WO2016117240A1 - Carrier for exhaust gas purifying catalysts, and exhaust gas purifying catalyst - Google Patents

Carrier for exhaust gas purifying catalysts, and exhaust gas purifying catalyst Download PDF

Info

Publication number
WO2016117240A1
WO2016117240A1 PCT/JP2015/084938 JP2015084938W WO2016117240A1 WO 2016117240 A1 WO2016117240 A1 WO 2016117240A1 JP 2015084938 W JP2015084938 W JP 2015084938W WO 2016117240 A1 WO2016117240 A1 WO 2016117240A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
carrier
sio
gas purification
Prior art date
Application number
PCT/JP2015/084938
Other languages
French (fr)
Japanese (ja)
Inventor
純雄 加藤
正剛 小笠原
大典 岩倉
貴仁 浅沼
若林 誉
中原 祐之輔
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015200921A external-priority patent/JP6714989B2/en
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US15/504,760 priority Critical patent/US10010871B2/en
Priority to EP15878929.7A priority patent/EP3141302A4/en
Publication of WO2016117240A1 publication Critical patent/WO2016117240A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J35/30
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust

Definitions

  • the present invention relates to an exhaust gas purification catalyst that can be used to purify exhaust gas discharged from an internal combustion engine such as a gasoline engine such as a two-wheeled or four-wheeled vehicle or a diesel engine, and a carrier for the exhaust gas purification catalyst used therefor.
  • an internal combustion engine such as a gasoline engine such as a two-wheeled or four-wheeled vehicle or a diesel engine
  • a carrier for the exhaust gas purification catalyst used therefor such as a gasoline engine such as a two-wheeled or four-wheeled vehicle or a diesel engine
  • the exhaust gas from gasoline-fueled vehicles contains harmful components such as hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx). Therefore, the hydrocarbon (THC) is oxidized to be converted to water and carbon dioxide, the carbon monoxide (CO) is oxidized to be converted to carbon dioxide, and the nitrogen oxide (NOx) is reduced to be nitrogen In order to convert, it is necessary to purify each harmful component.
  • THC hydrocarbons
  • CO carbon monoxide
  • NOx nitrogen oxide
  • exhaust gas purification catalyst As a catalyst for treating such exhaust gas (hereinafter referred to as “exhaust gas purification catalyst”), a three-way catalyst (Three way catalysts: TWC) capable of oxidizing and reducing CO, THC and NOx is used.
  • a three-way catalyst a noble metal is supported on an oxide porous body having a high specific surface area, such as an alumina porous body having a high specific surface area, and this is used as a base material such as a refractory ceramic or a honeycomb structure made of metal.
  • a base material such as a refractory ceramic or a honeycomb structure made of metal.
  • the exhaust gas emitted from diesel engines includes sulfate based on the sulfur content in the fuel and tar-like particulate matter (“PM”) derived from incomplete combustion. And so on are included.
  • a diesel oxidation catalyst (referred to as "DOC") is known as a device for removing CO and THC contained in exhaust gas of a diesel engine.
  • DOC it is known that a porous filter base material exhibiting a honeycomb structure is coated with a refractory inorganic porous material such as zeolite or Al 2 O 3 .
  • any of the catalysts can be platinum (Pt) or palladium (p Noble metals such as Pd) and rhodium (Rh) have often been used as catalytically active components.
  • Pt platinum
  • p Noble metals such as Pd
  • Rh rhodium
  • the bonding strength between the noble metal as the catalytically active component and the substrate is not so strong, and the specific surface area of the substrate itself is not so large, a sufficient amount of supported noble metal can be directly supported on the substrate It is difficult to carry it with high dispersion. Therefore, in order to load a sufficient amount of catalytically active components in a highly dispersed manner on the surface of a substrate, it has been practiced to load a noble metal on a particulate catalyst support having a high specific surface area.
  • porous particles composed of a refractory inorganic oxide such as silica, alumina, or a titania compound are known.
  • a catalyst obtained by supporting a noble metal in a highly dispersed manner on an inorganic porous material such as alumina having a high specific surface area has been widely used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-218282 (Kurosaki Kogyo Co., Ltd.)
  • a heat-resistant catalyst carrier substantially consisting of alumina, which is SiO 2 , CaO, SrO, BaO, La.
  • a heat resistant catalyst support is disclosed having a coating layer of one or more oxides selected from 2 O 3 .
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-157865 (Toyota Motor Corporation) is a complex oxide carrier mainly composed of TiO 2 -Al 2 O 3 and contains Si, which is the above-mentioned TiO.
  • a composite oxide support characterized in that it comprises a composite oxide with at least one of 2 and Al 2 O 3 .
  • Patent Document 3 Japanese Patent Laid-Open No. 2007-144393 (Toyota Motor Co., Ltd.) is a catalyst carrier for supporting noble metal, which is composed of a composite oxide of an electron accepting element and another element, which is characterized in that the electron
  • the acceptor element is selected from the group consisting of lanthanum, neodymium, yttrium, magnesium and a combination thereof, and the other element is selected from the group consisting of silicon, aluminum, zirconium, titanium and a combination thereof, and the electron Disclosed is a catalyst support wherein the molar ratio of the electron accepting element to the total of the accepting element and the other element is 0.3 or more.
  • Patent Document 4 Japanese Patent Application Publication No. 2012-520236 (BASF SE) has an average diameter of 10 to 120 ⁇ m and a BET surface area of 400 to 800 m 2 / g as beads which can be used as a catalyst carrier.
  • spherical beads comprising metalloid oxides are disclosed.
  • Patent Document 5 JP 2013-252465 JP (Mitsui Mining & Smelting Co., Ltd.)
  • a catalyst support for exhaust gas purification capable of greatly improving performance
  • a catalyst support for exhaust gas purification which is represented by the general formula MPO 4 (wherein, M is Y, La or Al)
  • a catalyst support for exhaust gas purification is disclosed which is characterized in that it contains a phosphoric acid salt or a zirconium phosphate represented by the formula ZrP 2 O 7 .
  • alumina which is widely used as a catalyst carrier, can support noble metals in a highly dispersed state because it has a large specific surface area, and since it is possible to earn reaction sites, it is possible for purification performance at low temperatures. Are better.
  • the alumina support itself coagulates or sinters and the specific surface area gradually decreases, and at the same time the precious metal also agglomerates, resulting in a decrease in catalytic activity, particularly low temperature catalytic activity.
  • the present invention is intended to provide a new support for an exhaust gas purification catalyst, which is superior in catalytic activity, particularly in catalyst purification performance at a low temperature, compared to the alumina support conventionally used.
  • the present invention proposes a support for an exhaust gas purification catalyst comprising particles containing a silicate or a phosphate containing one or more of elements belonging to Periodic Table Group 1 and Group 2.
  • a support for an exhaust gas purification catalyst is proposed which is composed of particles containing a silicate containing Ca, Sr or Ba, or two or more of them.
  • the support for an exhaust gas purification catalyst proposed by the present invention has a high specific surface area Al, even when it has a low surface area, when it is made to coexist with a catalytically active component such as a noble metal by enhancing the cocatalytic action to the exhaust gas purification reaction. It can exhibit excellent low temperature activity (in particular, propylene activation ability or oxygen activation ability) as compared to a 2 O 3 carrier. Furthermore, the high temperature NOx conversion rate can also be improved.
  • the exhaust gas purification catalyst support proposed by the present invention is useful as a support for a diesel oxidation catalyst.
  • the NO-C 3 H 6 -O 2 system which is a reaction system of a three-way catalyst, is also excellent in low temperature activity, and thus is useful as a carrier for a gasoline three-way catalyst.
  • An exhaust gas purification catalyst (hereinafter referred to as “the present catalyst”) as an example of an embodiment of the present invention has a composition containing a catalyst carrier (hereinafter referred to as “the present catalyst carrier”) and a catalytically active component supported on the catalyst carrier. And, if necessary, may contain co-catalysts such as OSC materials, stabilizers and other components.
  • the present catalyst support is a support for an exhaust gas purification catalyst, which is composed of particles containing a silicate or a phosphate containing one or more of the elements belonging to Groups 1 and 2 of the periodic table.
  • the present catalyst carrier may contain other components other than the above-mentioned silicate or phosphate or both, as long as the action of the above-mentioned silicate or phosphate is not hindered.
  • the present catalyst carrier preferably contains 30% by mass or more of the above-mentioned silicate or phosphate or both, more preferably 50% by mass or more and even more preferably 95% by mass or more.
  • silicate or phosphate containing one or more of the elements belonging to Periodic Table Group 1 and Group 2 include Li, Na, K, and Rb belonging to Periodic Table Group 1 And silicates or phosphates containing Cs, Fr and Be, Mg, Ca, Sr, Ba and Ra belonging to Group 2 of the periodic table.
  • silicate As said “silicate”, Ca, Sr or Ba, or the silicate containing 2 or more types of these is preferable.
  • Specific examples of the silicate include, for example, A 2 SiO 4 (A is Ca, Sr or Ba, or an element containing two or more of them), or ASiO 3 (A is Ca, Sr) Or Ba, or an element containing two or more of them) or a mixture of these.
  • a 2 SiO 4 and ASiO 3 A is, Ca, may if it contains either Sr or Ba, may contain other elements such as a divalent metal element such as Mg .
  • a 2 SiO 4 (A is Ca, Sr or Ba, or an element containing two or more of them), or ASiO 3 (A is Preferably contains a single phase of Ca, Sr or Ba, or an element containing two or more of them, and among them, from the viewpoint of durability and low temperature catalytic activity, A 2 SiO 4 (A Particularly preferred is one containing a single phase of Ca, Sr or Ba, or an element containing two or more of them.
  • a 2 SiO 4 As a, A 2 SiO 4 (A is, Ca, Sr or Ba, or of these And A 2 SiO 4 (A is a combination of Ca, Sr or Ba, or two or more of these elements and a divalent metal element such as Mg), and the like.
  • ASiO 3 (A is Ca, Sr or Ba, or an element containing two or more of them), ASiO 3 (A is Ca, Sr or Ba, or two or more of them) Elements, ASiO 3 (A is Ca, Sr or Ba, or a combination of two or more of these elements with a divalent metal element such as Mg), and the like.
  • a 2 SiO 4 is characterized by having independent SiO 4 tetrahedra and having a high content of alkaline earth metals.
  • silicates from the viewpoint of durability and catalytic activity at low temperature, it is preferable to be a support for an exhaust gas purification catalyst comprising particles containing a silicate containing Ba or Ba and Sr. Moreover, it is preferable that the said silicate is a thing which does not contain a rare earth element substantially. In addition, “substantially” is the meaning which accept
  • the said silicate containing Ba, Ba 2 SiO 4 or BaSiO 3 or a mixture thereof can be mentioned as a preferable example, for example.
  • silicate containing Ba and Sr for example, (Ba 1-x Sr x ) 2 SiO 4, or, (Ba 1-x Sr x ) SiO 3, or, as a preferable example of these mixtures It can be mentioned. In addition, it is accept
  • phosphate Ca, Sr or Ba, or the phosphate containing 2 or more types of these is preferable.
  • A is any one of Mg, Ca, Sr and Ba, or one or more bivalent elements. It can be mentioned.
  • phosphates from the viewpoint of durability and catalytic activity at low temperatures, it is preferable to be a support for an exhaust gas purification catalyst comprising particles containing a phosphate containing Ba or Ba and Sr. Moreover, it is preferable that the said phosphate is a thing which does not contain a rare earth element substantially. In addition, “substantially” is the meaning which accept
  • the said phosphate containing Ba for example, Ba 1.5 PO 4 and KBaPO 4 can be mentioned as preferable examples.
  • phosphate containing Ba and Sr for example, (Ba 1-x Sr x ) 1.5 PO 4 ( where 0 ⁇ x ⁇ 1), K (Ba 1-x Sr x) PO 4 ( where 0 ⁇ X ⁇ 1) can be mentioned as a preferable example.
  • K (Ba 1-x Sr x) PO 4 ( where 0 ⁇ X ⁇ 1) can be mentioned as a preferable example.
  • the particles of the catalyst support are preferably porous in view of increasing the specific surface area, so the specific surface area of the catalyst support is preferably 0.1 m 2 / g or more. It is preferably at least 0. 10 m 2 / g, and particularly preferably at least 1.5 m 2 / g.
  • the specific surface area of the catalyst carrier may be 100 m 2 / g or less, preferably 50 m 2 / g or less, among which It is particularly preferred that it is 10 m 2 / g or less.
  • Method for producing the present catalyst carrier An example of a method for producing the present catalyst carrier will be described. However, the method for producing the catalyst carrier is not limited to the example described below.
  • an organic solvent such as pure water or ethanol
  • the temperature is 100 to 120 ° C. (material temperature) in the case of pure water, and 50 to 100 ° C. in the case of an organic solvent.
  • the catalyst carrier can be obtained by drying so as to hold for about 15 minutes to 15 minutes and calcining.
  • the method for producing the catalyst carrier is not limited to the example described below.
  • a carrier for an exhaust gas purification catalyst comprising particles containing a silicate containing Ca, Sr or Ba, or two or more of them, a carbonate of a Group 2 element (ACO 3 (A is Ca, Sr or Ba, or an element containing two or more of them) and silicon oxide (SiO 2 ) in an organic solvent such as pure water or ethanol, stirred and wet mixed After drying, for example, it is dried and maintained at 100 to 120 ° C. (material temperature) in the case of pure water and at 50 to 100 ° C. in the case of an organic solvent for about 40 minutes to 15 hours.
  • a catalyst support can be obtained, but the method for producing the catalyst support is not limited to the example described below.
  • a carrier for an exhaust gas purification catalyst comprising particles containing phosphate containing Ca, Sr or Ba, or two or more of them, carbonates of Group 2 elements (ACO 3 (A Is an element containing Ca, Sr or Ba, or two or more of them or an acetate, and a dihydrogen phosphate of a Group 1 element (LiH 2 PO 4 , NaH 2 PO 4 , KH 2 PO 4 ) Is poured into an organic solvent such as pure water or ethanol, stirred and wet mixed, and then, for example, in the case of pure water, 100 to 120 ° C. (product temperature), and in the case of organic solvent, 50 to 100 ° C.
  • the catalyst carrier can be obtained by drying so as to maintain each for about 40 minutes to 15 hours and calcining, however, the method for producing the catalyst carrier is not limited to the example described below. .
  • the firing atmosphere an air atmosphere, an oxygen atmosphere, and an inert gas atmosphere can be mentioned. Among them, the air atmosphere is preferable from the viewpoint of mass productivity.
  • the firing temperature may be 500 to 1500 ° C., and more preferably 700 ° C. or more or 1400 ° C. or less. Incidentally, when sintering is performed at a high temperature of about 1300 ° C., the crystallinity can be further improved, but the specific surface area is smaller than when sintered at a lower temperature.
  • the firing time may be appropriately set according to the firing temperature. As a standard, it is preferable to set it as 10 to 20 hours.
  • the present catalyst may contain other inorganic porous particles as a catalyst support in addition to the present catalyst support.
  • the other inorganic porous particles for example, porous particles of a compound selected from the group consisting of silica, alumina and a titania compound, more specifically, for example, alumina, silica, silica-alumina, alumino-silicates, Mention may be made of porous particles consisting of a compound selected from alumina-zirconia, alumina-chromia and alumina-ceria.
  • Other inorganic porous particles may include, for example, an OSC material, that is, a cocatalyst having oxygen storage capacity (OSC).
  • OSC oxygen storage capacity
  • the catalytically active component contained in the present catalyst that is, the metal exhibiting catalytic activity, for example, palladium, platinum, rhodium, gold, silver, ruthenium, iridium, nickel, cerium, cobalt, copper, iron, manganese, osmium, strontium and the like Metals can be mentioned. Moreover, these oxides can also be preferably adopted. Among them, from the viewpoint of further enjoying the effect of the present catalyst, it is particularly preferable to include platinum or palladium or both as a catalytically active component.
  • platinum with higher sulfur poisoning resistance than palladium is more suitable for diesel engine applications with high sulfur content, which is a fuel poison, and sulfur poisoning resistance for gasoline engine applications with low sulfur content.
  • palladium is more preferable than platinum.
  • the supported amount of the catalytically active component in the present catalyst is preferably 5.0% by mass or less, more preferably 0.1% by mass or more, in terms of the metal mass of the active component, based on the mass of the carrier. In particular, it is more preferable that the content is 0.5% by mass or more or 3.0% by mass or less.
  • the present catalyst carrier itself has a propylene activating ability, it is expected that the exhaust gas purification effect can be obtained only by mixing the catalytically active component and the present catalyst carrier without supporting the noble metal. Further, by the noble metal being supported by the present catalyst carrier, it is possible to obtain a further excellent exhaust gas purification effect.
  • the catalyst can include stabilizers, binders and other components.
  • an alkaline earth metal As a stabilizer, an alkaline earth metal, an alkali metal, and a lanthanoid metal can be mentioned, for example. Among them, it is possible to select one or more of metals selected from the group consisting of magnesium, barium, boron, thorium, hafnium, silicon, calcium, lanthanum, neodymium and strontium.
  • a binder component such as a binder component.
  • a binder component an inorganic binder, for example, a water-soluble solution such as alumina sol can be used.
  • the present catalyst can be produced, for example, by mixing the present catalyst carrier, a catalytically active component such as a noble metal compound, and other components, heating and drying, and calcining.
  • a catalytically active component such as a noble metal compound
  • Examples of the solution of the above-mentioned noble metal compound include nitrates, chlorides and sulfates of noble metals.
  • co-catalysts such as OSC materials, stabilizers, binders and the like can be mentioned.
  • a catalyst construction for exhaust gas purification (referred to as "the present catalyst construction") can be produced which includes a catalyst layer made of the present catalyst and a base made of, for example, a ceramic or a metal material.
  • the catalyst layer may have, for example, a structure in which a catalyst layer is formed on the surface of a substrate, or a structure in which a catalyst layer is formed on the surface of a substrate via another layer.
  • the catalyst layer may be provided, or may be provided with a structure in which the catalyst layer is formed at a place other than the surface side of the base material.
  • the catalyst layer may be a single layer or a multilayer of two or more layers.
  • the material of the ceramic base material is refractory ceramic material such as cordierite, cordierite-alpha alumina, silicon carbide (SiC), silicon nitride, mullite, alumina, aluminum titanate, zircon mullite, spodumene, alumina-silica Mention may be made of magnesia, zircon silicate, sillimanite, magnesium silicate, zircon, petalite, alpha alumina and aluminosilicates.
  • the material of the metal substrate may include a refractory metal such as stainless steel or other suitable corrosion resistant alloy based on iron such as a refractory metal such as Fe-Cr-Al alloy.
  • the shape of the substrate is not particularly limited.
  • the shape is a honeycomb, a plate, a pellet or the like, preferably in a honeycomb shape.
  • adopted by the particulate filter may be sufficient.
  • wall-through type, flow-through honeycomb type, wire mesh type, ceramic fiber type, porous metal type, particle-filled type, foam type and the like can be mentioned.
  • a honeycomb-shaped substrate for example, a monolithic substrate having a large number of fine gas flow passages parallel to the inside of the substrate, ie, channels, can be used so that the fluid can flow inside the substrate.
  • the catalyst can be formed by coating the present catalyst on the inner wall surface of each channel of the monolithic substrate.
  • the present catalyst carrier As a method for producing the present catalyst component, for example, the present catalyst carrier, a catalyst active component such as a noble metal, and optionally an OSC material, a binder and water are mixed and stirred to obtain a slurry, and the obtained slurry is
  • the present catalyst component can be produced by applying a base material such as a honeycomb body and firing it to form a catalyst layer on the surface of the base material.
  • the OSC material, the binder, and water are mixed and stirred to form a slurry, and the obtained slurry is applied to a substrate such as a ceramic honeycomb body to form a catalyst carrier layer.
  • the catalyst active component supporting body in which the catalyst active component is supported on an oxide, the present catalyst carrier, and if necessary, the OSC material, the stabilizing material, the binder and water are mixed and stirred to form a slurry.
  • the catalyst composition can also be produced by applying to a material and calcining this to form a catalyst layer on the surface of the substrate.
  • Comparative Example 1 A commercially available alumina powder (specific surface area: 159.6 m 2 / g) is introduced into a Pt (NH 3 ) 2 (NO 2 ) 2 aqueous solution and stirred for 2 hours to impregnate the catalyst support with Pt, and then evaporated. It was dried and then kept in the atmosphere at 600 ° C. for 3 hours to obtain a noble metal-supported catalyst (sample). The amount of noble metal carried of the obtained noble metal-supported catalyst (sample) was 1 mass%.
  • Example 1 Ba carbonate (BaCO 3 ) and silicon oxide (SiO 2 ) are mixed at a molar ratio of 2: 1 and charged into ethanol, stirred for 24 hours and wet mixed, and then 60 ° C. (product temperature) The catalyst carrier was obtained by drying to hold for 12 hours and then calcining in the air at 1350 ° C. for 36 hours.
  • the catalyst support thus obtained had a specific surface area of 0.4 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of Ba 2 SiO 4 was confirmed. .
  • XRD X-ray diffraction
  • the catalyst support (Ba 2 SiO 4 ) thus obtained is put into a Pt (NH 3 ) 2 (NO 2 ) 2 aqueous solution and stirred for 2 hours to impregnate the catalyst support with Pt, and then the temperature is 60 ° C.
  • the product temperature was dried for 1 hour, and then kept at 600 ° C. for 3 hours in the atmosphere to obtain a noble metal-supported catalyst (sample).
  • the amount of noble metal carried of the obtained noble metal-supported catalyst (sample) was 1 mass%.
  • each of the noble metal-supported catalysts (samples) obtained in Comparative Example 1 and Example 1 the purification performance with simulated exhaust gas was evaluated using a fixed bed flow type reactor. That is, in a reaction tube, 0.1 g of each noble metal-supported catalyst (sample) is packed with quartz wool before and after the catalyst so as to sandwich the catalyst, and quartz wool is packed before and after the noble metal-supported catalyst (sample). Set. Then, after the above pretreatment, a simulated exhaust gas consisting of C 3 H 6 1500 ppm, O 2 9000 ppm and the balance He composition is introduced into the reaction tube at a total flow rate of 500 cm 3 / min, and 100 ° C. to 600 ° C. at 10 ° C. The temperature was continuously raised at 1 / min, and the exhaust gas at the outlet of the reaction tube was analyzed using a quadrupole mass spectrometer to determine the component composition in the reaction gas.
  • the catalyst support of Example 1 has a significantly smaller specific surface area than the catalyst support of Comparative Example 1, it can be confirmed that the catalyst support exhibits excellent propylene activation ability or oxygen activation ability. The Above all, it could be confirmed that the propylene activation ability or the oxygen activation ability at low temperature was excellent.
  • Example 2 Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) are mixed at a molar ratio of 2: 1 and charged into pure water, stirred for 24 hours and wet mixed, and then 120 ° C. (product temperature)
  • the catalyst carrier was obtained by drying so as to hold for 12 hours and then calcining at 1350.degree. C. for 24 hours in the atmosphere.
  • the catalyst support thus obtained had a specific surface area of 8.8 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of Ca 2 SiO 4 was confirmed. .
  • XRD X-ray diffraction
  • the catalyst support (Ca 2 SiO 4 ) thus obtained is put into a Pt (NH 3 ) 2 (NO 2 ) 2 aqueous solution and stirred for 2 hours to impregnate the catalyst support with Pt, and then evaporated to dryness. Then, it was kept in the air at 600 ° C. for 3 hours to obtain a noble metal-supported catalyst (sample).
  • the amount of noble metal carried of the obtained noble metal-supported catalyst (sample) was 1 mass%.
  • Example 3 A catalyst carrier and a noble metal-supported catalyst (sample) were obtained in the same manner as in Example 2 except that Ca carbonate was changed to Sr carbonate in Example 2.
  • the catalyst support had a specific surface area of 9.6 m 2 / g, and as a result of analysis by X-ray diffraction (XRD), a peak showing a single phase of Sr 2 SiO 4 was confirmed.
  • Example 4 In Example 2, Ca carbonate (CaCO 3 ) and Sr carbonate (CaCO 3 ) were mixed with Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) in a molar ratio of 2: 1.
  • a catalyst carrier and a noble metal-supported catalyst were obtained in the same manner as in Example 2 except that SrCO 3 ) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 1: 1: 1.
  • the catalyst support had a specific surface area of 1.9 m 2 / g, and as a result of analysis by X-ray diffraction (XRD), a peak showing a single phase of (Sr 0.5 Ca 0.5 ) 2 SiO 4 was confirmed.
  • XRD X-ray diffraction
  • Example 5 In Example 2, Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 2: 1, Sr carbonate (SrCO 3 ) and Mg carbonate (A catalyst carrier and a noble metal-supported catalyst (sample) were obtained in the same manner as in Example 2 except that MgCO 3 ) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 1: 1: 1.
  • the catalyst support had a specific surface area of 3.1 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of (Sr 0.5 Mg 0.5 ) 2 SiO 4 was confirmed.
  • XRD X-ray diffraction
  • Example 6 In Example 2, Ca carbonate (CaCO 3 ) and Mg carbonate (CaCO 3 ) were mixed with Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) at a molar ratio of 2: 1.
  • a catalyst carrier and a noble metal-supported catalyst were obtained in the same manner as in Example 2 except that MgCO 3) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 1: 1: 1.
  • the catalyst support had a specific surface area of 2.2 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of (Ca 0.5 Mg 0.5 ) 2 SiO 4 was confirmed.
  • XRD X-ray diffraction
  • Example 7 In Example 2, in a place where Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 2: 1, Ba carbonate (BaCO 3 ) and silicon oxide (SiO 2 ) were mixed.
  • a catalyst carrier and a noble metal-supported catalyst were obtained in the same manner as in Example 2 except that 2 ) and 2 ) were mixed at a molar ratio of 1: 1.
  • the catalyst support had a specific surface area of 1.7 m 2 / g, and as a result of analysis by X-ray diffraction (XRD), a peak showing a single phase of BaSiO 3 was confirmed.
  • Example 8 In Example 2, the change Ca carbonate salt (CaCO 3) to Ba carbonate (BaCO 3), Pt (NH 3) 2 (NO 2) 2 solution points except that the Pd nitrate solution, implemented As in Example 2, a catalyst carrier and a noble metal-supported catalyst (sample) were obtained.
  • the catalyst support had a specific surface area of 3.9 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of Ba 2 SiO 4 was confirmed.
  • XRD X-ray diffraction
  • Pt (Pd) dispersion degree (%) (amount of Pt (Pd) corresponding to CO adsorption amount (mol) / total amount of contained Pt (Pd) (mol)) ⁇ 100
  • each of the noble metal-supported catalysts (samples) obtained in Comparative Example 1 and Examples 2 to 7 the purification performance with simulated exhaust gas was evaluated using a fixed bed flow type reactor. That is, in a reaction tube, 0.1 g of each noble metal-supported catalyst (sample) is packed with quartz wool before and after the catalyst so as to sandwich the catalyst, and quartz wool is packed before and after the noble metal-supported catalyst (sample). Set. Then, after the above pretreatment, a simulated exhaust gas consisting of C 3 H 6 1500 ppm, O 2 9000 ppm and the balance He composition is introduced into the reaction tube at a total flow rate of 500 cm 3 / min, and 100 ° C. to 600 ° C. at 10 ° C. The temperature was continuously raised at 1 / min, and the exhaust gas at the outlet of the reaction tube was analyzed using a quadrupole mass spectrometer to determine the component composition in the reaction gas.
  • the purification performance with simulated exhaust gas was evaluated using a fixed bed flow type reactor. That is, quartz wool is packed in front and back of the catalyst so as to sandwich 0.1 g of each noble metal-supported catalyst (sample) in the reaction tube, and quartz wool is packed in front of and behind the noble metal-supported catalyst (sample). I set it. Then, after the above pretreatment, a simulated exhaust gas composed of NO 1000 ppm, C 3 H 6 1500 ppm, O 2 9000 ppm, balance He is introduced into the reaction tube at a total flow rate of 500 cm 3 / min, and from 200 ° C. to 600 ° C. The temperature was raised stepwise at 10 ° C./min, and the exhaust gas at the outlet of the reaction tube was analyzed using a quadrupole mass spectrometer to determine the component composition in the reaction gas.
  • the alumina used by the comparative example 1 has high dispersion degree compared with the silicate particle
  • C 3 H 6 -O 2 reaction in view of, for example, the result of the C 3 H 6 -O 2 reaction, in the example, C 3 H 6 is activated on the catalyst support, that is, on the silicate particle surface, and HC activation from the low temperature range Since reaction between species and O 2 or NO is likely to occur, it is speculated that excellent low temperature activity is exhibited in both reactions despite the fact that the specific surface area and the degree of dispersion of precious metals are extremely small compared to Comparative Example 1. Be done.
  • the present catalyst support is Al 2 O 3 even if it is a noble metal other than Pt as the noble metal to be supported, and has a low surface area as in the case of supporting Pt. It was confirmed that propylene activation ability or oxygen activation ability can be exhibited and NOx conversion at high temperatures up to about 400 ° C. can be maintained at an equivalent level as compared with the case where a carrier is used. In addition to the low temperature activity, it has also been confirmed that the active species supported on the present catalyst carrier is expressed in the high temperature region in addition to the low temperature activity by combining it with Pt and Pd.
  • Example 9 A mixture of Ba carbonate (BaCO 3 ) and dihydrogen phosphate K (KH 2 PO 4 ) in a molar ratio of 1: 1 is added to ethanol, stirred for 24 hours for wet mixing, and then at 60 ° C.
  • the catalyst carrier was obtained by drying so as to maintain (material temperature) for 12 hours, and then calcining in air for 3 hours at 600 ° C. for 3 hours and then calcining at 1300 ° C. for 3 hours.
  • the catalyst support thus obtained had a specific surface area of 1.0 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak indicating a single phase of KBaPO 4 was confirmed.
  • the noble metal-supported powder using the catalyst carrier was obtained by the same procedure as in Example 2.
  • Example 10 After mixing Sr carbonate (SrCO 3 ) and dihydrogen phosphate K (KH 2 PO 4 ) in a molar ratio of 1: 1, charging to ethanol, stirring for 24 hours and wet mixing, 60 ° C.
  • the catalyst carrier was obtained by drying so as to maintain (material temperature) for 12 hours, and then calcinating in the air at 1200 ° C. for 12 hours.
  • the catalyst support thus obtained had a specific surface area of 0.9 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak indicating a single phase of KSrPO 4 was confirmed.
  • the noble metal-supported powder using the catalyst carrier was obtained by the same procedure as in Example 2.
  • the catalyst support thus obtained has a specific surface area of 3.0 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of Ba 1.5 PO 4 is confirmed It was done.
  • the noble metal-supported powder using the catalyst carrier was obtained by the same procedure as in Example 2.
  • a carrier for an exhaust gas purification catalyst consisting of particles is the same as the carrier for an exhaust gas purification catalyst consisting of particles containing a silicate containing one or two or more kinds of elements belonging to Groups 1 and 2 of the periodic table. The mechanism of action was shown, and it could be confirmed that the same effect could be obtained.

Abstract

Provided is a novel carrier for exhaust gas purifying catalysts, which exhibits excellent catalytic activity, especially excellent catalytic activity at low temperatures. Proposed is a carrier for exhaust gas purifying catalysts, which is composed of particles containing a silicate or phosphate that contains one or more elements selected from among group 1 and group 2 elements of the periodic table.

Description

排ガス浄化触媒用担体及び排ガス浄化触媒Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
 本発明は、2輪又は4輪自動車などのガソリンエンジンや、ディーゼルエンジンなどの内燃機関から排出される排気ガスを浄化するために用いることができる排ガス浄化触媒及びそれに用いる排ガス浄化触媒用担体に関する。 The present invention relates to an exhaust gas purification catalyst that can be used to purify exhaust gas discharged from an internal combustion engine such as a gasoline engine such as a two-wheeled or four-wheeled vehicle or a diesel engine, and a carrier for the exhaust gas purification catalyst used therefor.
 ガソリンを燃料とする自動車の排気ガス中には、炭化水素(THC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分が含まれている。そのため、前記炭化水素(THC)は酸化して水と二酸化炭素に転化させ、前記一酸化炭素(CO)は酸化して二酸化炭素に転化させ、前記窒素酸化物(NOx)は還元して窒素に転化させるようにして、それぞれの有害成分を浄化する必要がある。 The exhaust gas from gasoline-fueled vehicles contains harmful components such as hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx). Therefore, the hydrocarbon (THC) is oxidized to be converted to water and carbon dioxide, the carbon monoxide (CO) is oxidized to be converted to carbon dioxide, and the nitrogen oxide (NOx) is reduced to be nitrogen In order to convert, it is necessary to purify each harmful component.
 このような排気ガスを処理するための触媒(以下「排気ガス浄化触媒」と称する)として、CO、THC及びNOxを酸化還元することができる3元触媒(Three way catalysts:TWC)が用いられている。
 このような3元触媒としては、高い比表面積を有する酸化物多孔質体、例えば高い比表面積を有するアルミナ多孔質体に貴金属を担持し、これを基材、例えば耐火性セラミック又は金属製ハニカム構造で出来ているモノリス型(monolithic)基材に担持したり、或いは、耐火性粒子に担持したりしたものが知られている。
As a catalyst for treating such exhaust gas (hereinafter referred to as “exhaust gas purification catalyst”), a three-way catalyst (Three way catalysts: TWC) capable of oxidizing and reducing CO, THC and NOx is used. There is.
As such a three-way catalyst, a noble metal is supported on an oxide porous body having a high specific surface area, such as an alumina porous body having a high specific surface area, and this is used as a base material such as a refractory ceramic or a honeycomb structure made of metal. Are known to be supported on a monolithic substrate made of aluminum or supported on refractory particles.
 他方、ディーゼルエンジンから排出される排気ガスには、上記のCO、THC、NOxに加え、燃料中の硫黄分にもとづく硫酸塩や、不完全燃焼に由来するタール状の微粒子状物質(「PM」と称する)などが含まれている。
 ディーゼルエンジンの排気ガス中に含まれるCO、THCを除去する装置として、ディーゼル酸化触媒(「DOC」と称する)が知られている。
 DOCとしては、ハニカム構造を呈する多孔質製のフィルタ基材上にゼオライトやAlなどの耐火性無機多孔質材量がコーティングされてなるものが知られている。
On the other hand, in addition to the above-mentioned CO, THC, and NOx, the exhaust gas emitted from diesel engines includes sulfate based on the sulfur content in the fuel and tar-like particulate matter (“PM”) derived from incomplete combustion. And so on are included.
A diesel oxidation catalyst (referred to as "DOC") is known as a device for removing CO and THC contained in exhaust gas of a diesel engine.
As DOC, it is known that a porous filter base material exhibiting a honeycomb structure is coated with a refractory inorganic porous material such as zeolite or Al 2 O 3 .
 ガソリンエンジンから排出される排気ガスを浄化するための触媒であっても、ディーゼルエンジンから排出される排気ガスを浄化するための触媒であっても、いずれの触媒も、白金(Pt)やパラジウム(Pd)やロジウム(Rh)などの貴金属が触媒活性成分として用いられることが多かった。そして、これら触媒活性成分としての貴金属と基材との結合力はそれ程強くなく、また、基材自体の比表面積もそれ程大きくないため、基材に貴金属を直接担持させようとしても十分な担持量を高分散に担持することは難しい。そこで、十分な量の触媒活性成分を基材の表面に高分散に担持させるために、高い比表面積を有する粒子状の触媒担体に貴金属を担持させることが行われている。 Either a catalyst for purifying exhaust gas emitted from a gasoline engine or a catalyst for purifying exhaust gas emitted from a diesel engine, any of the catalysts can be platinum (Pt) or palladium (p Noble metals such as Pd) and rhodium (Rh) have often been used as catalytically active components. Also, since the bonding strength between the noble metal as the catalytically active component and the substrate is not so strong, and the specific surface area of the substrate itself is not so large, a sufficient amount of supported noble metal can be directly supported on the substrate It is difficult to carry it with high dispersion. Therefore, in order to load a sufficient amount of catalytically active components in a highly dispersed manner on the surface of a substrate, it has been practiced to load a noble metal on a particulate catalyst support having a high specific surface area.
 この種の排ガス浄化触媒用担体(「触媒担体」又は「担体」とも称する)として、例えばシリカ、アルミナ、チタニア化合物などの耐火性無機酸化物からなる多孔質粒子が知られている。中でも、低温での浄化性能に優れているという観点から、従来から、比表面積の高いアルミナなどの無機多孔質体に貴金属を高分散に担持させてなる触媒が広く用いられている。 As a carrier for this kind of exhaust gas purification catalyst (also referred to as "catalyst carrier" or "carrier"), porous particles composed of a refractory inorganic oxide such as silica, alumina, or a titania compound are known. Among them, from the viewpoint of being excellent in purification performance at low temperature, conventionally, a catalyst obtained by supporting a noble metal in a highly dispersed manner on an inorganic porous material such as alumina having a high specific surface area has been widely used.
 触媒担体に関しては、例えば特許文献1(特開平6-218282号公報(黒崎窯業株式会社))において、実質的にアルミナからなる耐熱性触媒担体であって、SiO2、CaO,SrO,BaO,La23から選ばれた1種以上の酸化物の被覆層を有する耐熱性触媒担体が開示されている。 With regard to the catalyst carrier, for example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 6-218282 (Kurosaki Kogyo Co., Ltd.)), it is a heat-resistant catalyst carrier substantially consisting of alumina, which is SiO 2 , CaO, SrO, BaO, La. A heat resistant catalyst support is disclosed having a coating layer of one or more oxides selected from 2 O 3 .
 特許文献2(特開2000-157865号公報(トヨタ自動車株式会社))には、TiO2-Al23を主成分とする複合酸化物担体であって、Siを含み、該Siは前記TiO2及びAl23の少なくとも一方と複合酸化物を構成していることを特徴とする複合酸化物担体が開示されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2000-157865 (Toyota Motor Corporation)) is a complex oxide carrier mainly composed of TiO 2 -Al 2 O 3 and contains Si, which is the above-mentioned TiO. Disclosed is a composite oxide support characterized in that it comprises a composite oxide with at least one of 2 and Al 2 O 3 .
 特許文献3(特開2007-144393号公報(トヨタ自動車株式会社))には、電子受容性元素及び他の元素の複合酸化物から構成されている貴金属担持用の触媒担体であって、前記電子受容性元素が、ランタン、ネオジム、イットリウム、マグネシウム及びそれらの組み合わせからなる群より選択され、前記他の元素が、ケイ素、アルミニウム、ジルコニウム、チタン及びそれらの組み合わせからなる群より選択され、且つ前記電子受容性元素と前記他の元素との合計に対する前記電子受容性元素のモル比が、0.3以上である触媒担体が開示されている。 Patent Document 3 (Japanese Patent Laid-Open No. 2007-144393 (Toyota Motor Co., Ltd.)) is a catalyst carrier for supporting noble metal, which is composed of a composite oxide of an electron accepting element and another element, which is characterized in that the electron The acceptor element is selected from the group consisting of lanthanum, neodymium, yttrium, magnesium and a combination thereof, and the other element is selected from the group consisting of silicon, aluminum, zirconium, titanium and a combination thereof, and the electron Disclosed is a catalyst support wherein the molar ratio of the electron accepting element to the total of the accepting element and the other element is 0.3 or more.
 特許文献4(特表2012-520236号公報(BASF SE))には、触媒担体として利用することができるビーズとして、平均径が10~120μmの範囲にあり、BET表面積が400~800m2/gの範囲にあり、気孔体積が0.3~3.0cm3/gの範囲にあって、SiO2やAl23、TiO2、MgO、およびこれらの混合物からなる群から選ばれる金属及び/又は半金属酸化物を含む球状ビーズが開示されている。 Patent Document 4 (Japanese Patent Application Publication No. 2012-520236 (BASF SE)) has an average diameter of 10 to 120 μm and a BET surface area of 400 to 800 m 2 / g as beads which can be used as a catalyst carrier. Metal having a pore volume in the range of 0.3 to 3.0 cm 3 / g, and selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2 , MgO, and mixtures thereof Or spherical beads comprising metalloid oxides are disclosed.
 特許文献5(特開2013-252465号公報(三井金属鉱業株式会社))は、空気過剰率λが1よりも大きいリーン領域でのNOX浄化活性の低下を抑制しつつ、Rh担持ジルコニアと比較して大幅に性能の向上することができる排気ガス浄化用触媒担体として、排気ガス浄化用触媒担体であって、一般式MPO4(式中、MはY、La又はAlである)で表されるリン酸塩、又は、式ZrP27で表されるリン酸ジルコニウムを含むことを特徴とする排気ガス浄化用触媒担体が開示されている。 Patent Document 5 (JP 2013-252465 JP (Mitsui Mining & Smelting Co., Ltd.)), while suppressing the deterioration of the NO X purification activity at large lean region than the excess air ratio λ is 1, compared to the Rh-supporting zirconia As a catalyst support for exhaust gas purification capable of greatly improving performance, and is a catalyst support for exhaust gas purification, which is represented by the general formula MPO 4 (wherein, M is Y, La or Al) A catalyst support for exhaust gas purification is disclosed which is characterized in that it contains a phosphoric acid salt or a zirconium phosphate represented by the formula ZrP 2 O 7 .
特開平6-218282号公報Japanese Patent Application Laid-Open No. 6-218282 特開2000-157865号公報JP 2000-157865 A 特開2007-144393号公報Japanese Patent Application Publication No. 2007-144393 特表2012-520236号公報JP 2012-520236 gazette 特開2013-252465号公報JP, 2013-252465, A
 前述のように、触媒担体として広く使用されているアルミナは、比表面積が大きいために、高分散状態に貴金属を担持させることができ、反応場を稼ぐことができるため、低温での浄化性能に優れている。しかしその一方で、使用時に熱に曝されるうちに、アルミナ担体自体が凝集乃至焼結して次第に比表面積が小さくなると同時に、貴金属も凝集し、その結果、触媒活性、特に低温触媒活性が低下するという課題を抱えていた。 As described above, alumina, which is widely used as a catalyst carrier, can support noble metals in a highly dispersed state because it has a large specific surface area, and since it is possible to earn reaction sites, it is possible for purification performance at low temperatures. Are better. However, while being exposed to heat during use, the alumina support itself coagulates or sinters and the specific surface area gradually decreases, and at the same time the precious metal also agglomerates, resulting in a decrease in catalytic activity, particularly low temperature catalytic activity. Had the task of
 そこで本発明は、従来使用されてきたアルミナ担体に比べて、触媒活性、特に低温での触媒浄化性能に優れた、新たな排ガス浄化触媒用担体を提供せんとするものである。 Therefore, the present invention is intended to provide a new support for an exhaust gas purification catalyst, which is superior in catalytic activity, particularly in catalyst purification performance at a low temperature, compared to the alumina support conventionally used.
 本発明は、周期表第1族及び第2族に属する元素のうちの1種又は2種類以上を含有するケイ酸塩又はリン酸塩を含む粒子からなる排ガス浄化触媒用担体を提案する。例えばCa、Sr又はBa、又はこれらのうちの2種類以上を含有するケイ酸塩を含む粒子からなる排ガス浄化触媒用担体を提案する。 The present invention proposes a support for an exhaust gas purification catalyst comprising particles containing a silicate or a phosphate containing one or more of elements belonging to Periodic Table Group 1 and Group 2. For example, a support for an exhaust gas purification catalyst is proposed which is composed of particles containing a silicate containing Ca, Sr or Ba, or two or more of them.
 本発明が提案する排ガス浄化触媒用担体は、排ガス浄化反応に対する助触媒作用を高めることで、貴金属などの触媒活性成分と共存させた際に、たとえ低表面積であっても、高比表面積のAl担体に比べて優れた低温活性(特に、プロピレン活性化能または酸素活性化能)を発揮することができる。さらに、高温のNOx転化率の向上も図ることができる。
 よって、本発明が提案する排ガス浄化触媒用担体は、ディーゼル酸化触媒用の担体として有用である。また、三元触媒の反応系であるNO-C-O系においても低温活性に優れているため、ガソリン三元触媒用の担体としても有用である。
The support for an exhaust gas purification catalyst proposed by the present invention has a high specific surface area Al, even when it has a low surface area, when it is made to coexist with a catalytically active component such as a noble metal by enhancing the cocatalytic action to the exhaust gas purification reaction. It can exhibit excellent low temperature activity (in particular, propylene activation ability or oxygen activation ability) as compared to a 2 O 3 carrier. Furthermore, the high temperature NOx conversion rate can also be improved.
Thus, the exhaust gas purification catalyst support proposed by the present invention is useful as a support for a diesel oxidation catalyst. In addition, the NO-C 3 H 6 -O 2 system, which is a reaction system of a three-way catalyst, is also excellent in low temperature activity, and thus is useful as a carrier for a gasoline three-way catalyst.
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on an embodiment. However, the present invention is not limited to the embodiments described below.
<本触媒>
 本発明の実施形態の一例としての排ガス浄化触媒(以下「本触媒」と称する)は、触媒担体(以下「本触媒担体」と称する)及び該触媒担体に担持される触媒活性成分を含有する組成物であり、必要に応じてOSC材などの助触媒、安定剤及びその他の成分を含むことができる。
<This catalyst>
An exhaust gas purification catalyst (hereinafter referred to as "the present catalyst") as an example of an embodiment of the present invention has a composition containing a catalyst carrier (hereinafter referred to as "the present catalyst carrier") and a catalytically active component supported on the catalyst carrier. And, if necessary, may contain co-catalysts such as OSC materials, stabilizers and other components.
<本触媒担体>
 本触媒担体は、周期表第1族及び第2族に属する元素のうちの1種又は2種類以上を含有するケイ酸塩又はリン酸塩を含む粒子からなる排ガス浄化触媒用担体である。
<The catalyst carrier>
The present catalyst support is a support for an exhaust gas purification catalyst, which is composed of particles containing a silicate or a phosphate containing one or more of the elements belonging to Groups 1 and 2 of the periodic table.
 なお、本触媒担体は、上記ケイ酸塩又はリン酸塩の作用を妨げない限りにおいて、上記ケイ酸塩又はリン酸塩又は両者以外の他の成分を含有していてもよい。ただし、本触媒担体において、上記ケイ酸塩又はリン酸塩又は両者を30質量%以上含有するのが好ましく、中でも50質量%以上、その中でも95質量%以上であるのがさらに好ましい。 In addition, the present catalyst carrier may contain other components other than the above-mentioned silicate or phosphate or both, as long as the action of the above-mentioned silicate or phosphate is not hindered. However, the present catalyst carrier preferably contains 30% by mass or more of the above-mentioned silicate or phosphate or both, more preferably 50% by mass or more and even more preferably 95% by mass or more.
 「周期表第1族及び第2族に属する元素のうちの1種又は2種類以上を含有するケイ酸塩又はリン酸塩」としては、周期表第1族に属するLi、Na、K、Rb、Cs、Fr及び周期表第2族に属するBe、Mg、Ca、Sr、Ba及びRaのうちの1種又は2種類以上を含有するケイ酸塩又はリン酸塩を挙げることができる。 Examples of the “silicate or phosphate containing one or more of the elements belonging to Periodic Table Group 1 and Group 2” include Li, Na, K, and Rb belonging to Periodic Table Group 1 And silicates or phosphates containing Cs, Fr and Be, Mg, Ca, Sr, Ba and Ra belonging to Group 2 of the periodic table.
 上記「ケイ酸塩」としては、Ca、Sr又はBa、又はこれらのうちの2種類以上を含有するケイ酸塩が好ましい。
 当該ケイ酸塩の具体的例としては、例えばA2SiO4(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)、又は、ASiO3(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)、又は、これらの混合物を挙げることができる。
 この際、前記A2SiO4及びASiO3において、Aは、Ca、Sr又はBaのいずれかを含んでいればよく、他の元素、例えばMgなどの2価の金属元素を含んでいてもよい。
As said "silicate", Ca, Sr or Ba, or the silicate containing 2 or more types of these is preferable.
Specific examples of the silicate include, for example, A 2 SiO 4 (A is Ca, Sr or Ba, or an element containing two or more of them), or ASiO 3 (A is Ca, Sr) Or Ba, or an element containing two or more of them) or a mixture of these.
At this time, in the A 2 SiO 4 and ASiO 3, A is, Ca, may if it contains either Sr or Ba, may contain other elements such as a divalent metal element such as Mg .
 上記の中でも、耐久性及び低温での触媒活性の観点から、A2SiO4(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)、又は、ASiO3(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)の単一相を含有するものが好ましく、その中でも耐久性及び低温での触媒活性の観点から、A2SiO4(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)の単一相を含有するものが特に好ましい。 Among the above, from the viewpoint of durability and catalytic activity at low temperature, A 2 SiO 4 (A is Ca, Sr or Ba, or an element containing two or more of them), or ASiO 3 (A is Preferably contains a single phase of Ca, Sr or Ba, or an element containing two or more of them, and among them, from the viewpoint of durability and low temperature catalytic activity, A 2 SiO 4 (A Particularly preferred is one containing a single phase of Ca, Sr or Ba, or an element containing two or more of them.
 上記のA2SiO4(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)としては、A2SiO4(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上の元素)、A2SiO4(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上の元素と、Mgなどの2価の金属元素との組み合わせ)などを包含する。
 具体的には、例えばCa2SiO4、Sr2SiO4、Ba2SiO4、(Ca1-xSrx2SiO4、(Ca1-xBax2SiO4、(Sr1-xBax2SiO4、(Ca1-xMgx2SiO4、(Sr1-xMgx2SiO4、(Ba1-xMgx2SiO4、その他当該Mgの代わりになどの2価の金属元素を含む組成などを挙げることができる。なお、上記式において、xは0~1の数値である。
Above (the A, Ca, Sr or Ba, or an element comprising two or more of these) of A 2 SiO 4 as a, A 2 SiO 4 (A is, Ca, Sr or Ba, or of these And A 2 SiO 4 (A is a combination of Ca, Sr or Ba, or two or more of these elements and a divalent metal element such as Mg), and the like.
Specifically, for example, Ca 2 SiO 4, Sr 2 SiO 4, Ba 2 SiO 4, (Ca 1-x Sr x) 2 SiO 4, (Ca 1-x Ba x) 2 SiO 4, (Sr 1-x Ba x) 2 SiO 4, ( Ca 1-x Mg x) 2 SiO 4, (Sr 1-x Mg x) 2 SiO 4, (Ba 1-x Mg x) 2 SiO 4, and other like in place of the Mg The composition etc. which contain the bivalent metal element of these are mentioned. In the above equation, x is a numerical value of 0 to 1.
 上記のASiO3(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)としては、ASiO3(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上の元素)、ASiO3(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上の元素と、Mgなどの2価の金属元素との組み合わせ)などを包含する。
 具体的には、例えばCaSiO、SrSiO、BaSiO、(Ca1-xSrx)SiO、(Ca1-xBax)SiO、(Sr1-xBax)SiO、(Ca1-xMgx)SiO、(Sr1-xMgx)SiO、(Ba1-xMgx)SiO、その他当該Mgの代わりになどの2価の金属元素を含む組成などを挙げることができる。なお、上記式において、xは0~1の数値である。
As the above ASiO 3 (A is Ca, Sr or Ba, or an element containing two or more of them), ASiO 3 (A is Ca, Sr or Ba, or two or more of them) Elements, ASiO 3 (A is Ca, Sr or Ba, or a combination of two or more of these elements with a divalent metal element such as Mg), and the like.
Specifically, CaSiO 3, SrSiO 3, BaSiO 3 , (Ca 1-x Sr x) SiO 3, (Ca 1-x Ba x) SiO 3, (Sr 1-x Ba x) SiO 3, (Ca 1-x Mg x ) SiO 3 , (Sr 1 -x Mg x ) SiO 3 , (Ba 1 -x Mg x ) SiO 3 , and other compositions containing a divalent metal element such as Mg instead of be able to. In the above equation, x is a numerical value of 0 to 1.
 A2SiO4は、独立したSiO4四面体を有し、アルカリ土類金属の含有量が多いという特徴を有している。 A 2 SiO 4 is characterized by having independent SiO 4 tetrahedra and having a high content of alkaline earth metals.
 上記ケイ酸塩の中でも、耐久性及び低温での触媒活性の観点から、Ba、又は、Ba及びSrを含有するケイ酸塩を含む粒子からなる排ガス浄化触媒用担体であるのが好ましい。また、上記ケイ酸塩は希土類元素を実質的に含んでいないものであることが好ましい。なお、“実質的に”とは、不可避不純物として希土類元素を含む場合は、許容する意味である。
 ここで、Baを含有する当該ケイ酸塩として、例えば、Ba2SiO4、又は、BaSiO3、又は、これらの混合物を好ましい例として挙げることができる。また、Ba及びSrを含有する当該ケイ酸塩として、例えば、(Ba1-xSrx2SiO4、又は、(Ba1-xSrx)SiO、又は、これらの混合物を好ましい一例として挙げることができる。
 なお、本発明の効果を損なわない程度において、既に挙げた元素以外の元素がケイ酸塩に含まれることは許容されるものである。
Among the above-mentioned silicates, from the viewpoint of durability and catalytic activity at low temperature, it is preferable to be a support for an exhaust gas purification catalyst comprising particles containing a silicate containing Ba or Ba and Sr. Moreover, it is preferable that the said silicate is a thing which does not contain a rare earth element substantially. In addition, "substantially" is the meaning which accept | permits, when the rare earth element is included as an unavoidable impurity.
Here, as the said silicate containing Ba, Ba 2 SiO 4 or BaSiO 3 or a mixture thereof can be mentioned as a preferable example, for example. Further, as the silicate containing Ba and Sr, for example, (Ba 1-x Sr x ) 2 SiO 4, or, (Ba 1-x Sr x ) SiO 3, or, as a preferable example of these mixtures It can be mentioned.
In addition, it is accept | permitted that elements other than the element mentioned already are contained in a silicate in the extent which does not impair the effect of this invention.
 他方、上記「リン酸塩」としては、Ca、Sr又はBa、又はこれらのうちの2種類以上を含有するリン酸塩が好ましい。
 当該リン酸塩の具体的例としては、例えばAPO4(x=2又は1.5であり、x=2の場合のAはLi、Na、K及びCsのうちのいずれか1種の1価の元素又は2種以上の1価の元素と、Mg、Ca、Sr及びBaのうちのいずれか1種の2価の元素又は2種以上の2価の元素との組合せであり、x=1.5の場合のAはMg、Ca、Sr及びBaのうちのいずれか1種の2価の元素又は2種以上の2価の元素である。)で示すことができるリン酸塩を挙げることができる。
On the other hand, as said "phosphate", Ca, Sr or Ba, or the phosphate containing 2 or more types of these is preferable.
As a specific example of the phosphate, for example, A x PO 4 (x = 2 or 1.5, and in the case of x = 2, A is any one of Li, Na, K and Cs) A combination of a monovalent element or two or more types of monovalent elements and any one type of divalent elements or two or more types of divalent elements of Mg, Ca, Sr, and Ba, x In the case of = 1.5, A is any one of Mg, Ca, Sr and Ba, or one or more bivalent elements. It can be mentioned.
 また、上記リン酸塩の中でも、耐久性及び低温での触媒活性の観点から、Ba、又は、Ba及びSrを含有するリン酸塩を含む粒子からなる排ガス浄化触媒用担体であるのが好ましい。また、上記リン酸塩は希土類元素を実質的に含んでいないものであることが好ましい。なお、“実質的に”とは、不可避不純物として希土類元素を含む場合は、許容する意味である。
 ここで、Baを含有する当該リン酸塩として、例えば、Ba1.5PO4、KBaPOを好ましい例として挙げることができる。
 また、Ba及びSrを含有する当該リン酸塩として、例えば、(Ba1-xSrx1.5PO4(但し0<x<1)、K(Ba1-xSr)PO(但し0<x<1)を好ましい一例として挙げることができる。
 なお、本発明の効果を損なわない程度において、既に挙げた元素以外の元素がリン酸塩に含まれることは許容されるものである。
Among the above-mentioned phosphates, from the viewpoint of durability and catalytic activity at low temperatures, it is preferable to be a support for an exhaust gas purification catalyst comprising particles containing a phosphate containing Ba or Ba and Sr. Moreover, it is preferable that the said phosphate is a thing which does not contain a rare earth element substantially. In addition, "substantially" is the meaning which accept | permits, when the rare earth element is included as an unavoidable impurity.
Here, as the said phosphate containing Ba, for example, Ba 1.5 PO 4 and KBaPO 4 can be mentioned as preferable examples.
Further, as the phosphate containing Ba and Sr, for example, (Ba 1-x Sr x ) 1.5 PO 4 ( where 0 <x <1), K (Ba 1-x Sr x) PO 4 ( where 0 <X <1) can be mentioned as a preferable example.
In addition, it is accept | permitted that elements other than the element mentioned already are included in a phosphate in the extent which does not impair the effect of this invention.
 本触媒担体の粒子は、比表面積を大きくする観点から多孔質体であることが好ましいから、本触媒担体の比表面積は0.1m/g以上であることが好ましく、現実的には、1.0m/g以上であるのが好ましく、中でも1.5m/g以上であることが特に好ましい。
 なお、本触媒担体の比表面積の上限に特に制約はない。実施例などの結果やこれまで発明者が行ってきた試験結果すると、本触媒担体の比表面積は100m/g以下であってもよく、中でも50m/g以下であるのが好ましく、その中でも10m/g以下であるのが特に好ましい。
The particles of the catalyst support are preferably porous in view of increasing the specific surface area, so the specific surface area of the catalyst support is preferably 0.1 m 2 / g or more. It is preferably at least 0. 10 m 2 / g, and particularly preferably at least 1.5 m 2 / g.
There is no particular limitation on the upper limit of the specific surface area of the present catalyst carrier. According to the results of Examples and the results of tests conducted by the inventor so far, the specific surface area of the catalyst carrier may be 100 m 2 / g or less, preferably 50 m 2 / g or less, among which It is particularly preferred that it is 10 m 2 / g or less.
(本触媒担体の製造方法)
 本触媒担体の製造方法の一例について説明する。但し、本触媒担体の製造方法が次に説明する一例に限定されるものではない。
(Method for producing the present catalyst carrier)
An example of a method for producing the present catalyst carrier will be described. However, the method for producing the catalyst carrier is not limited to the example described below.
 例えば、周期表第1族及び第2族に属する元素の炭酸塩又は酢酸塩と、酸化ケイ素(SiO2)又はリン酸塩((NH42HPO、NH42PO)とを、純水やエタノールなどの有機溶媒に投入して撹拌して湿式混合させた後、例えば純水の場合は100~120℃(品温)、有機溶媒の場合は50~100℃で、それぞれ40分~15時間程度保持するように乾燥させ、焼成することにより、本触媒担体を得ることができる。但し、本触媒担体の製造方法が次に説明する一例に限定されるものではない。 For example, carbonates or acetates of elements belonging to Periodic Table Groups 1 and 2 and silicon oxide (SiO 2 ) or phosphate ((NH 4 ) 2 HPO 4 , NH 4 H 2 PO 4 ) After being added to an organic solvent such as pure water or ethanol, stirred and wet-mixed, for example, the temperature is 100 to 120 ° C. (material temperature) in the case of pure water, and 50 to 100 ° C. in the case of an organic solvent. The catalyst carrier can be obtained by drying so as to hold for about 15 minutes to 15 minutes and calcining. However, the method for producing the catalyst carrier is not limited to the example described below.
 この際、例えばCa、Sr又はBa、又はこれらのうちの2種類以上を含有するケイ酸塩を含む粒子からなる排ガス浄化触媒用担体の場合であれば、第2族元素の炭酸塩(ACO3(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)と、酸化ケイ素(SiO2)とを、純水やエタノールなどの有機溶媒に投入して撹拌して湿式混合させた後、例えば純水の場合は100~120℃(品温)、有機溶媒の場合は50~100℃で、それぞれ40分~15時間程度保持するように乾燥させ、焼成することにより、本触媒担体を得ることができる。但し、本触媒担体の製造方法が次に説明する一例に限定されるものではない。 In this case, for example, in the case of a carrier for an exhaust gas purification catalyst comprising particles containing a silicate containing Ca, Sr or Ba, or two or more of them, a carbonate of a Group 2 element (ACO 3 (A is Ca, Sr or Ba, or an element containing two or more of them) and silicon oxide (SiO 2 ) in an organic solvent such as pure water or ethanol, stirred and wet mixed After drying, for example, it is dried and maintained at 100 to 120 ° C. (material temperature) in the case of pure water and at 50 to 100 ° C. in the case of an organic solvent for about 40 minutes to 15 hours. A catalyst support can be obtained, but the method for producing the catalyst support is not limited to the example described below.
 他方、Ca、Sr又はBa、又はこれらのうちの2種類以上を含有するリン酸塩を含む粒子からなる排ガス浄化触媒用担体の場合であれば、第2族元素の炭酸塩(ACO3(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)又は酢酸塩と、第1族元素の二水素リン酸塩(LiH2PO、NaH2PO、KH2PO)とを、純水やエタノールなどの有機溶媒に投入して撹拌して湿式混合させた後、例えば純水の場合は100~120℃(品温)、有機溶媒の場合は50~100℃で、それぞれ40分~15時間程度保持するように乾燥させ、焼成することにより、本触媒担体を得ることができる。但し、本触媒担体の製造方法が次に説明する一例に限定されるものではない。 On the other hand, in the case of a carrier for an exhaust gas purification catalyst comprising particles containing phosphate containing Ca, Sr or Ba, or two or more of them, carbonates of Group 2 elements (ACO 3 (A Is an element containing Ca, Sr or Ba, or two or more of them or an acetate, and a dihydrogen phosphate of a Group 1 element (LiH 2 PO 4 , NaH 2 PO 4 , KH 2 PO 4 ) Is poured into an organic solvent such as pure water or ethanol, stirred and wet mixed, and then, for example, in the case of pure water, 100 to 120 ° C. (product temperature), and in the case of organic solvent, 50 to 100 ° C. The catalyst carrier can be obtained by drying so as to maintain each for about 40 minutes to 15 hours and calcining, however, the method for producing the catalyst carrier is not limited to the example described below. .
 焼成雰囲気としては、大気雰囲気、酸素雰囲気、不活性ガス雰囲気を挙げることができ、中でも量産性の観点から、大気雰囲気が好ましい。
 焼成温度としては、500~1500℃であればよく、中でも700℃以上或いは1400℃以下であるのがさらに好ましい。
 ちなみに、1300℃程度の高温で焼結させると、結晶性をより一層良好にすることができる反面、より低温で焼成した場合に比べて比表面積が小さくなる。
 焼成時間は、焼成温度に応じて適宜設定すればよい。目安としては、10~20時間とするのが好ましい。
As the firing atmosphere, an air atmosphere, an oxygen atmosphere, and an inert gas atmosphere can be mentioned. Among them, the air atmosphere is preferable from the viewpoint of mass productivity.
The firing temperature may be 500 to 1500 ° C., and more preferably 700 ° C. or more or 1400 ° C. or less.
Incidentally, when sintering is performed at a high temperature of about 1300 ° C., the crystallinity can be further improved, but the specific surface area is smaller than when sintered at a lower temperature.
The firing time may be appropriately set according to the firing temperature. As a standard, it is preferable to set it as 10 to 20 hours.
<他の触媒担体>
 本触媒は、本触媒担体のほかに、触媒担体として、他の無機多孔質粒子を含んでいてもよい。
 当該他の無機多孔質粒子としては、例えばシリカ、アルミナおよびチタニア化合物から成る群から選択される化合物の多孔質粒子、より具体的には、例えばアルミナ、シリカ、シリカ-アルミナ、アルミノ-シリケート類、アルミナ-ジルコニア、アルミナ-クロミアおよびアルミナ-セリアから選択される化合物からなる多孔質粒子を挙げることができる。
 他の無機多孔質粒子として、例えばOSC材、すなわち、酸素ストレージ能(OSC:Oxygen Storage capacity)を有する助触媒を含んでいてもよい。
 かかるOSC材としては、例えばセリウム化合物、ジルコニウム化合物、セリア・ジルコニア複合酸化物などを挙げることができる。
<Other catalyst support>
The present catalyst may contain other inorganic porous particles as a catalyst support in addition to the present catalyst support.
As the other inorganic porous particles, for example, porous particles of a compound selected from the group consisting of silica, alumina and a titania compound, more specifically, for example, alumina, silica, silica-alumina, alumino-silicates, Mention may be made of porous particles consisting of a compound selected from alumina-zirconia, alumina-chromia and alumina-ceria.
Other inorganic porous particles may include, for example, an OSC material, that is, a cocatalyst having oxygen storage capacity (OSC).
As such an OSC material, for example, a cerium compound, a zirconium compound, a ceria-zirconia composite oxide, etc. can be mentioned.
<触媒活性成分>
 本触媒が含有する触媒活性成分、すなわち触媒活性を示す金属としては、例えばパラジウム、白金、ロジウム、金、銀、ルテニウム、イリジウム、ニッケル、セリウム、コバルト、銅、鉄、マンガン、オスミウム、ストロンチウム等の金属を挙げることができる。また、これらの酸化物も好ましく採用できる。
 中でも、本触媒の効果をより一層享受できる観点から、白金又はパラジウム又はその両方を触媒活性成分として含むのが特に好ましい。
 特に、燃料由来の被毒物質である硫黄分が多いディーゼルエンジン用途には、パラジウムよりもS被毒耐性の高い白金がより好適であり、硫黄分が少ないガソリンエンジン用途には、S被毒耐性とコスト面から考えて白金よりもパラジウムがより好適である。
<Catalytic active component>
The catalytically active component contained in the present catalyst, that is, the metal exhibiting catalytic activity, for example, palladium, platinum, rhodium, gold, silver, ruthenium, iridium, nickel, cerium, cobalt, copper, iron, manganese, osmium, strontium and the like Metals can be mentioned. Moreover, these oxides can also be preferably adopted.
Among them, from the viewpoint of further enjoying the effect of the present catalyst, it is particularly preferable to include platinum or palladium or both as a catalytically active component.
In particular, platinum with higher sulfur poisoning resistance than palladium is more suitable for diesel engine applications with high sulfur content, which is a fuel poison, and sulfur poisoning resistance for gasoline engine applications with low sulfur content. In view of cost and cost, palladium is more preferable than platinum.
 本触媒における触媒活性成分の担持量は、活性成分の金属質量に換算して、担体の質量を基準にして、5.0質量%以下であるのが好ましく、中でも0.1質量%以上、その中でも特に0.5質量%以上或いは3.0質量%以下であるのがさらに好ましい。
 なお、本触媒担体はそれ自体にプロピレン活性化能があるため、貴金属を担持しないでも、触媒活性成分と本触媒担体とを混合するだけで排気ガス浄化効果を得ることが予想される。そしてさらに、本触媒担体が貴金属を担持することで、さらに優れた排気ガス浄化効果を得ることができる。
The supported amount of the catalytically active component in the present catalyst is preferably 5.0% by mass or less, more preferably 0.1% by mass or more, in terms of the metal mass of the active component, based on the mass of the carrier. In particular, it is more preferable that the content is 0.5% by mass or more or 3.0% by mass or less.
In addition, since the present catalyst carrier itself has a propylene activating ability, it is expected that the exhaust gas purification effect can be obtained only by mixing the catalytically active component and the present catalyst carrier without supporting the noble metal. Further, by the noble metal being supported by the present catalyst carrier, it is possible to obtain a further excellent exhaust gas purification effect.
<安定剤及びその他の成分>
 本触媒は、安定剤、バインダ及びその他の成分を含むことができる。
<Stabilizer and other components>
The catalyst can include stabilizers, binders and other components.
 安定剤としては、例えばアルカリ土類金属やアルカリ金属、ランタノイド金属を挙げることができる。中でも、マグネシウム、バリウム、ホウ素、トリウム、ハフニウム、ケイ素、カルシウム、ランタン、ネオジムおよびストロンチウムから成る群から選択される金属のうちの一種又は二種以上を選択可能である。 As a stabilizer, an alkaline earth metal, an alkali metal, and a lanthanoid metal can be mentioned, for example. Among them, it is possible to select one or more of metals selected from the group consisting of magnesium, barium, boron, thorium, hafnium, silicon, calcium, lanthanum, neodymium and strontium.
 また、バインダ成分など、公知の添加成分を含んでいてもよい。
 バインダ成分としては、無機系バインダ、例えばアルミナゾル等の水溶性溶液を使用することができる。
Moreover, you may contain well-known addition components, such as a binder component.
As the binder component, an inorganic binder, for example, a water-soluble solution such as alumina sol can be used.
<本触媒の製造方法>
 次に、本触媒の製造方法の一例について説明する。但し、本触媒の製造方法が次に説明する一例に限定されるものではない。
<Method of producing the present catalyst>
Next, an example of a method for producing the present catalyst will be described. However, the method for producing the present catalyst is not limited to the example described below.
 本触媒は、例えば本触媒担体と、触媒活性成分例えば貴金属化合物と、その他の成分とを混合し、加熱乾燥させた後、焼成することで製造することができる。 The present catalyst can be produced, for example, by mixing the present catalyst carrier, a catalytically active component such as a noble metal compound, and other components, heating and drying, and calcining.
 上記貴金属化合物の溶液としては、例えば貴金属の硝酸塩、塩化物、硫酸塩などを挙げることができる。
 その他の成分としては、OSC材などの助触媒、安定剤、バインダなどを挙げることができる。
Examples of the solution of the above-mentioned noble metal compound include nitrates, chlorides and sulfates of noble metals.
As other components, co-catalysts such as OSC materials, stabilizers, binders and the like can be mentioned.
<本触媒構成体>
 本触媒からなる触媒層と、例えばセラミックス又は金属材料からなる基材とを備えた排気ガス浄化用触媒構成体(「本触媒構成体」と称する)を作製することができる。
<The present catalyst component>
A catalyst construction for exhaust gas purification (referred to as "the present catalyst construction") can be produced which includes a catalyst layer made of the present catalyst and a base made of, for example, a ceramic or a metal material.
 上記触媒層は、例えば基材の表面に触媒層が形成されてなる構成を備えたものであってもよいし、基材の表面に他の層を介して触媒層が形成されてなる構成を備えたものであってもよいし、また、基材の表面側ではない箇所に触媒層が形成されてなる構成を備えたものであってもよい。
 いずれの製法においても、触媒層は、単層であっても、二層以上の多層であってもよい。
The catalyst layer may have, for example, a structure in which a catalyst layer is formed on the surface of a substrate, or a structure in which a catalyst layer is formed on the surface of a substrate via another layer. The catalyst layer may be provided, or may be provided with a structure in which the catalyst layer is formed at a place other than the surface side of the base material.
In any of the production methods, the catalyst layer may be a single layer or a multilayer of two or more layers.
(基材)
 本触媒構成体の基材としては、現在公知の基材を広く採用することができる。
 基材の材質としては、セラミックス等の耐火性材料や金属材料を挙げることができる。
 セラミック製基材の材質としては、耐火性セラミック材料、例えばコージライト、コージライト-アルファアルミナ、炭化ケイ素(SiC)、窒化ケイ素、、ムライト、アルミナ、チタン酸アルミニウム、ジルコンムライト、スポジュメン、アルミナ-シリカマグネシア、ケイ酸ジルコン、シリマナイト(sillimanite)、ケイ酸マグネシウム、ジルコン、ペタライト(petalite)、アルファアルミナおよびアルミノシリケート類などを挙げることができる。
 金属製基材の材質としては、耐火性金属、例えばステンレス鋼または鉄を基とする他の適切な耐食性合金、例えば耐火性金属、例えばFe-Cr-Al合金等を挙げることができる。
(Base material)
A wide variety of currently known substrates can be adopted as the substrate of the present catalyst component.
As a material of a base material, refractory materials and metal materials, such as ceramics, can be mentioned.
The material of the ceramic base material is refractory ceramic material such as cordierite, cordierite-alpha alumina, silicon carbide (SiC), silicon nitride, mullite, alumina, aluminum titanate, zircon mullite, spodumene, alumina-silica Mention may be made of magnesia, zircon silicate, sillimanite, magnesium silicate, zircon, petalite, alpha alumina and aluminosilicates.
The material of the metal substrate may include a refractory metal such as stainless steel or other suitable corrosion resistant alloy based on iron such as a refractory metal such as Fe-Cr-Al alloy.
 基材の形状は、特に限定されるものではない。一般的にはハニカム、板、ペレット等の形状であり、好ましくはハニカム形状である。
 また、パティキュレートフィルタで主に採用されている形状であってもよい。例えば、ウォールスルー型、フロースルーハニカム型、ワイヤメッシュ型、セラミックファイバー型、金属多孔体型、粒子充填型、フォーム型などを挙げることができる。
The shape of the substrate is not particularly limited. In general, the shape is a honeycomb, a plate, a pellet or the like, preferably in a honeycomb shape.
Moreover, the shape mainly employ | adopted by the particulate filter may be sufficient. For example, wall-through type, flow-through honeycomb type, wire mesh type, ceramic fiber type, porous metal type, particle-filled type, foam type and the like can be mentioned.
 ハニカム形状の基材を用いる場合、例えば基材内部を流体が流通するように、基材内部に平行で微細な気体流通路、すなわちチャンネルを多数有するモノリス型基材を使用することができる。この際、モノリス型基材の各チャンネル内壁表面に本触媒を塗布して触媒層を形成することができる。 When a honeycomb-shaped substrate is used, for example, a monolithic substrate having a large number of fine gas flow passages parallel to the inside of the substrate, ie, channels, can be used so that the fluid can flow inside the substrate. At this time, the catalyst can be formed by coating the present catalyst on the inner wall surface of each channel of the monolithic substrate.
(本触媒構成体の製造方法)
 本触媒構成体の製造方法としては、例えば、本触媒担体と、触媒活性成分例えば貴金属と、必要に応じてOSC材、バインダ及び水を混合・撹拌してスラリーとし、得られたスラリーを例えばセラミックハニカム体などの基材に塗布し、これを焼成して、基材表面に触媒層を形成して、本触媒構成体を作製することができる。
 また、本触媒担体と、必要に応じてOSC材、バインダ及び水を混合・撹拌してスラリーとし、得られたスラリーを例えばセラミックハニカム体などの基材に塗布して触媒担体層を形成した後、これを触媒活性成分の溶液に浸漬して、前記触媒担体層に触媒活性成分を吸着させてこれを焼成して、基材表面に触媒層を形成して、本触媒構成体を作製することもできる。
 また、触媒活性成分を酸化物に担持させた触媒活性成分担持体と、本触媒担体と、必要に応じてOSC材、安定化材、バインダ及び水を混合・撹拌してスラリーとし、これを基材に塗布し、これを焼成して基材表面に触媒層を形成して、本触媒構成体を作製することもできる。
 なお、本触媒を製造するための方法は公知のあらゆる方法を採用することが可能であり、上記例に限定するものではない。
(Method of producing the present catalyst component)
As a method for producing the present catalyst component, for example, the present catalyst carrier, a catalyst active component such as a noble metal, and optionally an OSC material, a binder and water are mixed and stirred to obtain a slurry, and the obtained slurry is The present catalyst component can be produced by applying a base material such as a honeycomb body and firing it to form a catalyst layer on the surface of the base material.
In addition, after the catalyst carrier, and if necessary, the OSC material, the binder, and water are mixed and stirred to form a slurry, and the obtained slurry is applied to a substrate such as a ceramic honeycomb body to form a catalyst carrier layer. And immersing the catalyst active layer in a solution of the catalytic active component so that the catalytic support layer is adsorbed, and calcinated to form a catalyst layer on the surface of the substrate, thereby producing the present catalyst structure. You can also.
In addition, the catalyst active component supporting body in which the catalyst active component is supported on an oxide, the present catalyst carrier, and if necessary, the OSC material, the stabilizing material, the binder and water are mixed and stirred to form a slurry. The catalyst composition can also be produced by applying to a material and calcining this to form a catalyst layer on the surface of the substrate.
In addition, it is possible to employ | adopt all well-known methods for the method for manufacturing this catalyst, and it is not limited to the said example.
<語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of the phrase>
In the present specification, when expressing as “X to Y” (where X and Y are arbitrary numbers), “preferably more than X” or “preferably Y” with the meaning of “X or more and Y or less” unless otherwise stated. Also includes the meaning of "smaller".
Also, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), “greater than X is preferable” or “preferably less than Y” It also includes the intention.
 以下、本発明を実施例及び比較例に基づいてさらに詳述する。 Hereinafter, the present invention will be further described in detail based on examples and comparative examples.
<比較例1>
 市販のアルミナ粉末(比表面積が159.6m/g)、を、Pt(NH32(NO22水溶液に投入して2時間撹拌して触媒担体にPtを含浸させた後、蒸発乾固させ、次いで、大気中にて600℃、3時間保持し貴金属担持触媒(サンプル)を得た。
 得られた貴金属担持触媒(サンプル)は、貴金属担持量が1mass%であった。
Comparative Example 1
A commercially available alumina powder (specific surface area: 159.6 m 2 / g) is introduced into a Pt (NH 3 ) 2 (NO 2 ) 2 aqueous solution and stirred for 2 hours to impregnate the catalyst support with Pt, and then evaporated. It was dried and then kept in the atmosphere at 600 ° C. for 3 hours to obtain a noble metal-supported catalyst (sample).
The amount of noble metal carried of the obtained noble metal-supported catalyst (sample) was 1 mass%.
<実施例1>
 Ba炭酸塩(BaCO3)と、酸化ケイ素(SiO2)とをモル比2:1の割合で混合してエタノールに投入し、24時間撹拌して湿式混合した後、60℃(品温)を12時間保持するように乾燥させ、次に大気中にて、1350℃、36時間焼成することにより、触媒担体を得た。
 このようにして得られた触媒担体は、比表面積が0.4m/gであり、X線回折法(XRD)で分析した結果、Ba2SiO4の単一相を示すピークが確認された。
Example 1
Ba carbonate (BaCO 3 ) and silicon oxide (SiO 2 ) are mixed at a molar ratio of 2: 1 and charged into ethanol, stirred for 24 hours and wet mixed, and then 60 ° C. (product temperature) The catalyst carrier was obtained by drying to hold for 12 hours and then calcining in the air at 1350 ° C. for 36 hours.
The catalyst support thus obtained had a specific surface area of 0.4 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of Ba 2 SiO 4 was confirmed. .
 このようにして得られた触媒担体(Ba2SiO4)を、Pt(NH32(NO22水溶液に投入して2時間撹拌して触媒担体にPtを含浸させた後、60℃(品温)を1時間保持するように乾燥させ、次いで、大気中にて600℃を3時間保持し貴金属担持触媒(サンプル)を得た。
 得られた貴金属担持触媒(サンプル)は、貴金属担持量が1mass%であった。
The catalyst support (Ba 2 SiO 4 ) thus obtained is put into a Pt (NH 3 ) 2 (NO 2 ) 2 aqueous solution and stirred for 2 hours to impregnate the catalyst support with Pt, and then the temperature is 60 ° C. The product temperature was dried for 1 hour, and then kept at 600 ° C. for 3 hours in the atmosphere to obtain a noble metal-supported catalyst (sample).
The amount of noble metal carried of the obtained noble metal-supported catalyst (sample) was 1 mass%.
<C-O反応(Light-off試験)>
 C酸化活性評価試験の前処理として、1.5%O2/He(600℃)のガスを、貴金属担持触媒(サンプル)0.1gに対して、ガス流量:500cm3/minの割合で10min流して、前処理を行った。
<C 3 H 6 -O 2 reaction (Light-off test)>
As a pretreatment of the C 3 H 6 oxidation activity evaluation test, a gas flow rate of 500 cm 3 / min is applied to a gas of 1.5% O 2 / He (600 ° C.) and 0.1 g of the noble metal-supported catalyst (sample) Pretreatment was carried out at a flow rate of 10 min.
 比較例1及び実施例1で得た各貴金属担持触媒(サンプル)について、固定床流通型の反応装置を用いて、模擬排ガスによる浄化性能を評価した。
 すなわち、反応管内に、各貴金属担持触媒(サンプル)0.1gを、該触媒を挟むように触媒の前後にそれぞれ石英ウールを詰めると共に、当該貴金属担持触媒(サンプル)の前後にそれぞれ石英ウールを詰めてセットした。
 そして、上記前処理の後、C1500ppm、O9000ppm、残部Heの組成からなる模擬排ガスを、総流量500cm3/minで前記反応管内に導入し、100℃から600℃まで10℃/minで連続昇温し、反応管出口における排出ガスを、四重極型質量分析計を用いて分析し、反応ガス中の成分組成を求めた。
For each of the noble metal-supported catalysts (samples) obtained in Comparative Example 1 and Example 1, the purification performance with simulated exhaust gas was evaluated using a fixed bed flow type reactor.
That is, in a reaction tube, 0.1 g of each noble metal-supported catalyst (sample) is packed with quartz wool before and after the catalyst so as to sandwich the catalyst, and quartz wool is packed before and after the noble metal-supported catalyst (sample). Set.
Then, after the above pretreatment, a simulated exhaust gas consisting of C 3 H 6 1500 ppm, O 2 9000 ppm and the balance He composition is introduced into the reaction tube at a total flow rate of 500 cm 3 / min, and 100 ° C. to 600 ° C. at 10 ° C. The temperature was continuously raised at 1 / min, and the exhaust gas at the outlet of the reaction tube was analyzed using a quadrupole mass spectrometer to determine the component composition in the reaction gas.
(結果)
 実施例1の触媒担体は、比較例1の触媒担体に比べて、比表面積が顕著に小さいにもかかわらず、優れたプロピレン活性化能または酸素活性化能を発揮することを確認することができた。中でも、低温でのプロピレン活性化能または酸素活性化能に優れていることを確認することができた。
(result)
Although the catalyst support of Example 1 has a significantly smaller specific surface area than the catalyst support of Comparative Example 1, it can be confirmed that the catalyst support exhibits excellent propylene activation ability or oxygen activation ability. The Above all, it could be confirmed that the propylene activation ability or the oxygen activation ability at low temperature was excellent.
<実施例2>
 Ca炭酸塩(CaCO3)と、酸化ケイ素(SiO2)とをモル比2:1の割合で混合して純水に投入し、24時間撹拌して湿式混合した後、120℃(品温)を12時間保持するように乾燥させ、次に大気中にて、1350℃、24時間焼成することにより、触媒担体を得た。
 このようにして得られた触媒担体は、比表面積が8.8m/gであり、X線回折法(XRD)で分析した結果、Ca2SiO4の単一相を示すピークが確認された。
Example 2
Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) are mixed at a molar ratio of 2: 1 and charged into pure water, stirred for 24 hours and wet mixed, and then 120 ° C. (product temperature) The catalyst carrier was obtained by drying so as to hold for 12 hours and then calcining at 1350.degree. C. for 24 hours in the atmosphere.
The catalyst support thus obtained had a specific surface area of 8.8 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of Ca 2 SiO 4 was confirmed. .
 このようにして得られた触媒担体(Ca2SiO4)を、Pt(NH32(NO22水溶液に投入して2時間撹拌して触媒担体にPtを含浸させた後、蒸発乾固し、次いで、大気中にて600℃を3時間保持し貴金属担持触媒(サンプル)を得た。
 得られた貴金属担持触媒(サンプル)は、貴金属担持量が1mass%であった。
The catalyst support (Ca 2 SiO 4 ) thus obtained is put into a Pt (NH 3 ) 2 (NO 2 ) 2 aqueous solution and stirred for 2 hours to impregnate the catalyst support with Pt, and then evaporated to dryness. Then, it was kept in the air at 600 ° C. for 3 hours to obtain a noble metal-supported catalyst (sample).
The amount of noble metal carried of the obtained noble metal-supported catalyst (sample) was 1 mass%.
<実施例3>
 実施例2において、Ca炭酸塩をSr炭酸塩に変更した以外の点は、実施例2と同様に、触媒担体及び貴金属担持触媒(サンプル)を得た。
 なお、該触媒担体は、比表面積が9.6m/gであり、X線回折法(XRD)で分析した結果、Sr2SiO4の単一相を示すピークが確認された。
Example 3
A catalyst carrier and a noble metal-supported catalyst (sample) were obtained in the same manner as in Example 2 except that Ca carbonate was changed to Sr carbonate in Example 2.
The catalyst support had a specific surface area of 9.6 m 2 / g, and as a result of analysis by X-ray diffraction (XRD), a peak showing a single phase of Sr 2 SiO 4 was confirmed.
<実施例4>
 実施例2において、Ca炭酸塩(CaCO3)と、酸化ケイ素(SiO2)とをモル比2:1の割合で混合していたところを、Ca炭酸塩(CaCO3)と、Sr炭酸塩(SrCO)と、酸化ケイ素(SiO2)とをモル比1:1:1の割合で混合した以外の点は、実施例2と同様に、触媒担体及び貴金属担持触媒(サンプル)を得た。
 なお、該触媒担体は、比表面積が1.9m/gであり、X線回折法(XRD)で分析した結果、(Sr0.5Ca0.52SiO4の単一相を示すピークが確認された。
Example 4
In Example 2, Ca carbonate (CaCO 3 ) and Sr carbonate (CaCO 3 ) were mixed with Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) in a molar ratio of 2: 1. A catalyst carrier and a noble metal-supported catalyst (sample) were obtained in the same manner as in Example 2 except that SrCO 3 ) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 1: 1: 1.
The catalyst support had a specific surface area of 1.9 m 2 / g, and as a result of analysis by X-ray diffraction (XRD), a peak showing a single phase of (Sr 0.5 Ca 0.5 ) 2 SiO 4 was confirmed. The
<実施例5>
 実施例2において、Ca炭酸塩(CaCO3)と、酸化ケイ素(SiO2)とをモル比2:1の割合で混合していたところを、Sr炭酸塩(SrCO3)と、Mg炭酸塩(MgCO)と、酸化ケイ素(SiO2)とをモル比1:1:1の割合で混合した以外の点は、実施例2と同様に、触媒担体及び貴金属担持触媒(サンプル)を得た。
 なお、該触媒担体は、比表面積が3.1m/gであり、X線回折法(XRD)で分析した結果、(Sr0.5Mg0.52SiO4の単一相を示すピークが確認された。
Example 5
In Example 2, Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 2: 1, Sr carbonate (SrCO 3 ) and Mg carbonate ( A catalyst carrier and a noble metal-supported catalyst (sample) were obtained in the same manner as in Example 2 except that MgCO 3 ) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 1: 1: 1.
The catalyst support had a specific surface area of 3.1 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of (Sr 0.5 Mg 0.5 ) 2 SiO 4 was confirmed. The
<実施例6>
 実施例2において、Ca炭酸塩(CaCO3)と、酸化ケイ素(SiO2)とをモル比2:1の割合で混合していたところを、Ca炭酸塩(CaCO3)と、Mg炭酸塩(MgCO3)と、酸化ケイ素(SiO2)とをモル比1:1:1の割合で混合した以外の点は、実施例2と同様に、触媒担体及び貴金属担持触媒(サンプル)を得た。
 なお、該触媒担体は、比表面積が2.2m/gであり、X線回折法(XRD)で分析した結果、(Ca0.5Mg0.52SiO4の単一相を示すピークが確認された。
Example 6
In Example 2, Ca carbonate (CaCO 3 ) and Mg carbonate (CaCO 3 ) were mixed with Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) at a molar ratio of 2: 1. A catalyst carrier and a noble metal-supported catalyst (sample) were obtained in the same manner as in Example 2 except that MgCO 3) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 1: 1: 1.
The catalyst support had a specific surface area of 2.2 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of (Ca 0.5 Mg 0.5 ) 2 SiO 4 was confirmed. The
<実施例7>
 実施例2において、Ca炭酸塩(CaCO3)と、酸化ケイ素(SiO2)とをモル比2:1の割合で混合していたところを、Ba炭酸塩(BaCO3)と、酸化ケイ素(SiO2)とをモル比1:1の割合で混合した以外の点は、実施例2と同様に、触媒担体及び貴金属担持触媒(サンプル)を得た。
 なお、該触媒担体は、比表面積が1.7m/gであり、X線回折法(XRD)で分析した結果、BaSiO3の単一相を示すピークが確認された。
Example 7
In Example 2, in a place where Ca carbonate (CaCO 3 ) and silicon oxide (SiO 2 ) were mixed at a molar ratio of 2: 1, Ba carbonate (BaCO 3 ) and silicon oxide (SiO 2 ) were mixed. A catalyst carrier and a noble metal-supported catalyst (sample) were obtained in the same manner as in Example 2 except that 2 ) and 2 ) were mixed at a molar ratio of 1: 1.
The catalyst support had a specific surface area of 1.7 m 2 / g, and as a result of analysis by X-ray diffraction (XRD), a peak showing a single phase of BaSiO 3 was confirmed.
<実施例8>
 実施例2において、Ca炭酸塩(CaCO3)をBa炭酸塩(BaCO3)に変更すると共に、Pt(NH32(NO22水溶液を硝酸Pd水溶液に変更した以外の点は、実施例2と同様に、触媒担体及び貴金属担持触媒(サンプル)を得た。
 なお、該触媒担体は、比表面積が3.9m/gであり、X線回折法(XRD)で分析した結果、Ba2SiO4の単一相を示すピークが確認された。
Example 8
In Example 2, the change Ca carbonate salt (CaCO 3) to Ba carbonate (BaCO 3), Pt (NH 3) 2 (NO 2) 2 solution points except that the Pd nitrate solution, implemented As in Example 2, a catalyst carrier and a noble metal-supported catalyst (sample) were obtained.
The catalyst support had a specific surface area of 3.9 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of Ba 2 SiO 4 was confirmed.
<Pt又はPdの分散度(%)の測定>
 Pt(Pd)の分散度(%)をCOパルス吸着法にて測定した。
 なお、表1及び表2に示したPt(Pd)分散度は式(1)により計算した値である。
 Pt(Pd)分散度(%)=(CO吸着量に相当するPt(Pd)量(モル)/含まれているPt(Pd)の総量(モル))×100
<Measurement of degree of dispersion (%) of Pt or Pd>
The degree of dispersion (%) of Pt (Pd) was measured by a CO pulse adsorption method.
In addition, Pt (Pd) dispersion degree shown to Table 1 and Table 2 is the value calculated by Formula (1).
Pt (Pd) dispersion degree (%) = (amount of Pt (Pd) corresponding to CO adsorption amount (mol) / total amount of contained Pt (Pd) (mol)) × 100
<C-O反応(Light-off試験)>
 C酸化活性評価試験の前処理として、1.5%O2/He(600℃)のガスを、貴金属担持触媒(サンプル)0.1gに対して、ガス流量:500cm3/minの割合で10min流して、前処理を行った。
<C 3 H 6 -O 2 reaction (Light-off test)>
As a pretreatment of the C 3 H 6 oxidation activity evaluation test, a gas flow rate of 500 cm 3 / min is applied to a gas of 1.5% O 2 / He (600 ° C.) and 0.1 g of the noble metal-supported catalyst (sample) Pretreatment was carried out at a flow rate of 10 min.
 比較例1及び実施例2~7で得た各貴金属担持触媒(サンプル)について、固定床流通型の反応装置を用いて、模擬排ガスによる浄化性能を評価した。
 すなわち、反応管内に、各貴金属担持触媒(サンプル)0.1gを、該触媒を挟むように触媒の前後にそれぞれ石英ウールを詰めると共に、当該貴金属担持触媒(サンプル)の前後にそれぞれ石英ウールを詰めてセットした。
 そして、上記前処理の後、C1500ppm、O9000ppm、残部Heの組成からなる模擬排ガスを、総流量500cm3/minで前記反応管内に導入し、100℃から600℃まで10℃/minで連続昇温し、反応管出口における排出ガスを、四重極型質量分析計を用いて分析し、反応ガス中の成分組成を求めた。
For each of the noble metal-supported catalysts (samples) obtained in Comparative Example 1 and Examples 2 to 7, the purification performance with simulated exhaust gas was evaluated using a fixed bed flow type reactor.
That is, in a reaction tube, 0.1 g of each noble metal-supported catalyst (sample) is packed with quartz wool before and after the catalyst so as to sandwich the catalyst, and quartz wool is packed before and after the noble metal-supported catalyst (sample). Set.
Then, after the above pretreatment, a simulated exhaust gas consisting of C 3 H 6 1500 ppm, O 2 9000 ppm and the balance He composition is introduced into the reaction tube at a total flow rate of 500 cm 3 / min, and 100 ° C. to 600 ° C. at 10 ° C. The temperature was continuously raised at 1 / min, and the exhaust gas at the outlet of the reaction tube was analyzed using a quadrupole mass spectrometer to determine the component composition in the reaction gas.
<NO-C-O反応(Light-off試験)>
 NO還元活性評価試験の前処理として、1.5%O2/He(600℃)のガスを、貴金属担持触媒(サンプル)0.1gに対して、ガス流量:500cm3/minの割合で10min流して、前処理を行い、反応開始温度まで降温した。
<NO-C 3 H 6 -O 2 reaction (Light-off test)>
As a pretreatment for the NO reduction activity evaluation test, a gas of 1.5% O 2 / He (600 ° C.) was used, and a gas flow rate of 500 cm 3 / min was applied for 10 minutes with respect to 0.1 g of a noble metal-supported catalyst (sample) It was allowed to flow, pretreated and cooled to the reaction start temperature.
 比較例1及び実施例2~8で得た各貴金属担持触媒(サンプル)について、固定床流通型の反応装置を用いて、模擬排ガスによる浄化性能を評価した。
 すなわち、反応管内に、各貴金属担持触媒(サンプル)0.1gを該触媒を挟むように触媒の前後にそれぞれ石英ウールを詰めると共に、当該貴金属担持触媒(サンプル)の前後にそれぞれ石英ウールを詰めてセットした。
 そして、上記前処理の後、NO1000ppm、C1500ppm、O9000ppm、残部Heの組成からなる模擬排ガスを、総流量500cm3/minで前記反応管内に導入し、200℃から600℃まで10℃/minでステップ昇温し、反応管出口における排出ガスを、四重極型質量分析計を用いて分析し、反応ガス中の成分組成を求めた。
For each of the noble metal-supported catalysts (samples) obtained in Comparative Example 1 and Examples 2 to 8, the purification performance with simulated exhaust gas was evaluated using a fixed bed flow type reactor.
That is, quartz wool is packed in front and back of the catalyst so as to sandwich 0.1 g of each noble metal-supported catalyst (sample) in the reaction tube, and quartz wool is packed in front of and behind the noble metal-supported catalyst (sample). I set it.
Then, after the above pretreatment, a simulated exhaust gas composed of NO 1000 ppm, C 3 H 6 1500 ppm, O 2 9000 ppm, balance He is introduced into the reaction tube at a total flow rate of 500 cm 3 / min, and from 200 ° C. to 600 ° C. The temperature was raised stepwise at 10 ° C./min, and the exhaust gas at the outlet of the reaction tube was analyzed using a quadrupole mass spectrometer to determine the component composition in the reaction gas.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(考察)
 C-O反応(Light-off試験)の結果をみると、アルミナを担体とする比較例1に比べて、実施例は、THCのT-50がより低温側にあり、アルミナ担体と比較して高い低温活性を発現することが認められた。
 また、NO-C-O反応(Light-off試験)の結果をみると、アルミナを担体とする比較例1に比べて、実施例は、NO共存下においてもTHCのT-50がより低温側にあり、アルミナ担体と比較して高い低温活性を発現することが認められた。更に、THCのT-50が低温側のものほどNOのT-20も低温化する傾向が認められた。
 このような傾向は、リン酸塩粒子についても同様のことが言える。
(Discussion)
Looking at the results of the C 3 H 6 -O 2 reaction (light-off test), compared to Comparative Example 1 in which alumina is the carrier, in the example, the T-50 of THC is at a lower temperature side, and the alumina carrier is It was found to express higher low temperature activity as compared with.
Also, looking at the results of the NO-C 3 H 6 -O 2 reaction (Light-off test), compared to Comparative Example 1 in which alumina is the carrier, the example shows T-50 of THC even in the presence of NO. Of the lower temperature side, and it was observed that high temperature activity was expressed as compared to the alumina carrier. Furthermore, as the T-50 of THC on the lower temperature side, there was a tendency that the T-20 of NO was also lowered.
The same can be said for phosphate particles.
 なお、比較例1で使用したアルミナは、実施例で使用したケイ酸塩粒子に比べて分散度が高いのに、実施例の方が低温活性に優れた結果が得られている。この点については、例えばC-O反応の結果を考慮すると、実施例においては、触媒担体上すなわちケイ酸塩粒子表面でCが活性化され、低温域からHC活性化種とOやNOとの反応が起こり易い状態になるため、比表面積や貴金属分散度が比較例1と比べて極めて小さいにもかかわらず、両反応において優れた低温活性が発現したものと推察される。
 また、高温域では、実施例は、C転化率が上昇しており、C燃焼が優勢であることが分かった。他方、NO転化率は昇温と共に低下していくものの、比較例1と比べて実施例は高いη500を示すことが分かった。
In addition, although the alumina used by the comparative example 1 has high dispersion degree compared with the silicate particle | grains used in the Example, the result in which the Example was excellent in low temperature activity is obtained. In this respect, in view of, for example, the result of the C 3 H 6 -O 2 reaction, in the example, C 3 H 6 is activated on the catalyst support, that is, on the silicate particle surface, and HC activation from the low temperature range Since reaction between species and O 2 or NO is likely to occur, it is speculated that excellent low temperature activity is exhibited in both reactions despite the fact that the specific surface area and the degree of dispersion of precious metals are extremely small compared to Comparative Example 1. Be done.
In addition, in the high temperature region, the example showed that the C 3 H 6 conversion was increased, and it was found that C 3 H 6 combustion was dominant. On the other hand, it was found that although the NO conversion rate decreases with the temperature rise, the example shows higher η 500 as compared with Comparative Example 1.
 また、実施例8で示したように、本触媒担体は、担持する貴金属として、Pt以外の貴金属であっても、Ptを担持した時と同様に、低表面積であっても、Al担体を使用した場合に比べて、プロピレン活性化能または酸素活性化能を発揮することができ、400℃程度までの高温でのNOx転化率を同等レベルに維持できることを確認することができた。
 また、本触媒担体に担持される活性種ついては、RhよりもPtやPdと組み合わせることで低温活性に加え高温域のNO転化能が発現されることも確認されている。
In addition, as shown in Example 8, the present catalyst support is Al 2 O 3 even if it is a noble metal other than Pt as the noble metal to be supported, and has a low surface area as in the case of supporting Pt. It was confirmed that propylene activation ability or oxygen activation ability can be exhibited and NOx conversion at high temperatures up to about 400 ° C. can be maintained at an equivalent level as compared with the case where a carrier is used.
In addition to the low temperature activity, it has also been confirmed that the active species supported on the present catalyst carrier is expressed in the high temperature region in addition to the low temperature activity by combining it with Pt and Pd.
 上記実施例及びこれまで本発明が行ってきた試験、並びに周期表第1族に属する元素は化学的性質が共通しており、また、周期表第2族に属する元素も化学的性質が共通しているという技術常識を踏まえて考慮すると、周期表第1族及び第2族に属する元素のうちの1種又は2種類以上を含有するケイ酸塩を含む粒子からなる排ガス浄化触媒用担体であれば、上記実施例と同様の効果を得られるものと予想することができる。 The above examples and the tests conducted so far according to the present invention, and the elements belonging to Group 1 of the periodic table have the same chemical properties, and the elements belonging to Group 2 of the periodic table have the same chemical properties Based on common technical knowledge that it is a carrier for an exhaust gas purification catalyst comprising particles containing a silicate containing one or more of the elements belonging to Groups 1 and 2 of the periodic table. For example, it can be expected that the same effect as the above embodiment can be obtained.
<実施例9>
 Ba炭酸塩(BaCO3)と、リン酸二水素K(KHPO)とをモル比1:1の割合で混合してエタノールに投入し、24時間撹拌して湿式混合した後、60℃(品温)を12時間保持するように乾燥させ、次に大気中にて、600℃、3時間仮焼後に、1300℃、3時間焼成することにより、触媒担体を得た。
 このようにして得られた触媒担体は、比表面積が1.0m/gであり、X線回折法(XRD)で分析した結果、KBaPO4の単一相を示すピークが確認された。
 上記触媒担体を用いた貴金属担持粉末は実施例2と同様の手順により得た。
Example 9
A mixture of Ba carbonate (BaCO 3 ) and dihydrogen phosphate K (KH 2 PO 4 ) in a molar ratio of 1: 1 is added to ethanol, stirred for 24 hours for wet mixing, and then at 60 ° C. The catalyst carrier was obtained by drying so as to maintain (material temperature) for 12 hours, and then calcining in air for 3 hours at 600 ° C. for 3 hours and then calcining at 1300 ° C. for 3 hours.
The catalyst support thus obtained had a specific surface area of 1.0 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak indicating a single phase of KBaPO 4 was confirmed.
The noble metal-supported powder using the catalyst carrier was obtained by the same procedure as in Example 2.
<実施例10>
 Sr炭酸塩(SrCO3)と、リン酸二水素K(KHPO)とをモル比1:1の割合で混合してエタノールに投入し、24時間撹拌して湿式混合した後、60℃(品温)を12時間保持するように乾燥させ、次に大気中にて、1200℃、12時間焼成することにより、触媒担体を得た。
 このようにして得られた触媒担体は、比表面積が0.9m/gであり、X線回折法(XRD)で分析した結果、KSrPO4の単一相を示すピークが確認された。
 上記触媒担体を用いた貴金属担持粉末は実施例2と同様の手順により得た。
Example 10
After mixing Sr carbonate (SrCO 3 ) and dihydrogen phosphate K (KH 2 PO 4 ) in a molar ratio of 1: 1, charging to ethanol, stirring for 24 hours and wet mixing, 60 ° C. The catalyst carrier was obtained by drying so as to maintain (material temperature) for 12 hours, and then calcinating in the air at 1200 ° C. for 12 hours.
The catalyst support thus obtained had a specific surface area of 0.9 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak indicating a single phase of KSrPO 4 was confirmed.
The noble metal-supported powder using the catalyst carrier was obtained by the same procedure as in Example 2.
<実施例11>
 Ba酢酸塩(Ba(CHCOO))と、リン酸二水素Na(NaHPO・2HO)とをモル比1.5:1の割合で混合して硝酸に投入し、続いて水酸化NaでpH=13に調整し、90℃で12時間熟成した懸濁液をろ別後、60℃で12時間乾燥することで触媒担体を得た。
 このようにして得られた触媒担体は、比表面積が3.0m/gであり、X線回折法(XRD)で分析した結果、Ba1.5PO4の単一相を示すピークが確認された。
 上記触媒担体を用いた貴金属担持粉末は実施例2と同様の手順により得た。
Example 11
Ba acetate (Ba (CH 3 COO) 2 ) and sodium dihydrogenphosphate (NaH 2 PO 4 .2H 2 O) are mixed at a molar ratio of 1.5: 1 and charged into nitric acid, and then The suspension was adjusted to pH = 13 with sodium hydroxide, and the suspension aged at 90 ° C. for 12 hours was filtered off and dried at 60 ° C. for 12 hours to obtain a catalyst carrier.
The catalyst support thus obtained has a specific surface area of 3.0 m 2 / g, and as a result of X-ray diffraction (XRD) analysis, a peak showing a single phase of Ba 1.5 PO 4 is confirmed It was done.
The noble metal-supported powder using the catalyst carrier was obtained by the same procedure as in Example 2.
<比表面積及びPt分散度の測定>
 上記同様に比表面積(m/g)及びPt分散度(%)を測定した。
<Measurement of Specific Surface Area and Pt Dispersion>
The specific surface area (m 2 / g) and the degree of Pt dispersion (%) were measured in the same manner as described above.
<C-O反応(Light-off試験)>
 上記同様に、C-O反応(Light-off試験)の測定を行った。
<C 3 H 6 -O 2 reaction (Light-off test)>
Measurement of the C 3 H 6 -O 2 reaction (Light-off test) was performed in the same manner as described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例9~11及びこれまで本発明者が行ってきた試験結果を考慮すると、周期表第1族及び第2族に属する元素のうちの1種又は2種類以上を含有するリン酸塩を含む粒子からなる排ガス浄化触媒用担体は、周期表第1族及び第2族に属する元素のうちの1種又は2種類以上を含有するケイ酸塩を含む粒子からなる排ガス浄化触媒用担体と同様の作用機序を示し、同様の効果を得ることができることを確認できた。 Considering Examples 9 to 11 and the test results that the present inventor has conducted, it includes a phosphate containing one or more of the elements belonging to Groups 1 and 2 of the periodic table. A carrier for an exhaust gas purification catalyst consisting of particles is the same as the carrier for an exhaust gas purification catalyst consisting of particles containing a silicate containing one or two or more kinds of elements belonging to Groups 1 and 2 of the periodic table. The mechanism of action was shown, and it could be confirmed that the same effect could be obtained.

Claims (6)

  1.  周期表第1族及び第2族に属する元素のうちの1種又は2種類以上を含有するケイ酸塩又はリン酸塩を含む粒子からなる排ガス浄化触媒用担体。 A support for an exhaust gas purification catalyst comprising particles containing a silicate or phosphate containing one or more of elements belonging to Periodic Table Group 1 and Group 2.
  2.  Ca、Sr又はBa、又はこれらのうちの2種類以上を含有するケイ酸塩を含む粒子からなる排ガス浄化触媒用担体。 A carrier for an exhaust gas purification catalyst, which comprises particles containing a silicate containing Ca, Sr or Ba, or two or more of them.
  3.  前記ケイ酸塩は、A2SiO4(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)、又は、ASiO3(Aは、Ca、Sr又はBa、又はこれらのうちの2種類以上を含む元素)、又は、これらの混合物であることを特徴とする請求項1又は2に記載の排ガス浄化触媒用担体。 The silicate is A 2 SiO 4 (A is Ca, Sr or Ba, or an element containing two or more of them), or ASiO 3 (A is Ca, Sr or Ba, or these) The support for an exhaust gas purification catalyst according to claim 1 or 2, which is an element containing two or more of them or a mixture thereof.
  4.  前記リン酸塩は、APO4(x=2又は1.5であり、x=2の場合のAはLi、Na、K及びCsのうちのいずれか1種の1価の元素又は2種以上の1価の元素と、Mg、Ca、Sr及びBaのうちのいずれか1種の2価の元素又は2種以上の2価の元素との組合せであり、x=1.5の場合のAはMg、Ca、Sr及びBaのうちのいずれか1種の2価の元素又は2種以上の2価の元素である。)であることを特徴とする請求項1~3の何れかに記載の排ガス浄化触媒用担体。 The phosphate is A x PO 4 (x = 2 or 1.5, and in the case of x = 2, A is any one monovalent element or two of Li, Na, K and Cs) A combination of at least one kind of monovalent element and any one kind of divalent element or two or more kinds of divalent elements of Mg, Ca, Sr and Ba, in the case of x = 1.5 4) any one of Mg, Ca, Sr, and Ba, or two or more kinds of divalent elements). A carrier for an exhaust gas purification catalyst according to any one of the above.
  5.  前記ケイ酸塩又はリン酸塩が、Baを含有するケイ酸塩又はリン酸塩であることを特徴とする請求項1~4の何れかに記載の排ガス浄化触媒用担体。 The exhaust gas purification catalyst support according to any one of claims 1 to 4, wherein the silicate or phosphate is a Ba-containing silicate or phosphate.
  6.  請求項1~5の何れかに記載の排ガス浄化触媒用担体と、触媒活性成分とを含有する排ガス浄化触媒。 An exhaust gas purification catalyst comprising the exhaust gas purification catalyst support according to any one of claims 1 to 5 and a catalytically active component.
PCT/JP2015/084938 2015-01-19 2015-12-14 Carrier for exhaust gas purifying catalysts, and exhaust gas purifying catalyst WO2016117240A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/504,760 US10010871B2 (en) 2015-01-19 2015-12-14 Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
EP15878929.7A EP3141302A4 (en) 2015-01-19 2015-12-14 Carrier for exhaust gas purifying catalysts, and exhaust gas purifying catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-008015 2015-01-19
JP2015008015 2015-01-19
JP2015200921A JP6714989B2 (en) 2015-01-19 2015-10-09 Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP2015-200921 2015-10-09

Publications (1)

Publication Number Publication Date
WO2016117240A1 true WO2016117240A1 (en) 2016-07-28

Family

ID=56416800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084938 WO2016117240A1 (en) 2015-01-19 2015-12-14 Carrier for exhaust gas purifying catalysts, and exhaust gas purifying catalyst

Country Status (1)

Country Link
WO (1) WO2016117240A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144134A (en) * 1993-11-25 1995-06-06 Idemitsu Kosan Co Ltd Catalyst for purifying exhaust gas
JPH11114377A (en) * 1997-10-17 1999-04-27 Hitachi Ltd Purifying method of exhaust gas from inner combustion engine and catalyst
JPH11267509A (en) * 1998-03-20 1999-10-05 Mitsubishi Heavy Ind Ltd Denitration catalyst and treatment of exhaust gas
JP2004216223A (en) * 2003-01-10 2004-08-05 Toyota Central Res & Dev Lab Inc Nox occlusion reduction type catalyst
JP2007144412A (en) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning exhaust gas
JP2007144393A (en) * 2005-10-24 2007-06-14 Toyota Motor Corp Catalyst carrier and exhaust gas-treating catalyst
JP2011208556A (en) * 2010-03-29 2011-10-20 Mazda Motor Corp Exhaust emission control device
JP2013006170A (en) * 2011-05-20 2013-01-10 Akita Univ Exhaust gas purifying catalyst and carrier
JP2013244469A (en) * 2012-05-28 2013-12-09 Babcock Hitachi Kk Method for producing denitration catalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144134A (en) * 1993-11-25 1995-06-06 Idemitsu Kosan Co Ltd Catalyst for purifying exhaust gas
JPH11114377A (en) * 1997-10-17 1999-04-27 Hitachi Ltd Purifying method of exhaust gas from inner combustion engine and catalyst
JPH11267509A (en) * 1998-03-20 1999-10-05 Mitsubishi Heavy Ind Ltd Denitration catalyst and treatment of exhaust gas
JP2004216223A (en) * 2003-01-10 2004-08-05 Toyota Central Res & Dev Lab Inc Nox occlusion reduction type catalyst
JP2007144393A (en) * 2005-10-24 2007-06-14 Toyota Motor Corp Catalyst carrier and exhaust gas-treating catalyst
JP2007144412A (en) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning exhaust gas
JP2011208556A (en) * 2010-03-29 2011-10-20 Mazda Motor Corp Exhaust emission control device
JP2013006170A (en) * 2011-05-20 2013-01-10 Akita Univ Exhaust gas purifying catalyst and carrier
JP2013244469A (en) * 2012-05-28 2013-12-09 Babcock Hitachi Kk Method for producing denitration catalyst

Similar Documents

Publication Publication Date Title
KR101859786B1 (en) Catalyst for gasoline lean burn engines with improved nh3-formation activity
WO2013136821A1 (en) Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
JP6371557B2 (en) Phosphor trapping material and automobile exhaust gas purification catalyst using the same
US11559788B2 (en) Oxygen storage and release material, catalyst, exhaust gas purification system, and exhaust gas treatment method
JP5901751B2 (en) Exhaust gas treatment catalyst structure
JP6438384B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP5897047B2 (en) Catalyst carrier and exhaust gas purification catalyst
US9713805B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
WO2007122917A1 (en) Exhaust gas purifying catalyst and method for producing same
CN112399885B (en) Improved TWC catalysts comprising highly doped supports
JP6807447B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP6681347B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP5502953B2 (en) Catalyst carrier and exhaust gas purification catalyst
WO2016117240A1 (en) Carrier for exhaust gas purifying catalysts, and exhaust gas purifying catalyst
JP6770265B2 (en) Exhaust gas purification catalyst
WO2014185211A1 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
WO2016002344A1 (en) Catalyst carrier and exhaust gas purifying catalyst
WO2023047185A1 (en) Exhaust gas purification catalyst, and exhaust gas purification catalyst device for vehicles
RU2772210C2 (en) Three-way catalysts (twc) for purifying exhaust gas of petrol engine with improved heat resistance
CN111315476A (en) Nitrogen oxide storage material and exhaust gas purification catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878929

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015878929

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015878929

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15504760

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE