JP2013244469A - Method for producing denitration catalyst - Google Patents

Method for producing denitration catalyst Download PDF

Info

Publication number
JP2013244469A
JP2013244469A JP2012120565A JP2012120565A JP2013244469A JP 2013244469 A JP2013244469 A JP 2013244469A JP 2012120565 A JP2012120565 A JP 2012120565A JP 2012120565 A JP2012120565 A JP 2012120565A JP 2013244469 A JP2013244469 A JP 2013244469A
Authority
JP
Japan
Prior art keywords
catalyst
denitration
calcium silicate
paste
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012120565A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ikemoto
清司 池本
Yasuyoshi Kato
泰良 加藤
Naomi Imada
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2012120565A priority Critical patent/JP2013244469A/en
Publication of JP2013244469A publication Critical patent/JP2013244469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a highly active denitration catalyst suitably usable in an ammonia catalytic reduction denitration method.SOLUTION: A denitration catalyst is obtained by a production method that includes kneading titanium oxide containing a sulfate radial (SO) or the like, or its precursor, a catalytically active component comprising salt or the like of oxo acid having at least one element selected from a group consisting of Mo, W and V, calcium silicate and water, and further inorganic fiber and/or an inorganic sol-like substance, if necessary to obtain catalyst paste, and then molding the paste.

Description

本発明は、脱硝触媒の製造法に関する。より詳細に、本発明は、アンモニア接触還元脱硝法に好適に使用できる高活性な脱硝触媒の製造法に関する。   The present invention relates to a method for producing a denitration catalyst. More specifically, the present invention relates to a method for producing a highly active denitration catalyst that can be suitably used for ammonia catalytic reduction denitration.

発電所、各種工場、自動車等から排出される排煙中の窒素酸化物(NOX)は、光化学スモッグや酸性雨の原因物質である。窒素酸化物の除去方法として、アンモニア選択的接触還元(SCR)脱硝法が、石炭火力発電所を中心に広く用いられている。このSCR脱硝法に用いられる触媒として、バナジウムおよびモリブデンまたはタングステンを触媒活性成分とした酸化チタン系触媒が知られている。この触媒は、上記触媒活性成分の塩類と、酸化チタンまたはその前駆体とを、水の存在下で混練し、得られたペーストを板状、ハニカム状または粒状に成型し、次いで乾燥および焼成することによって製造される。 Nitrogen oxides (NO x ) in the smoke emitted from power plants, various factories, automobiles, etc. are causative substances for photochemical smog and acid rain. As a method for removing nitrogen oxides, ammonia selective catalytic reduction (SCR) denitration is widely used mainly in coal-fired power plants. As a catalyst used in this SCR denitration method, a titanium oxide catalyst having vanadium and molybdenum or tungsten as catalytic active components is known. This catalyst is prepared by kneading the salt of the above-mentioned catalytically active component and titanium oxide or a precursor thereof in the presence of water, forming the resulting paste into a plate shape, honeycomb shape or granular shape, and then drying and firing. Manufactured by.

触媒原料であるTiO2は硫酸法で製造することができる。硫酸法によって作られたTiO2は硫酸根(SO4)を多く含有している。ところが、硫酸根を含有しているTiO2を用いると触媒調製の最終工程の焼成段階でSO3が飛散することがある。これを防ぐために、焼成時の温度を硫酸根が飛散しない程度の低温にすることが考えられる。しかしながら、低温焼成で得られた触媒を用いると、脱硝操業時にSO3が飛散し、脱硝反応器の後段に続く空気予熱器や電気集塵機などを腐食させることがある。このような腐食を防止するために、硫酸アルミニウムとアルカリ土類金属塩を添加し、触媒中の硫酸根を安定固定化することが提案されている(特許文献1)。 TiO 2 which is a catalyst raw material can be produced by a sulfuric acid method. TiO 2 produced by the sulfuric acid method contains a large amount of sulfate radicals (SO 4 ). However, when TiO 2 containing sulfate radicals is used, SO 3 may be scattered at the firing stage of the final step of catalyst preparation. In order to prevent this, it is conceivable that the temperature during firing is low enough to prevent the sulfate radicals from scattering. However, when a catalyst obtained by low-temperature firing is used, SO 3 is scattered during the denitration operation, which may corrode an air preheater or an electric dust collector following the denitration reactor. In order to prevent such corrosion, it has been proposed to add aluminum sulfate and an alkaline earth metal salt to stably fix the sulfate radical in the catalyst (Patent Document 1).

一般に、ガス用触媒は、多孔質なものの方がガスとの接触面積が広く性能が高いと言われている。触媒を多孔質化して触媒中の細孔を増加させる手段としては、触媒原料を混合して得られるペースト状物をできるだけ高水分化することや、無機繊維などを添加して焼成時の焼結による細孔の減少を防止するなどの方法が知られている(特許文献2)。また、ペーストに増粘剤を添加して保水性を高める方法が知られている。増粘剤としては、ポリビニルアルコールやポリアクリル酸アミド系の増粘剤や、カルボキシセルロースなどのセルロース系の増粘剤などが挙げられる(特許文献3)。しかしながら、一旦焼成したものを触媒原料として用いた場合には効果を発揮するが、予め焼成を行わないで、触媒成分を混練後直ちに成型する場合においては、触媒焼成時に発生する増粘剤の分解ガスと触媒成分とが反応した発熱により触媒が焼損する恐れがある。   In general, it is said that a porous catalyst for gas has a wider contact area with gas and higher performance. As a means to increase the pores in the catalyst by making the catalyst porous, the paste-like material obtained by mixing the catalyst raw materials is made to have as high a moisture as possible, or inorganic fibers are added and sintered at the time of firing. A method is known such as preventing the reduction of pores due to the above (Patent Document 2). Moreover, the method of adding a thickener to a paste and improving water retention is known. Examples of the thickener include polyvinyl alcohol and polyacrylic acid amide thickener, and cellulose thickener such as carboxycellulose (Patent Document 3). However, it is effective when it is fired once as a catalyst raw material. However, when the catalyst components are molded immediately after kneading without being fired in advance, the thickener decomposed during catalyst firing is decomposed. There is a possibility that the catalyst may burn out due to heat generated by the reaction of the gas and the catalyst component.

特開2012−35150号公報JP 2012-35150 A 特開昭52−65191号公報JP-A-52-65191 特開平5−192583号公報JP-A-5-192583 特開2006−314935号公報JP 2006-314935 A

本発明の課題は、硫酸根を固定化することによりSO3の飛散を防ぎ、かつ触媒を多孔質化することにより高活性な触媒を得ることができる製造法を提供することである。
ところで、リンによる触媒の劣化を防止することを目的とした排ガス脱硝触媒の製法として、特許文献4は、チタン、タングステン、モリブデンおよびバナジウムから選ばれた一つ以上の酸化物を含む組成物からなる成形体に、珪酸カルシウムを含有するスラリ状物を浸漬または塗布することを特徴とする排ガス脱硝触媒の製法を提案している。しかし、この文献には硫酸根の固定安定化および触媒の多孔質化に関する示唆がない。
An object of the present invention is to provide a production method capable of preventing the scattering of SO 3 by immobilizing sulfate radicals and obtaining a highly active catalyst by making the catalyst porous.
By the way, as a method for producing an exhaust gas denitration catalyst for the purpose of preventing deterioration of the catalyst due to phosphorus, Patent Document 4 is composed of a composition containing one or more oxides selected from titanium, tungsten, molybdenum and vanadium. A process for producing an exhaust gas denitration catalyst characterized by immersing or applying a slurry containing calcium silicate to a molded body is proposed. However, this document has no suggestion regarding the stabilization and fixation of sulfate radicals and the formation of a porous catalyst.

本発明者らは、上記課題を解決すべく鋭意検討した結果、ケイ酸カルシウムを酸化チタンと触媒活性成分とからなるペーストに添加することによって、硫酸根の固定安定化と触媒の多孔質化とを成し得ることを見出した。本発明は、この知見に基づき更に検討を重ねることによって完成するに至ったものである。   As a result of intensive studies to solve the above problems, the present inventors have added calcium silicate to a paste made of titanium oxide and a catalytically active component, thereby stabilizing and fixing sulfate radicals and making the catalyst porous. It was found that can be achieved. The present invention has been completed by further studies based on this finding.

すなわち、本発明は以下の態様を包含するものである。
〔1〕酸化チタンあるいはその前駆体、触媒活性成分、ケイ酸カルシウムおよび水を混練して触媒ペーストを得、
次いで該ペーストを成形することを含む脱硝触媒の製造法。
〔2〕触媒活性成分が、可溶性塩類である、〔1〕に記載の脱硝触媒の製造法。
〔3〕触媒活性成分が、Mo、WおよびVからなる群から選ばれる少なくとも一つの元素を有するオキソ酸の塩である、〔1〕に記載の脱硝触媒の製造法。
〔4〕酸化チタンあるいはその前駆体が硫酸根(SO4)を含有するものであり、
ケイ酸カルシウムの量が、CaO/SO4のモル比で0.5超1.0以下となる量である、〔1〕〜〔3〕のいずれかひとつに記載の脱硝触媒の製造法。
〔5〕触媒ペーストの混練において無機繊維および/または無機ゾル状物をさらに用いる、〔1〕〜〔4〕のいずれかひとつに記載の脱硝触媒の製造法。
That is, the present invention includes the following aspects.
[1] Titanium oxide or a precursor thereof, a catalytically active component, calcium silicate and water are kneaded to obtain a catalyst paste,
Next, a method for producing a denitration catalyst comprising forming the paste.
[2] The method for producing a denitration catalyst according to [1], wherein the catalytically active component is a soluble salt.
[3] The method for producing a denitration catalyst according to [1], wherein the catalytically active component is a salt of oxo acid having at least one element selected from the group consisting of Mo, W and V.
[4] Titanium oxide or its precursor contains sulfate radical (SO 4 ),
The method for producing a denitration catalyst according to any one of [1] to [3], wherein the amount of calcium silicate is an amount that results in a molar ratio of CaO / SO 4 of more than 0.5 and 1.0 or less.
[5] The method for producing a denitration catalyst according to any one of [1] to [4], wherein inorganic fibers and / or inorganic sols are further used in kneading the catalyst paste.

本発明によれば、TiO2中に含まれる硫酸根はケイ酸カルシウム(xCaO・ySiO2・zH2O)のCaO成分と反応させてCaSO4を生成させることにより固定化させることができる(式1参照)。その際に、Caイオンが抜けて、網目様の構造を有するSiO2が生成する。この構造の隙間が細孔となるため、多孔質な触媒にすることができる。また、多孔質な触媒はガスの拡散速度が向上するので脱硝活性を高くすることができる。
TiO2・aSO4・bH2O + xCaO・ySiO2・zH2O ->
TiO2 + xCaSO4 + ySiO2 + (a‐x)SO4 + (b+z)H2O + x/2O2 (式1)
According to the present invention, the sulfate radical contained in TiO 2 can be immobilized by reacting with the CaO component of calcium silicate (xCaO · ySiO 2 · zH 2 O) to form CaSO 4 (formula 1). At that time, Ca ions are released and SiO 2 having a network-like structure is generated. Since the gaps in this structure become pores, a porous catalyst can be obtained. Moreover, since the porous catalyst improves the gas diffusion rate, the denitration activity can be increased.
TiO 2・ aSO 4・ bH 2 O + xCaO ・ ySiO 2・ zH 2 O->
TiO 2 + xCaSO 4 + ySiO 2 + (a-x) SO 4 + (b + z) H 2 O + x / 2O 2 (Formula 1)

本発明に係る脱硝触媒の製造法は、酸化チタンあるいはその前駆体、触媒活性成分、ケイ酸カルシウムおよび水を混練して触媒ペーストを得、
次いで該ペーストを成形することを含む。
The method for producing a denitration catalyst according to the present invention is obtained by kneading titanium oxide or a precursor thereof, a catalytically active component, calcium silicate and water to obtain a catalyst paste,
Then forming the paste.

本発明で用いられるケイ酸カルシウムは、CaOとSiO2を含有するものであれば特に限定されない。例えば、結晶質ケイ酸カルシウム水和物、非晶質ケイ酸カルシウム水和物、ウォラストナイト(CaSiO3)、けいカル肥料などが挙げられる。但し、アルカリ金属元素やCa以外のアルカリ土類金属元素の含有量が少ないケイ酸カルシウムが好ましい。アルカリ金属元素やCa以外のアルカリ土類金属元素の含有量が多いケイ酸カルシウムは、脱硝触媒の活性成分を被毒することがある。また、本発明のケイ酸カルシウムの添加量は、CaO/SO4のモル比で、好ましくは0.45以上1.1以下、より好ましくは0.5以上1.0以下、さらに好ましくは0.5超1.0以下、よりさらに好ましくは0.5超0.8以下である。ケイ酸カルシウムの量が少なすぎると硫酸根の固定化の効果が得にくい傾向がある。ケイ酸カルシウムの量が多すぎると脱硝活性が低下する傾向がある。ケイ酸カルシウムを添加する場合、水以外にコロイダルシリカなどのバインダや、メタタングステン酸アンモニウム水溶液などの触媒活性成分が含まれていても特に問題はない。 The calcium silicate used in the present invention is not particularly limited as long as it contains CaO and SiO 2 . For example, crystalline calcium silicate hydrate, amorphous calcium silicate hydrate, wollastonite (CaSiO 3 ), silicic fertilizer and the like can be mentioned. However, calcium silicate with a low content of alkali metal elements and alkaline earth metal elements other than Ca is preferable. Calcium silicate with a high content of alkaline earth metal elements other than alkali metal elements and Ca may poison the active components of the denitration catalyst. The addition amount of the calcium silicate of the present invention is CaO / SO 4 molar ratio, preferably 0.45 or more and 1.1 or less, more preferably 0.5 or more and 1.0 or less, and still more preferably 0.00. It is more than 5 and 1.0 or less, more preferably more than 0.5 and 0.8 or less. If the amount of calcium silicate is too small, the effect of fixing sulfate sulfate tends to be difficult to obtain. If the amount of calcium silicate is too large, the denitration activity tends to decrease. When calcium silicate is added, there is no particular problem even if a binder such as colloidal silica or a catalytically active component such as an aqueous solution of ammonium metatungstate is contained in addition to water.

本発明で用いられる酸化チタンおよびその前駆体は、特に制限はないが、硫酸根を含んでいる酸化チタンおよびその前駆体が好ましい。硫酸法で製造されたTiO2やアルカリで洗浄する前のTiO2を用いることが好ましい。この他に、TiO2原料としては、含水酸化チタンや酸化チタンのゾル状物の乾燥体、酸化チタンの前駆体、TiO2−SiO2の複合酸化物を用いることができる。また、酸化チタンと硫酸アルミニウムを水の存在下で混合し、硫酸根をTiO2表面に予め吸着させたものであってもよい。 The titanium oxide and its precursor used in the present invention are not particularly limited, but a titanium oxide containing a sulfate group and its precursor are preferable. It is preferable to use TiO 2 produced by a sulfuric acid method or TiO 2 before washing with an alkali. In addition, as the TiO 2 raw material, a dry product of hydrous titanium oxide or titanium oxide sol, a precursor of titanium oxide, or a composite oxide of TiO 2 —SiO 2 can be used. Alternatively, titanium oxide and aluminum sulfate may be mixed in the presence of water, and sulfate radicals may be adsorbed on the surface of TiO 2 in advance.

本発明で用いられる触媒活性成分としては、通常の脱硝触媒の原料に用いられるものを使用することができる。触媒活性成分である可溶性塩類は、Mo、WおよびVからなる群から選ばれる少なくとも一つの元素を有するオキソ酸の塩であることが望ましい。W原料としては、該当する金属のWO4型イオンを含む酸素酸あるいはヘテロポリ酸、メタあるいはパラタングステン酸アンモニウムなどのアンモニウム塩などが挙げられる。Mo原料としては、該当する金属のMoO4型イオンを含むアンモニウム塩であるモリブデン酸アンモニウム、もしくは、該当する金属の酸化物である三酸化モリブデンが挙げられる。V原料としては、メタバナジン酸アンモニウムなどのアンモニウム塩が挙げられる。触媒活性成分の添加量には特に制限は無いが、TiO2に対し各々0atom%を超えて3atom%以下に選定される。TiO2原料の比表面積が大きい場合には添加量を多めに、小さい場合に添加量を少なめに選定すると脱硝性能を高く維持でき、またSO2の酸化性能を低く抑えることができ好都合である。これら触媒活性成分の添加方法はどのような方法であっても良いが、水の存在下でニーダを用いて混練するか、または加熱混練することが経済的であり優れている。
また、これら触媒活性成分となる原料の他に、無機繊維および/またはシリカゾルなどの無機ゾル状物のような、通常の脱硝触媒に添加される原料を加えることが好ましい。
As the catalytically active component used in the present invention, those used as a raw material for ordinary denitration catalysts can be used. The soluble salt which is a catalytically active component is desirably a salt of oxo acid having at least one element selected from the group consisting of Mo, W and V. Examples of the W raw material include oxygen acids or heteropolyacids containing WO 4 type ions of the corresponding metal, and ammonium salts such as meta or ammonium paratungstate. Examples of the Mo raw material include ammonium molybdate, which is an ammonium salt containing MoO 4 type ions of the corresponding metal, and molybdenum trioxide, which is an oxide of the corresponding metal. Examples of the V raw material include ammonium salts such as ammonium metavanadate. The amount of the catalytically active component added is not particularly limited, but is selected to be more than 0 atom% and not more than 3 atom% with respect to TiO 2 . When the specific surface area of the TiO 2 raw material is large, it is advantageous that the denitration performance can be kept high and the oxidation performance of SO 2 can be kept low by selecting a large addition amount and a small addition amount when it is small. Any method for adding these catalytically active components may be used, but it is economical and excellent to knead using a kneader in the presence of water or to knead by heating.
In addition to the raw materials to be the catalytically active components, it is preferable to add raw materials that are added to a normal denitration catalyst such as inorganic sols and / or inorganic sols such as silica sol.

本発明における脱硝触媒の製造法において、酸化チタンおよびその前駆体と、触媒活性成分である可溶性塩類と、ケイ酸カルシウムとの混合は、水と共に全量を一度に混練する方法; 酸化チタンおよびその前駆体と触媒活性成分とを混練し、次いでケイ酸カルシウムを添加して混合する方法などを採用することができる。効率良くTiO2中の硫酸根とケイ酸カルシウムとを反応させるために酸化チタンおよびその前駆体、触媒活性成分、ケイ酸カルシウムを一度に全量混練する方法が好ましい。また、混練で得られたペースト状触媒は、直ちに、板状、ハニカム状などの形状に成形することが好ましい。板状に成形する方法としては、例えば、金属製ラス基板にラス目を埋めるようにペーストを塗布し、次いで型曲げ加工、搾り加工、エンボス加工などによって凹凸を形成し、乾燥および焼成する工程を含む方法が挙げられる。得られた板状触媒は形成された凹凸がスペーサとなるように複数枚を重ね合せて積層構造体にして、脱硝反応器に取り付けることができる。 In the method for producing a denitration catalyst in the present invention, titanium oxide and a precursor thereof, a soluble salt which is a catalytically active component, and calcium silicate are mixed at once with water; titanium oxide and a precursor thereof A method of kneading the body and the catalytically active component and then adding and mixing calcium silicate can be employed. In order to efficiently react the sulfate radical in TiO 2 with calcium silicate, a method of kneading all of titanium oxide and its precursor, a catalytically active component, and calcium silicate at once is preferable. Further, the pasty catalyst obtained by kneading is preferably immediately formed into a plate shape, a honeycomb shape or the like. As a method of forming into a plate shape, for example, a process of applying a paste so as to fill a lath in a metal lath substrate, then forming irregularities by mold bending, squeezing, embossing, etc., and drying and firing The method of including is mentioned. The obtained plate-shaped catalyst can be attached to a denitration reactor by stacking a plurality of sheets so that the formed irregularities become spacers to form a laminated structure.

次に、実施例を示して、本発明をより詳細に説明する。但し、本発明はこれらの実施例によって何ら限定されるものではない。   Next, an Example is shown and this invention is demonstrated in detail. However, the present invention is not limited to these examples.

実施例1
メタバナジン酸アンモニウム1.24g、モリブデン酸アンモニウム0.40g、および蓚酸1.54gを水50gに溶解させ、これに酸化チタン(堺化学製CSP−M、SO4含有率;6.5wt%、比表面積約120m2/g)60gとケイ酸カルシウム(富田製薬製、トミタAD 850H 200M、化学式5CaO・6SiO2・zH2O、CaO含有率;31.7wt%)3.56gを入れ、それらを混練した。その後、120℃で一時間乾燥した。加圧成型器を用いて、約1.3ton/cm2で加圧し、成型した。得られたディスクを砕き、ふるいで0.85〜1.7mmに整粒し、500℃で2時間焼成して触媒を得た。本触媒におけるCaO/SO4のモル比は0.5であり、本触媒の組成はTi/Mo/V=98.2/0.3/1.5(原子比)である。
Example 1
1.24 g of ammonium metavanadate, 0.40 g of ammonium molybdate, and 1.54 g of oxalic acid were dissolved in 50 g of water, and titanium oxide (CSP-M manufactured by Sakai Chemical, SO 4 content; 6.5 wt%, specific surface area) 60 g of about 120 m 2 / g) and 3.56 g of calcium silicate (Tomita Pharmaceutical, Tomita AD 850H 200M, chemical formula 5CaO · 6SiO 2 · zH 2 O, CaO content: 31.7 wt%) were added and kneaded. . Then, it dried at 120 degreeC for 1 hour. Using a pressure molding machine, it was pressed at about 1.3 ton / cm 2 and molded. The obtained disc was crushed, sieved to 0.85 to 1.7 mm, and calcined at 500 ° C. for 2 hours to obtain a catalyst. The molar ratio of CaO / SO 4 in this catalyst is 0.5, and the composition of this catalyst is Ti / Mo / V = 98.2 / 0.3 / 1.5 (atomic ratio).

実施例2
ケイ酸カルシウムの量を5.70gに変えた以外は実施例1と同じ手法で触媒を調製した。本触媒におけるCaO/SO4のモル比は0.8である。
Example 2
A catalyst was prepared in the same manner as in Example 1 except that the amount of calcium silicate was changed to 5.70 g. The molar ratio of CaO / SO 4 in this catalyst is 0.8.

実施例3
ケイ酸カルシウムの量を7.12gに変えた以外は実施例1と同じ手法で触媒を調製した。本触媒におけるCaO/SO4のモル比は1.0である。
Example 3
A catalyst was prepared in the same manner as in Example 1 except that the amount of calcium silicate was changed to 7.12 g. The molar ratio of CaO / SO 4 in this catalyst is 1.0.

比較例1
ケイ酸カルシウムの量を0gに変えた以外は実施例1と同じ手法で触媒を調製した。本触媒におけるCaO/SO4のモル比は0である。
Comparative Example 1
A catalyst was prepared in the same manner as in Example 1 except that the amount of calcium silicate was changed to 0 g. The molar ratio of CaO / SO 4 in this catalyst is zero.

比較例2
酸化チタン(堺化学製CSP−M、SO4含有率;6.5wt%)を酸化チタン(石原産業製 MC90 SO4含有率;1.4wt%、比表面積約90m2/g)に変えた以外は比較例1と同じ手法で触媒を調製した。本触媒におけるCaO/SO4のモル比は0である。
Comparative Example 2
Titanium oxide (CSP-M manufactured by Sakai Chemicals, SO 4 content: 6.5 wt%) was changed to titanium oxide (MC90 SO 4 content: 1.4 wt%, specific surface area about 90 m 2 / g manufactured by Ishihara Sangyo) Prepared a catalyst in the same manner as in Comparative Example 1. The molar ratio of CaO / SO 4 in this catalyst is zero.

実施例1〜3及び比較例1〜2で得られた脱硝触媒について、表1に示す条件にて脱硝率を測定した。その結果を表2に示す。本発明に係る実施例1〜3の触媒は、細孔容積がおよそ0.54cc/gであり、比較例1および2の触媒の細孔容積よりも大きいことが分かる。また実施例1〜3の触媒は比較例1および2の触媒に比べて脱硝性能が高いことが分かる。   About the denitration catalyst obtained in Examples 1-3 and Comparative Examples 1-2, the denitration rate was measured on the conditions shown in Table 1. The results are shown in Table 2. It can be seen that the catalysts of Examples 1 to 3 according to the present invention have a pore volume of approximately 0.54 cc / g, which is larger than the pore volumes of the catalysts of Comparative Examples 1 and 2. It can also be seen that the catalysts of Examples 1 to 3 have higher denitration performance than the catalysts of Comparative Examples 1 and 2.

Figure 2013244469
Figure 2013244469

Figure 2013244469
Figure 2013244469

実施例4
メタバナジン酸アンモニウム1.24g、モリブデン酸アンモニウム0.40g、および蓚酸1.54gを水40gに溶解させ、これに酸化チタン(堺化学製CSP−M、SO4含有率;6.5wt%、比表面積約120m2/g)60gとケイ酸カルシウム(富田製薬製、トミタAD 850H 200M、化学式5CaO・6SiO2・zH2O、CaO含有率;31.7wt%)5.70gとシリカゾル(日産化学工業製OSゾル)12.3gを入れ、ニーダで混練してペースト状にした。これに無機繊維(イビデン製イビウール)9.0gを添加し、さらにニーダで混練して触媒ペーストを調製した。
これとは別にSUS430製帯鋼をメタルラス加工して目開きが約2mmの網状基材を作成した。
この網状基材に触媒ペーストを置き、加圧ローラに通過させることにより、基材の網目間および表面にペーストを圧着して厚さ0.7mmの板状成形体を得た。次いで、該板状成形体を150℃で2時間乾燥させ、大気中500℃で2時間焼成して板状触媒を得た。
Example 4
1.24 g of ammonium metavanadate, 0.40 g of ammonium molybdate and 1.54 g of oxalic acid were dissolved in 40 g of water, and titanium oxide (CSP-M, SO 4 content by Sakai Chemical; 6.5 wt%, specific surface area) about 120m 2 / g) 60g and calcium silicate (Tomita pharmaceutical Co., Ltd., Tomita AD 850H 200M, formula 5CaO · 6SiO 2 · zH 2 O , CaO content; 31.7wt%) 5.70g silica sol (Nissan chemical Industries, Ltd. (OS sol) 12.3 g was added and kneaded with a kneader to make a paste. To this, 9.0 g of inorganic fiber (Ibiden Ibi wool) was added and kneaded with a kneader to prepare a catalyst paste.
Separately, a SUS430 steel strip was metallized to create a reticulated base material having an opening of about 2 mm.
The catalyst paste was placed on the mesh substrate and passed through a pressure roller, whereby the paste was pressure-bonded between the mesh and the surface of the substrate to obtain a plate-shaped molded body having a thickness of 0.7 mm. Next, the plate-like molded body was dried at 150 ° C. for 2 hours and calcined in the atmosphere at 500 ° C. for 2 hours to obtain a plate-like catalyst.

比較例3
ケイ酸カルシウムの量を0gに変え、水の量を30gに変えた以外は実施例4と同じ手法で板状触媒を調製した。本触媒におけるCaO/SO4のモル比は0である。
Comparative Example 3
A plate catalyst was prepared in the same manner as in Example 4 except that the amount of calcium silicate was changed to 0 g and the amount of water was changed to 30 g. The molar ratio of CaO / SO 4 in this catalyst is zero.

比較例4
ケイ酸カルシウムの量を0gに変えた以外は実施例4と同じ手法で板状触媒の調製を試みた。ところが、調製したペーストは水分離しやすく、網状基材に塗布するのが困難であった。
Comparative Example 4
An attempt was made to prepare a plate catalyst in the same manner as in Example 4 except that the amount of calcium silicate was changed to 0 g. However, the prepared paste is easy to separate with water, and it is difficult to apply the paste to a reticulated substrate.

Figure 2013244469
Figure 2013244469

Figure 2013244469
Figure 2013244469

実施例4および比較例3で得られた脱硝触媒について、表3で示す条件で脱硝率を測定した。その結果を表4に示す。本発明に係る実施例4の脱硝触媒は、シリカゾル、無機繊維が混合された条件でも細孔容積が大きく、脱硝性能が高いことが分かる。
比較例3の触媒は、細孔容積が0.400cc/gであり、脱硝率が実施例4よりも低くかった。
With respect to the denitration catalyst obtained in Example 4 and Comparative Example 3, the denitration rate was measured under the conditions shown in Table 3. The results are shown in Table 4. It can be seen that the denitration catalyst of Example 4 according to the present invention has a large pore volume and high denitration performance even under conditions where silica sol and inorganic fibers are mixed.
The catalyst of Comparative Example 3 had a pore volume of 0.400 cc / g, and the denitration rate was lower than that of Example 4.

Claims (5)

酸化チタンあるいはその前駆体、触媒活性成分、ケイ酸カルシウムおよび水を混練して触媒ペーストを得、
次いで該ペーストを成形することを含む脱硝触媒の製造法。
Titanium oxide or its precursor, catalytic active component, calcium silicate and water are kneaded to obtain a catalyst paste,
Next, a method for producing a denitration catalyst comprising forming the paste.
触媒活性成分が、可溶性塩類である、請求項1に記載の脱硝触媒の製造法。   The method for producing a denitration catalyst according to claim 1, wherein the catalytically active component is a soluble salt. 触媒活性成分が、Mo、WおよびVからなる群から選ばれる少なくとも一つの元素を有するオキソ酸の塩である、請求項1に記載の脱硝触媒の製造法。   The method for producing a denitration catalyst according to claim 1, wherein the catalytically active component is a salt of an oxo acid having at least one element selected from the group consisting of Mo, W and V. 酸化チタンあるいはその前駆体が硫酸根(SO4)を含有するものであり、
ケイ酸カルシウムの量が、CaO/SO4のモル比で0.5超1.0以下となる量である、請求項1〜3のいずれかひとつに記載の脱硝触媒の製造法。
Titanium oxide or its precursor contains sulfate radical (SO 4 ),
The amount of calcium silicate is an amount of 0.5 Ultra 1.0 in terms of a molar ratio of CaO / SO 4, preparation of the denitration catalyst according to any one of claims 1 to 3.
触媒ペーストの混練において無機繊維および/または無機ゾル状物をさらに用いる、請求項1〜4のいずれかひとつに記載の脱硝触媒の製造法。   The method for producing a denitration catalyst according to any one of claims 1 to 4, wherein inorganic fibers and / or inorganic sols are further used in kneading the catalyst paste.
JP2012120565A 2012-05-28 2012-05-28 Method for producing denitration catalyst Pending JP2013244469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120565A JP2013244469A (en) 2012-05-28 2012-05-28 Method for producing denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120565A JP2013244469A (en) 2012-05-28 2012-05-28 Method for producing denitration catalyst

Publications (1)

Publication Number Publication Date
JP2013244469A true JP2013244469A (en) 2013-12-09

Family

ID=49844669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120565A Pending JP2013244469A (en) 2012-05-28 2012-05-28 Method for producing denitration catalyst

Country Status (1)

Country Link
JP (1) JP2013244469A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117240A1 (en) * 2015-01-19 2016-07-28 三井金属鉱業株式会社 Carrier for exhaust gas purifying catalysts, and exhaust gas purifying catalyst
JP2018505071A (en) * 2014-11-11 2018-02-22 エクソンモービル アップストリーム リサーチ カンパニー High capacity structures and monoliths by paste imprinting
US10010871B2 (en) 2015-01-19 2018-07-03 Mitsui Mining & Smelting Co., Ltd. Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
US11148091B2 (en) 2016-12-21 2021-10-19 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US11318413B2 (en) 2016-09-01 2022-05-03 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
CN114618514A (en) * 2022-03-08 2022-06-14 天津水泥工业设计研究院有限公司 Method for preparing low-temperature SCR catalyst and co-producing fertilizer by utilizing full-danger waste and solid waste
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11707729B2 (en) 2016-12-21 2023-07-25 ExxonMobil Technology and Engineering Company Self-supporting structures having active materials

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505071A (en) * 2014-11-11 2018-02-22 エクソンモービル アップストリーム リサーチ カンパニー High capacity structures and monoliths by paste imprinting
US10675615B2 (en) 2014-11-11 2020-06-09 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
US10010871B2 (en) 2015-01-19 2018-07-03 Mitsui Mining & Smelting Co., Ltd. Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
WO2016117240A1 (en) * 2015-01-19 2016-07-28 三井金属鉱業株式会社 Carrier for exhaust gas purifying catalysts, and exhaust gas purifying catalyst
US11318413B2 (en) 2016-09-01 2022-05-03 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US11707729B2 (en) 2016-12-21 2023-07-25 ExxonMobil Technology and Engineering Company Self-supporting structures having active materials
US11148091B2 (en) 2016-12-21 2021-10-19 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO
CN114618514A (en) * 2022-03-08 2022-06-14 天津水泥工业设计研究院有限公司 Method for preparing low-temperature SCR catalyst and co-producing fertilizer by utilizing full-danger waste and solid waste
CN114618514B (en) * 2022-03-08 2024-02-23 天津水泥工业设计研究院有限公司 Method for preparing low-temperature SCR catalyst by utilizing full-risk waste and solid waste and preparing chemical fertilizer simultaneously

Similar Documents

Publication Publication Date Title
JP2013244469A (en) Method for producing denitration catalyst
JP6402336B2 (en) Ammonia decomposition catalyst
JP5126718B2 (en) Exhaust gas purification catalyst
TWI647010B (en) Catalyst for oxidation of metal mercury and reduction reaction of nitrogen oxides, and purification method of exhaust gas
JP5787901B2 (en) NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
JPH0242536B2 (en)
WO2010013729A1 (en) Method for purifying exhaust gas containing mercury metal, oxidation catalyst for mercury metal in exhaust gas and method for producing the same
JP2006223959A (en) Method of producing exhaust gas denitrification catalyst
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP5457129B2 (en) NOx removal catalyst and method for producing the same
JP2008012379A (en) Method for preparing denitrification catalyst
JP3765942B2 (en) Exhaust gas purification catalyst compound, catalyst containing the compound, and process for producing the same
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP5804836B2 (en) Denitration catalyst for catalytic catalytic reduction
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JP2002361092A (en) Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them
JP4020354B2 (en) Manufacturing method of plate-like catalyst structure
JP2010207706A (en) Catalyst for removing nitrogen oxide and method for manufacturing the same
JP2014079683A (en) Denitration catalyst and method for producing the same
JP2016209835A (en) Method for recovering performance of denitration catalyst
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP2013180282A (en) Method for regenerating denitration catalyst
JP4511920B2 (en) Method for producing denitration catalyst
JP2001113167A (en) Exhaust gas treating catalyst, its manufacturing method and method for treating exhaust gas
JP2014237099A (en) Method of producing denitration catalyst

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141217