JP2014079683A - Denitration catalyst and method for producing the same - Google Patents

Denitration catalyst and method for producing the same Download PDF

Info

Publication number
JP2014079683A
JP2014079683A JP2012228472A JP2012228472A JP2014079683A JP 2014079683 A JP2014079683 A JP 2014079683A JP 2012228472 A JP2012228472 A JP 2012228472A JP 2012228472 A JP2012228472 A JP 2012228472A JP 2014079683 A JP2014079683 A JP 2014079683A
Authority
JP
Japan
Prior art keywords
cao
catalyst
denitration catalyst
contained
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012228472A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ikemoto
清司 池本
Yasuyoshi Kato
泰良 加藤
Naomi Imada
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2012228472A priority Critical patent/JP2014079683A/en
Publication of JP2014079683A publication Critical patent/JP2014079683A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a denitration catalyst which shows high activity even though using an inorganic fiber that contains an element such as Ca and Mg, which has a possibility of becoming a catalyst poison, and to provide a method for producing the same.SOLUTION: The method for producing the denitration catalyst comprises kneading titanium oxide, a catalyst activation component, water and an inorganic fiber containing Ca and Si as a main component to obtain a paste. A mole ratio (SO/CaO) of a sulfate radical (SO) contained in the denitration catalyst to CaO contained in the inorganic fiber is 1 or more.

Description

本発明は、脱硝触媒およびその製造法に関する。より詳細に、本発明は、CaやMgなどの触媒毒と成り得る元素を含む無機繊維を用いても、高い活性を示す脱硝触媒およびその製造法に関する。   The present invention relates to a denitration catalyst and a method for producing the same. More specifically, the present invention relates to a denitration catalyst that exhibits high activity even when inorganic fibers containing an element that can be a catalyst poison such as Ca and Mg, and a method for producing the same.

火力発電所、各種工場、自動車などから排出されるガスに含まれる窒素酸化物(NOx)は、光化学スモッグや酸性雨の原因物質である。窒素酸化物の除去技術として、アンモニア(NH3)を還元剤とする選択的接触還元反応による排煙脱硝法(SCR法)が知られている。このSCR法は火力発電所などを中心に幅広く採用されている。SCR法に用いられる脱硝触媒として、例えば酸化チタン系触媒が知られている。 Nitrogen oxide (NO x ) contained in gas discharged from thermal power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain. As a technique for removing nitrogen oxides, a flue gas denitration method (SCR method) by a selective catalytic reduction reaction using ammonia (NH 3 ) as a reducing agent is known. This SCR method is widely used mainly in thermal power plants. As a denitration catalyst used in the SCR method, for example, a titanium oxide catalyst is known.

触媒の性能を高めるために触媒を多孔質化することが知られている。多孔質化の手法として、触媒ペーストの含水率を高めることによる方法、無機繊維を添加することによる方法などが知られている(特許文献1)。触媒ペーストの含水率を高めすぎると基材への塗布性が低下したり、乾燥に長時間を要したりするので、含水率を高めて多孔質化する手法は限界がある。   It is known to make a catalyst porous in order to enhance the performance of the catalyst. As a method for making the pores, a method by increasing the moisture content of the catalyst paste, a method by adding inorganic fibers, and the like are known (Patent Document 1). If the water content of the catalyst paste is increased too much, the coating property to the substrate is lowered or a long time is required for drying. Therefore, there is a limit to the method for increasing the water content and making the catalyst porous.

無機繊維として、シリカ・アルミナ系の無機繊維が一般に用いられている。ところが、シリカ・アルミナ系の無機繊維は発がん性のある物質として規制され、使用に制限がかかり始めている。こうした背景があって、発ガン性が低いと言われている生体内溶解性繊維をシリカ・アルミナ系の無機繊維に替えて用いることが提案されている。   As inorganic fibers, silica / alumina inorganic fibers are generally used. However, silica-alumina based inorganic fibers are regulated as carcinogenic substances, and their use is beginning to be limited. Under such circumstances, it has been proposed to use in vivo soluble fibers, which are said to have low carcinogenicity, in place of silica-alumina based inorganic fibers.

特開昭52−6519号公報JP 52-6519 A 特開2008−12379号公報JP 2008-12379 A

ところが、生体内溶解性繊維はCaやMgを含んでいる。それらは脱硝触媒を被毒して活性を低下させることがある。
本発明の課題は、CaやMgなどの触媒毒と成り得る元素を含む無機繊維を用いても、高い活性を示す脱硝触媒およびその製造法を提供することである。
However, the in vivo soluble fiber contains Ca and Mg. They can poison the denitration catalyst and reduce its activity.
An object of the present invention is to provide a denitration catalyst exhibiting high activity even when an inorganic fiber containing an element that can be a catalyst poison such as Ca and Mg is used, and a method for producing the same.

本発明者らは上記課題を解決するために検討した結果、以下のような態様の本発明を完成するに至った。   As a result of investigations to solve the above problems, the present inventors have completed the present invention having the following aspects.

〔1〕 酸化チタン、
触媒活性成分、
水、および
CaとSiを主成分として含有する無機繊維
を混練してペーストを得ることを含む脱硝触媒の製造法であって、
前記無機繊維中に含有するCaOに対する脱硝触媒に含有する硫酸根(SO4)のモル比(SO4/CaO)が1以上である、脱硝触媒の製造法。
〔2〕 酸化チタン、
触媒活性成分、
水、および
CaとSiを主成分として含有する無機繊維
を混練してペーストを得ることを含む脱硝触媒の製造法であって、
前記無機繊維中に含有するMgOとCaOとの合計量に対する脱硝触媒に含有する硫酸根(SO4)のモル比(SO4/(CaO+MgO))が1以上である、脱硝触媒の製造法。
〔3〕 前記硫酸根(SO4)が酸化チタンに含まれていたものに由来する、〔1〕または〔2〕に記載の製造法。
〔4〕 前記硫酸根(SO4)が、硫酸(H2SO4)または硫酸アンモニウム((NH42SO4)の添加に由来する、〔1〕または〔2〕に記載の製造法。
[1] Titanium oxide,
Catalytically active components,
A method for producing a denitration catalyst comprising kneading water and inorganic fibers containing Ca and Si as main components to obtain a paste,
A method for producing a denitration catalyst, wherein a molar ratio (SO 4 / CaO) of sulfate radical (SO 4 ) contained in the denitration catalyst to CaO contained in the inorganic fiber is 1 or more.
[2] Titanium oxide,
Catalytically active components,
A method for producing a denitration catalyst comprising kneading water and inorganic fibers containing Ca and Si as main components to obtain a paste,
A method for producing a denitration catalyst, wherein a molar ratio (SO 4 / (CaO + MgO)) of sulfate radicals (SO 4 ) contained in the denitration catalyst to the total amount of MgO and CaO contained in the inorganic fiber is 1 or more.
[3] The production method according to [1] or [2], wherein the sulfate radical (SO 4 ) is derived from what was contained in titanium oxide.
[4] The production method according to [1] or [2], wherein the sulfate radical (SO 4 ) is derived from addition of sulfuric acid (H 2 SO 4 ) or ammonium sulfate ((NH 4 ) 2 SO 4 ).

本発明の製造法によれば、繊維中に含まれるCaOと触媒活性成分であるV25やWO3との反応をさせずに、高活性な脱硝触媒を得ることができる。
繊維中に含まれるCaOと触媒活性成分であるV25やWO3との反応が抑止される機構は以下のようなものであると推測する。
生体内溶解性繊維のようなSiとCaとを主成分とて含有する無機繊維と、VやWなどを含む触媒活性成分と、酸化チタンとを混ぜ合わせてペーストを得、それを基材に塗布し、焼成すると、該焼成工程において繊維中に含まれるCaOと触媒活性成分であるV25やWO3とが式1または式2のような反応をして、触媒活性成分が失活する。
CaO + V25 → Ca(VO32 (式1)
CaO + WO3 → CaWO4 (式2)
According to the production method of the present invention, a highly active denitration catalyst can be obtained without reacting CaO contained in the fiber with catalytically active components V 2 O 5 and WO 3 .
It is presumed that the mechanism by which the reaction between CaO contained in the fiber and the catalytically active components V 2 O 5 and WO 3 is suppressed is as follows.
A paste is obtained by mixing inorganic fibers containing Si and Ca as main components, such as in vivo soluble fibers, catalytically active components containing V, W, and the like, and titanium oxide. When applied and fired, CaO contained in the fiber in the firing process reacts with catalytically active components V 2 O 5 and WO 3 as shown in Formula 1 or Formula 2 to deactivate the catalytically active component. To do.
CaO + V 2 O 5 → Ca (VO 3 ) 2 (Formula 1)
CaO + WO 3 → CaWO 4 (Formula 2)

これに対して、本発明の製造法によると、触媒製造の混練時には式3のような反応が進行してCa成分を溶解度の低いCaSO4として固定化することができる。
Ca2+ + SO4 2- → CaSO4 (式3)
On the other hand, according to the production method of the present invention, when the catalyst is kneaded during the production of the catalyst, the reaction shown in Formula 3 proceeds and the Ca component can be immobilized as CaSO 4 having low solubility.
Ca 2+ + SO 4 2- → CaSO 4 (Formula 3)

さらに、焼成時にSO4が分解してSO3(式4)が生成し、これがCaOと反応して、CaSO4として固定化することができる(式5)。こうすることにより、CaOが活性成分と反応することを防ぐことができる。
SO4 → SO3 + 1/2O2 (式4)
SO3 + CaO → CaSO4 (式5)
Furthermore, SO 4 decomposes during firing to produce SO 3 (Formula 4), which reacts with CaO and can be immobilized as CaSO 4 (Formula 5). By carrying out like this, it can prevent that CaO reacts with an active ingredient.
SO 4 → SO 3 + 1 / 2O 2 (Formula 4)
SO 3 + CaO → CaSO 4 (Formula 5)

また、式3または式5の反応進行時に、無機繊維からCa成分が抜け出る。元来SiO2は網目構造を成しているので、Ca成分が抜けた隙間が細孔となる。その結果、多孔質な脱硝触媒を得ることができる。多孔質な脱硝触媒においてはガスの拡散速度が向上するので、脱硝活性が高まる。
繊維中に不純物としてMgOを含む場合には、式6や式7に示す反応が進行してMgOを固定化することができる。Mg成分が無機繊維から抜け出るので、Ca成分の抜け出しと同様に、脱硝触媒の多孔質化を促すことになる。その結果、脱硝効率が向上する。
Mg2+ + SO4 2- → MgSO4 (式6)
SO3 + MgO → MgSO4 (式7)
Further, when the reaction of Formula 3 or Formula 5 proceeds, the Ca component escapes from the inorganic fiber. Since SiO 2 originally has a network structure, gaps from which the Ca component is released become pores. As a result, a porous denitration catalyst can be obtained. In a porous denitration catalyst, the gas diffusion rate is improved, so that the denitration activity is increased.
In the case where MgO is contained as an impurity in the fiber, the reaction shown in Formula 6 or Formula 7 proceeds and MgO can be immobilized. Since the Mg component escapes from the inorganic fiber, the removal of the NOx removal catalyst is promoted in the same manner as the Ca component escapes. As a result, the denitration efficiency is improved.
Mg 2+ + SO 4 2- → MgSO 4 (Formula 6)
SO 3 + MgO → MgSO 4 (Formula 7)

本発明の脱硝触媒は、酸化チタン、触媒活性成分、および無機繊維を含有するものである。   The denitration catalyst of the present invention contains titanium oxide, a catalytically active component, and inorganic fibers.

本発明で用いられる酸化チタンは、一般にTiO2で表されるものである。酸化チタンとしてはアナターゼ型、ルチル型などが挙げられる。酸化チタンとしては、後述するように酸化チタン中に硫酸根を含むものを用いることができる。本発明の製造法において、酸化チタンとして、酸化チタンの前駆体を用いることもできる。 The titanium oxide used in the present invention is generally represented by TiO 2 . Examples of titanium oxide include anatase type and rutile type. As titanium oxide, a titanium oxide containing a sulfate radical can be used as described later. In the production method of the present invention, a precursor of titanium oxide can be used as titanium oxide.

本発明で用いられる触媒活性成分は、脱硝触媒の原料に通常に用いられるものを使用することができる。例えば、鉄、バナジウム、モリブデン、タングステンなどの元素が挙げられる。触媒活性成分の原料である可溶性塩類がMo、W若しくはVのオキソ酸の塩類であることが望ましい。W原料には、該当する金属のMo4型イオン(M:Mo、W)を含む酸素酸あるいはヘテロポリ酸、メタあるいはパラタングステン酸アンモニウムなどのアンモニウム塩、Mo原料には、該当する金属のMO4型イオン(M:M、W)を含むアンモニウム塩であるモリブデン酸アンモニウム、もしくは、該当する金属の酸化物である三酸化モリブデンを用いることができる。V原料には、メタバナジン酸アンモニウムなどのアンモニウム塩を用いることができる。また、これら活性成分となる原料の他に、シリカゾルなどの無機ゾル状物のように通常脱硝触媒に添加される原料を加えることが好ましい。 As the catalytically active component used in the present invention, those usually used as a raw material for a denitration catalyst can be used. For example, elements such as iron, vanadium, molybdenum, and tungsten can be given. It is desirable that the soluble salts that are raw materials for the catalytically active component are Mo, W, or V oxo acid salts. The W raw material includes an oxygen acid or heteropolyacid containing the Mo 4 type ions (M: Mo, W) of the corresponding metal, ammonium salts such as meta or ammonium paratungstate, and the Mo raw material includes the MO 4 of the corresponding metal. Ammonium molybdate, which is an ammonium salt containing type ions (M: M, W), or molybdenum trioxide, which is an oxide of a corresponding metal, can be used. As the V raw material, an ammonium salt such as ammonium metavanadate can be used. In addition to the raw materials to be the active ingredients, it is preferable to add raw materials that are usually added to the denitration catalyst, such as inorganic sols such as silica sol.

本発明に用いられる無機繊維は、CaとSiを主成分として含有するものである。具体的には、CaO、SiO2を主成分とした生体内溶解性繊維、ケイ酸カルシウム系繊維、ロックウールやロックファイバーなどの人造鉱物繊維、トバモライト(5CaO・6SiO2・5H2O)やゾノライト(6CaO・6SiO2・H2O)などの人造結晶質繊維などが挙げられる。 The inorganic fiber used in the present invention contains Ca and Si as main components. Specifically, in vivo soluble fibers based on CaO and SiO 2 , calcium silicate fibers, artificial mineral fibers such as rock wool and rock fibers, tobermorite (5CaO · 6SiO 2 · 5H 2 O) and zonolite Examples thereof include artificial crystalline fibers such as (6CaO.6SiO 2 .H 2 O).

本発明に用いられる無機繊維は、アルカリ金属元素の含有量およびCaおよびMg以外のアルカリ土類金属元素の含有量が、CaまたはMgの含有量より少ないことが好ましい。アルカリ金属元素の含有量およびCaおよびMg以外のアルカリ土類金属元素の含有量が多すぎると触媒活性成分の被毒作用の抑止効果が低下する傾向がある。   The inorganic fiber used in the present invention preferably has an alkali metal element content and an alkaline earth metal element content other than Ca and Mg less than the Ca or Mg content. When the content of the alkali metal element and the content of the alkaline earth metal element other than Ca and Mg are too large, the deterring effect of the poisoning action of the catalytically active component tends to decrease.

CaとSiを主成分として含有する無機繊維の添加量は、原料の酸化物重量の総和に対して7〜25重量%、好ましくは10〜20重量%である。無機繊維の添加量が少ないと脱硝触媒の強度が低くなる傾向がある。無機繊維の添加量が多いと混練性が悪く、触媒ペーストの塗布性が低下する傾向がある。
また、CaとSiを主成分とする無機繊維を添加する場合、水以外にコロイダルシリカなどのバインダや、メタタングステン酸アンモニウム水溶液などの活性成分が含まれていても特に問題はない。
The addition amount of inorganic fibers containing Ca and Si as main components is 7 to 25% by weight, preferably 10 to 20% by weight, based on the total weight of oxides of the raw materials. If the amount of inorganic fiber added is small, the strength of the denitration catalyst tends to be low. If the amount of inorganic fiber added is large, the kneadability is poor and the applicability of the catalyst paste tends to decrease.
In addition, when inorganic fibers mainly composed of Ca and Si are added, there is no particular problem even if a binder such as colloidal silica or an active component such as an aqueous solution of ammonium metatungstate is included in addition to water.

本発明の脱硝触媒には、酸化チタン、触媒活性成分および無機繊維以外に、脱硝触媒の機能を高める添加剤が含まれていてもよい。   The denitration catalyst of the present invention may contain additives that enhance the function of the denitration catalyst, in addition to titanium oxide, catalytically active components, and inorganic fibers.

本発明の一形態に係る脱硝触媒は、CaOと硫酸根(SO4)を含んでおり、且つCaOに対する硫酸根(SO4)のモル比(SO4/CaO)が1以上、好ましくは1.2以上である。モル比(SO4/CaO)が1未満の場合には、CaOが触媒活性成分を失活させ触媒性能が低下する。また、本発明の別の一形態に係る脱硝触媒は、MgOとCaOと硫酸根(SO4)が含まれていて、且つCaOとMgOとの合計量に対する硫酸根(SO4)のモル比(SO4/(CaO+MgO))が1以上、好ましくは1.2以上である。モル比(SO4/(CaO+MgO))が1未満の場合には、CaOが触媒活性成分を失活させ触媒性能が低下する。なお、CaOまたはMgOは、主に、無機繊維に含まれていたものに由来するものである。なお、SO4/CaOのモル比およびSO4/(CaO+MgO)のモル比は公知の分析法によって決定することができる。 The denitration catalyst according to one embodiment of the present invention contains CaO and sulfate radical (SO 4 ), and the molar ratio (SO 4 / CaO) of sulfate radical (SO 4 ) to CaO is 1 or more, preferably 1. 2 or more. When the molar ratio (SO 4 / CaO) is less than 1, CaO deactivates the catalytically active component and the catalytic performance decreases. Further, the denitration catalyst according to another embodiment of the present invention includes MgO, CaO and sulfate radical (SO 4 ), and a molar ratio of sulfate radical (SO 4 ) to the total amount of CaO and MgO ( SO 4 / (CaO + MgO)) is 1 or more, preferably 1.2 or more. When the molar ratio (SO 4 / (CaO + MgO)) is less than 1, CaO deactivates the catalytically active component and the catalytic performance decreases. CaO or MgO is mainly derived from those contained in inorganic fibers. The molar ratio of SO 4 / CaO and the molar ratio of SO 4 / (CaO + MgO) can be determined by a known analysis method.

脱硝触媒に含まれる硫酸根(SO4)は、原料である酸化チタンに含まれている硫酸根に由来するものであってもよいし、硫酸(H2SO4)や硫酸アンモニウム(NH42SO4などの化合物添加に由来するものであってもよい。 The sulfate radical (SO 4 ) contained in the denitration catalyst may be derived from the sulfate radical contained in the raw material titanium oxide, sulfuric acid (H 2 SO 4 ) or ammonium sulfate (NH 4 ) 2. It may be derived from addition of a compound such as SO 4 .

本発明で用いられる硫酸根(SO4)として酸化チタンに含まれている硫酸根を用いる場合は、硫酸法で製造されたTiO2やアルカリで洗浄する前のTiO2を用いることが好ましい。また、その他の硫酸根(SO4)の添加方法には、硫酸(H2SO4)や硫酸アンモニウム((NH42SO4)を用いることができる。
また、触媒原料としてアンモニウム塩を含む原料を用いる場合は、原料中のアンモニウム塩と硫酸根が反応するため、原料中のアンモニウム塩のモル分だけ硫酸根(SO4)を多めに添加することが望ましい。
When the sulfate radical contained in titanium oxide is used as the sulfate radical (SO 4 ) used in the present invention, it is preferable to use TiO 2 produced by the sulfuric acid method or TiO 2 before washing with an alkali. In addition, sulfuric acid (H 2 SO 4 ) and ammonium sulfate ((NH 4 ) 2 SO 4 ) can be used as other methods for adding sulfate radicals (SO 4 ).
In addition, when a raw material containing an ammonium salt is used as a catalyst raw material, since the ammonium salt and sulfate radical in the raw material react, it is possible to add a large amount of sulfate radical (SO 4 ) by the molar amount of the ammonium salt in the raw material. desirable.

本発明に係る脱硝触媒の製造は、酸化チタンまたはその前駆体、触媒活性成分である可溶性塩類、およびCaとSiを主成分とする無機繊維を水と共に全量を一度に混練する方法や; 酸化チタンまたはその前駆体と触媒活性成分を混練した後、それにCaとSiを主成分とする無機繊維を混合する方法などを採ることができる。また、混練で得られる触媒ペーストは、直ちに、板状、ハニカム状などの形状に成型することができる。本発明においては脱硝触媒を板状にすることが好ましい。板状触媒としては、例えば、酸化チタン、触媒活性成分および無機繊維などを混練して触媒ペーストを得、このペーストをステンレス鋼製やガラス繊維製の網状基板に押し付けて担持させ、次いで乾燥し、焼成することによって得られる。板状触媒には、重ねた時に隙間をガスが通り抜け得る程度の通路を確保するためにスペーサ部が形成される。このような板状触媒を重ねてなる触媒構造体は圧力損失が小さく、かつダスト等による磨耗に対しても強いという利点がある。   The production of the denitration catalyst according to the present invention is a method in which titanium oxide or a precursor thereof, a soluble salt as a catalytically active component, and inorganic fibers mainly composed of Ca and Si are kneaded together with water all at once; Alternatively, after kneading the precursor and the catalytically active component, a method of mixing inorganic fibers mainly composed of Ca and Si can be employed. Further, the catalyst paste obtained by kneading can be immediately formed into a plate shape, a honeycomb shape or the like. In the present invention, the denitration catalyst is preferably plate-shaped. As the plate-like catalyst, for example, titanium oxide, catalytically active components and inorganic fibers are kneaded to obtain a catalyst paste, this paste is pressed against a stainless steel or glass fiber network substrate, and then dried, It is obtained by firing. In the plate-like catalyst, a spacer portion is formed to ensure a passage that allows gas to pass through the gap when stacked. A catalyst structure formed by stacking such plate-shaped catalysts has the advantage of having a small pressure loss and being strong against abrasion due to dust or the like.

次に、実施例を示して、本発明をより詳細に説明する。但し、本発明はこれらの実施例によって何ら限定されるものではない。   Next, an Example is shown and this invention is demonstrated in detail. However, the present invention is not limited to these examples.

実施例1
メタバナジン酸アンモニウム30g、モリブデン酸アンモニウム7.5g、蓚酸40gを水400gに溶解させ、これに酸化チタン(堺化学製CSP−M、SO4含有率;6.5重量%、比表面積約120m2/g)1000gとシリカゾル(日産化学工業製OSゾル)200gと硫酸(キシダ化学製、特級、純度98%)55gを入れ、ニーダで混練し、ペースト状にした。その後、CaとSiを主成分とする無機繊維(宇部マテリアルズ製、ゾノハイジ、CaO;47重量%)150gを混合し、さらにニーダで混練して触媒ペーストを調製した。
また、これとは別にSUS430製帯鋼をメタルラス加工して目開き約2mmの網状基材を作成した。
Example 1
30 g of ammonium metavanadate, 7.5 g of ammonium molybdate, and 40 g of oxalic acid were dissolved in 400 g of water, and titanium oxide (CSP-M manufactured by Sakai Chemicals, SO 4 content; 6.5 wt%, specific surface area of about 120 m 2 / g) 1000 g, 200 g of silica sol (manufactured by Nissan Chemical Industries, OS sol) and 55 g of sulfuric acid (manufactured by Kishida Chemical Co., Ltd., special grade, purity 98%) were added and kneaded with a kneader to obtain a paste. Thereafter, 150 g of inorganic fibers mainly composed of Ca and Si (manufactured by Ube Materials, Zonoheidi, CaO; 47 wt%) were mixed and further kneaded with a kneader to prepare a catalyst paste.
Separately, a SUS430 steel strip was metallized to create a reticulated base material having an opening of about 2 mm.

この基材に触媒ペーストを置き、加圧ローラに通過させることにより、基材の網目間および表面にペーストを圧着して厚さ0.7mmの板状に成型した。さらに、この板状成形体を150℃で2時間乾燥し、その後、大気中500℃で2時間焼成して、板状触媒を作製した。本板状触媒における、SO4/CaOのモル比は1.0、SO4/(CaO+MgO)のモル比は1.0であった。 The catalyst paste was placed on this substrate and passed through a pressure roller, whereby the paste was pressure-bonded between the meshes and the surface of the substrate and molded into a plate shape having a thickness of 0.7 mm. Furthermore, this plate-shaped molded body was dried at 150 ° C. for 2 hours and then calcined in the atmosphere at 500 ° C. for 2 hours to produce a plate-shaped catalyst. In the present plate-like catalyst, the molar ratio of SO 4 / CaO was 1.0, and the molar ratio of SO 4 / (CaO + MgO) was 1.0.

実施例2
実施例1において使用したCaとSiを主成分とする無機繊維(宇部マテリアルズ製、ゾノハイジ、CaO;47重量%)をCaとSiを主成分とする無機繊維(ニチアス製ファインフレックス−EバルクファイバーTOMBO(登録商標)No.5610、CaO+MgO;22重量%)に変え、硫酸(キシダ化学製、特級、純度98%)55gを用いなかった以外は実施例1と同じ方法で板状触媒を作製した。本板状触媒における、SO4/CaOのモル比は1.4、SO4/(CaO+MgO)のモル比は1.1であった。
Example 2
Inorganic fibers mainly composed of Ca and Si used in Example 1 (manufactured by Ube Materials, Zonoheidi, CaO; 47% by weight) and inorganic fibers mainly composed of Ca and Si (Nichias Fineflex-E bulk fiber) A plate catalyst was prepared in the same manner as in Example 1 except that 55 g of sulfuric acid (manufactured by Kishida Chemical Co., Ltd., special grade, purity 98%) was not used instead of TOMBO (registered trademark) No. 5610, CaO + MgO; 22% by weight). . In the present plate-like catalyst, the molar ratio of SO 4 / CaO was 1.4, and the molar ratio of SO 4 / (CaO + MgO) was 1.1.

実施例3
実施例2において使用した酸化チタン(堺化学製CSP−M、SO4含有率;6.5重量%、比表面積約120m2/g)を酸化チタン(石原産業MC90、SO4含有率;1.4重量%、比表面積約90m2/g)に変え、硫酸(キシダ化学製、特級、純度98%)50gを添加した以外は実施例2と同じ方法で板状触媒を作製した。本板状触媒における、SO4/CaOのモル比は1.4、SO4/(CaO+MgO)のモル比は1.1であった。
Example 3
Titanium oxide (CSP-M manufactured by Sakai Chemicals, SO 4 content; 6.5 wt%, specific surface area of about 120 m 2 / g) used in Example 2 was replaced with titanium oxide (Ishihara Sangyo MC90, SO 4 content; 4% by weight, specific surface area of about 90 m 2 / g), and a plate catalyst was prepared in the same manner as in Example 2 except that 50 g of sulfuric acid (manufactured by Kishida Chemical Co., Ltd., special grade, purity 98%) was added. In the present plate-like catalyst, the molar ratio of SO 4 / CaO was 1.4, and the molar ratio of SO 4 / (CaO + MgO) was 1.1.

実施例4
硫酸50gを硫酸アンモニウム((NH42SO4、キシダ化学製、特級、純度99.5%)70gに変えた以外は実施例3と同じ方法で板状触媒を作製した。本板状触媒における、SO4/CaOのモル比は1.4、SO4/(CaO+MgO)のモル比は1.1であった。
Example 4
A plate catalyst was prepared in the same manner as in Example 3 except that 50 g of sulfuric acid was changed to 70 g of ammonium sulfate ((NH 4 ) 2 SO 4 , manufactured by Kishida Chemical Co., Ltd., special grade, purity 99.5%). In the present plate-like catalyst, the molar ratio of SO 4 / CaO was 1.4, and the molar ratio of SO 4 / (CaO + MgO) was 1.1.

実施例5
硫酸の量を45gに変えた以外は実施例3と同じ方法で板状触媒を作製した。本板状触媒における、SO4/CaOのモル比は1.3、SO4/(CaO+MgO)のモル比は1.0であった。
Example 5
A plate catalyst was produced in the same manner as in Example 3 except that the amount of sulfuric acid was changed to 45 g. In the present plate catalyst, the molar ratio of SO 4 / CaO was 1.3, and the molar ratio of SO 4 / (CaO + MgO) was 1.0.

実施例6
硫酸の量を75gに変えた以外は実施例3と同じ方法で板以触媒を作製した。本板状触媒における、SO4/CaOのモル比は2.0、SO4/(CaO+MgO)のモル比は1.5であった。
Example 6
A plate catalyst was prepared in the same manner as in Example 3 except that the amount of sulfuric acid was changed to 75 g. In the present plate catalyst, the molar ratio of SO 4 / CaO was 2.0 and the molar ratio of SO 4 / (CaO + MgO) was 1.5.

実施例7
硫酸の量を120gを変えた以外は実施例3と同じ方法で板状触媒を作製した。本板状触媒における、SO4/CaOのモル比は3.0、SO4/(CaO+MgO)のモル比は2.2であった。
Example 7
A plate catalyst was produced in the same manner as in Example 3 except that the amount of sulfuric acid was changed to 120 g. In the present plate catalyst, the molar ratio of SO 4 / CaO was 3.0, and the molar ratio of SO 4 / (CaO + MgO) was 2.2.

比較例1
硫酸の量を10gに変えた以外は実施例3と同じ方法で板状触媒を作製した。本板状触媒における、SO4/CaOのモル比は0.5、SO4/(CaO+MgO)のモル比は0.4であった。
Comparative Example 1
A plate catalyst was prepared in the same manner as in Example 3 except that the amount of sulfuric acid was changed to 10 g. In the present plate-like catalyst, the molar ratio of SO 4 / CaO was 0.5, and the molar ratio of SO 4 / (CaO + MgO) was 0.4.

比較例2
実施例2において使用したCaとSiを主成分とする無機繊維をシリカ・アルミナを主成分とする無機繊維(イビデン製、イビウール)に変えた以外は実施例2と同じ方法で板状触媒を作製した。本板状触媒におけるSO4/CaOのモル比およびSO4/(CaO+MgO)のモル比はいずれも0であった。
Comparative Example 2
A plate-shaped catalyst was produced in the same manner as in Example 2 except that the inorganic fibers mainly composed of Ca and Si used in Example 2 were changed to inorganic fibers mainly composed of silica / alumina (Ibiden, Ibi wool). did. The SO 4 / CaO molar ratio and the SO 4 / (CaO + MgO) molar ratio in the present plate catalyst were both 0.

実施例1〜6および比較例1および2で得られた脱硝触媒について、表1に示す条件で脱硝率を測定した。その結果を表2に示す。
CaとSiを主成分とする無機繊維を用いてSO4/CaOのモル比またはSO4/(CaO+MgO)のモル比を1以上にした本発明に係る脱硝触媒(実施例1〜6)は、比較例1および2の脱硝触媒よりも、細孔容積が大きく、脱硝性能が高いことが分かる。
With respect to the denitration catalysts obtained in Examples 1 to 6 and Comparative Examples 1 and 2, the denitration rate was measured under the conditions shown in Table 1. The results are shown in Table 2.
The molar ratio of SO 4 / CaO with inorganic fibers composed mainly of Ca and Si or SO 4 / (CaO + MgO) denitration catalyst according to the present invention that the molar ratio was 1 or more (Examples 1-6) are It can be seen that the pore volume is larger and the denitration performance is higher than the denitration catalysts of Comparative Examples 1 and 2.

Figure 2014079683
Figure 2014079683

Figure 2014079683
Figure 2014079683

本発明によれば、触媒原料にCaとSiを主成分とする無機繊維を用い、触媒原料中の硫酸根(SO4)でCaOを固定化させることにより、CaOによる活性成分の被毒作用を抑制することができる。また、この固定化の際に無機繊維中のCaOまたはMgOが抜けた後には、SiO2が網目状の構造になり、これにより脱硝触媒が多孔質化し、これにより高い脱硝性能を有する脱硝触媒を得ることができる。 According to the present invention, by using inorganic fibers mainly composed of Ca and Si as a catalyst raw material, and fixing CaO with sulfate radicals (SO 4 ) in the catalyst raw material, the poisoning action of the active ingredient by CaO is achieved. Can be suppressed. In addition, after CaO or MgO in the inorganic fiber is removed during the immobilization, the SiO 2 has a network structure, which makes the denitration catalyst porous, thereby denitration catalyst having high denitration performance. Can be obtained.

Claims (4)

酸化チタン、
触媒活性成分、
水、および
CaとSiを主成分として含有する無機繊維
を混練してペーストを得ることを含む脱硝触媒の製造法であって、
前記無機繊維中に含有するCaOに対する脱硝触媒に含有する硫酸根(SO4)のモル比(SO4/CaO)が1以上である、脱硝触媒の製造法。
Titanium oxide,
Catalytically active components,
A method for producing a denitration catalyst comprising kneading water and inorganic fibers containing Ca and Si as main components to obtain a paste,
A method for producing a denitration catalyst, wherein a molar ratio (SO 4 / CaO) of sulfate radical (SO 4 ) contained in the denitration catalyst to CaO contained in the inorganic fiber is 1 or more.
酸化チタン、
触媒活性成分、
水、および
CaとSiを主成分として含有する無機繊維
を混練してペーストを得ることを含む脱硝触媒の製造法であって、
前記無機繊維中に含有するMgOとCaOとの合計量に対する脱硝触媒に含有する硫酸根(SO4)のモル比(SO4/(CaO+MgO))が1以上である、脱硝触媒の製造法。
Titanium oxide,
Catalytically active components,
A method for producing a denitration catalyst comprising kneading water and inorganic fibers containing Ca and Si as main components to obtain a paste,
A method for producing a denitration catalyst, wherein a molar ratio (SO 4 / (CaO + MgO)) of sulfate radicals (SO 4 ) contained in the denitration catalyst to the total amount of MgO and CaO contained in the inorganic fiber is 1 or more.
前記硫酸根(SO4)が、酸化チタンに含まれていたものに由来する、請求項1または2に記載の製造法。 The sulfate radical (SO 4) is derived from that contained in the titanium oxide production process according to claim 1 or 2. 前記硫酸根(SO4)が、硫酸(H2SO4)または硫酸アンモニウム((NH42SO4)の添加に由来する、請求項1または2に記載の製造法。 The production method according to claim 1 or 2, wherein the sulfate radical (SO 4 ) is derived from addition of sulfuric acid (H 2 SO 4 ) or ammonium sulfate ((NH 4 ) 2 SO 4 ).
JP2012228472A 2012-10-15 2012-10-15 Denitration catalyst and method for producing the same Pending JP2014079683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228472A JP2014079683A (en) 2012-10-15 2012-10-15 Denitration catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228472A JP2014079683A (en) 2012-10-15 2012-10-15 Denitration catalyst and method for producing the same

Publications (1)

Publication Number Publication Date
JP2014079683A true JP2014079683A (en) 2014-05-08

Family

ID=50784411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228472A Pending JP2014079683A (en) 2012-10-15 2012-10-15 Denitration catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP2014079683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116851003A (en) * 2023-08-21 2023-10-10 安徽华钛高新材料有限公司 High-sulfur-resistance ultralow-temperature SCR denitration catalyst and preparation system thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116851003A (en) * 2023-08-21 2023-10-10 安徽华钛高新材料有限公司 High-sulfur-resistance ultralow-temperature SCR denitration catalyst and preparation system thereof

Similar Documents

Publication Publication Date Title
JP2013244469A (en) Method for producing denitration catalyst
JP5126718B2 (en) Exhaust gas purification catalyst
KR102168261B1 (en) Catalyst for oxidation reaction of metallic mercury and reduction reaction of nitrogen oxides, and exhaust gas purification method
JP2013091045A (en) Exhaust gas treating method
JP5636577B2 (en) Method for purifying exhaust gas containing metallic mercury and oxidation catalyst for metallic mercury in exhaust gas
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP5457129B2 (en) NOx removal catalyst and method for producing the same
JP4824516B2 (en) Method for producing catalyst for removing nitrogen oxides in exhaust gas
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP2014079683A (en) Denitration catalyst and method for producing the same
JP2008012379A (en) Method for preparing denitrification catalyst
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
JP5156173B2 (en) Method for producing catalyst for removing nitrogen oxides
US20130129590A1 (en) Exhaust gas purifying catalyst
JP2010207706A (en) Catalyst for removing nitrogen oxide and method for manufacturing the same
JP5804836B2 (en) Denitration catalyst for catalytic catalytic reduction
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP4959218B2 (en) Method for producing plate-shaped denitration catalyst
JP2001113167A (en) Exhaust gas treating catalyst, its manufacturing method and method for treating exhaust gas
JP2014046299A (en) Manufacturing method of denitration catalyst
JP3838415B2 (en) NOx removal catalyst and exhaust gas treatment method using the same
JP2013180282A (en) Method for regenerating denitration catalyst
JP2012139665A (en) NOx REMOVAL CATALYST AND METHOD OF REGENERATING THE SAME

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141218