JP2013180282A - Method for regenerating denitration catalyst - Google Patents

Method for regenerating denitration catalyst Download PDF

Info

Publication number
JP2013180282A
JP2013180282A JP2012047961A JP2012047961A JP2013180282A JP 2013180282 A JP2013180282 A JP 2013180282A JP 2012047961 A JP2012047961 A JP 2012047961A JP 2012047961 A JP2012047961 A JP 2012047961A JP 2013180282 A JP2013180282 A JP 2013180282A
Authority
JP
Japan
Prior art keywords
catalyst
denitration
regenerated
gypsum
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012047961A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ikemoto
清司 池本
Yasuyoshi Kato
泰良 加藤
Naomi Imada
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2012047961A priority Critical patent/JP2013180282A/en
Publication of JP2013180282A publication Critical patent/JP2013180282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating a denitration catalyst, capable of suppressing SOoxidation activity of a used denitration catalyst and maintaining high performance of denitration activity.SOLUTION: In a method for regenerating a denitration catalyst, an ammonia catalytic reduction denitration catalyst is regenerated by mixing plaster of 100-400 wt.% with the catalyst to be regenerated. A pasty material obtained by adding the plaster, water and a binder to the catalyst to be regenerated and kneading them is applied to a mesh-like object made of metal or inorganic fiber or is molded into a honeycomb state or a granular state, and thereafter is dried.

Description

本発明は脱硝触媒の再生方法に係り、特に使用済のアンモニア接触還元脱硝触媒を大がかりな化学処理を要することなく、再利用可能にする再生方法に関するものである。   The present invention relates to a regeneration method for a denitration catalyst, and more particularly to a regeneration method for reusing a used ammonia catalytic reduction denitration catalyst without requiring extensive chemical treatment.

アンモニア(NH3)接触還元脱硝法は、装置構造並びに運転操作が簡単であることから、火力発電用ボイラを始めとする大容量の排煙脱硝装置に広く用いられている(特許文献1)。これらの装置には通常数十から数百m3の触媒が使用されており、触媒活性の低下により使用できなくなった廃触媒の量は膨大な量であると見込まれている。このため、使用済の触媒を種々の処理により再生するか、有価物を回収することが、社会的にも経済的にも重要な課題となっている。 The ammonia (NH 3 ) catalytic reduction denitration method is widely used in large-capacity flue gas denitration devices such as boilers for thermal power generation because the device structure and operation are simple (Patent Document 1). In these apparatuses, a catalyst of several tens to several hundreds m 3 is usually used, and the amount of the waste catalyst that can no longer be used due to a decrease in catalyst activity is expected to be enormous. For this reason, it is important to regenerate used catalysts by various treatments or recover valuable materials from both social and economic viewpoints.

また、脱硝触媒は、実機で長時間使用されると、熱によるシンタリングや触媒毒(Na、Kなどのアルカリ金属、Ca、Srなどのアルカリ土類金属)の炭酸塩や硫酸塩などの付着により脱硝活性の低下が生じる。この他に、排ガス中のバナジウム成分や鉄分が脱硝触媒に付着、あるいは強固に吸着し、SO2酸化活性が向上し、SO3の生成量が増えることが問題となる。 In addition, denitration catalyst, when used for a long time in actual equipment, adheres to carbonates and sulfates of sintering and catalyst poisons (alkali metals such as Na and K, alkaline earth metals such as Ca and Sr). This causes a decrease in denitration activity. In addition, the vanadium component and iron content in the exhaust gas are attached to or firmly adsorbed to the denitration catalyst, so that the SO 2 oxidation activity is improved and the amount of SO 3 produced is increased.

このように実機運転時に劣化が生じた脱硝触媒の再生方法には、(1)水洗、あるいは酸性溶液等で洗浄し、触媒毒を除去する方法(特許文献2)や、脱硝活性を向上させるために、バナジウム化合物などの活性成分を添加する方法、(2)使用済脱硝触媒から被毒成分を取り除いた後、被再生触媒を新生触媒の触媒原料として利用する方法、(3)使用済触媒中の有価成分を取り出し、取り出した成分を用いて新生触媒を製造する方法、が知られている。   As described above, the regeneration method of the denitration catalyst that has deteriorated during operation of the actual machine includes (1) a method of removing the catalyst poison by washing with water or an acidic solution (Patent Document 2), or for improving the denitration activity. (2) A method of adding an active component such as a vanadium compound, (2) A method of using a regenerated catalyst as a catalyst raw material of a new catalyst after removing poisoning components from a used denitration catalyst, (3) In a used catalyst There is known a method of taking out a valuable component of the product and producing a new catalyst using the taken out component.

特開昭50-128681号公報JP 50-128681 特開昭60-209251号公報JP-A-60-209251

上記従来技術には以下に示すような課題がある。(1)に示した方法では、コストは低く抑えることができるが、洗浄によっても脱硝活性が十分に回復しない場合があること、脱硝活性を向上させるために活性成分を添加するとSO2酸化活性が向上するため、低SO2酸化と高脱硝活性を両立することが困難である場合がある。また、(3)に示した方法では、有価成分を取り出す工程にコストが非常にかかることが問題となる。 The above prior art has the following problems. In the method shown in (1), the cost can be kept low, but the denitration activity may not be sufficiently recovered even by washing, and when an active ingredient is added to improve the denitration activity, the SO 2 oxidation activity is increased. In order to improve, it may be difficult to achieve both low SO 2 oxidation and high denitration activity. Further, the method shown in (3) has a problem that the process of taking out valuable components is very expensive.

(2)に示した方法では、(1)に比べてコストは高くなるが、新生触媒と同じ操作で使用済触媒を再利用するため、新生触媒と同等の強度や寿命の触媒が得られやすいという利点がある。しかしながら、(2)の方法では、被再生触媒に既に活性成分が含まれているため、活性のコントロールが難しいという問題があった。すなわち、S分の多い石炭焚きボイラではSO2の酸化率を低く抑える必要があるが、脱硝活性を向上させようとして活性成分を新たに添加するとSO2酸化率の上昇を招く。一方、SO2酸化率を低減させようとして新生触媒に添加する被再生触媒の割合を低減しようとすると、脱硝活性も低下する。このように、使用済触媒を用いて低SO2酸化かつ高脱硝を両立することは困難であった。 In the method shown in (2), the cost is higher than in (1), but because the spent catalyst is reused in the same operation as the nascent catalyst, a catalyst with the same strength and life as the nascent catalyst can be easily obtained. There is an advantage. However, the method (2) has a problem that it is difficult to control the activity because the regenerated catalyst already contains an active component. That is, in a coal-fired boiler with a large amount of S, it is necessary to keep the SO 2 oxidation rate low. However, when an active ingredient is newly added to improve the denitration activity, the SO 2 oxidation rate is increased. On the other hand, if it is attempted to reduce the proportion of the regenerated catalyst added to the new catalyst in order to reduce the SO 2 oxidation rate, the denitration activity is also lowered. Thus, it has been difficult to achieve both low SO 2 oxidation and high denitration using a spent catalyst.

そこで、本発明の解決しようとする課題は、使用済の脱硝触媒のSO2酸化活性を低く抑え、かつ脱硝活性も高い性能を保持し得る脱硝触媒の再生方法を提供することである。 Accordingly, the problem to be solved by the present invention is to provide a method for regenerating a denitration catalyst that can keep the SO 2 oxidation activity of a used denitration catalyst low and can maintain high denitration activity.

上記課題を達成するため、本願で特許請求される発明は、以下のとおりである。
(1)アンモニア接触還元脱硝触媒の再生方法において、被再生触媒に対して100重量%以上、400重量%以下の石膏を混合することを特徴とする脱硝触媒の再生方法。
(2)被再生触媒に石膏、水およびバインダを加え、混練して得られたペースト状物を、金属または無機繊維製の網状物に塗布するか、またはハニカム状もしくは粒状に成形した後、乾燥することを特徴とする(1)記載の脱硝触媒の再生方法。
(3)被再生触媒および石膏を乾式で混合後、得られた粉末を粒状に加圧成形することを特徴とする(1)記載の脱硝触媒の再生方法。
(4)被再生触媒を予め、水または蓚酸で洗浄することを特徴とする(1)ないし(3)のいずれかに記載の脱硝触媒の再生方法。
To achieve the above object, the invention claimed in the present application is as follows.
(1) A method for regenerating an ammonia-catalyzed reduction denitration catalyst, wherein 100% by weight or more and 400% by weight or less of gypsum is mixed with a regenerated catalyst.
(2) A paste obtained by adding gypsum, water and a binder to the regenerated catalyst and kneading is applied to a metal or inorganic fiber network, or formed into a honeycomb or granular shape, and then dried. (2) The method for regenerating a denitration catalyst according to (1).
(3) The method for regenerating a denitration catalyst according to (1), wherein after the catalyst to be regenerated and gypsum are mixed in a dry process, the obtained powder is pressure-molded into granules.
(4) The method for regenerating a denitration catalyst according to any one of (1) to (3), wherein the catalyst to be regenerated is previously washed with water or oxalic acid.

本発明によれば、実機運転中にSO2酸化活性が上昇した触媒、または脱硝活性が低下した触媒に対し、これまでの再生処理を行う他に、石膏を添加する処理を行うことにより、低SO2酸化活性と高い脱硝活性の維持の両立を図ることが可能となり、これにより脱硝触媒のリサイクルを促進することが可能となる。 According to the present invention, a catalyst having an increased SO 2 oxidation activity during actual operation or a catalyst having a reduced denitration activity is subjected to a regeneration treatment in addition to the conventional regeneration treatment. It becomes possible to achieve both SO 2 oxidation activity and high denitration activity, thereby promoting the denitration catalyst recycling.

[原理・作用]
本発明者らは、被再生触媒のSO2酸化率を低く抑え、かつ脱硝活性も高く維持させる脱硝触媒の再生方法について鋭意検討した結果、本発明に至った。
[Principle / Action]
As a result of intensive studies on the regeneration method of a denitration catalyst that suppresses the SO 2 oxidation rate of the catalyst to be regenerated and keeps the denitration activity high, the present inventors have reached the present invention.

まず、脱硝活性は、酸化チタンの表面に担持されているバナジウムの酸化チタン表面積当たりのバナジウム濃度に支配され、これが高いほど脱硝活性が高く、これが低いほど脱硝活性が低下する。また、SO2酸化活性は、SO2とO2との酸化反応の速度が非常に遅く、反応律速のため、触媒全体のバナジウム含有率とSO2酸化活性とは比例関係がある。 First, the denitration activity is governed by the vanadium concentration per surface area of titanium oxide of vanadium supported on the surface of titanium oxide. The higher the value, the higher the denitration activity, and the lower the value, the lower the denitration activity. Further, the SO 2 oxidation activity has a very slow oxidation reaction rate between SO 2 and O 2, and the reaction rate is limited. Therefore, the vanadium content of the entire catalyst is proportional to the SO 2 oxidation activity.

そこで、SO2酸化活性を低下させるために、脱硝触媒中のバナジウム含有率を下げて再生するため、被再生触媒に酸化チタンを混合すると、バナジウムやモリブデンなどの活性成分が、再触媒化の過程で新たに添加された酸化チタン側に移動する。その結果、酸化チタン表面積当たりのバナジウム濃度が低下し、脱硝活性の高い触媒が得られない。そこで、本発明では、酸化チタン表面に担持されているバナジウムの酸化チタン表面積当たりのバナジウム濃度を下げることなく、触媒全体のバナジウム含有率を下げるために、使用済脱硝触媒に石膏を添加する。石膏は、バナジウムやモリブデンなどの活性成分を吸着しにくいため、使用済脱硝触媒中の酸化チタン上のバナジウムは、酸化チタン上に止まったままであり、酸化チタン表面積当たりのバナジウム濃度を低下させることなく全体のバナジウム含有率を下げることが可能となる。これにより、低SO2酸化活性と高脱硝活性の両立が可能となる。 Therefore, in order to reduce the SO 2 oxidation activity, the content of vanadium in the denitration catalyst is reduced and regenerated. When titanium oxide is mixed with the regenerated catalyst, active components such as vanadium and molybdenum are recatalyzed. To move to the newly added titanium oxide side. As a result, the vanadium concentration per titanium oxide surface area decreases, and a catalyst having high denitration activity cannot be obtained. Therefore, in the present invention, gypsum is added to the used denitration catalyst in order to reduce the vanadium content of the entire catalyst without reducing the vanadium concentration per surface area of the titanium oxide of vanadium supported on the titanium oxide surface. Since gypsum is difficult to adsorb active components such as vanadium and molybdenum, the vanadium on titanium oxide in the used denitration catalyst remains on the titanium oxide without reducing the vanadium concentration per titanium oxide surface area. It becomes possible to lower the overall vanadium content. This makes it possible to achieve both low SO 2 oxidation activity and high denitration activity.

本発明において、用いる石膏の重量は、被再生触媒の重量に対して100重量%以上、400重量%以下である。石膏の添加量が100重量%未満では、顕著な効果は期待できず、400重量%を越えると、石膏の添加量が多すぎて成形性が悪くなる。本発明に用いられる石膏には、ニ水石膏、無水石膏、半水石膏、脱硫石膏、廃石膏ボードなどが選ばれるが、この範囲内であれば特に制限されない。   In the present invention, the weight of gypsum used is 100% by weight or more and 400% by weight or less based on the weight of the regenerated catalyst. If the amount of gypsum added is less than 100% by weight, a remarkable effect cannot be expected, and if it exceeds 400% by weight, the amount of gypsum added is too large and the moldability deteriorates. The gypsum used in the present invention is selected from dihydrate gypsum, anhydrous gypsum, hemihydrate gypsum, desulfurized gypsum, waste gypsum board, and the like, but is not particularly limited as long as it is within this range.

本発明に用いられる被再生触媒としては、アンモニア接触還元脱硝触媒で少なくとも酸化チタンを触媒成分として含有しているものであればよく、これに活性成分として、バナジウム、モリブデン、タングステンなどを含有した脱硝触媒が好適である。
本発明の再生処理に先立ち不純物の除去や加熱などの補助的な再生処理を追加しても、本発明の範囲をはずれるものではない。また、石膏の添加に加えて、新たな活性成分を添加することも、本発明の範囲に含まれる。
The regenerated catalyst used in the present invention may be any ammonia catalytic reduction denitration catalyst that contains at least titanium oxide as a catalyst component, and denitration containing vanadium, molybdenum, tungsten, or the like as an active component. A catalyst is preferred.
The addition of an auxiliary regeneration process such as removal of impurities or heating prior to the regeneration process of the present invention does not depart from the scope of the present invention. In addition to the addition of gypsum, addition of a new active ingredient is also included in the scope of the present invention.

本発明における被再生触媒は板状触媒、粒状触媒、ハニカム形状などが選ばれるが、いずれの形状であっても適用が可能である。ただし、板状触媒を被再生触媒として用いる場合では、石膏を混合する前に、金属製の基材などの非触媒成分と触媒成分とを分離することが好ましい。この際、添加される石膏の重量は、触媒成分のみの重量を基準とする。
本発明による担体への担持方法としては、通常脱硝触媒を製造する際に採用される担持方法を取ることができる。例えば、板状触媒を得るためには、脱硝触媒成分と石膏と水とを混練して得られるペーストに無機製短繊維を混合した、水分が30%前後の触媒ペーストを、ローラを用いて金属あるいはセラミック製の網状物の目が埋まるように塗布する方法を取ることができる。更に、水分が30-35%の触媒ペーストに無機製短繊維を添加したものを金型で押出してハニカム状や粒状に成形する方法も可能である。また、担体として無機繊維製コルゲートハニカムやセラミック製不織布、セラミックハニカム担体などを用いる場合には、触媒成分、石膏と水とを混合して得られる30〜50wt%のスラリに浸漬して繊維隙間あるいは表面に触媒スラリをコーティングする方法が適する。
As the catalyst to be regenerated in the present invention, a plate-like catalyst, a granular catalyst, a honeycomb shape, or the like is selected, but any shape can be applied. However, when a plate-like catalyst is used as a regenerated catalyst, it is preferable to separate a non-catalytic component such as a metal substrate and a catalytic component before mixing the gypsum. At this time, the weight of the gypsum added is based on the weight of the catalyst component alone.
As a loading method on the carrier according to the present invention, a loading method usually employed when producing a denitration catalyst can be employed. For example, in order to obtain a plate-like catalyst, a catalyst paste having a moisture content of about 30% mixed with a paste obtained by kneading a denitration catalyst component, gypsum and water, and having a moisture content of about 30%, is obtained using a roller. Or it can take the method of apply | coating so that the eyes of the ceramic network may be filled. Furthermore, a method in which a catalyst paste having a moisture content of 30 to 35% added with inorganic short fibers is extruded with a mold and formed into a honeycomb or granular shape is also possible. Further, when using an inorganic fiber corrugated honeycomb, a ceramic nonwoven fabric, a ceramic honeycomb carrier or the like as a carrier, it is immersed in a slurry of 30 to 50 wt% obtained by mixing a catalyst component, gypsum and water, or a fiber gap or A method of coating the surface with a catalyst slurry is suitable.

上記した触媒ペースト、触媒スラリ、及び含浸溶液にコロイダル状のシリカ、増粘効果のある水溶性のセルロースエーテルやポリビニールアルコールなど結合性や強度を高めるためのバインダ(添加剤)を添加することも、本発明の範囲内である。
以上の各方法により各種基材に担持されたものは、必要に応じて切断、成形、変形などの処理を経た後、風乾や熱風乾燥など公知の手段で乾燥され、しかる後に必要に応じて、350〜600℃で焼成して触媒として用いられる。
It is also possible to add a binder (additive) for enhancing the binding properties and strength such as colloidal silica, water-soluble cellulose ether and polyvinyl alcohol having a thickening effect to the catalyst paste, catalyst slurry and impregnation solution described above. Is within the scope of the present invention.
What is supported on various substrates by each of the above methods, after undergoing treatments such as cutting, molding, deformation, etc., if necessary, is dried by known means such as air drying or hot air drying, and then if necessary, It is calcined at 350 to 600 ° C. and used as a catalyst.

本発明において、被再生触媒と石膏とを乾式で混合する方法には、ニーダ、乳鉢、らいかい機の他に、ハンマーミル、遊星ボールミルのような粉砕機を用いることが可能である。また得られた粉末は、錠剤成型器などの成型器を用いて成型することが好ましい。   In the present invention, in the dry mixing method of the catalyst to be regenerated and gypsum, a pulverizer such as a hammer mill and a planetary ball mill can be used in addition to a kneader, a mortar, and a raker. The obtained powder is preferably molded using a molding machine such as a tablet molding machine.

また、再生に用いられる被再生触媒の組成、石膏の添加量は、転用先プラントにおける脱硝活性、およびSO2酸化活性の目標性能に応じて適宜選ばれる。その際、用いられる使用済の被再生触媒は単独であっても、複数の異なる組成、異なる形状の触媒の組み合わせであっても、本発明の範囲内に含まれる。 Further, the composition of the catalyst to be regenerated used for regeneration and the amount of gypsum added are appropriately selected according to the target performance of the denitration activity and SO 2 oxidation activity in the diversion destination plant. In this case, the used regenerated catalyst used alone or a combination of catalysts having a plurality of different compositions and different shapes is included in the scope of the present invention.

以下、具体的に実施例を用いて本発明を詳細に説明する。
実施例1
石炭焚きボイラの排煙脱硝装置に用いて活性低下した酸化チタン/酸化モリブデン/酸化バナジウム触媒(Ti/Mo/V=95.5/1.0/4.5原子比)を200メッシュ以下、90%以上になるように粉砕したもの0.72kgに、石膏粉末(キシダ化学社製、比表面積14.6m2/g)を1.68kg添加し、水を0.72kg、シリカゾル(日産化学社製、商品名OSゾル)0.49kgを入れ、ニーダで混練しペースト状のものを得た後、これにシリカアルミナ系セラミック繊維(イビデン社製、商品名イビウール)を0.36kg添加後、混練し触媒ペーストを得た。得られたペーストを厚さ0.2mmのSUS430製鋼材をメタルラス加工した基材の上に置き、これを二枚のポリエチレンシートに挟んで一対の加圧ローラを通して、メタルラス基材の網目間及び表面に塗布した。これを120℃で一時間乾燥後、500℃で2時間焼成して板状触媒を得た。本触媒の石膏と触媒成分の重量比は50/50で、石膏の添加量は被再生触媒の触媒重量に対して100重量%である。メタルラスを除いた全担持重量は1kg/m2であった。
Hereinafter, the present invention will be described in detail using specific examples.
Example 1
Titanium oxide / molybdenum oxide / vanadium oxide catalyst (Ti / Mo / V = 95.5 / 1.0 / 4.5 atomic ratio) with reduced activity used in flue gas denitrification equipment for coal-fired boilers to be 200 mesh or less, 90% or more Add 1.68 kg of gypsum powder (Kishida Chemical Co., specific surface area 14.6 m 2 / g) to 0.72 kg of the pulverized product, add 0.72 kg of water and 0.49 kg of silica sol (Nissan Chemical Co., Ltd., trade name OS sol) After kneading with a kneader to obtain a paste, 0.36 kg of silica-alumina ceramic fiber (trade name Ibi wool, manufactured by Ibiden Co., Ltd.) was added thereto and kneaded to obtain a catalyst paste. The obtained paste is placed on a metal lath processed base material made of SUS430 steel with a thickness of 0.2 mm, sandwiched between two polyethylene sheets, and passed through a pair of pressure rollers between the mesh and the surface of the metal lath base material. Applied. This was dried at 120 ° C. for 1 hour and then calcined at 500 ° C. for 2 hours to obtain a plate catalyst. The weight ratio of gypsum and catalyst component of this catalyst is 50/50, and the amount of gypsum added is 100% by weight with respect to the catalyst weight of the regenerated catalyst. The total supported weight excluding metal lath was 1 kg / m 2 .

実施例2
実施例1の粉砕した触媒を0.79kgに、また石膏粉末を1.6kgに変更した以外は、実施例1と同様に行った。本触媒の石膏と触媒成分の重量比は33.3/66.7で、石膏の添加量は被再生触媒の触媒重量に対して200重量%である。メタルラスを除いた全担持重量は1kg/m2であった。
Example 2
The same procedure as in Example 1 was performed except that the pulverized catalyst of Example 1 was changed to 0.79 kg and the gypsum powder was changed to 1.6 kg. The weight ratio of gypsum and catalyst components in this catalyst is 33.3 / 66.7, and the amount of gypsum added is 200% by weight with respect to the catalyst weight of the regenerated catalyst. The total supported weight excluding metal lath was 1 kg / m 2 .

実施例3
実施例1の粉砕した触媒を0.6kgに、石膏粉末を1.8kgに変更した以外は、実施例1と同様に行った。本触媒の石膏と触媒成分の重量比は25/75で、石膏の添加量は被再生触媒の触媒重量に対して300重量%である。メタルラスを除いた全担持重量は1kg/m2であった。
Example 3
The same procedure as in Example 1 was conducted except that the pulverized catalyst of Example 1 was changed to 0.6 kg and the gypsum powder was changed to 1.8 kg. The weight ratio of gypsum and catalyst component of this catalyst is 25/75, and the amount of gypsum added is 300% by weight with respect to the catalyst weight of the regenerated catalyst. The total supported weight excluding metal lath was 1 kg / m 2 .

実施例4
実施例1の粉砕した触媒を0.48kgに、石膏粉末を1.92kgに変更した以外は、実施例1と同様に行った。本触媒の石膏と触媒成分の重量比は20/80で、石膏の添加量は被再生触媒の触媒重量に対して400重量%である。メタルラスを除いた全担持重量は1kg/m2であった。
Example 4
The same procedure as in Example 1 was carried out except that the pulverized catalyst of Example 1 was changed to 0.48 kg and the gypsum powder was changed to 1.92 kg. The weight ratio of gypsum and catalyst component of this catalyst is 20/80, and the amount of gypsum added is 400% by weight with respect to the catalyst weight of the regenerated catalyst. The total supported weight excluding metal lath was 1 kg / m 2 .

比較例1
実施例1において、石膏を添加しない以外は実施例1と同様に行った。
Comparative Example 1
In Example 1, it carried out like Example 1 except not adding gypsum.

比較例2
実施例2の石膏粉末の代わりに、酸化チタン粉末(石原産業社製、商品名MC90、比表面積90m2/g)を用いた以外は、実施例1と同様に行った。本触媒の組成はTi/Mo/V=98.17/0.33/1.5原子比であり、メタルラスを除いた全担持重量は1kg/m2であった。
Comparative Example 2
It carried out similarly to Example 1 except having used the titanium oxide powder (Ishihara Sangyo company make, brand name MC90, specific surface area 90m < 2 > / g) instead of the gypsum powder of Example 2. FIG. The composition of this catalyst was Ti / Mo / V = 98.17 / 0.33 / 1.5 atomic ratio, and the total supported weight excluding metal lath was 1 kg / m 2 .

実施例1〜4及び比較例1〜2で得られた脱硝触媒を、表2に示す条件でその脱硝率を測定した結果を表1に、実施例1〜4及び比較例1〜2で得られた脱硝触媒を、表3に示す条件でそのSO2酸化率を測定した結果を表1に合わせて示す。表1より、本発明による実施例1〜4の脱硝触媒の脱硝性能は高いことが分かる。なお、本発明の範囲外である比較例2の触媒は、脱硝率が低いことが分かる。また、表1のSO2酸化率から、本発明による実施例1〜4の脱硝触媒のSO2酸化率が低いことが分かる。 The results obtained by measuring the denitration rate of the denitration catalysts obtained in Examples 1 to 4 and Comparative Examples 1 and 2 under the conditions shown in Table 2 are obtained in Table 1, and Examples 1 to 4 and Comparative Examples 1 and 2 are obtained. Table 1 shows the results of measuring the SO 2 oxidation rate of the obtained denitration catalyst under the conditions shown in Table 3. Table 1 shows that the denitration performance of the denitration catalysts of Examples 1 to 4 according to the present invention is high. In addition, it turns out that the catalyst of the comparative example 2 which is outside the scope of the present invention has a low denitration rate. Further, the SO 2 oxidation rate of Table 1, it can be seen SO 2 oxidation rate of the denitration catalyst of Examples 1 to 4 according to the present invention is low.

Figure 2013180282
Figure 2013180282

Figure 2013180282
Figure 2013180282

Figure 2013180282
Figure 2013180282

Claims (4)

アンモニア接触還元脱硝触媒の再生方法において、被再生触媒に対して100重量%以上、400重量%以下の石膏を混合することを特徴とする脱硝触媒の再生方法。 A method for regenerating an ammonia catalytic reduction denitration catalyst, comprising mixing 100% by weight or more and 400% by weight or less of gypsum with respect to the catalyst to be regenerated. 被再生触媒に石膏、水およびバインダを加え、混練して得られたペースト状物を、金属または無機繊維製の網状物に塗布するか、またはハニカム状もしくは粒状に成形した後、乾燥することを特徴とする請求項1記載の脱硝触媒の再生方法。 Applying gypsum, water, and binder to the catalyst to be regenerated and kneading and applying the paste-like material to a metal or inorganic fiber network, or forming it into a honeycomb or granular shape and then drying it 2. The method for regenerating a denitration catalyst according to claim 1, wherein 被再生触媒および石膏を乾式で混合後、得られた粉末を粒状に加圧成形することを特徴とする請求項1記載の脱硝触媒の再生方法。 2. The method for regenerating a denitration catalyst according to claim 1, wherein the catalyst to be regenerated and gypsum are mixed in a dry method, and the obtained powder is pressure-molded into granules. 被再生触媒を予め、水または蓚酸で洗浄することを特徴とする請求項1ないし3のいずれかに記載の脱硝触媒の再生方法。 The method for regenerating a denitration catalyst according to any one of claims 1 to 3, wherein the catalyst to be regenerated is washed with water or oxalic acid in advance.
JP2012047961A 2012-03-05 2012-03-05 Method for regenerating denitration catalyst Pending JP2013180282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012047961A JP2013180282A (en) 2012-03-05 2012-03-05 Method for regenerating denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012047961A JP2013180282A (en) 2012-03-05 2012-03-05 Method for regenerating denitration catalyst

Publications (1)

Publication Number Publication Date
JP2013180282A true JP2013180282A (en) 2013-09-12

Family

ID=49271330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047961A Pending JP2013180282A (en) 2012-03-05 2012-03-05 Method for regenerating denitration catalyst

Country Status (1)

Country Link
JP (1) JP2013180282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121423A (en) * 2020-01-31 2021-08-26 三菱パワー株式会社 Regenerated denitration catalyst and method for producing the same
CN115591542A (en) * 2021-07-09 2023-01-13 山东亮剑环保新材料有限公司(Cn) Denitration catalyst and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121423A (en) * 2020-01-31 2021-08-26 三菱パワー株式会社 Regenerated denitration catalyst and method for producing the same
JP7451195B2 (en) 2020-01-31 2024-03-18 三菱重工業株式会社 Manufacturing method of regenerated denitrification catalyst
CN115591542A (en) * 2021-07-09 2023-01-13 山东亮剑环保新材料有限公司(Cn) Denitration catalyst and production method thereof

Similar Documents

Publication Publication Date Title
JP2013244469A (en) Method for producing denitration catalyst
CN102166514A (en) Preparation method of structured flue gas denitration catalyst, prepared catalyst and application of catalyst
CN109926042B (en) High-wear-resistance flat plate type denitration catalyst and preparation method thereof
JP6604951B2 (en) Vanadium-containing catalyst and method for reduction of nitric oxide in exhaust gas
JP4225735B2 (en) Nitrogen oxide removing catalyst, method for producing the same, and method for removing nitrogen oxide
KR101717319B1 (en) Nox reduction catalyst for exhaust gas of biomass combustion and nox reduction method
KR102168261B1 (en) Catalyst for oxidation reaction of metallic mercury and reduction reaction of nitrogen oxides, and exhaust gas purification method
JP2013180282A (en) Method for regenerating denitration catalyst
JP2015192999A (en) Method for producing exhaust gas treatment catalyst using used catalyst and exhaust gas treatment catalyst
JP2006223959A (en) Method of producing exhaust gas denitrification catalyst
WO2017072138A1 (en) Monolithic honeycomb oxidation catalyst and method of preparation thereof
CN101516509B (en) Method for production of catalyst and catalyst produced by the method
JP5457129B2 (en) NOx removal catalyst and method for producing the same
JP2008012379A (en) Method for preparing denitrification catalyst
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP2010207706A (en) Catalyst for removing nitrogen oxide and method for manufacturing the same
JP5156173B2 (en) Method for producing catalyst for removing nitrogen oxides
JP2009226238A (en) Method of treating exhaust gas and catalyst
JP5701066B2 (en) NOx removal catalyst and its regeneration method
JP2012245480A (en) Reproduction method for used denitration catalyst
KR20220025883A (en) Regenerated denitration catalyst, manufacturing method thereof, and denitration device
JP4511915B2 (en) Regeneration catalyst for denitration catalyst and regeneration method using the same
JP2021121423A5 (en)
JP2010194452A (en) Method of manufacturing catalyst for nitrogen oxide removal using waste gypsum board
JP5804836B2 (en) Denitration catalyst for catalytic catalytic reduction

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141217