metallic element and at least one kind of metal or metallic carbide or metallic nitride or metallic carbonitride are repeatedly laminated one after the other to form coating layers, in which the interval of the repetition is regulated to 1nm to 3μm, and the total coating thickness of the hard carbon coating is regulated to 20 to 98% to the total coating thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工具、金型などの
耐摩耗性部品、産業用・一般家庭用の機械部品・摺動部
品、電気・電子部品、赤外線光学部品等に用いられる硬
質炭素被膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hard carbon used for wear-resistant parts such as tools and molds, mechanical parts and sliding parts for industrial and general household use, electric and electronic parts, infrared optical parts and the like. It concerns the coating.

【0002】[0002]

【従来の技術】硬質炭素膜は、ダイヤモンド構造を一部
に有するアモルファス状の炭素膜あるいは水素化炭素膜
で、アモルファスカーボン(a−C,a−C:H)、i
−C(アイ・カーボン)、ダイヤモンド状炭素(Diamond
like carbon;DLC) などとも呼ばれている。硬質炭素膜
は、一般にヌープ硬度が1000〜8000と高硬度
で、多くの相手材料に対する無潤滑での摩擦係数が0.
1〜0.2と極めて低く、軟質金属の離型性が高い。化
学的にも安定で、多くの酸、アルカリに対して極めて高
い耐食性を有している。また、電気抵抗率は106 〜1
14Ω%cmと高い絶縁性を有し、赤外線に対して高い
透過性を有するなど、ダイヤモンドに類似した特性を多
く有している。これらの優れた性質を活かして種々の分
野への応用が期待されており、特に、耐摩耗性部品、摺
動部品、電気・電子部品、赤外線光学部品及び成形型・
成形部品等へのコーティングに関し開発が進められてい
る。特に近年、ビデオ部品やビデオテープの潤滑性、耐
擦傷性を向上させるための保護コーティング、各種回転
軸、バルブ類の摩擦係数低減の潤滑性コーティング、ハ
ンダやAlなど軟質金属の溶着防止の離型性コーティン
グなどで実用化が著しい。
2. Description of the Related Art A hard carbon film is an amorphous carbon film or a hydrogenated carbon film partially having a diamond structure, and is composed of amorphous carbon (aC, aC: H), i.
-C (eye carbon), diamond-like carbon (Diamond
Also called carbon (DLC). The hard carbon film generally has a high Knoop hardness of 1000 to 8000 and a friction coefficient of 0.0000 to many mating materials without lubrication.
It is extremely low as 1 to 0.2, and the releasability of the soft metal is high. It is chemically stable and has extremely high corrosion resistance to many acids and alkalis. Moreover, the electric resistivity is 10 < 6 > -1.
Having 0 14 Omega% cm high insulating property, etc. has a high permeability to infrared, it has many similar characteristics to diamond. Utilizing these excellent properties, it is expected to be applied to various fields, especially wear-resistant parts, sliding parts, electric / electronic parts, infrared optical parts, molding dies,
Development of coatings on molded parts is underway. Especially in recent years, protective coatings to improve the lubricity and scratch resistance of video parts and video tapes, lubricating coatings to reduce the friction coefficient of various rotating shafts and valves, and mold release to prevent welding of soft metals such as solder and Al Practical application is remarkable in the application of a coating.

【0003】硬質炭素膜の形成にはさまざまな手法があ
る。結晶質ダイヤモンド薄膜の合成に適用されているマ
イクロ波プラズマCVD法、ECRプラズマCVD法、
フィラメント法などの他に、各種プラズマ源を用いたプ
ラズマCVD法、炭素又は炭化水素イオンを用いるイオ
ンビーム蒸着法、固体炭素源からスパッタリングやアー
ク放電にて炭素を気化し基体上に成膜する手法等があ
る。対象基材や用途、処理数などによりこれらの手法は
使い分けられている。一方、硬質炭素膜のコーティング
構造は、基材の上に直接硬質炭素膜が形成されることが
多いが、一部で密着性を高めるためSiなどの中間層を
導入している例もある(特開平5−140730号公
報)。またさらに、特開平5−65625号公報に示さ
れるように、硬質炭素膜とバッファ層を交互に積層する
ことで硬質炭素膜の応力をバッファ層により緩和させ厚
膜化を施すものや、特開平6−212429号公報に示
されるように、硬質炭素膜に不純物元素を含有させるこ
とで応力などの膜特性を改善するものなどが提案されて
いる。
There are various methods for forming a hard carbon film. Microwave plasma CVD method, ECR plasma CVD method applied to the synthesis of crystalline diamond thin film,
In addition to the filament method, plasma CVD using various plasma sources, ion beam evaporation using carbon or hydrocarbon ions, and method of vaporizing carbon from a solid carbon source by sputtering or arc discharge to form a film on a substrate Etc. These methods are properly used depending on the target base material, application, number of treatments, and the like. On the other hand, in a hard carbon film coating structure, a hard carbon film is often formed directly on a base material. However, in some cases, an intermediate layer such as Si is introduced in order to improve adhesion (partly). JP-A-5-140730). Further, as disclosed in JP-A-5-65625, a hard carbon film and a buffer layer are alternately laminated to reduce the stress of the hard carbon film by the buffer layer to increase the thickness. As disclosed in Japanese Patent Application Laid-Open No. 6-212429, a hard carbon film containing an impurity element to improve film characteristics such as stress has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、硬質炭
素膜は非常に高い内部応力を有しており、その応力ゆえ
剥離が起きやすい、厚膜化が困難であるなどの問題を有
している。一般に硬質炭素膜の有する内部応力は10G
Paを超える。これは、ハードコーティングで一般的な
PVD法によるTiNに比べ半桁から一桁高い値であ
る。このため、硬質炭素膜はその膜厚が1.5μmを超
えるものを得るのが極めて困難で、かつ適用可能な基材
材料も限られたものであった。こうした問題を解決する
ため、前述のように中間層を導入する手法が一部で適用
されている。しかし、中間層を用いる手法は、適用基材
材料の種類を拡げることには有効であるが、厚膜化は依
然困難であるのが現状である。
However, the hard carbon film has a very high internal stress, and has problems such as easy peeling due to the stress and difficulty in increasing the film thickness. Generally, the internal stress of a hard carbon film is 10G
Exceeds Pa. This is a value that is half to one order of magnitude higher than that of TiN obtained by a general PVD method for hard coating. For this reason, it is extremely difficult to obtain a hard carbon film having a thickness exceeding 1.5 μm, and the applicable base material is limited. In order to solve such a problem, a method of introducing an intermediate layer as described above is partially applied. However, although the method using an intermediate layer is effective for expanding the types of applicable base material, it is still difficult to increase the film thickness at present.

【0005】一方、特開平5−65625号公報に示さ
れる硬質炭素膜とバッファ層を交互に積層した被膜は、
厚膜化には有効な手法である。しかし、この構造の硬質
炭素被膜を被覆した部材は、その使用法によってはバッ
ファ層と硬質炭素膜との界面において剥離する例が見ら
れることもあり、基材材料との密着性の問題とは別に、
膜同士の界面の密着性という新たな課題を有することと
なった。さらに、特開平6−212429号公報にに示
される硬質炭素膜に不純物元素を含有させる被膜は、や
はり厚膜化には有効であったが、不純物元素の存在によ
る機械特性、化学的特性の低下が見られる場合があり、
硬質炭素膜の本来有する優れた特性を十分に発揮するこ
とができない例が見られた。本発明は上記種々の従来技
術の課題を解決するためになされたものであって、基材
との密着性、膜同士の密着性、耐摩耗性、耐久性等に優
れた硬質炭素膜被覆部材を提供することを目的とする。
On the other hand, a coating in which a hard carbon film and a buffer layer are alternately laminated as disclosed in JP-A-5-65625 is
This is an effective method for increasing the film thickness. However, a member coated with a hard carbon film having this structure may be peeled off at the interface between the buffer layer and the hard carbon film depending on the method of use. Separately,
There is a new problem of adhesion at the interface between the films. Further, a coating in which an impurity element is contained in a hard carbon film disclosed in Japanese Patent Application Laid-Open No. 6-212429 was also effective for increasing the thickness, but the mechanical properties and chemical properties deteriorated due to the presence of the impurity element. May be seen,
In some cases, the excellent properties inherent in the hard carbon film cannot be sufficiently exhibited. The present invention has been made in order to solve the above-mentioned various problems of the prior art, and is a hard carbon film-coated member excellent in adhesion to a substrate, adhesion between films, abrasion resistance, durability and the like. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】こうした問題を解決する
ため、本発明では以下の硬質炭素膜を提案する。すなわ
ち、応力の高い硬質炭素膜と応力の緩衝層となる層との
繰り返しの積層構造をなし、それぞれの界面が親和性の
高いものとなるようにするものである。具体的には、以
下に12の発明を提案する。 (1)硬質炭素膜が基材上に被覆された部材において、
少なくとも1種類以上の金属元素が添加された硬質炭素
膜と、少なくとも1種類以上の金属又は金属炭化物又は
金属窒化物又は金属炭窒化物とを繰り返し交互に積層し
て被覆層が形成され、繰り返しの周期が1nm〜3μ
m、好ましくは10nm〜0.5μm、より好ましくは
10nm〜0.2μmであることを特徴とする硬質炭素
膜被覆部材。 (2) 硬質炭素膜の総膜厚が全膜厚の20〜98%、
好ましくは40〜90%であることを特徴とする(1)
に記載の硬質炭素膜被覆部材。 (3)硬質炭素膜が基材上に被覆された部材において、
異なる種類の金属元素又は異なる添加量の金属元素が添
加された少なくとも2種類以上の硬質炭素膜を繰り返し
交互に積層して被覆層が形成され、繰り返しの周期が1
nm〜3μm、好ましくは10nm〜1μm、より好ま
しくは10nm〜0.2μmであること特徴とする硬質
炭素膜被覆部材。
In order to solve these problems, the present invention proposes the following hard carbon film. In other words, a hard carbon film having a high stress and a layer serving as a buffer layer for the stress are formed in a repetitive laminated structure so that each interface has a high affinity. Specifically, the following twelve inventions are proposed. (1) In a member in which a hard carbon film is coated on a substrate,
A hard carbon film to which at least one or more metal elements are added, and a coating layer formed by repeatedly laminating at least one or more metals or metal carbides or metal nitrides or metal carbonitrides alternately to form a coating layer. Period is 1nm ~ 3μ
m, preferably 10 nm to 0.5 μm, more preferably 10 nm to 0.2 μm. (2) The total thickness of the hard carbon film is 20 to 98% of the total thickness,
Preferably it is 40 to 90% (1)
4. The member coated with a hard carbon film according to item 1. (3) In a member in which a hard carbon film is coated on a substrate,
A coating layer is formed by repeatedly alternately laminating at least two or more types of hard carbon films to which different types of metal elements or different amounts of metal elements are added.
A hard carbon film-coated member having a thickness of from 3 nm to 3 μm, preferably from 10 nm to 1 μm, more preferably from 10 nm to 0.2 μm.

【0007】(4)一方の硬質炭素膜の総膜厚が全膜厚
の20〜80%、好ましくは40〜60%であることを
特徴とする(3)に記載の硬質炭素膜被覆部材。 (5)硬質炭素膜が基材上に被覆された部材において、
硬質炭素膜と、少なくとも1種類以上の金属又は金属炭
化物又は金属窒化物又は金属炭窒化物とを繰り返し交互
に積層して被覆層が形成され、繰り返しの周期が1nm
〜3μm、好ましくは10nm〜0.5μm、より好ま
しくは10nm〜0.2μmであり、各層間の組成が連
続的に変化していることを特徴とする硬質炭素膜被覆部
材。 (6)硬質炭素膜と組成が連続的に変化している部分の
総膜厚が全膜圧の20〜98%、好ましくは40〜90
%であることを特徴とする(5)に記載の硬質炭素膜被
覆部材。 (7)硬質炭素膜が基材上に被覆された部材において、
少なくとも1種類以上の金属元素が添加された硬質炭素
膜と、少なくとも1種類以上の金属又は金属炭化物又は
金属窒化物又は金属炭窒化物とを繰り返し交互に積層し
て被覆層が形成され、繰り返しの周期が1nm〜3μ
m、好ましくは10nm〜0.5μm、より好ましくは
10nm〜0.2μmであり、各層間の組成が連続的に
変化していることを特徴とする硬質炭素膜被覆部材。 (8)少なくとも1種類以上の金属元素が添加された硬
質炭素膜と組成が連続的に変化している部分の総膜厚が
全膜厚の20〜98%、好ましくは40〜90%である
ことを特徴とする(7)に記載の硬質炭素膜被覆部材。
(4) The member coated with a hard carbon film according to (3), wherein the total thickness of the one hard carbon film is 20 to 80%, preferably 40 to 60% of the total film thickness. (5) In a member in which a hard carbon film is coated on a substrate,
A coating layer is formed by alternately stacking a hard carbon film and at least one or more metals or metal carbides or metal nitrides or metal carbonitrides, and the repetition period is 1 nm.
A hard carbon film-coated member having a thickness of from 3 to 3 μm, preferably from 10 nm to 0.5 μm, and more preferably from 10 nm to 0.2 μm, wherein the composition between the respective layers changes continuously. (6) The total film thickness of the portion where the composition continuously changes with that of the hard carbon film is 20 to 98% of the total film pressure, preferably 40 to 90%.
%. The member coated with a hard carbon film according to (5), wherein (7) In a member in which a hard carbon film is coated on a substrate,
A hard carbon film to which at least one or more metal elements are added, and a coating layer formed by repeatedly laminating at least one or more metals or metal carbides or metal nitrides or metal carbonitrides alternately to form a coating layer. Period is 1nm ~ 3μ
m, preferably 10 nm to 0.5 μm, more preferably 10 nm to 0.2 μm, wherein the composition between the layers is continuously changing. (8) The total thickness of the hard carbon film to which at least one or more metal elements are added and the portion where the composition is continuously changed is 20 to 98%, preferably 40 to 90% of the total thickness. (7) The member coated with a hard carbon film according to (7).

【0008】(9)硬質炭素膜が基材上に被覆された部
材において、異なる種類の金属元素又は異なる添加量の
金属元素が添加された少なくとも2種類以上の硬質炭素
膜を繰り返し交互に積層して被覆層が形成され、繰り返
しの周期が1nm〜3μm、好ましくは10nm〜1μ
m、より好ましくは10nm〜0.2μmであり、各層
間の組成が連続的に変化していることを特徴とする硬質
炭素膜被覆部材。 (10)一方の硬質炭素膜の総膜厚が全膜厚の20〜8
0%、好ましくは40〜60%であることを特徴とする
(9)に記載の硬質炭素膜被覆部材。 (11)硬質炭素膜が基材上に被覆された部材におい
て、コーティング層の一部に、上記(1)〜(5)のい
ずれかに記載された少なくともひとつの硬質炭素膜がコ
ーティングされていることを特徴とする硬質炭素膜被覆
部材。 (12)(1)〜(10)のいずれかにに記載の硬質炭
素膜の部分の膜厚が(積層部分全体の膜厚)、コーティ
ング層全体の膜厚の5〜99.9%、好ましくは30〜
80%であることを特徴とする(11)に記載の硬質炭
素膜被覆部材。
(9) In a member having a hard carbon film coated on a substrate, at least two or more types of hard carbon films to which different types of metal elements or different amounts of metal elements are added are alternately laminated. And a repetition cycle is 1 nm to 3 μm, preferably 10 nm to 1 μm.
m, more preferably 10 nm to 0.2 μm, wherein the composition between the layers is continuously changing. (10) The total thickness of one hard carbon film is 20 to 8 of the total thickness.
The hard carbon film-coated member according to (9), wherein the content is 0%, preferably 40 to 60%. (11) In a member in which a hard carbon film is coated on a base material, at least one hard carbon film described in any of the above (1) to (5) is coated on a part of the coating layer. A member coated with a hard carbon film, characterized in that: (12) The thickness of the portion of the hard carbon film according to any one of (1) to (10) (the thickness of the entire laminated portion) is preferably 5 to 99.9% of the thickness of the entire coating layer. Is 30 ~
The hard carbon film-coated member according to (11), which is 80%.

【0009】[0009]

【発明の実施の形態】上記(1)の発明は、具体的には
図1(a)に示される構成をとる。すなわち、基材1の
上に金属又は金属炭化物又は金属窒化物又は金属炭窒化
物からなる緩衝層2及び金属元素が添加された硬質炭素
層3を繰り返し交互に積層して被覆層を形成する。ここ
で繰り返しの周期を1nm〜3μmと特定する理由は、
1nm未満であると現実的に制御が不可能なためであ
り、一方3μmを超えるように周期を厚くすると硬質炭
素層が応力により破壊してしまうからである。また上記
(2)において、硬質炭素膜の総膜厚を全膜厚の20〜
98%と特定する理由は、20%未満であると硬質炭素
膜の優れた耐摩耗性、摺動特性が得られないという欠点
が生じ、一方98%を超えると応力の蓄積が大きくな
り、剥離し易くなるからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention of the above (1) specifically has a configuration shown in FIG. That is, a coating layer is formed by repeatedly and alternately stacking a buffer layer 2 made of a metal, a metal carbide, a metal nitride, or a metal carbonitride, and a hard carbon layer 3 to which a metal element is added, on a substrate 1. Here, the reason for specifying the repetition period as 1 nm to 3 μm is as follows.
If the thickness is less than 1 nm, it is practically impossible to control, while if the period is increased to exceed 3 μm, the hard carbon layer is broken by stress. Further, in the above (2), the total thickness of the hard carbon film is set to 20 to
The reason for specifying 98% is that if it is less than 20%, the hard carbon film has a drawback that excellent wear resistance and sliding characteristics cannot be obtained, while if it exceeds 98%, the accumulation of stress becomes large, and This is because it becomes easier.

【0010】基材1としては、超硬合金、炭化ケイ素、
窒化ケイ素、窒化アルミニウム、アルミナ、窒化ホウ
素、炭化ホウ素、ガラス、ダイヤモンド等のセラミック
ス、Si,Ge,GaAs等の半導体、ZnS,ZnS
e等の光学材料、鉄系合金、アルミ系合金樹脂等を用い
ることができる。硬質炭素膜に添加される元素として
は、チタン、バナジウム、クロム、ジルコニウム、ニオ
ブ、モリブデン、ハフニウム、タンタル、タングステ
ン、銅、銀、金、ボロン、アルミニウム、カリウム、イ
ンジウム、ケイ素、ゲルマニウム、スズ、ニッケル等が
挙げられ、添加された金属成分は緩衝層となる金属又は
金属化合物との親和性をより高める作用を有する。添加
される金属元素の量は硬質炭素膜基準で0.001〜4
0原子%とするのが好ましい。
[0010] As the substrate 1, a cemented carbide, silicon carbide,
Ceramics such as silicon nitride, aluminum nitride, alumina, boron nitride, boron carbide, glass, diamond, etc., semiconductors such as Si, Ge, GaAs, ZnS, ZnS
Optical materials such as e, an iron-based alloy, an aluminum-based alloy resin, and the like can be used. Elements added to the hard carbon film include titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium, tantalum, tungsten, copper, silver, gold, boron, aluminum, potassium, indium, silicon, germanium, tin, nickel And the like, and the added metal component has an action of further increasing the affinity with the metal or metal compound to be the buffer layer. The amount of the added metal element is 0.001 to 4 based on the hard carbon film.
Preferably, it is 0 atomic%.

【0011】緩衝層となる金属又は金属炭化物又は金属
窒化物又は金属炭窒化物としてはチタン、バナジウム、
クロム、ジルコニウム、ニオブ、モリブデン、ハフニウ
ム、タンタル、タングステン、ボロン、アルミニウム、
ケイ素、ゲルマニウム等の金属又は炭化物又は窒化物又
は炭窒化物等が用いられる。またこれらの元素のほか
に、硬質炭素膜に添加されている元素と同じ元素を単体
で用いてもよい。ここで、積層膜はその最外層が硬質炭
素膜となるよう形成し、基材の上に積層する順序は、バ
ッファ層から始めても、硬質炭素膜から始めてもどちら
でもよい。また積層の数は通常4〜20000層、特に
10〜2000層とするのが好ましい。
The metal, metal carbide, metal nitride or metal carbonitride serving as the buffer layer is titanium, vanadium,
Chrome, zirconium, niobium, molybdenum, hafnium, tantalum, tungsten, boron, aluminum,
A metal such as silicon, germanium, or the like, a carbide, a nitride, a carbonitride, or the like is used. In addition to these elements, the same element as the element added to the hard carbon film may be used alone. Here, the laminated film is formed so that the outermost layer is a hard carbon film, and the order of lamination on the base material may be either the buffer layer or the hard carbon film. The number of laminations is usually 4 to 20,000 layers, preferably 10 to 2,000 layers.

【0012】上記(3)の発明は、具体的には図1
(b)に示される構成をとる。すなわち、基材1の上
に、金属元素が添加された硬質炭素層3及び上記硬質炭
素層3とは異なる種類の金属元素又は異なる添加量の金
属元素が添加された硬質炭素層4を繰り返し交互に積層
して被覆層を形成する。ここで繰り返しの周期を1nm
〜3μmと特定した理由は上記(1)の場合と同様であ
り、また添加される金属元素の種類、量は上記(1)の
場合と同様とする。また層の配列順序は硬質炭素層3又
は4のいずれから始まりいずれで終了してもよい。ここ
では、積層構造を構成するいずれの層も硬質炭素成分及
び金属成分を含有し、その界面においては、硬質炭素成
分同士、又は金属成分同士の高い親和力が働き、界面の
密着性を確保するものである。また上記(4)において
一方の硬質炭素膜の総膜厚が全膜厚の20〜80%とす
る理由は一方の硬質炭素膜の膜厚が80%を超えると応
力の蓄積が大きくなり剥離し易くなるためである。
The invention of the above (3) is specifically described in FIG.
The configuration shown in FIG. That is, a hard carbon layer 3 to which a metal element is added and a hard carbon layer 4 to which a different kind of metal element or a different addition amount of a metal element is added from the hard carbon layer 3 are alternately formed on the substrate 1. To form a coating layer. Here, the repetition period is 1 nm
The reason why the thickness is specified to be 3 μm is the same as in the case (1), and the type and amount of the added metal element are the same as in the case (1). The arrangement order of the layers may start from any one of the hard carbon layers 3 and 4 and end at any point. Here, any layer constituting the laminated structure contains a hard carbon component and a metal component, and at the interface, a high affinity between the hard carbon components or between the metal components acts to secure the adhesion at the interface. It is. In the above (4), the reason why the total film thickness of one hard carbon film is 20 to 80% of the total film thickness is that if the film thickness of one hard carbon film exceeds 80%, the accumulation of stress becomes large and the film is peeled off. This is because it becomes easier.

【0013】上記(5)の発明は、具体的には図1
(c)に示される構成をとる。すなわち、基材1の上
に、金属又は金属炭化物又は金属窒化物又は金属炭窒化
物からなる緩衝層2、傾斜層6及び硬質炭素層5を繰り
返し交互に積層して被覆層を形成する。ここで繰り返し
の周期を1nm〜3μmと特定した理由は上記(1)の
場合と同様であり、緩衝層の材料及び各層の配列順序は
上記(1)の場合と同様とする。ここでは、硬質炭素層
と、金属又は金属化合物との間において、組成が連続的
に変化することで明瞭な界面を避け、層間での剥離が発
生しにくくなっている。また上記(6)においての硬質
炭素膜と組成が連続的に変化している部分の総膜厚が全
膜厚の20〜98%とする理由は20%未満であると硬
質炭素膜の優れた耐摩耗性、摺動特性が得られないとい
う欠点が生じ、一方98%を超えると応力の蓄積が大き
くなり剥離し易くなるからである。
The invention of the above (5) is specifically described in FIG.
The configuration shown in FIG. That is, the coating layer is formed by repeatedly and alternately stacking the buffer layer 2, the inclined layer 6, and the hard carbon layer 5 made of metal, metal carbide, metal nitride, or metal carbonitride on the base material 1. The reason why the repetition period is specified to be 1 nm to 3 μm is the same as in the case of the above (1), and the material of the buffer layer and the arrangement order of each layer are the same as in the case of the above (1). Here, since the composition continuously changes between the hard carbon layer and the metal or metal compound, a clear interface is avoided, and peeling between the layers is less likely to occur. In addition, the reason why the total film thickness of the portion where the composition is continuously changed from that of the hard carbon film in the above (6) is 20 to 98% of the total film thickness is less than 20%. This is because a disadvantage arises in that abrasion resistance and sliding characteristics cannot be obtained. On the other hand, when the content exceeds 98%, the accumulation of stress becomes large and peeling becomes easy.

【0014】上記(7)の発明は、具体的には図1
(d)に示される構成をとる。すなわち、基材1の上
に、金属元素が添加された硬質炭素膜3と、傾斜層6、
金属又は金属炭化物又は金属窒化物又は金属炭窒化物か
らなる緩衝層2とを繰り返し交互に積層して被覆層を形
成する。ここで繰り返しの周期を1nm〜3μmと特定
した理由は上記(1)の場合と同様であり、緩衝層及び
硬質炭素層の材料は上記(1)の場合と同様とする。上
記(7)の発明は、上記(1)に提示した構造に準じ、
さらに、各層間において組成を連続的に変化させること
で、層間での剥離をより一層効果的に防ぐものである。
また上記(8)において、該金属元素が添加された硬質
炭素膜と組成が連続的に変化している部分の総膜厚が全
膜厚の20〜98%とする理由は20%未満であると硬
質炭素膜の優れた耐摩耗性、摺動特性が得られないとい
う欠点が生じ、一方98%を超えると応力の蓄積が大き
くなり剥離が生じ易くなるからである。
The invention of the above (7) is specifically described in FIG.
The configuration shown in FIG. That is, the hard carbon film 3 to which the metal element is added, the gradient layer 6,
A coating layer is formed by repeatedly and alternately stacking buffer layers 2 made of metal, metal carbide, metal nitride, or metal carbonitride. The reason why the repetition period is specified to be 1 nm to 3 μm is the same as in the case of the above (1), and the materials of the buffer layer and the hard carbon layer are the same as those of the above (1). The invention of the above (7) is based on the structure presented in the above (1),
Further, by continuously changing the composition between the respective layers, the separation between the layers is more effectively prevented.
In the above (8), the reason why the total film thickness of the portion where the composition is continuously changed from that of the hard carbon film to which the metal element is added is 20 to 98% of the total film thickness is less than 20%. This is because the hard carbon film does not have excellent abrasion resistance and sliding properties, whereas if it exceeds 98%, the accumulation of stress becomes large, and peeling tends to occur.

【0015】上記(9)の発明は、具体的には図1
(e)に示される構成をとる。すなわち、基材1の上
に、金属元素が添加された硬質炭素層3、傾斜層6及び
上記硬質炭素層とは異なる種類の金属元素又は異なる添
加量の金属元素が添加された硬質炭素層4を繰り返し積
層して被覆層を形成する。ここで繰り返しの周期を1n
m〜3μmと特定した理由は上記(1)の場合と同様で
あり、また添加される金属元素の種類、量及び層の配列
順序等は上記(1)の場合と同様とする。上記(9)の
発明は、上記(2)に提示した構造に準じ、さらに、各
層間において組成を連続的に変化させることで、層間で
の剥離をより一層効果的に防ぐものである。また上記
(10)において、一方の硬質炭素膜の総膜厚が全膜厚
の20〜80%とする理由は20%未満であると硬質炭
素膜の優れた耐摩耗性、摺動特性が得られないという欠
点が生じ、一方80%を超えると応力の蓄積が大きくな
り、剥離し易くなるからである。
The invention of the above (9) is specifically described in FIG.
The configuration shown in FIG. That is, the hard carbon layer 3 to which the metal element is added, the inclined layer 6, and the hard carbon layer 4 to which the different kind of metal element or the different addition amount of the metal element is added on the base material 1. Are repeatedly laminated to form a coating layer. Here, the repetition cycle is 1n
The reason for specifying m to 3 μm is the same as in the case of (1) above, and the type and amount of the added metal element and the arrangement order of the layers are the same as in the case of (1). The invention of the above (9) conforms to the structure presented in the above (2), and further prevents the separation between the layers by changing the composition continuously between the layers. In the above (10), the reason why the total thickness of one hard carbon film is 20 to 80% of the total thickness is less than 20%, whereby the hard carbon film has excellent wear resistance and sliding characteristics. This is because, when it exceeds 80%, the accumulation of stress becomes large, and it becomes easy to peel off.

【0016】上記(11)の発明は、例えば、基材が比
較的軟質の材料の場合、中間層に硬質クロムメッキやア
ルマイト処理、CrNやTiNなどの硬質のコーティン
グ処理を施し、そのうえに摩擦摩耗特性を向上させる目
的で上記各発明硬質炭素層を形成することで、耐久性を
向上させることができる(図1(f)参照)。また上記
(12)において、硬質炭素膜の部分の膜厚が(積層部
分全体の膜厚)、コーティング層全体の膜厚の5〜9
9.9%とする理由は5%未満であると硬質炭素膜の優
れた耐摩耗性、摺動特性が得られないあるいは長時間維
持できないという欠点が生じ、一方99.9%を超える
と軟質の基材をあらかじめ強化させるという目的が達成
されない。
According to the invention (11), for example, when the base material is a relatively soft material, the intermediate layer is subjected to hard chromium plating or alumite treatment, or a hard coating treatment such as CrN or TiN, and further to the friction and wear characteristics. The durability can be improved by forming the hard carbon layers of the inventions described above for the purpose of improving the durability (see FIG. 1 (f)). In the above (12), the thickness of the hard carbon film portion (the thickness of the entire laminated portion) is 5 to 9 times the thickness of the entire coating layer.
The reason for setting the content to 9.9% is that if the content is less than 5%, the hard carbon film has a drawback that excellent wear resistance and sliding properties cannot be obtained or cannot be maintained for a long time. The purpose of pre-strengthening the base material is not achieved.

【0017】本発明において、硬質炭素膜は下記の手法
により調製することができる。 (1)炭化水素ガスをプラズマで分解して基板上に堆積
させるプラズマCVD(Chemical Vapor Deposition)
法、(2)プラズマ状態から導き出されるイオンの衝撃
で、カーボンターゲットからスパッタリングされる炭素
粒子を基板上に堆積させるスパッタ法、イオンビームス
パッタ法、(3)固体カーボンを蒸着させる際にプラズ
マ中を通して炭素を活性化させ堆積させるイオンプレー
ティング法、(4)プラズマ状態から数100eV〜1
keV程度のエネルギーを有する炭素又は炭化水素イオ
ンを照射して成膜するイオンビーム蒸着法及び(5)カ
ーボンターゲットにレーザを照射してプラズマ中に放出
される炭素粒子を堆積させるレーザアブレーション法。
これらの方法を用いて形成された硬質炭素膜の表面は極
めて平滑で、その摩擦係数は小さな値となる。
In the present invention, the hard carbon film can be prepared by the following method. (1) Plasma CVD (Chemical Vapor Deposition) in which hydrocarbon gas is decomposed by plasma and deposited on a substrate
Method, (2) sputtering method for depositing carbon particles sputtered from a carbon target on a substrate by ion bombardment derived from a plasma state, ion beam sputtering method, (3) passing through plasma when depositing solid carbon Ion plating method for activating and depositing carbon, (4) several hundred eV to 1 from plasma state
An ion beam evaporation method in which a film is formed by irradiating carbon or hydrocarbon ions having an energy of about keV, and (5) a laser ablation method in which a carbon target is irradiated with a laser to deposit carbon particles emitted into plasma.
The surface of the hard carbon film formed using these methods is extremely smooth, and its coefficient of friction has a small value.

【0018】硬質炭素膜に金属元素を添加する場合は下
記手法を適宜に採用することができる。 (a)公知の方法で硬質炭素膜を形成中に、金属元素を
含むガスを反応系に供給して膜中に添加する方法。特に
プラズマCVD法、スパッタ法、イオンプレーティング
法、レーザアブレーション法などにおいてこの方法は有
効である。 (b)公知の方法で硬質炭素膜を形成中に、金属元素を
含む固体源を、加熱蒸発、スパッタ蒸発、又はアブレー
ションさせ、膜中に添加する方法。この方法は、特にス
パッタ法、イオンプレーティング法、イオンビームスパ
ッタ法、レーザアブレーション法などにおいて有効であ
る。
When a metal element is added to the hard carbon film, the following method can be appropriately adopted. (A) A method in which a gas containing a metal element is supplied to a reaction system and added to the film during formation of the hard carbon film by a known method. This method is particularly effective in plasma CVD, sputtering, ion plating, laser ablation, and the like. (B) A method in which a solid source containing a metal element is heated, sputter evaporated, or ablated during formation of a hard carbon film by a known method, and is added to the film. This method is particularly effective in a sputtering method, an ion plating method, an ion beam sputtering method, a laser ablation method, and the like.

【0019】(c)公知の方法で硬質炭素膜を形成中
に、金属元素を含むイオンビームを照射することによ
り、膜中に金属元素を添加する方法。 (d)公知の方法で硬質炭素膜を形成した後、金属元素
を含むイオンを注入して金属元素を添加する方法。 金属元素を添加した硬質炭素膜の形成には、上記の方法
を単独で適用してもよく、複数の方法を併用してもよ
い。また、上記の方法とそれ以外の方法とを併用しても
よい。
(C) A method of adding a metal element to a hard carbon film by irradiating the film with an ion beam containing the metal element while forming the hard carbon film by a known method. (D) A method in which after forming a hard carbon film by a known method, ions containing a metal element are implanted to add the metal element. The above method may be applied alone or a plurality of methods may be used in combination for forming a hard carbon film to which a metal element is added. Further, the above method and other methods may be used in combination.

【0020】本発明において金属又は金属炭化物、窒化
物又は炭窒化物は、例えばプラズマCVD法、各種スパ
ッタ法、真空蒸着法、各種イオンプレーティング法、イ
オンミキシング法などで形成することができる。好まし
くは積層される硬質炭素膜と連続したプロセスで形成で
きる手法がよい。
In the present invention, the metal or metal carbide, nitride or carbonitride can be formed by, for example, a plasma CVD method, various sputtering methods, a vacuum deposition method, various ion plating methods, an ion mixing method, or the like. Preferably, a method that can be formed by a continuous process with the laminated hard carbon film is preferable.

【0021】[0021]

【実施例】以下本発明を実施例により更に詳細に説明す
る。 (実施例1)直流アーク放電式イオンプレーティング法
で、炭化バナジウムとバナジウム添加の硬質炭素膜との
交互積層膜を形成した。基板には、超硬合金の試験片を
用い、基板温度は300℃とした。成膜に用いるプラズ
マの発生には、蒸発源の上部に配置した電子供給源より
熱電子を発生させ、その近傍に配置した直流電極に直流
電圧を印加することで、高密度のプラズマを発生させる
手法を用いた。炭化バナジウムの合成には、真空槽内に
メタンガスを導入し、電子ビーム蒸発源から金属バナジ
ウムを蒸発させながら、プラズマにより、金属バナジウ
ム蒸気と、メタンをイオン化させ、基板電極に印加した
直流電圧に引き込むことで炭化バナジウムを合成した。
一方、バナジウム添加の硬質炭素膜は、バナジウムの蒸
発量を少なくして成膜した。炭化バナジウムとバナジウ
ム添加の硬質炭素膜は、それぞれ膜厚0.1μmとなる
ように設定し、全膜厚は5μmとした。硬質炭素膜の総
膜厚の全膜厚に対する割合は50%であった。比較のた
め、炭化バナジウムと硬質炭素膜との交互積層膜を形成
した。この場合、炭化バナジウムと硬質炭素層の成膜の
切り替えには、電子ビーム蒸発源のシャッターの開閉で
制御した。それぞれ膜厚0.1μmとなるように設定
し、全膜厚は5μmとした。得られた積層膜について、
ピン・オン・ディスク試験で摩耗試験を行った。相手材
(ピン)は窒化珪素焼結体、荷重1N、回転数500r
pm、回転半径1mm、回転回数10000回とした。
試験後、摩耗深さを測定すると、本発明による炭化バナ
ジウムとバナジウム添加の硬質炭素膜との交互積層膜
は、摩耗深さ0.3μmで、摩耗断面は極めてスムーズ
な曲面をしていた。これに対し、比較例の炭化バナジウ
ムと硬質炭素膜との交互積層膜は、摩耗深さが0.8μ
mであり、摩耗断面は階段状になっていた。比較例はそ
れぞれの積層界面の親和性が低いものと考えられ、摩耗
も促進されるものと考えられる。
The present invention will be described in more detail with reference to the following examples. (Example 1) An alternately laminated film of vanadium carbide and a vanadium-added hard carbon film was formed by a DC arc discharge ion plating method. A test piece of a cemented carbide was used for the substrate, and the substrate temperature was 300 ° C. For the generation of plasma used for film formation, a high-density plasma is generated by generating thermoelectrons from an electron supply source arranged above the evaporation source and applying a DC voltage to a DC electrode arranged in the vicinity thereof. The method was used. For the synthesis of vanadium carbide, methane gas is introduced into the vacuum chamber, and while the metal vanadium is evaporated from the electron beam evaporation source, the metal vanadium vapor and the methane are ionized by the plasma and drawn into the DC voltage applied to the substrate electrode. Thus, vanadium carbide was synthesized.
On the other hand, the vanadium-added hard carbon film was formed by reducing the amount of vanadium evaporated. The vanadium carbide and the vanadium-added hard carbon film were each set to have a thickness of 0.1 μm, and the total thickness was 5 μm. The ratio of the total thickness of the hard carbon film to the total thickness was 50%. For comparison, an alternately laminated film of vanadium carbide and a hard carbon film was formed. In this case, the switching between the formation of the vanadium carbide and the hard carbon layer was controlled by opening and closing the shutter of the electron beam evaporation source. Each film thickness was set to 0.1 μm, and the total film thickness was 5 μm. About the obtained laminated film,
A wear test was performed in a pin-on-disk test. The mating material (pin) is silicon nitride sintered body, load 1N, rotation speed 500r
pm, the radius of rotation was 1 mm, and the number of rotations was 10,000.
When the wear depth was measured after the test, the alternate laminated film of the vanadium carbide and the vanadium-added hard carbon film according to the present invention had a wear depth of 0.3 μm and a very smooth curved cross section. In contrast, the alternate laminated film of the vanadium carbide and the hard carbon film of the comparative example has a wear depth of 0.8 μm.
m, and the wear cross section was stepwise. In the comparative examples, it is considered that the affinity of each lamination interface is low, and it is considered that abrasion is promoted.

【0022】(実施例2)マグネトロンスパッタ法で、
ホウ素添加の硬質炭素膜とシリコン添加の硬質炭素膜と
の交互積層膜を形成した。基板には、超硬合金の試験片
を用い、基板温度は200℃とした。ここでは、ターゲ
ットを2基搭載する高周波マグネトロンスパッタ装置を
使用し、それぞれのターゲットにホウ素とシリコンを使
用した。基板電極をそれぞれのターゲット位置に移動さ
せて、高周波を印加することで、ホウ素又はシリコンの
スパッタ蒸着を行うものとした。一方、雰囲気ガスには
アルゴンとメタンの混合ガスを使用し、基板にはターゲ
ットとは別に高周波を印加できるようにした。ホウ素添
加の硬質炭素膜の形成には、ホウ素ターゲット上に基板
電極を移動させ、メタンとアルゴンの混合ガスを導入す
る。そしてターゲット及び基板にはそれぞれ高周波を印
加することで、基板上にホウ素添加の硬質炭素膜を形成
する。次に、基板電極をシリコンターゲット上に移動さ
せ、同様の手法でシリコン添加の硬質炭素膜を形成し
た。それぞれの膜の周期は、0.1μmとし全膜厚は5
μmとした。比較のため、ホウ素添加の硬質炭素膜と硬
質炭素膜との交互積層膜を形成した。それぞれ膜厚0.
1μmとなるように設定し、全膜厚は5μmとした。実
施例1と同様の摩擦摩耗試験を行ったところ、ホウ素添
加の硬質炭素膜とシリコン添加の硬質炭素膜との交互積
層膜の摩耗深さは0.15μmで、摩耗断面は極めてス
ムーズな曲面をしていた。これに対し比較例のホウ素添
加の硬質炭素膜と硬質炭素膜との交互積層膜は、摩耗深
さが0.7μmであり、摩耗断面は階段上になってい
た。実施例1と同様に、比較例はそれぞれの積層界面の
親和性が低いものと考えられ、摩耗も促進されるものと
考えられる。
(Embodiment 2) By magnetron sputtering,
An alternate laminated film of a boron-added hard carbon film and a silicon-added hard carbon film was formed. A test piece of a cemented carbide was used for the substrate, and the substrate temperature was 200 ° C. Here, a high-frequency magnetron sputtering apparatus equipped with two targets was used, and boron and silicon were used for each target. By moving the substrate electrode to each target position and applying a high frequency, sputter deposition of boron or silicon was performed. On the other hand, a mixed gas of argon and methane was used as the atmospheric gas, and a high frequency could be applied to the substrate separately from the target. To form a boron-added hard carbon film, a substrate electrode is moved on a boron target, and a mixed gas of methane and argon is introduced. Then, a hard carbon film doped with boron is formed on the substrate by applying a high frequency to each of the target and the substrate. Next, the substrate electrode was moved onto a silicon target, and a silicon-added hard carbon film was formed in the same manner. The cycle of each film is 0.1 μm and the total film thickness is 5 μm.
μm. For comparison, an alternate laminated film of a boron-added hard carbon film and a hard carbon film was formed. Each has a thickness of 0.
The thickness was set to 1 μm, and the total film thickness was 5 μm. When the same friction and wear test as in Example 1 was performed, the wear depth of the alternately laminated film of the boron-added hard carbon film and the silicon-added hard carbon film was 0.15 μm, and the wear cross section showed an extremely smooth curved surface. Was. On the other hand, in the alternate laminated film of the boron-added hard carbon film and the hard carbon film of the comparative example, the wear depth was 0.7 μm, and the wear cross section was stepwise. As in the case of Example 1, it is considered that the comparative example has low affinity of the respective lamination interfaces, and it is considered that abrasion is promoted.

【0023】(実施例3)カソードアークイオンプレー
ティング法にて、クロムと硬質炭素膜との交互傾斜積層
膜を形成した。基板には超硬合金製試験片を使用し、基
板加熱は特にしなかった。カソードアークイオンプレー
ティング設備は、中央に回転式の円筒型基板電極を、こ
れを取り囲むように4面にアークカソードを持つタイプ
のものを使用し、クロム、クロム、カーボン、カーボン
の順でカソードを配置した。雰囲気には、アルゴンガス
を導入し、放電の安定化を図った。成膜には、直流電圧
を印加した基板電極を回転させながら、4面に配置され
たカソードからクロム又は炭素を蒸発させ、クロム又は
硬質炭素膜の形成を行った。クロムとカーボンの両カソ
ードの中間に基板が来ると、両カソードからの飛来粒子
が混合されて成膜される。こうして、クロムと硬質炭素
膜とが組成が連続的に変化する傾斜組成の交互積層膜が
形成される。積層の繰り返し周期を1nm〜5μmまで
各種成膜を試みたところ、周期が4μmを越えると膜が
全面的に剥離してしまった。また周期が3.4μmで
も、エッジ部に剥離が見られた。
Example 3 An alternately inclined laminated film of chromium and a hard carbon film was formed by a cathode arc ion plating method. A test piece made of cemented carbide was used for the substrate, and the substrate was not heated. Cathode arc ion plating equipment uses a rotating cylindrical substrate electrode in the center and a type having an arc cathode on four sides to surround it, and the cathode is arranged in the order of chromium, chromium, carbon, and carbon. Placed. Argon gas was introduced into the atmosphere to stabilize discharge. For film formation, chromium or carbon was evaporated from cathodes arranged on four sides while rotating a substrate electrode to which a DC voltage was applied to form a chromium or hard carbon film. When the substrate comes between the two cathodes of chromium and carbon, particles flying from both cathodes are mixed to form a film. In this way, an alternately laminated film having a gradient composition in which the composition of the chromium and the hard carbon film continuously changes is formed. When various depositions were attempted with a lamination cycle of 1 nm to 5 μm, the film was completely peeled off when the cycle exceeded 4 μm. Even when the period was 3.4 μm, peeling was observed at the edge.

【0024】(実施例4)実施例1と同様、直流アーク
放電式イオンプレーティング法で、炭窒化チタンと硬質
炭素膜との交互傾斜層膜を形成した。基板には、超硬合
金製マイクロドリルを用い、基板温度は300℃とし
た。炭窒化チタンの合成には、真空槽内に窒素とアセチ
レンの混合ガスを導入し、電子ビーム蒸発源から金属チ
タンを蒸発させながら、プラズマにより、金属チタン蒸
気と、窒素ガス、アセチレンガスをイオン化し、基板電
極に印加した直流電圧に引き込むことで炭窒化チタンを
合成した。一方、硬質炭素膜は、アセチレンプラズマに
より成膜を行った。炭窒化チタンと硬質炭素膜との切り
替えには、徐々に電子ビーム蒸発源の電子ビーム電流を
小さくするとともに、導入するアセチレンガス流量を増
やし、窒素ガス流量を減少させるという方法を用いた。
これにより、組成が連続的に変化する傾斜組成の交互積
層膜が形成される。積層の周期は20nmとし、全膜厚
は3μmとした。本マイクロドリルにて切削試験を行っ
たところ、未コートのマイクロドリルと比較して、寿命
が12倍に伸びた。なお、本手法で硬質炭素膜のみの5
μmの成膜も試みたが、途中で剥離してしまうという結
果に終わった。
Example 4 As in Example 1, an alternating gradient layer of titanium carbonitride and a hard carbon film was formed by a DC arc discharge ion plating method. A micro drill made of cemented carbide was used for the substrate, and the substrate temperature was set to 300 ° C. In the synthesis of titanium carbonitride, a mixed gas of nitrogen and acetylene is introduced into a vacuum chamber, and while titanium metal is evaporated from an electron beam evaporation source, the metal titanium vapor, nitrogen gas, and acetylene gas are ionized by plasma. Titanium carbonitride was synthesized by pulling in a DC voltage applied to the substrate electrode. On the other hand, the hard carbon film was formed by acetylene plasma. To switch between the titanium carbonitride and the hard carbon film, a method was used in which the electron beam current of the electron beam evaporation source was gradually reduced, the flow rate of the acetylene gas to be introduced was increased, and the flow rate of the nitrogen gas was reduced.
As a result, an alternating laminated film having a gradient composition in which the composition continuously changes is formed. The cycle of lamination was 20 nm, and the total film thickness was 3 μm. When a cutting test was performed using this micro drill, the life was extended 12 times as compared with the uncoated micro drill. Note that, in this method, only the hard carbon film was used.
An attempt was made to form a film having a thickness of μm, but the result was that the film was peeled off halfway.

【0025】(実施例5)マグネトロンスパッタ法で、
タングステン添加の硬質炭素膜とホウ素添加の硬質炭素
膜の交互傾斜積層膜を形成した。基板には、ステンレス
製のシャフトを使用し、基板温度は300℃とした。マ
グネトロンスパッタ設備は、中央に回転式の円筒型基板
電極を、これを取り囲むように4面にスパッタターゲッ
トを持つタイプのものを使用し、タングステン、ホウ
素、タングステン、ホウ素の順でターゲットを配置し
た。雰囲気には、アルゴンガスとメタンガスを導入し
た。成膜には、直流電圧を印加した基板電極を回転させ
ながら、4面に配置されたターゲットからタングステン
又はホウ素を蒸発させ、タングステン添加の硬質炭素膜
とホウ素添加の硬質炭素膜の形成を行った。タングステ
ンとホウ素の両ターゲットの中間に基板が来ると、両タ
ーゲットからの飛来粒子が混合されて成膜される。こう
して、タングステン添加の硬質炭素膜とホウ素添加の硬
質炭素膜の組成が連続的に変化する傾斜組成の交互積層
膜が形成される。積層の周期は80nmとし、全膜厚は
4μmとした。被覆処理したシャフトをステンレス円筒
の内部に差し込み、回転数5000rpmで回転させた
ところ、従来の硬質炭素膜膜厚1μmのコートのシャフ
トに比べ、焼き付きが発生するまでの時間が約20倍に
伸びた。
(Embodiment 5) By magnetron sputtering,
An alternately inclined laminated film of a tungsten-added hard carbon film and a boron-added hard carbon film was formed. A stainless steel shaft was used for the substrate, and the substrate temperature was 300 ° C. The magnetron sputtering equipment used a rotating cylindrical substrate electrode in the center and a type having a sputter target on four sides so as to surround the electrode, and the targets were arranged in the order of tungsten, boron, tungsten, and boron. Argon gas and methane gas were introduced into the atmosphere. In the film formation, tungsten or boron was evaporated from targets arranged on four sides while rotating a substrate electrode to which a DC voltage was applied, and a tungsten-added hard carbon film and a boron-added hard carbon film were formed. . When the substrate is located between the targets of tungsten and boron, the flying particles from both targets are mixed to form a film. In this way, an alternating laminated film having a gradient composition in which the composition of the tungsten-added hard carbon film and the boron-added hard carbon film continuously changes is formed. The lamination cycle was 80 nm, and the total film thickness was 4 μm. When the coated shaft was inserted into a stainless steel cylinder and rotated at a rotation speed of 5,000 rpm, the time required for the occurrence of seizure was increased about 20 times as compared with a conventional shaft having a coating of a hard carbon film having a thickness of 1 μm. .

【0026】(実施例6)カソードアークイオンプレー
ティング法で、摺動するアルミ合金製のコンプレッサー
部品に窒化クロム層を20μm形成し、さらにその上に
実施例3のクロムと硬質炭素膜との交互傾斜積層膜を5
μm形成した。交互傾斜積層膜の繰り返しの周期は10
nmとした。比較のため、同じアルミ合金製のコンプレ
ッサー部品に、硬質炭素膜1μmのみ、窒化クロム20
μmのみ、又はクロムと硬質炭素膜との交互傾斜積層膜
を5μmのみ形成したものを作製した。これらのコンプ
レッサー部品を無潤滑環境化で実際に使用し性能を調査
した。硬質炭素膜1μmのみでは、摩擦係数は0.2以
下で滑り抵抗は小さかったが、膜が使用初期に剥離する
という寿命の問題が発生した。窒化クロム20μmのみ
のコンプレッサー部品では、摩擦係数が0.5を越え滑
り抵抗が大きいという問題が発生した。クロムと硬質炭
素膜との交互傾斜積層膜を5μm形成したものは、摩擦
係数は0.2以下で滑り抵抗は小さく、寿命もクロム2
0μmのみより5倍ほど長かった。ただし、異物が混入
すると、比較的容易に傷が発生する問題が残った。最後
に、窒化クロム層を20μm形成後さらにその上に実施
例3のクロムと硬質炭素膜との交互傾斜積層膜を5μm
形成したものは、摩擦係数は0.2以下で滑り抵抗は小
さく、寿命もクロム20μmのみより20倍ほど、クロ
ムと硬質炭素膜との交互傾斜積層膜を5μmのみと比べ
ても4倍の寿命となった。硬質の厚いクロム層を中間層
として導入したため、母材の柔らかさをカバーし、クロ
ムと硬質炭素膜との交互傾斜積層膜の特性をも十分に発
揮できたと考えられる。
Example 6 A chromium nitride layer of 20 μm was formed on a sliding aluminum alloy compressor component by the cathode arc ion plating method, and the chromium and hard carbon film of Example 3 were alternately formed thereon. 5 graded laminated films
μm was formed. The repetition cycle of the alternately inclined laminated film is 10
nm. For comparison, the same aluminum alloy compressor parts were provided with a hard carbon film of only 1 μm and a chromium nitride of 20 μm.
In this case, only a single layer having a thickness of 5 μm was formed. These compressor parts were actually used in a non-lubricated environment and the performance was investigated. With only 1 μm of the hard carbon film, the coefficient of friction was 0.2 or less and the slip resistance was small, but there was a problem of the life of the film being peeled off at the beginning of use. In the case of a compressor component having only 20 μm of chromium nitride, a problem has occurred in which the friction coefficient exceeds 0.5 and the sliding resistance is large. A 5 μm alternately laminated layer of chromium and a hard carbon film has a coefficient of friction of 0.2 or less, low slip resistance, and a long life of chromium 2.
It was about 5 times longer than only 0 μm. However, there is still a problem that the foreign matter is relatively easily scratched. Finally, after forming a chromium nitride layer of 20 μm, the alternately inclined laminated film of chromium and hard carbon film of Example 3 was further formed thereon by 5 μm.
The formed one has a coefficient of friction of 0.2 or less, low slip resistance, and a service life that is about 20 times that of only 20 μm of chromium, and a service life that is four times as long as that of an alternately inclined laminated film of chromium and a hard carbon film that is only 5 μm. It became. It is considered that the introduction of the hard thick chromium layer as the intermediate layer covered the softness of the base material and sufficiently exhibited the characteristics of the alternately inclined laminated film of chromium and the hard carbon film.

【0027】[0027]

【発明の効果】本発明によると工具、金型などの耐摩耗
性部品、産業用・一般家庭用の機械部品・摺動部品、電
気・電子部品、赤外線光学部品等に用いるに適した、従
来品に比べて基材との密着性、膜同士の密着性、耐摩耗
性、耐久性等に優れた硬質炭素膜被覆部材を提供するこ
とができる。
According to the present invention, conventional wear-resistant parts such as tools and molds, industrial / general household machine parts / sliding parts, electric / electronic parts, infrared optical parts, etc. It is possible to provide a member coated with a hard carbon film which is superior in adhesion to a substrate, adhesion between films, abrasion resistance, durability and the like as compared with a product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)〜(f)は、本発明の硬質炭素膜被
覆部材の六つの具体化例を示す概念図である。
FIGS. 1A to 1F are conceptual views showing six concrete examples of a hard carbon film-coated member of the present invention.

【符号の説明】[Explanation of symbols]

1:基材 2:金属又は金属炭化物又は金属窒化物又は金属炭窒化
物層 3:金属元素が添加された硬質炭素層 4:3と異なる種類の金属元素又は異なる添加量の金属
元素が添加された硬質炭素層 5:硬質炭素層 6:傾斜層 7:請求項1〜11までの構造を持つ層 8:請求項1〜11までの構造以外を持つ層
1: Base material 2: Metal or metal carbide or metal nitride or metal carbonitride layer 3: Hard carbon layer to which metal element is added 4: Metal element of a different kind or metal element of different addition amount from 4: 3 Hard carbon layer 5: Hard carbon layer 6: Gradient layer 7: Layer having the structure according to claims 1 to 11 8: Layer having a structure other than those according to claims 1 to 11

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 硬質炭素膜が基材上に被覆された部材に
おいて、少なくとも1種類以上の金属元素が添加された
硬質炭素膜と、少なくとも1種類以上の金属又は金属炭
化物又は金属窒化物又は金属炭窒化物とを繰り返し交互
に積層して被覆層が形成され、繰り返しの周期が1nm
〜3μmであることを特徴とする硬質炭素膜被覆部材。
1. A member in which a hard carbon film is coated on a base material, wherein a hard carbon film to which at least one kind of metal element is added, and at least one kind of metal, metal carbide, metal nitride or metal And a carbonitride is alternately laminated to form a coating layer, and the repetition period is 1 nm.
A hard carbon film-coated member having a thickness of from 3 to 3 μm.
【請求項2】 硬質炭素膜の総膜厚が全膜厚の20〜9
8%であることを特徴とする請求項1に記載の硬質炭素
膜被覆部材。
2. The total thickness of the hard carbon film is 20 to 9 of the total thickness.
The hard carbon film-coated member according to claim 1, wherein the content is 8%.
【請求項3】 硬質炭素膜が基材上に被覆された部材に
おいて、異なる種類の金属元素又は異なる添加量の金属
元素が添加された少なくとも2種類以上の硬質炭素膜を
繰り返し交互に積層して被覆層が形成され、繰り返しの
周期が1nm〜3μmであることを特徴とする硬質炭素
膜被覆部材。
3. In a member in which a hard carbon film is coated on a substrate, at least two or more types of hard carbon films to which different types of metal elements or different amounts of metal elements are added are repeatedly and alternately laminated. A member coated with a hard carbon film, wherein a coating layer is formed and a repetition period is 1 nm to 3 μm.
【請求項4】 一方の硬質炭素膜の総膜厚が全膜厚の2
0〜80%であることを特徴とする請求項3に記載の硬
質炭素膜被覆部材。
4. The total thickness of one hard carbon film is 2% of the total thickness.
The hard carbon film-coated member according to claim 3, wherein the content is 0 to 80%.
【請求項5】 硬質炭素膜が基材上に被覆された部材に
おいて、硬質炭素膜と、少なくとも1種類以上の金属又
は金属炭化物又は金属窒化物又は金属炭窒化物とを繰り
返し交互に積層して被覆層が形成され、繰り返しの周期
が1nm〜3μmであり、各層間の組成が連続的に変化
していることを特徴とする硬質炭素膜被覆部材。
5. In a member in which a hard carbon film is coated on a base material, a hard carbon film and at least one or more metals or metal carbides or metal nitrides or metal carbonitrides are repeatedly and alternately laminated. A hard carbon film-coated member, wherein a coating layer is formed, a repetition period is 1 nm to 3 μm, and a composition between each layer is continuously changed.
【請求項6】 硬質炭素膜と組成が連続的に変化してい
る部分の総膜厚が全膜圧の20〜98%であることを特
徴とする請求項5に記載の硬質炭素膜被覆部材。
6. The hard carbon film-coated member according to claim 5, wherein the total film thickness of the portion where the composition is continuously changed with the hard carbon film is 20 to 98% of the total film pressure. .
【請求項7】 硬質炭素膜が基材上に被覆された部材に
おいて、少なくとも1種類以上の金属元素が添加された
硬質炭素膜と、少なくとも1種類以上の金属又は金属炭
化物又は金属窒化物又は金属炭窒化物とを繰り返し交互
に積層して被覆層が形成され、繰り返しの周期が1nm
〜3μmであり、各層間の組成が連続的に変化している
ことを特徴とする硬質炭素膜被覆部材。
7. A member in which a hard carbon film is coated on a base material, wherein a hard carbon film to which at least one kind of metal element is added, and at least one kind of metal, metal carbide, metal nitride or metal And a carbonitride is alternately laminated to form a coating layer, and the repetition period is 1 nm.
A hard carbon film-coated member characterized in that the composition between layers is continuously changed.
【請求項8】 少なくとも1種類以上の金属元素が添加
された硬質炭素膜と組成が連続的に変化している部分の
総膜厚が全膜厚の20〜98%であることを特徴とする
請求項7に記載の硬質炭素膜被覆部材。
8. A hard carbon film to which at least one kind of metal element is added and a total film thickness of a portion where the composition is continuously changed is 20 to 98% of the total film thickness. A member coated with a hard carbon film according to claim 7.
【請求項9】 硬質炭素膜が基材上に被覆された部材に
おいて、異なる種類の金属元素又は異なる添加量の金属
元素が添加された少なくとも2種類以上の硬質炭素膜を
繰り返し交互に積層して被覆層が形成され、繰り返しの
周期が1nm〜3μmであり、各層間の組成が連続的に
変化していることを特徴とする硬質炭素膜被覆部材。
9. A member having a hard carbon film coated on a substrate, wherein at least two or more types of hard carbon films to which different types of metal elements or different amounts of metal elements are added are repeatedly and alternately laminated. A hard carbon film-coated member, wherein a coating layer is formed, a repetition period is 1 nm to 3 μm, and a composition between each layer is continuously changed.
【請求項10】 一方の硬質炭素膜の総膜厚が全膜厚の
20〜80%であることを特徴とする請求項9に記載の
硬質炭素膜被覆部材。
10. The hard carbon film-coated member according to claim 9, wherein the total thickness of one hard carbon film is 20 to 80% of the total thickness.
【請求項11】 硬質炭素膜が基材上に被覆された部材
において、コーティング層の一部に、請求項1〜10ま
での少なくともひとつに記載の硬質炭素膜がコーティン
グされていることを特徴とする硬質炭素膜被覆部材。
11. A member having a hard carbon film coated on a substrate, wherein a part of the coating layer is coated with the hard carbon film according to at least one of claims 1 to 10. Hard carbon film covering member.
【請求項12】 請求項1〜10のいずれかに記載の硬
質炭素膜の部分の膜厚が(積層部分全体の膜厚)、コー
ティング層全体の膜厚の5〜99.9%であることを特
徴とする請求項11に記載の硬質炭素膜被覆部材。
12. The thickness of the portion of the hard carbon film according to any one of claims 1 to 10 (the thickness of the entire laminated portion) is 5 to 99.9% of the thickness of the entire coating layer. The hard carbon film-coated member according to claim 11, characterized in that:
JP3924897A 1997-02-24 1997-02-24 Hard carbon coating-coated member Pending JPH10237627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3924897A JPH10237627A (en) 1997-02-24 1997-02-24 Hard carbon coating-coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3924897A JPH10237627A (en) 1997-02-24 1997-02-24 Hard carbon coating-coated member

Publications (1)

Publication Number Publication Date
JPH10237627A true JPH10237627A (en) 1998-09-08

Family

ID=12547840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3924897A Pending JPH10237627A (en) 1997-02-24 1997-02-24 Hard carbon coating-coated member

Country Status (1)

Country Link
JP (1) JPH10237627A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288559A (en) * 2000-02-09 2001-10-19 Hauzer Techno Coating Europ Bv Coating deposition method, and article
KR100469881B1 (en) * 2001-08-21 2005-02-02 가부시끼가이샤 도시바 Carbon film-coated member
JP2008045180A (en) * 2006-08-18 2008-02-28 Denso Corp Method for depositing dlc film, and manufacturing apparatus of dlc film
JP2008254144A (en) * 2007-04-06 2008-10-23 Osg Corp Hard film and hard film coated tool
JP2009544844A (en) * 2006-07-26 2009-12-17 ロバート ボッシュ ゲーエムベーハー Method of applying a coating material and coating for a metal surface
JP2010202948A (en) * 2009-03-05 2010-09-16 Nachi Fujikoshi Corp Vanadium-containing film, and vanadium-containing film-coated die and tool
US20130004756A1 (en) * 2010-03-09 2013-01-03 Marcus Kennedy Sliding element, in particular a piston ring, and method for coating a sliding element
WO2013086552A1 (en) * 2011-12-12 2013-06-20 High Tech Coatings Gmbh Carbon-based coating
US20130168906A1 (en) * 2010-03-09 2013-07-04 Federal-Mogul Burscheid Gmbh Helical Compression Spring for an Oil Scraper Ring of a Piston in an Internal Combustion Engine and Method for Coating a Helical Compression Spring
JP2014098184A (en) * 2012-11-14 2014-05-29 Minebea Co Ltd Slide member having multilayer dlc film
US9121548B2 (en) 2011-04-15 2015-09-01 Kobe Steel, Ltd. Sliding member
JP2016145406A (en) * 2015-02-06 2016-08-12 ナコ テクノロジーズ,エスアイエー Nano composite solid lubricating film
CN114959617A (en) * 2022-06-28 2022-08-30 西安工程大学 Ag/WS 2 DLC coating and method for producing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288559A (en) * 2000-02-09 2001-10-19 Hauzer Techno Coating Europ Bv Coating deposition method, and article
KR100469881B1 (en) * 2001-08-21 2005-02-02 가부시끼가이샤 도시바 Carbon film-coated member
JP2009544844A (en) * 2006-07-26 2009-12-17 ロバート ボッシュ ゲーエムベーハー Method of applying a coating material and coating for a metal surface
JP2008045180A (en) * 2006-08-18 2008-02-28 Denso Corp Method for depositing dlc film, and manufacturing apparatus of dlc film
JP2008254144A (en) * 2007-04-06 2008-10-23 Osg Corp Hard film and hard film coated tool
JP2010202948A (en) * 2009-03-05 2010-09-16 Nachi Fujikoshi Corp Vanadium-containing film, and vanadium-containing film-coated die and tool
JP2013521413A (en) * 2010-03-09 2013-06-10 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for coating slide elements, in particular piston rings, and slide elements
KR20130048719A (en) * 2010-03-09 2013-05-10 페데랄-모굴 부르샤이트 게엠베하 Sliding element, in particular a piston ring, and method for cating a sliding element
US20130004756A1 (en) * 2010-03-09 2013-01-03 Marcus Kennedy Sliding element, in particular a piston ring, and method for coating a sliding element
US20130168906A1 (en) * 2010-03-09 2013-07-04 Federal-Mogul Burscheid Gmbh Helical Compression Spring for an Oil Scraper Ring of a Piston in an Internal Combustion Engine and Method for Coating a Helical Compression Spring
US9004465B2 (en) * 2010-03-09 2015-04-14 Federal-Mogul Burscheid Gmbh Helical compression spring for an oil scraper ring of a piston in an internal combustion engine and method for coating a helical compression spring
US9103015B2 (en) * 2010-03-09 2015-08-11 Federal-Mogul Burscheid Gmbh Sliding element and method for coating a sliding element
US9121548B2 (en) 2011-04-15 2015-09-01 Kobe Steel, Ltd. Sliding member
WO2013086552A1 (en) * 2011-12-12 2013-06-20 High Tech Coatings Gmbh Carbon-based coating
US9631270B2 (en) 2011-12-12 2017-04-25 High Tech Coatings Gmbh Carbon-based coating
JP2014098184A (en) * 2012-11-14 2014-05-29 Minebea Co Ltd Slide member having multilayer dlc film
JP2016145406A (en) * 2015-02-06 2016-08-12 ナコ テクノロジーズ,エスアイエー Nano composite solid lubricating film
CN114959617A (en) * 2022-06-28 2022-08-30 西安工程大学 Ag/WS 2 DLC coating and method for producing the same
CN114959617B (en) * 2022-06-28 2024-01-26 西安工程大学 Ag/WS 2 DLC coating and method for producing same

Similar Documents

Publication Publication Date Title
JP4022048B2 (en) Diamond-like carbon hard multilayer film molded body and method for producing the same
US6287711B1 (en) Wear-resistant coating and component
JP3737291B2 (en) Diamond-like carbon hard multilayer film molded body
US6599400B2 (en) Method for the manufacture of coatings and an article
JP5433897B2 (en) Diamond-like carbon film forming member and method for producing the same
JP4139102B2 (en) Diamond-like carbon hard multilayer film molded body and method for producing the same
JP2007070667A (en) Formed article with hard multilayer film of diamond-like carbon, and production method therefor
JP4683177B2 (en) Amorphous carbon coating, method for producing amorphous carbon coating, and coating member for amorphous carbon coating
JPH10237627A (en) Hard carbon coating-coated member
WO2018235750A1 (en) Sliding member and coating film
JP4300762B2 (en) Carbon film-coated article and method for producing the same
JP2003027214A (en) Amorphous carbon film, method for producing amorphous carbon film and member coated with amorphous carbon film
JP2004332004A (en) Alumina protective film, and its production method
Bunshah Processes of the activated reactive evaporation type and their tribological applications
JP2004169137A (en) Sliding member
JP2000178738A (en) Member coated with diamond-like carbon film
JP2003247060A (en) Method of producing amorphous carbon film and amorphous carbon-coated sliding parts
RU2759458C1 (en) Method for obtaining a multilayer thermodynamically stable wear-resistant coating (options)
JP2004043837A (en) Machine part, production method therefor and electromechanical product
JP2009203556A (en) Method for manufacturing amorphous carbon film and sliding component coated with amorphous carbon
JP2011068941A (en) Method for depositing hard film, and hard film
JP2004068092A (en) Hard carbon film coated member and film deposition method
JP2004238696A (en) Dlc coating film
JPH10226874A (en) Hard carbon coating and coating member and coated member therewith
JP2000177046A (en) Member coated with diamondlike carbon film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Effective date: 20060322

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109