JP2014072985A - 単相電圧型交直変換装置 - Google Patents

単相電圧型交直変換装置 Download PDF

Info

Publication number
JP2014072985A
JP2014072985A JP2012217160A JP2012217160A JP2014072985A JP 2014072985 A JP2014072985 A JP 2014072985A JP 2012217160 A JP2012217160 A JP 2012217160A JP 2012217160 A JP2012217160 A JP 2012217160A JP 2014072985 A JP2014072985 A JP 2014072985A
Authority
JP
Japan
Prior art keywords
voltage
phase
value
command
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012217160A
Other languages
English (en)
Other versions
JP5616412B2 (ja
Inventor
Masaaki Oshima
正明 大島
Shuichi Ushiki
修一 宇敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2012217160A priority Critical patent/JP5616412B2/ja
Priority to PCT/JP2013/075996 priority patent/WO2014050936A1/ja
Publication of JP2014072985A publication Critical patent/JP2014072985A/ja
Application granted granted Critical
Publication of JP5616412B2 publication Critical patent/JP5616412B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

【課題】本発明では、単相交流で複数台を並列に接続して並行運転する場合においても、個々の装置が自律して出力偏差を制御する自律並行運転が可能であり、有効電力と無効電力とをそれぞれ独立して制御できる単相電圧型交直変換装置を提供することを目的とする。
【解決手段】本発明は、交流端子の単相交流電圧の位相と所定の位相差をもつ単相交流を発生させ、発生させた単相交流と交流端子の単相交流電圧とを利用してインバータのPWM制御することとした。また、交流端子の有効電力と無効電力とを測定し、所望の有効電力と無効電力になるように単相電圧型交直変換回路を制御することとした。
【選択図】図1

Description

本発明は、電力系統の電源となる系統連系装置や無停電電源装置に適用可能な単相電圧型交直変換装置に関する。
現在の電力系統の主力電源である同期発電機では、個々の発電機に同期化力があるため、個々の出力偏差を自動補正することができる。このため、横流抑制制御を行わなくても自律的に運転することができる。また、半導体により電力変換を行うインバータ(交直変換装置)では、三相機について自律並行運転(Autonomous Parallel Running:APRun)の技術が提案されている(例えば、特許文献1を参照。)。特許文献1の三相電圧型交直変換装置は、三相出力電圧をdq回転座標上にUM変換し、電力系統の振幅及び周波数が上位指令ベクトルによる指令値に近づくように各軸成分をそれぞれ独立に制御するようにしている。また、UM変換回路での変換行列の回転角度に三相出力電圧の周波数差に関わる成分から生成した生成値を同期させることで、三相出力電圧の回転角度を電力系統の周波数に追従させることができる。なお、本明細書において、「出力電圧」「位相差に相応する電圧」「内部起電圧」等の交流に用いられる電圧とは時間を変数とする関数を意味する。
特開2007−236083号公報 特開2009−201224号公報
しかし、単相交流では特許文献1に記載されるようなUM変換ができず、単相インバータについて自律並行運転が困難であった。また、電力系統に接続して運転する分散電源では、有効電力と無効電力とをそれぞれ独立して制御できることが望ましい。そこで、本発明では、単相交流で複数台を並列に接続して並行運転する場合においても、個々の装置が自律して出力偏差を制御する自律並行運転が可能であり、有効電力と無効電力とをそれぞれ独立して制御できる単相電圧型交直変換装置を提供することを目的とする。
上記目的を達成するため、本発明は、交流端子の単相交流電圧の位相と所定の位相差をもつ単相交流を発生させ、発生させた単相交流と交流端子の単相交流電圧とを利用してインバータをPWM制御することとした。すなわち、交流端子の単相交流電圧を、三相交流をM変換したときのα軸成分に相当する第一軸としている。所定の位相差をもつ単相交流を、三相交流をM変換したときのβ軸成分に相当する第二軸としている。本発明の単相電圧型交直変換装置は、第一軸と第二軸とを独立に制御し、周波数制御回路で生成した固有電気角を利用して単相交流電圧を電力系統の周波数に追従させるようにし、さらに、交流端子の有効電力と無効電力とを測定して所望の有効電力と無効電力になるように単相電圧型交直変換回路を制御することとした。
具体的には、本発明に係る単相電圧型交直変換装置は、交流端子から見て内部起電圧と内部等価インピーダンスとを持ちゲート信号のパルス幅に応じて直流電圧源からの電圧を単相交流電圧に変換して出力する単相電圧型交直変換部、前記単相電圧型交直変換部の単相交流電流を検出し前記単相交流電流の大きさに応じて生成した信号を出力する電流検出回路、及び前記ゲート信号を発生させる際に、入力されるPWM指令と前記電流検出回路からの出力との差分を算出し、設定されている前記差分の値についての上限値及び下限値と前記差分とを比較し、前記差分の値が前記上限値を上回った場合又は前記下限値を下回った場合に前記ゲート信号のパルス幅を調整し、前記差分の値が前記上限値と前記下限値との間に収まるように前記単相電圧型交直変換部を制御するゲート信号発生器を有し、前記単相電圧型交直変換部が出力する前記単相交流電圧を前記交流端子から出力する単相電圧型交直変換回路と、
前記交流端子の単相交流電圧の位相を遅延させ、遅延単相交流を発生させる位相遅れ単相交流生成器を有し、前記遅延単相交流に基づいて前記交流端子の単相交流電圧と前記単相電圧型交直変換回路の前記内部起電圧との位相差に相応する電圧を生成する位相差生成回路と、
前記交流端子の単相出力電力の有効電力値に対する有効電力指令値及び無効電力値に対する無効電力指令値からなる電力指令ベクトルが入力され、前記電力指令ベクトル、前記交流端子の単相出力電力の有効電力値及び前記交流端子の単相出力電力の無効電力値に基づいて、前記交流端子の単相出力電力の有効電力値及び無効電力値が前記電力指令ベクトルによる指令値に近づくように生成した電力制御信号を、前記交流端子の単相交流電圧の振幅に対する電圧振幅指令値及び周波数に対する周波数指令値からなる上位指令ベクトルとして出力する電力制御回路と、
前記電力制御回路からの前記上位指令ベクトル、前記位相差生成回路からの位相差に相応する電圧並びに前記交流端子の単相交流電圧に基づいて、前記交流端子の単相交流電圧の振幅及び周波数が前記上位指令ベクトルによる指令値に近づくように生成した電圧指令信号及び周波数指令信号を出力する上位電圧制御回路と、
前記交流端子の単相交流電圧の周波数を規定する規準周波数、前記上位電圧制御回路からの周波数指令信号及び前記位相差生成回路からの位相差に相応する電圧に基づいて前記単相電圧型交直変換回路の前記内部起電圧の電気角を生成する周波数制御回路と、
前記交流端子の単相交流電圧の振幅の規準となる規準電圧が設定されており、前記周波数制御回路からの電気角に基づく信号と前記規準電圧とを乗算した値に前記上位電圧制御回路からの電圧指令信号を加算して前記内部起電圧とし、前記内部起電圧と前記単相交流電圧との差分を前記PWM指令として出力する下位電圧制御回路と、
を備える。
また、本発明に係る単相電圧型交直変換装置は、交流端子から見て内部起電圧と内部等価インピーダンスとを持ちゲート信号のパルス幅に応じて直流電圧源からの電圧を単相交流電圧に変換して出力する単相電圧型交直変換部、前記単相電圧型交直変換部の単相交流電圧を検出し前記単相交流電圧の大きさに応じて生成した信号を出力する電圧検出回路、及び前記ゲート信号を発生させる際に、入力されるPWM指令と前記電流検出回路からの出力との差分を算出し、設定されている前記差分の値についての上限値及び下限値と前記差分とを比較し、前記差分の値が前記上限値を上回った場合又は前記下限値を下回った場合に前記ゲート信号のパルス幅を調整し、前記差分の値が前記上限値と前記下限値との間に収まるように前記単相電圧型交直変換部を制御するゲート信号発生器を有し、前記単相電圧型交直変換部が出力する前記単相交流電圧を前記交流端子から出力する単相電圧型交直変換回路と、
前記交流端子の単相交流電圧の位相を遅延させ、遅延単相交流を発生させる位相遅れ単相交流生成器を有し、前記遅延単相交流に基づいて前記交流端子の単相交流電圧と前記単相電圧型交直変換回路の前記内部起電圧との位相差に相応する電圧を生成する位相差生成回路と、
前記交流端子の単相出力電力の有効電力値に対する有効電力指令値及び無効電力値に対する無効電力指令値からなる電力指令ベクトルが入力され、前記電力指令ベクトル、前記交流端子の単相出力電力の有効電力値及び前記交流端子の単相出力電力の無効電力値に基づいて、前記交流端子の単相出力電力の有効電力値及び無効電力値が前記電力指令ベクトルによる指令値に近づくように生成した電力制御信号を、前記交流端子の単相交流電圧の振幅に対する電圧振幅指令値及び周波数に対する周波数指令値からなる上位指令ベクトルとして出力する電力制御回路と、
前記電力制御回路からの前記上位指令ベクトル、前記位相差生成回路からの位相差に相応する電圧並びに前記交流端子の単相交流電圧に基づいて、前記交流端子の単相交流電圧の振幅及び周波数が前記上位指令ベクトルによる指令値に近づくように生成した電圧指令信号及び周波数指令信号を出力する上位電圧制御回路と、
前記交流端子の単相交流電圧の周波数を規定する規準周波数、前記上位電圧制御回路からの周波数指令信号及び前記位相差生成回路からの位相差に相応する電圧に基づいて前記単相電圧型交直変換回路の前記内部起電圧の電気角を生成する周波数制御回路と、
前記交流端子の単相交流電圧の振幅の規準となる規準電圧が設定されており、前記周波数制御回路からの電気角に基づく信号と前記規準電圧とを乗算した値に前記上位電圧制御回路からの電圧指令信号を加算して前記内部起電圧とし、前記内部起電圧と前記単相交流電圧との差分を前記PWM指令として出力する下位電圧制御回路と、
を備える。
本発明では、電圧源として動作しても電力系統に接続して運転可能なように内部等価インピーダンスを持つ単相電圧型交直変換回路を用いる。また、位相差生成回路で内部等価インピーダンス両端の電圧位相差に相応する電圧を生成し、周波数制御回路で規準周波数、上位電圧制御回路からの周波数指令信号及び位相差に相応する電圧から生成した電気角に内部起電圧を同期させる。これにより、単相交流電圧を電力系統の周波数に追従させることができる。
また、上位電圧制御回路において、単相出力電圧の振幅及び周波数が電力制御回路からの上位指令ベクトルによる指令値に近づくように電圧指令信号を生成する。これにより、電力系統の振幅及び周波数が変化しても、当該振幅及び周波数に対する単相電圧型交直変換装置の単相出力電圧の振幅及び周波数のそれぞれの偏差分を検出できる。よって、下位電圧制御回路において電力系統の振幅及び位相に一致させるように単相電圧型交直変換装置の振幅及び位相を制御して当該偏差分を補償することができる。
以上のように、本発明に係る単相電圧型交直変換装置は、電圧源として電力系統に接続して運転することができると共に、電力系統に対する電圧偏差を自律して補償する自律並行運転が可能である。そのため、装置の信頼性が高まると共に分散配置が可能となる。さらに、複数台並列運転させる場合には、台数制限がなく運転させることができる。
一方、電力制御回路では、入力された電力指令ベクトルと、交流端子で測定した有効電力及び無効電力からなる出力電力ベクトルと、に基づいて、交流端子の有効電力及び無効電力が電力指令ベクトルによる指令値に近づくように上位指令ベクトルを生成して出力する。つまり、電力制御回路が出力電力ベクトルに基づいて電力指令ベクトルを上位指令ベクトルに変換するため、本発明に係る単相電圧型交直変換装置は、単相出力電力の有効電力及び無効電力の目標値を指令値として与えることができ、自律平行運転の際に、単相出力電力の有効電力及び無効電力を非干渉にかつ正確に制御できる。また、単相出力電力の有効電力及び無効電力の目標値を指令値として与えることから、力率を非干渉に制御でき、電力指令ベクトルの有効電力指令値をゼロとすれば、無効電力指令値と非干渉に力率をゼロにして動作可能であり、一方、電力指令ベクトルの無効電力指令値をゼロとすれば、有効電力指令値と非干渉に力率を1にして動作可能である。
従って、本発明は、単相交流で複数台を並列に接続して並行運転する場合においても、個々の装置が自律して出力偏差を制御する自律並行運転が可能であり、有効電力と無効電力とをそれぞれ独立して制御できる単相電圧型交直変換装置を提供することができる。
さらに、本発明に係る単相電圧型交直変換装置は、単相電圧型交直変換回路において、前記ゲート信号を発生させる際に、入力されるPWM指令と前記電流検出回路又は電圧検出回路からの出力との差分を算出する。そして、本発明に係る単相電圧型交直変換装置は、予め設定されている前記差分の値についての上限値及び下限値と前記差分とを比較し、前記差分の値が前記上限値を上回った場合又は前記下限値を下回った場合に、前記差分の値が前記上限値と前記下限値との間に収まるように前記ゲート信号のパルス幅を調整する。本発明に係る単相電圧型交直変換装置は、このゲート信号を用いて単相電圧型交直変換部を制御するため、単相電圧型交直変換部からの単相交流電圧をPWM指令に近づけることができる。
本発明に係る単相電圧型交直変換装置の各構成をより具体的に説明する。上記単相電圧型交直変換装置において、前記上位電圧制御回路は、前記周波数制御回路が生成した前記電気角に基づく信号と前記上位指令ベクトルとを乗算する第一乗算器と、前記第一乗算器が出力する信号から前記交流端子の単相交流電圧を減算する第一減算器と、前記交流端子の単相交流電圧が前記上位指令ベクトルによる前記指令値に近づくように前記第一減算器からの信号を増幅して前記電圧指令信号として出力する第一上位制御増幅器と、前記上位指令ベクトルから前記位相差生成回路からの位相差に相応する電圧を減算する第二減算器と、前記交流端子の単相交流電圧が前記上位指令ベクトルによる前記指令値に近づくように前記第二減算器からの信号を増幅して前記周波数指令信号として出力する第二上位制御増幅器と、を有し、
前記下位電圧制御回路は、前記規準電圧を設定して出力する規準電圧設定器と、前記周波数制御回路が生成した前記電気角に基づく信号と前記規準電圧設定器からの規準電圧とを乗算する第二乗算器と、前記上位電圧制御回路からの電圧指令信号と前記第二乗算器が出力する信号とを加算して前記内部起電圧を出力する第一加算器と、前記第一加算器が出力する信号から前記交流端子の単相交流電圧を減算する第三減算器と、前記交流端子の単相交流電圧が前記規準電圧、前記電圧指令信号及び前記電気角に基づく信号の合成値に近づくように前記第三減算器が出力する信号を制御し、PWM指令として出力する電圧制御器と、を有し、
前記周波数制御回路は、前記上位電圧制御回路からの周波数指令信号と前記位相差生成回路からの位相差に相応する電圧とを加算する第二加算器と、前記第二加算器が出力する信号の周波数成分に低域濾過要素を付加して出力するループフィルタと、前記規準周波数を設定する規準周波数設定器と、前記ループフィルタの出力値に前記規準周波数設定器の出力値を加算する第三加算器と、前記第三加算器が出力する信号を時間積分して前記電気角として出力する時間積分器と、を有することが望ましい。
本発明では、上位電圧制御回路の減算器において位相差生成回路からの位相差に相応する電圧と上位指令ベクトルとを減算して周波数指令信号を出力する。周波数制御回路で周波数指令信号と位相差生成回路からの位相差に相応する電圧とを加算し、周波数制御回路のループフィルタにおいて低域濾過要素を付加して出力する。また、規準周波数設定器から出力される規準周波数にループフィルタからの信号を加算し、時間積分器で時間積分して電気角を生成し、単相電圧型交直変換回路の内部起電圧の電気角を同期させる。これにより、単相交流電圧の回転角度を電力系統の周波数に追従させることができる。
一方、上位電圧制御回路の減算器において単相交流電圧と上位指令ベクトルとを減算して電圧指令信号を出力する。これにより、電力系統の振幅及び周波数が変化しても、当該振幅及び周波数に対する単相電圧型交直変換装置の単相出力電力の振幅及び周波数のそれぞれの誤差分を検出し、下位電圧制御回路において当該誤差分を補償することができる。
具体的には、下位電圧制御回路において規準電圧設定器からの規準電圧に上位電圧制御回路からの電圧指令信号を加算する。さらに、規準電圧と電圧指令信号とを加算した信号から交流端子の単相交流電圧を減算し、電力系統の振幅及び位相との差分を電圧制御器で規準電圧と電圧指令ベクトルとの合成値に近づくように変換してPWM指令として出力する。PWM指令に後述の補助信号を加算してもよい。これにより、単相電圧型交直変換装置の単相交流電圧の振幅及び位相を電力系統の振幅及び位相に一致させるように制御することができる。
以上のように、本発明に係る単相電圧型交直変換装置は、電圧源として電力系統に接続して運転することができると共に、電力系統や他の交流電源との自律並行運転が可能である。そのため、装置の信頼性が高まると共に分散配置が可能となる。さらに、複数台並列運転させる場合には、台数制限がなく運転させることができる。従って、本発明は、単相交流で複数台を並列に接続して並行運転する場合においても、個々の装置が自律して出力偏差を制御する自律並行運転が可能であり、有効電力と無効電力とをそれぞれ独立して制御できる単相電圧型交直変換装置を提供することができる。
次に、PWM信号に補助信号を加算する単相電圧型交直変換装置について説明する。本発明に係る単相電圧型交直変換装置において、前記交流端子の単相交流電流を検出する出力電流検出回路をさらに備え、
前記下位電圧制御回路は、前記単相電圧型交直変換回路が有する単相交流フィルタ回路における電流損失分を補償するように規定された電流補償値を出力するフィルタ電流補償器と、前記単相電圧型交直変換回路からの単相交流電流の電流偏差を補償するように規定された電流偏差補償値を出力するPWM電流偏差補償器と、前記出力電流検出回路が検出した単相交流電流の値が入力され、前記交流端子の負荷に対する電流を補償するように所定のフィードフォワードゲインで増幅して出力するフィードフォワード増幅器と、前記フィルタ電流補償器の電流補償値、前記PWM電流偏差補償器からの電流偏差補償値及び前記フィードフォワード増幅器からの出力値を前記電圧制御器からのPWM指令値に加算する第四加算器と、を有することが望ましい。
本発明では、PWM指令をゼロ指令としたときの単相電圧型交直変換回路における電流偏差分を予めPWM電流偏差補償器において設定し、電圧制御器からのPWM指令に加算することで当該電流偏差分を補償することができる。また、単相電圧型交直変換回路の単相交流フィルタ回路における電流損失分を予めフィルタ電流補償器において設定し、電圧制御器からのPWM指令に加算することで当該電流損失分を補償することができる。さらに、交流端子の単相交流電流の値をフィードフォワード増幅器で増幅し、電圧制御器からのPWM指令に加算することで、出力電流が変化しても安定した出力電圧を発生させることができる。すなわち、本発明では、PWM電流偏差補償器、フィルタ電流補償器及びフィードフォワード増幅器からの信号を補助信号として電圧制御器からのPWM指令に加算している。
本発明に係る単相電圧型交直変換装置において、前記位相差生成回路の位相遅れ単相交流発生器は、前記遅延単相交流の位相を前記交流端子の単相交流電圧から90°遅らせることを特徴とする。
本発明に係る単相電圧型交直変換装置の前記電力制御回路は、前記電力制御信号を前記電力指令ベクトルと前記交流端子の単相出力電力測定値との差分を積分し、低域ろ過して生成することが望ましい。過渡変動が少なく、定常誤差をゼロとすることができるからである。
また、本発明に係る単相電圧型交直変換装置において、前記上位指令ベクトルの上限と下限を定めるリミッタをさらに備え、上位指令ベクトルは前記リミッタを介して前記上位電圧制御回路に入力されることが望ましい。
過大な上位指令ベクトルが入力されることを防止し、異常な単相交流電流が電力系統に出力されることを防止できる。
本発明に係る単相電圧型交直変換装置において、前記電力指令ベクトルの有効電力指令値又は無効電力指令値のいずれか一方をゼロとすることができる。本発明に係る単相電圧型交直変換装置では、単相出力電力の有効電力及び無効電力の目標値を指令値として与えることから、電力指令ベクトルの有効電力指令値をゼロとすれば、無効電力指令値と非干渉に力率をゼロにして動作可能であり、一方、電力指令ベクトルの無効電力指令値をゼロとすれば、有効電力指令値と非干渉に力率を1にして動作可能である。
本発明では、単相交流で複数台を並列に接続して並行運転する場合においても、個々の装置が自律して出力偏差を制御する自律並行運転が可能であり、有効電力と無効電力とをそれぞれ独立して制御できる単相電圧型交直変換装置を提供することができる。
本発明に係る単相電圧型交直変換装置の概略構成図である。 本発明に係る単相電圧型交直変換装置の概略構成図である。 本発明に係る単相電圧型交直変換装置の概略構成図である。 本発明に係る単相電圧型交直変換装置が備える単相電圧型交直変換回路の概略構成図である。 本発明に係る単相電圧型交直変換装置が備える単相電圧型交直変換回路の概略構成図である。 本発明に係る単相電圧型交直変換装置が備える交流電力測定器の概略構成図である。 本発明に係る単相電圧型交直変換装置が備える交流電力測定器の概略構成図である。 単相電圧型交直変換装置(100V,50Hz、1kVA)が100V、50Hzの電力系統に連系している場合のPQ制御の動作をシミュレーションした結果である。 本発明に係る単相電圧型交直変換装置における制御ブロックの接続関係を示した図である。 本発明に係る単相電圧型交直変換装置が備える位相差生成回路の概略構成図である。 本発明に係る単相電圧型交直変換装置を交流端子からみた等価回路である。 本発明に係る単相電圧型交直変換装置が備える単相電圧型交直変換部の概略構成図である。 本発明に係る単相電圧型交直変換装置が備える単相交流フィルタ回路の概略構成図である。 本発明に係る単相電圧型交直変換装置が備えるゲート信号発生器の概略構成図である。 本発明に係る単相電圧型交直変換装置が備えるゲート信号発生器の動作原理を説明する図である。
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
図11は、静止型無効電力補償装置の交流端子からみた等価回路である。図11で、Vco(t)は内部起電圧、Riは内部等価インピーダンスの抵抗成分、Liは内部等価インピーダンスのインダクタンス成分である。
図9は、単相電圧型交直変換装置における制御ブロックの接続関係を例示した図である。三相電圧型交直変換装置の場合と同様に、上位指令ベクトルB1、最上位制御ブロックB2、ac−AVRブロックB3、ETM−PWMブロックB4及び主スイッチB5が含まれる。ac−AVRブロックB3については、特許文献2に記載される内部等価インピーダンスをインダクタンス主体とする単相ac−AVRを適用することで、インバータの出力回路に接続される変圧器に偏磁の恐れがなくなる。さらに、内部等価インピーダンスを抵抗成分とインダクタンス成分の並列回路とできるために設計上の自由度が増加する。
図1及び図2に、本実施形態に係る単相電圧型交直変換装置の概略構成図を示し、図9で示した各ブロックについてより詳細に説明する。
図1に示す単相電圧型交直変換装置11は、交流端子22から見て内部起電圧と内部等価インピーダンスとを持ち、PWM指令に基づいて発生させたゲート信号のパルス幅に応じて直流電圧源(不図示)からの電圧を直流端子21で受けて単相交流電圧に変換して交流端子22から出力する単相電圧型交直変換回路40と、
交流端子22の単相出力電力の有効電力値に対する有効電力指令値及び無効電力値に対する無効電力指令値からなる電力指令ベクトル130が入力され、電力指令ベクトル130、交流端子22の単相出力電力の有効電力値及び交流端子22の単相出力電力の無効電力値に基づいて、交流端子22の単相出力電力の有効電力値及び無効電力値が電力指令ベクトル130による指令値に近づくように生成した電力制御信号を、交流端子22の単相交流電圧の振幅に対する電圧振幅指令値及び周波数に対する周波数指令値からなる上位指令ベクトル120として出力する電力制御回路150と、
交流端子22の単相交流電圧に対して位相を遅延させた遅延単相交流を発生させる位相遅れ単相交流生成器を有し、前記遅延単相交流に基づいて交流端子22の単相交流電圧と単相電圧型交直変換回路40の内部起電圧との位相差に相応する電圧を生成する位相差生成回路30と、
電力制御回路150からの上位指令ベクトル120、位相差生成回路30からの位相差に相応する電圧並びに交流端子22の単相交流出力に基づいて、交流端子22の単相交流電圧の振幅及び周波数が上位指令ベクトル120による指令値に近づくように生成した電圧指令信号及び周波数指令信号を出力する上位電圧制御回路70と、
交流端子22の単相交流電圧の周波数を規定する規準周波数、上位電圧制御回路70からの周波数指令信号及び位相差生成回路30からの位相差に相応する電圧に基づいて電気角を生成し、電気角に単相電圧型交直変換回路40の内部起電圧の電気角を同期させる周波数制御回路50と、
交流端子22の単相交流電圧、周波数制御回路50からの生成値並びに上位電圧制御回路70からの電圧指令信号に基づいて、単相出力電圧の振幅、周波数及び位相が交流端子22の単相交流電圧の振幅を規定する規準電圧、前記電圧指令信号及び前記生成値の合成値に近づくように生成した信号を前記PWM指令として出力する下位電圧制御回路60と、を備える。
上位指令ベクトル120が図9の上位指令ベクトルB1に相当する。上位電圧制御回路70が図9の最上位制御ブロックB2に相当する。下位電圧制御回路60及び周波数制御回路50が図9のac−AVRブロックB3に相当する。ゲート信号発生器41が図9のETM−PWMブロックB4に相当する。単相電圧型交直変換回路40に含まれる単相電圧型交直変換部が図9の主スイッチB5に相当する。
単相電圧型交直変換回路40は、PWM指令に基づいてゲート信号発生器41により発生させたゲート信号のパルス幅に応じて不図示の直流電圧源からの電圧を単相交流電圧に変換する。直流電圧源は、バッテリ等の単独で直流電圧を出力する電圧源、風力発電等の発電方法で発電し整流して直流電圧を出力する電圧源、又は直流コンデンサの電圧を制御して直流電圧を出力する電圧源を例示することができる。この場合、出力電圧検出回路31の接続点と交流端子22との間にさらにブロッキングインダクタを備え、単相交流電圧のそれぞれをブロッキングインダクタを介して交流端子22から出力することとしてもよい。単相電圧型交直変換回路40でのPWM成分の交流端子22への流出を防止することができる。
図4及び図5に単相電圧型交直変換回路の概略構成図を示す。また、図14及び図15に単相電圧型交直変換回路が有するゲート発生器の概略構成図及びその動作説明図を示す。
図4に示す単相電圧型交直変換回路40−1は、交流端子22から見て内部起電圧と内部等価インピーダンスとを持ちゲート信号のパルス幅に応じて直流電圧源からの電圧を直流端子21で受けて単相交流電圧に変換して出力する単相電圧型交直変換部42、単相電圧型交直変換部42の単相交流電流を検出しその大きさに応じて生成した信号を出力する電流検出回路43、及び入力されるPWM指令と電流検出回路43からの出力との差分を減算器162で算出し、設定されている上限値及び下限値と前記差分とを比較し、前記差分の値が上限値を上回った場合又は下限値を下回った場合にゲート信号のパルス幅を調整し、前記差分の値が上限値と下限値との間に収まるように単相電圧型交直変換部42を制御するゲート信号発生器41を有する。さらに、単相電圧型交直変換回路40−1は、単相電圧型交直変換部42の単相交流電圧から単相電圧型交直変換部42でのゲート信号に起因する高周波成分を除去して出力する単相交流フィルタ回路45と、を備える。
ゲート信号発生器41がPWM指令と電流検出回路43の出力との差分からゲート信号を生成するメカニズムを図12及び図13を用いて説明する。PWM指令と電流検出回路43の出力との差分は減算器142で生成される。この差分はヒステリシスコンパレータ145に入力される。ヒステリシスコンパレータ145には上限値と下限値が設定されており、入力される差分の値が上限値と下限値との間にある場合(図13において“N”区間)、ヒステリシスコンパレータ145はゲート信号のパルス幅を維持する。すなわち、単相電圧型交直変換部42は現状の出力を維持することになる。
差分が上限値を越えた場合(図13において区間“P”)、ヒステリシスコンパレータ145はゲート信号のオンのパルス幅を減少させる。すなわち、単相電圧型交直変換部42は現状より小さな出力を出すことになる。一方、差分が下限値を下回った場合(図13において区間“M”)、ヒステリシスコンパレータ145はゲート信号のオンのパルス幅を増加させる。すなわち、単相電圧型交直変換部42は現状より大きな出力を出すことになる。このようにゲート信号発生器41が動作することで単相電圧型交直変換回路40−1はPWM指令に追従した単相交流電圧を出力することができる。
また、図5に示す単相電圧型交直変換回路40−2は、図4の電流検出回路43に代えて、単相電圧型交直変換部42の単相交流電圧を検出し単相交流電圧の大きさに応じて生成した信号を出力する電圧検出回路44を備える。この場合、ゲート信号発生器41は、入力されるPWM指令と電圧検出回路44からの出力との差分を減算器162で算出し、ヒステリシスコンパレータ165で設定されている上限値及び下限値と前記差分とを比較し、前記差分の値が上限値を上回った場合又は下限値を下回った場合にゲート信号のパルス幅を調整し、前記差分の値が上限値と下限値との間に収まるように単相電圧型交直変換部42を制御する。ゲート信号発生器41の構成及び動作は図12及び図13と同様である。
図4及び図5に示す単相電圧型交直変換部42の持つ内部等価インピーダンスは、後述するように図1の単相電圧型交直変換装置11内の制御変数により持たせることもできるし、図4及び図5の単相電圧型交直変換回路40−1,40−2の出力に抵抗、リアクトル若しくは単相変圧器又はこれらの組み合わせを接続して持たせることもできる。例えば、単相電圧型交直変換回路40−1,40−2の単相出力にそれぞれ抵抗又はリアクトルを直列に接続してもよいし、さらに抵抗を接続した場合には抵抗の後段にリアクトルをそれぞれ直列に接続してもよい。また、単相電圧型交直変換回路40−1,40−2の単相出力に単相変圧器を接続してもよい。また、単相電圧型交直変換回路40−1,40−2の単相出力にそれぞれリアクトルを接続した場合には、リアクトルの後段に単相変圧器を接続してもよい。さらに、単相電圧型交直変換回路40−1,40−2の単相出力にそれぞれ抵抗を接続し、抵抗の後段にリアクトルをそれぞれ直列に接続した場合には、当該リアクトルの後段に単相変圧器を接続してもよい。このように、単相電圧型交直変換回路40が内部等価インピーダンスを持つことにより、図1の単相電圧型交直変換装置11は、電圧源として電力系統に接続して運転することが可能となる。
図1の単相電圧型交直変換回路40を図4又は図5に示す構成とすることにより、単相電圧型交直変換装置11は、単相交流フィルタ回路45(図4及び図5)を備えることから、単相電圧型交直変換部42からの出力から単相電圧型交直変換部42でのゲート信号に起因する高周波成分を除去することができる。また、電流検出回路43又は電圧検出回路44において単相電圧型交直変換部42からの電流又は電圧を検出し、ゲート信号発生器41においてPWM指令と電流検出回路43又は電圧検出回路44からの出力との差分がゼロに近づくようにゲート信号を発生させることで電流誤差が許容範囲内に収まるように制御すること、或いは出力電圧をPWM指令に追従させることができる。
ここで、図12に、図4及び図5における単相電圧型交直変換部の概略構成図を示す。また、図13に、図4及び図5における単相交流フィルタ回路の概略構成図を示す。
図12に示す単相電圧型交直変換部42は、4個の自己消弧型スイッチ46g、46h、46k、46lと、4個のダイオード46a、46b、46e、46fと、を備える。自己消弧型スイッチ46g、46h、46k、46lは、入力信号のオン/オフに応じてスイッチのオン/オフを切替える素子で、MOSFET(MOS型電界効果トランジスタ)やIGBT(絶縁ゲートバイポーラトランジスタ)を例示できる。単相電圧型交直変換部42は、入力信号として図4又は図5に示すゲート信号発生器41からゲート信号が入力される。単相電圧型交直変換部42は、ゲート信号に応じて4つのスイッチのオン/オフを4つの自己消弧型スイッチ46g、46h、46k、46lごとにパルス信号により切替えることで、直流電圧源23からの電圧を単相交流電圧に変換して交流端子24、26から出力することができる。出力電圧は、パルス信号のパルス幅を変えることで変化させることができる。なお、図12において直流端子21−1,21−2は、概略図である図1の直流端子21に対応する。
図13に示す単相交流フィルタ回路45は、図4又は図5の単相電圧型交直変換部42からの単相出力を入力側の交流端子24、26で受けて出力側の交流端子22−1、22−3から出力する間で、電流を制御するインダクタ47dと、交流端子22−1と交流端子22−3との間に接続された抵抗47aと、コンデンサ47gと、を有する。インダクタ47d、抵抗47a及びコンデンサ47gの各容量は、出力側の交流端子22−1,22−3からの出力信号の周波数特性に応じて適宜定めることができる。なお、抵抗47aを省き、コンデンサ47gを交流端子22−1と交流端子22−3との間に接続してもよい。図4及び図5の単相電圧型交直変換回路40−1,40−2では、単相交流フィルタ回路45として図13の単相交流フィルタ回路45を適用して単相電圧型交直変換部42でのゲート信号に起因する高周波成分を除去することができる。なお、図13において交流端子22−1、22−3は、概略図である図1の交流端子22に対応する。
図1の出力電圧検出回路31は、交流端子22の単相交流電圧を検出し、位相差生成回路30、下位電圧制御回路60及び上位電圧制御回路70にそれぞれ出力する。また、出力電圧検出回路31の前段にローパスフィルタを備え、出力電圧検出回路31への単相交流電圧をローパスフィルタを介して検出することとしてもよい。単相交流電圧からPWM成分を除去して単相電圧型交直変換装置11の制御を安定化させることができる。また、出力電圧検出回路31の後段にローパスフィルタを備え、出力電圧検出回路31からの出力電圧をローパスフィルタを介して出力することとしてもよい。出力電圧検出回路31からの出力電圧からPWM成分を除去して単相電圧型交直変換装置11の制御を安定化させることができる。
図1の出力電流検出回路34は、変流器38を介して交流端子22の単相交流電流を検出し、交流電力測定器140に出力する。
図1の位相差生成回路30は、交流端子22の単相交流電圧VFIL(t)と単相電圧型交直変換回路40の内部起電圧との位相差に相応する電圧を生成する。図10は、位相差生成回路30の概略構成図の一例である。位相差生成回路30は、端子33−1から入力される単相交流電圧から所定の位相を遅らせた遅延単相交流を生成する位相遅れ単相交流生成器35と、端子33−1から入力される単相交流電圧、位相遅れ単相交流生成器35からの遅延単相交流の電圧及び端子33−3から入力される値から位相差に相応する電圧を生成する位相差電圧生成器36と、位相差に相応する電圧を出力する端子33−2を有する。図10では、位相遅れ単相交流生成器35が遅延単相交流の位相をほぼ90°遅らせているが、遅らせる位相は0°及び180°でなければ、何れの角度でもかまわない。
端子33−1には出力電圧検出回路31が検出した単相交流電圧VFIL(t)が入力される。端子33−3には、後述する周波数制御回路50が生成する電気角57が入力される。交流端子22の単相交流電圧VFIL(t)は、数式1で表せる。
Figure 2014072985
ここで、ω:角周波数[rad/s]、θ:位相角[rad]、E:実効値[V]である。なお、位相角の基準を内部起電圧におく。
交流端子22の単相交流電圧の角周波数ωと単相電圧型交直変換回路40の規準角周波数ωcoとが等しい場合は、単相交流電圧VFIL(t)と位相遅れ単相交流電圧V”FIL(t)との位相差が90°となり、位相遅れ単相交流生成器35が生成する位相遅れ単相交流電圧V”FIL(t)は数式2で表せる。
Figure 2014072985
位相差電圧生成器36は、単相交流電圧VFIL(t)、位相遅れ単相交流電圧V”FIL(t)及び周波数制御回路50が生成する生成値から位相差に相応する電圧V(t)を出力する。位相差に相応する電圧V(t)は数式3で表される。
Figure 2014072985
θの角速度がωに等しくなれば、数式3は定数となる。θは内部等価インピーダンス両端電圧の位相差であるので一般的に小さい。そこで、V(t)は数式4のように近似できる。
Figure 2014072985
位相差生成回路30は、生成した位相差に相応する電圧を周波数制御回路50及び上位電圧制御回路70にそれぞれ出力する。なお、ここではωがωcoと等しい場合のみを示したが、等しくない場合にも同様の近似解を得ることができ、実用上の問題はない。
周波数制御回路50は、交流端子22の単相交流電圧の周波数を規定する規準周波数、上位電圧制御回路70からの周波数指令信号及び位相差生成回路30からの出力信号に基づいて単相電圧型交直変換回路40の内部起電圧の電気角を決定する。具体的には、図2に示すように、第二加算器56が上位電圧制御回路70からの周波数指令信号と位相差生成回路30からの位相差に相応する電圧とを加算する。第二加算器56が出力する信号の周波数成分にループフィルタ53が単相交流電圧の周波数差に関わる成分である低域成分を濾過する。ループフィルタ53において付加する低域濾過要素は、例えば、一次遅れ要素等の遅れ要素である。これにより、フィードバックループを安定化させることができる。
また、第三加算器58は、規準周波数設定器51から出力される規準周波数とループフィルタ53の出力値とを加算する。時間積分器55は、第三加算器58からの出力を時間積分する。時間積分器55が第三加算器58からの出力を時間積分することで固有角度θとなる電気角57が得られる。
電気角57は、下位電圧制御回路60の第二乗算器65によって単相電圧型交直変換回路40の内部起電圧の電気角になる。これにより、当該回転角度を電力系統の周波数に追従させることができる。
ここで、位相差生成回路30では、前述したように交流端子22の単相交流電圧と単相電圧型交直変換回路40の内部起電圧との位相差に相応する電圧を出力する。そのため、位相差生成回路30での信号処理は、単相交流電圧と周波数制御回路50からの電気角57との位相を比較する位相比較処理に相当すると考えられる。また、規準周波数設定器51からの規準周波数とループフィルタ53からの出力値とを加算して積分する信号処理は、ループフィルタ53からの出力電圧に応じて電気角57の値を可変するVCO(Voltage Controlled Oscillator)の信号処理に相当すると考えられる。そのため、位相差生成回路30及び周波数制御回路50は、全体として、電気角57が交流端子22の単相交流電圧の周波数に同期するPLLとしての動作を行っていると考えられる。
図1の上位電圧制御回路70には、後述する電力制御回路150からの上位指令ベクトル120が入力され、周波数制御回路50からの電気角57、位相差生成回路30からの位相差に相応する電圧並びに交流端子22の単相交流電圧が入力される。上位電圧制御回路70は、これらの入力に基づいて、交流端子22の単相交流電圧の振幅及び周波数が上位指令ベクトル120による指令値に近づくように生成した電圧指令信号及び周波数指令信号を出力する。上位電圧制御回路70には、上位指令ベクトル120を直接入力するのではなく、上位指令ベクトル120の上限と下限を定めるリミッタ121を介して入力してもよい。具体的には、図2に示すように、第一乗算器73が周波数制御回路50からの電気角57の正弦値に√2を乗算した値と上位指令ベクトル120の電圧振幅指令値とを乗算する。第一減算器71aが第一乗算器73からの信号から交流端子22の交流出力電圧を減算する。第一上位制御増幅器72aが、交流端子22の単相交流電圧が上位指令ベクトル120による前記指令値に近づくように第一減算器71aからの信号を増幅して電圧指令信号として出力する。また、第二減算器71bが上位指令ベクトル120の周波数指令値に√2を乗算した値から位相差生成回路30からの位相差に相応する電圧を減算する。第二上位制御増幅器72bが、交流端子22の単相交流電圧の周波数が上位指令ベクトル120による前記指令値に近づくように第二減算器71bからの信号を増幅して周波数指令信号として出力する。
これにより、電力系統の振幅及び周波数が変化しても、当該振幅及び周波数に対する単相電圧型交直変換装置11の単相出力電力の振幅及び周波数のそれぞれの誤差分を検出できる。ここで、第一上位制御増幅器72a及び第二上位制御増幅器72bでは、第一減算器71a及び第二減算器71bからの出力に低域濾過要素を付加することとしてもよい。これにより、フィードバックループを安定化させることができる。また、第一上位制御増幅器72a及び第二上位制御増幅器72bの後段にさらにリミッタを備え、第一上位制御増幅器72a及び第二上位制御増幅器72bからの出力をリミッタを介して出力することとしてもよい。過出力を防止して制御を安定化させることができる。
図1の下位電圧制御回路60は、交流端子22の単相交流電圧、周波数制御回路50の電気角57を含む電気角指令信号並びに上位電圧制御回路70からの電圧指令信号に基づいて、前記単相交流電圧の振幅、周波数及び位相が交流端子22の単相交流電圧の振幅を規定する規準電圧、前記電圧指令信号及び前記電気角指令信号の合成値に近づくように生成した信号をPWM指令として出力する。また、規準電圧は、規準電圧設定器61により予め設定する。この規準電圧は交流端子22の単相交流電圧の振幅の規準となる。
具体的には、図2に示すように、規準電圧設定器61が規準電圧を設定して出力する。第二乗算器65が、周波数制御回路50からの電気角57の正弦値に√2を乗算した値と規準電圧設定器61からの規準電圧とを乗算する。第一加算器62が、上位電圧制御回路70からの電圧指令信号と第二乗算器65が出力する信号とを加算して出力する。なお、第一加算器62が出力する信号が前記内部起電圧に相当する。第三減算器63が、第一加算器62が出力する信号から出力電圧検出回路31からの信号を減算する。電圧制御器64が、交流端子22の単相交流電圧が前記規準電圧、前記電圧指令信号及び前記電気角指令信号の前記合成値に近づくように第三減算器63が出力する信号を制御し、PWM指令として出力する。
これにより、上位電圧制御回路70で検出した偏差分を補償すると共に、単相電圧型交直変換装置11の単相交流電圧の振幅及び位相を電力系統の振幅及び位相に一致させるように単相電圧型交直変換装置11の振幅及び位相を制御することができる。電圧制御器64は、例えば増幅器を適用することができる。ここで、第三減算器63と電圧制御器64との間にさらにローパスフィルタを備え、第三減算器63からの出力をローパスフィルタを介して出力することとしてもよい。電圧制御器64での制御を安定化させることができる。また、第三減算器63と電圧制御器64との間(この位置にローパスフィルタを備えた場合は、ローパスフィルタと電圧制御器64との間)にさらに電圧リミッタを備え、第三減算器63からの出力を電圧リミッタを介して出力することとしてもよい。単相電圧型交直変換装置11の起動時の出力電圧の過渡変動を抑制することができる。
(内部起電圧計算方法)
まず、出力電圧検出回路31が交流端子22の電圧VFIL(t)を検出する。この検出値は、位相差生成回路30に入力され、位相遅れ単相交流生成器35で位相を90度遅らせた位相遅れ単相交流電圧V”FIL(t)を生成する(数2)。そして、位相差電圧生成器36でVFIL(t)、V”FIL(t)、及び後述する内部起電圧の位相(生成電気角)θiを用いて位相差電圧Vq(t)を生成する(数3、数4)。
続いて、V(t)と第二上位制御増幅器72bからの周波数指令値とを加算してループフィルタ53を通し、予め設定されている規準角周波数ωcoを加算して積分回路55を通すことで内部起電圧の位相角(生成電気角57)θを得る。一方、予め設定されている規準電圧Ecoと√2sinθを乗算し、第一上位制御増幅器72aからの電圧指令値を加算することで内部起電圧を算出する。
このように、交流端子22の電圧VFIL(t)、規準角周波数ωco、規準電圧Eco、周波数指令値及び電圧指令値を用いて内部起電圧を算出することができる。
(動作概要)
自立運転時、すなわち内部起電圧Vco(t)と交流端子22の電圧VFIL(t)とが一致する場合、第三減算器63の出力はゼロとなりPWM指令がゼロ指令となる。このとき、交流電圧源Eは内部起電圧Vco(t)で動作する。一方、系統連系運転時、すなわち内部起電圧Vco(t)と交流端子22の電圧VFIL(t)とがずれる場合、第三減算器63の出力は当該ずれ量が出力され、電圧制御器64は当該ずれを収束させるPWM指令を出力する。このとき、交流電圧源Eは内部起電圧Vco(t)が電圧VFIL(t)に近づくように動作する。
図1の交流電力測定器140は、出力電圧検出回路31が検出した交流端子22の単相交流電圧の値及び出力電流検出回路34が検出した交流端子22の単相交流電流の値が入力され、交流端子22における単相出力電力の有効電力値と無効電力値を算出する。
具体的には、交流電力測定器140は、図6に示すように、電圧検出回路31と電流検出回路34とがそれぞれ測定した電力測定点の電圧と電流とを乗算器147−1で乗算した積をローパスフィルタ149−1に通して有効電力値測定回路145で有効電力値を測定する。また、電力測定点の電流位相を電流位相遅延回路143で90度ずらした関数を生成し、この関数と電力測定点の電圧とを乗算器147−2で乗算した積をローパスフィルタ149−2に通して無効電力値測定回路146で無効電力値を測定する。
また、交流電力測定器140は、図7に示すような構成であってもよい。交流電力測定器140は、規準周波数を生成する規準周波数回路141と、規準周波数回路141からの規準周波数に基づいて、電力測定点の交流電圧である測定交流電圧の位相を遅らせて遅延交流電圧を生成する電圧位相遅延回路142と、規準周波数回路141からの規準周波数に基づいて、電力測定点の交流電流である測定交流電流の位相を遅らせて遅延交流電流を生成する電流位相遅延回路143と、電力演算回路144と、を備える。電力演算回路144では、測定交流電圧と測定交流電流とを乗算器147−1で乗算した乗算値に電圧位相遅延回路142からの遅延交流電圧と電流位相遅延回路143からの遅延交流電流とを乗算器147−2で乗算した乗算値を加算器148−1で加算した加算値をローパスフィルタ149−1に通し、有効電力値として有効電力値測定回路145で測定する。また、測定交流電流と電圧位相遅延回路142からの遅延交流電圧とを乗算器147−4で乗算した乗算値から測定交流電圧と電流位相遅延回路143からの遅延交流電流とを乗算器147−3で乗算した乗算値を減算器148−2で減算した減算値をローパスフィルタ149−2に通し、無効電力値として無効電力値測定回路146で測定する。測定交流電圧と測定交流電流との乗算値に遅延交流電圧と遅延交流電流との乗算値を加算することで、有効電力値に含まれる2倍周波数成分を低減することができる。また、測定交流電流と遅延交流電圧との乗算値から測定交流電圧と遅延交流電流との乗算値を減算することで、無効電力値に含まれる2倍周波数成分を低減することができる。このため、有効電力値と無効電力値の測定精度を向上させ、有効電力値と無効電力値を精度よく制御することができる。
図1の電力制御回路150には、交流端子22の単相出力電力の有効電力値に対する有効電力指令値及び無効電力値に対する無効電力指令値からなる電力指令ベクトル130と、交流電力測定器140が算出した交流端子22の単相出力電力の有効電力値及び無効電力値が入力される。電力制御回路150は、交流端子22の単相出力電力の有効電力値及び無効電力値が電力指令ベクトル130による指令値に近づくように生成した電力制御信号を、交流端子22の単相出力電圧の振幅に対する電圧振幅指令値及び周波数に対する周波数指令値からなる上位指令ベクトル120として出力する。例えば、電力指令ベクトル130の有効電力指令値をゼロとすれば、無効電力指令値と非干渉に力率をゼロにして単相電圧型交直変換装置11の動作が可能であり、一方、電力指令ベクトル130の無効電力指令値をゼロとすれば、有効電力指令値と非干渉に力率を1にして単相電圧型交直変換装置11の動作が可能である。
具体的には、電力制御回路150は、電力制御信号を電力指令ベクトル130と交流端子22の単相出力電力の有効電力値及び無効電力値との差分を積分し、低域ろ過して生成する。
図3に、他の形態に係る単相電圧型交直変換装置の概略構成図を示す。
図3の単相電圧型交直変換装置11は、図2に示す単相電圧型交直変換装置11の電圧制御器64からの出力にさらにフィルタ電流補償器66、PWM電流偏差補償器67及びフィードフォワード増幅器68からの出力を第四加算器69において加算した形態である。この場合、単相電圧型交直変換回路40は、図4又は図5で説明したいずれかの単相電圧型交直変換回路40−1,40−2を適用することができる。そのため、図3では、図4又は図5のいずれかの単相電圧型交直変換回路40−1,40−2が適用されているものとする。
フィルタ電流補償器66は、単相電圧型交直変換回路40内の単相交流フィルタ回路45(図4又は図5)における電流損失分を補償するように規定された電流補償値を出力する。これにより、単相電圧型交直変換装置11では、図4又は図5の単相交流フィルタ回路45における電流損失分を予めフィルタ電流補償器66において設定し、電圧制御器64からの出力ベクトルに加算することで当該電流損失分を補償することができる。また、PWM電流偏差補償器67は、単相電圧型交直変換回路40からの単相交流電流の電流偏差分を補償するように規定された電流偏差補償値を出力する。これにより、単相電圧型交直変換装置11では、PWM指令をゼロ指令としたときの単相電圧型交直変換回路40における電流偏差分を予めPWM電流偏差補償器67において設定し、電圧制御器64からの出力ベクトルに加算することで当該電流偏差分を補償することができる。また、フィードフォワード増幅器68は、出力電流検出回路34が検出した単相交流電流の値が入力され、交流端子22の負荷に対する電流を補償するように所定のフィードフォワードゲインで増幅して出力する。これにより、単相電圧型交直変換装置11では、出力電流検出回路34において交流端子22の単相交流電流を検出し、値をフィードフォワード増幅器68をとおして、電圧制御器64からの出力値に加算することで負荷電流が変化しても安定した出力電圧を発生することができる。
リミッタ121は、上位指令ベクトル120の上限と下限を定め、過大な上位指令ベクトル120が上位電圧制御回路70に入力されることを防止する。
以上説明したように、図1から図3の単相電圧型交直変換装置11は、内部等価インピーダンスを持つことから、電圧源として電力系統に接続して運転することができると共に、周波数制御回路50、上位電圧制御回路70及び下位電圧制御回路60を備えるため、電力系統に対する電圧偏差を自律して補償する自律並行運転が可能である。そのため、装置の信頼性が高まると共に分散配置が可能となる。さらに、複数台並列運転させる場合には、台数制限がなく運転させることができる。
(シミュレーション結果)
以下、有効電力と無効電力とをそれぞれ独立して制御することをPQ制御と記す。図8は、図3の単相電圧型交直変換装置11(100V,50Hz、1kVA)が100V、50Hzの電力系統に連系している場合のPQ制御の動作をシミュレーションした結果である。時刻60msでPQ制御を開始し、時刻80msで電力指令ベクトルの有効電力指令値が900W、無効電力指令値が436varとなるようにした。単相電圧型交直変換装置の交流端子の単相出力電力は、PQ制御を開始して100ms後には、ほぼ電力指令ベクトルどおりの値となった。出力電流波形は、ひずみの少ない正弦波となった。
本発明の単相電圧型交直変換装置は、太陽光発電用インバータ、燃料電池用インバータ、蓄電システム用インバータ、DCリンク付風力発電用インバータ等の分散電源用インバータ、整流器、並びにSVC(無効電力補償装置)などに適用することができる。
11:単相電圧型交直変換装置
21:直流端子
22:交流端子
30:位相差生成回路
31:出力電圧検出回路
33−1〜33−3:端子
34:出力電流検出回路
35:位相遅れ単相交流生成器
36:位相差電圧生成器
38:変流器
40:単相電圧型交直変換回路
40−1,40−2:単相電圧型交直変換回路
41:ゲート信号発生器
42:単相電圧型交直変換部
43:電流検出回路
44:電圧検出回路
45:単相交流フィルタ回路
50:周波数制御回路
51:規準周波数設定器
53:ループフィルタ
55:時間積分器
56:第二加算器
57:電気角
58:第三加算器
60:下位電圧制御回路
61:規準電圧設定器
62:第一加算器
63:第三減算器
64:電圧制御器
65:第二乗算器
66 :フィルタ電流補償器
67:PWM電流偏差補償器
68:フィードフォワード増幅器
69:第四加算器
70:上位電圧制御回路
71a:第一減算器
71b:第二減算器
72a:第一上位制御増幅器
72b:第二上位制御増幅器
73:第一乗算器
120:上位指令ベクトル
121:リミッタ
130:電力指令ベクトル
140:交流電力測定器
141:規準周波数回路
142:電圧位相遅延回路
143:電流位相遅延回路
144:電力演算回路
145:有効電力値測定回路
146:無効電力値測定回路
147−1、147−2、147−3、147−4:乗算器
148−1:加算器
148−2:減算器
149−1、149−2:ローパスフィルタ
150:電力制御回路
161:コンパレータ
162:減算器
B1:上位指令ベクトル
B2:最上位制御ブロック
B3:ac−AVRブロック
B4:ETM−PWMブロック
B5:主スイッチ

Claims (8)

  1. 交流端子から見て内部起電圧と内部等価インピーダンスとを持ちゲート信号のパルス幅に応じて直流電圧源からの電圧を単相交流電圧に変換して出力する単相電圧型交直変換部、前記単相電圧型交直変換部の単相交流電流を検出し前記単相交流電流の大きさに応じて生成した信号を出力する電流検出回路、及び前記ゲート信号を発生させる際に、入力されるPWM指令と前記電流検出回路からの出力との差分を算出し、設定されている前記差分の値についての上限値及び下限値と前記差分とを比較し、前記差分の値が前記上限値を上回った場合又は前記下限値を下回った場合に前記ゲート信号のパルス幅を調整し、前記差分の値が前記上限値と前記下限値との間に収まるように前記単相電圧型交直変換部を制御するゲート信号発生器を有し、前記単相電圧型交直変換部が出力する前記単相交流電圧を前記交流端子から出力する単相電圧型交直変換回路と、
    前記交流端子の単相交流電圧の位相を遅延させ、遅延単相交流を発生させる位相遅れ単相交流生成器を有し、前記遅延単相交流に基づいて前記交流端子の単相交流電圧と前記単相電圧型交直変換回路の前記内部起電圧との位相差に相応する電圧を生成する位相差生成回路と、
    前記交流端子の単相出力電力の有効電力値に対する有効電力指令値及び無効電力値に対する無効電力指令値からなる電力指令ベクトルが入力され、前記電力指令ベクトル、前記交流端子の単相出力電力の有効電力値及び前記交流端子の単相出力電力の無効電力値に基づいて、前記交流端子の単相出力電力の有効電力値及び無効電力値が前記電力指令ベクトルによる指令値に近づくように生成した電力制御信号を、前記交流端子の単相交流電圧の振幅に対する電圧振幅指令値及び周波数に対する周波数指令値からなる上位指令ベクトルとして出力する電力制御回路と、
    前記電力制御回路からの前記上位指令ベクトル、前記位相差生成回路からの位相差に相応する電圧並びに前記交流端子の単相交流電圧に基づいて、前記交流端子の単相交流電圧の振幅及び周波数が前記上位指令ベクトルによる指令値に近づくように生成した電圧指令信号及び周波数指令信号を出力する上位電圧制御回路と、
    前記交流端子の単相交流電圧の周波数を規定する規準周波数、前記上位電圧制御回路からの周波数指令信号及び前記位相差生成回路からの位相差に相応する電圧に基づいて前記単相電圧型交直変換回路の前記内部起電圧の電気角を生成する周波数制御回路と、
    前記交流端子の単相交流電圧の振幅の規準となる規準電圧が設定されており、前記周波数制御回路からの電気角に基づく信号と前記規準電圧とを乗算した値に前記上位電圧制御回路からの電圧指令信号を加算して前記内部起電圧とし、前記内部起電圧と前記単相交流電圧との差分を前記PWM指令として出力する下位電圧制御回路と、
    を備える単相電圧型交直変換装置。
  2. 交流端子から見て内部起電圧と内部等価インピーダンスとを持ちゲート信号のパルス幅に応じて直流電圧源からの電圧を単相交流電圧に変換して出力する単相電圧型交直変換部、前記単相電圧型交直変換部の単相交流電圧を検出し前記単相交流電圧の大きさに応じて生成した信号を出力する電圧検出回路、及び前記ゲート信号を発生させる際に、入力されるPWM指令と前記電流検出回路からの出力との差分を算出し、設定されている前記差分の値についての上限値及び下限値と前記差分とを比較し、前記差分の値が前記上限値を上回った場合又は前記下限値を下回った場合に前記ゲート信号のパルス幅を調整し、前記差分の値が前記上限値と前記下限値との間に収まるように前記単相電圧型交直変換部を制御するゲート信号発生器を有し、前記単相電圧型交直変換部が出力する前記単相交流電圧を前記交流端子から出力する単相電圧型交直変換回路と、
    前記交流端子の単相交流電圧の位相を遅延させ、遅延単相交流を発生させる位相遅れ単相交流生成器を有し、前記遅延単相交流に基づいて前記交流端子の単相交流電圧と前記単相電圧型交直変換回路の前記内部起電圧との位相差に相応する電圧を生成する位相差生成回路と、
    前記交流端子の単相出力電力の有効電力値に対する有効電力指令値及び無効電力値に対する無効電力指令値からなる電力指令ベクトルが入力され、前記電力指令ベクトル、前記交流端子の単相出力電力の有効電力値及び前記交流端子の単相出力電力の無効電力値に基づいて、前記交流端子の単相出力電力の有効電力値及び無効電力値が前記電力指令ベクトルによる指令値に近づくように生成した電力制御信号を、前記交流端子の単相交流電圧の振幅に対する電圧振幅指令値及び周波数に対する周波数指令値からなる上位指令ベクトルとして出力する電力制御回路と、
    前記電力制御回路からの前記上位指令ベクトル、前記位相差生成回路からの位相差に相応する電圧並びに前記交流端子の単相交流電圧に基づいて、前記交流端子の単相交流電圧の振幅及び周波数が前記上位指令ベクトルによる指令値に近づくように生成した電圧指令信号及び周波数指令信号を出力する上位電圧制御回路と、
    前記交流端子の単相交流電圧の周波数を規定する規準周波数、前記上位電圧制御回路からの周波数指令信号及び前記位相差生成回路からの位相差に相応する電圧に基づいて前記単相電圧型交直変換回路の前記内部起電圧の電気角を生成する周波数制御回路と、
    前記交流端子の単相交流電圧の振幅の規準となる規準電圧が設定されており、前記周波数制御回路からの電気角に基づく信号と前記規準電圧とを乗算した値に前記上位電圧制御回路からの電圧指令信号を加算して前記内部起電圧とし、前記内部起電圧と前記単相交流電圧との差分を前記PWM指令として出力する下位電圧制御回路と、
    を備える単相電圧型交直変換装置。
  3. 前記上位電圧制御回路は、前記周波数制御回路が生成した前記電気角に基づく信号と前記上位指令ベクトルとを乗算する第一乗算器と、前記第一乗算器が出力する信号から前記交流端子の単相交流電圧を減算する第一減算器と、前記交流端子の単相交流電圧が前記上位指令ベクトルによる前記指令値に近づくように前記第一減算器からの信号を増幅して前記電圧指令信号として出力する第一上位制御増幅器と、前記上位指令ベクトルから前記位相差生成回路からの位相差に相応する電圧を減算する第二減算器と、前記交流端子の単相交流電圧が前記上位指令ベクトルによる前記指令値に近づくように前記第二減算器からの信号を増幅して前記周波数指令信号として出力する第二上位制御増幅器と、を有し、
    前記下位電圧制御回路は、前記規準電圧を設定して出力する規準電圧設定器と、前記周波数制御回路が生成した前記電気角に基づく信号と前記規準電圧設定器からの規準電圧とを乗算する第二乗算器と、前記上位電圧制御回路からの電圧指令信号と前記第二乗算器が出力する信号とを加算して前記内部起電圧を出力する第一加算器と、前記第一加算器が出力する信号から前記交流端子の単相交流電圧を減算する第三減算器と、前記交流端子の単相交流電圧が前記規準電圧、前記電圧指令信号及び前記電気角に基づく信号の合成値に近づくように前記第三減算器が出力する信号を制御し、PWM指令として出力する電圧制御器と、を有し、
    前記周波数制御回路は、前記上位電圧制御回路からの周波数指令信号と前記位相差生成回路からの位相差に相応する電圧とを加算する第二加算器と、前記第二加算器が出力する信号の周波数成分に低域濾過要素を付加して出力するループフィルタと、前記規準周波数を設定する規準周波数設定器と、前記ループフィルタの出力値に前記規準周波数設定器の出力値を加算する第三加算器と、前記第三加算器が出力する信号を時間積分して前記電気角として出力する時間積分器と、を有することを特徴とする請求項1又は2に記載の単相電圧型交直変換装置。
  4. 前記交流端子の単相交流電流を検出する出力電流検出回路をさらに備え、
    前記下位電圧制御回路は、前記単相電圧型交直変換回路が有する単相交流フィルタ回路における電流損失分を補償するように規定された電流補償値を出力するフィルタ電流補償器と、前記単相電圧型交直変換回路からの単相交流電流の電流偏差を補償するように規定された電流偏差補償値を出力するPWM電流偏差補償器と、前記出力電流検出回路が検出した単相交流電流の値が入力され、前記交流端子の負荷に対する電流を補償するように所定のフィードフォワードゲインで増幅して出力するフィードフォワード増幅器と、前記フィルタ電流補償器の電流補償値、前記PWM電流偏差補償器からの電流偏差補償値及び前記フィードフォワード増幅器からの出力値を前記電圧制御器からのPWM指令値に加算する第四加算器と、を有することを特徴とする請求項3に記載の単相電圧型交直変換装置。
  5. 前記位相差生成回路の位相遅れ単相交流発生器は、
    前記遅延単相交流の位相を前記交流端子の単相交流電圧から90°遅らせることを特徴とする請求項1から4のいずれかに記載の単相電圧型交直変換装置。
  6. 前記電力制御回路は、前記電力制御信号を前記電力指令ベクトルと前記交流端子の単相出力電力測定値との差分を積分し、低域ろ過して生成することを特徴とする請求項1から5のいずれかに記載の単相電圧型交直変換装置。
  7. 前記上位指令ベクトルの上限と下限を定めるリミッタをさらに備え、上位指令ベクトルは前記リミッタを介して前記上位電圧制御回路に入力されることを特徴とする請求項1から6のいずれかに記載の単相電圧型交直変換装置。
  8. 前記電力指令ベクトルの有効電力指令値又は無効電力指令値のいずれか一方がゼロであることを特徴とする請求項1から7のいずれかに記載の単相電圧型交直変換装置。
JP2012217160A 2012-09-28 2012-09-28 単相電圧型交直変換装置 Expired - Fee Related JP5616412B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012217160A JP5616412B2 (ja) 2012-09-28 2012-09-28 単相電圧型交直変換装置
PCT/JP2013/075996 WO2014050936A1 (ja) 2012-09-28 2013-09-26 単相電圧型交直変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217160A JP5616412B2 (ja) 2012-09-28 2012-09-28 単相電圧型交直変換装置

Publications (2)

Publication Number Publication Date
JP2014072985A true JP2014072985A (ja) 2014-04-21
JP5616412B2 JP5616412B2 (ja) 2014-10-29

Family

ID=50388331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217160A Expired - Fee Related JP5616412B2 (ja) 2012-09-28 2012-09-28 単相電圧型交直変換装置

Country Status (2)

Country Link
JP (1) JP5616412B2 (ja)
WO (1) WO2014050936A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752068B1 (ko) * 2015-11-30 2017-07-11 주식회사 포스코아이씨티 계통전압 급변시 계통 연계가 유지되는 전력관리장치 및 그 운전 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166674A (ja) * 2004-12-10 2006-06-22 Toshiba Mitsubishi-Electric Industrial System Corp 電圧形インバータ装置
JP2009219263A (ja) * 2008-03-11 2009-09-24 Origin Electric Co Ltd 単相電圧型交直変換装置
JP2009247162A (ja) * 2008-03-31 2009-10-22 Origin Electric Co Ltd 単相電圧型交直変換装置
JP2009290993A (ja) * 2008-05-29 2009-12-10 Origin Electric Co Ltd 単相電圧型交直変換装置
JP2012055060A (ja) * 2010-08-31 2012-03-15 Origin Electric Co Ltd 単相電圧型交直変換装置、三相電圧型交直変換装置、及び安定化制御方法
JP2012143053A (ja) * 2010-12-28 2012-07-26 Origin Electric Co Ltd 単相電圧型交直変換装置及び系統連系システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166674A (ja) * 2004-12-10 2006-06-22 Toshiba Mitsubishi-Electric Industrial System Corp 電圧形インバータ装置
JP2009219263A (ja) * 2008-03-11 2009-09-24 Origin Electric Co Ltd 単相電圧型交直変換装置
JP2009247162A (ja) * 2008-03-31 2009-10-22 Origin Electric Co Ltd 単相電圧型交直変換装置
JP2009290993A (ja) * 2008-05-29 2009-12-10 Origin Electric Co Ltd 単相電圧型交直変換装置
JP2012055060A (ja) * 2010-08-31 2012-03-15 Origin Electric Co Ltd 単相電圧型交直変換装置、三相電圧型交直変換装置、及び安定化制御方法
JP2012143053A (ja) * 2010-12-28 2012-07-26 Origin Electric Co Ltd 単相電圧型交直変換装置及び系統連系システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752068B1 (ko) * 2015-11-30 2017-07-11 주식회사 포스코아이씨티 계통전압 급변시 계통 연계가 유지되는 전력관리장치 및 그 운전 방법

Also Published As

Publication number Publication date
WO2014050936A1 (ja) 2014-04-03
JP5616412B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5184153B2 (ja) 単相電圧型交直変換装置及び単相電圧型交直変換回路の制御方法
JP5280107B2 (ja) 単相電圧型交直変換装置及び単相電圧型交直変換回路の制御方法
JP5300028B2 (ja) 単相電圧型交直変換装置及び系統連系システム
Guerrero et al. Output impedance design of parallel-connected UPS inverters with wireless load-sharing control
US9509233B2 (en) Power converter, power generation system, control apparatus, and power conversion method
JP5580147B2 (ja) 安定化制御方法
JP4664836B2 (ja) 三相電圧型交直変換装置
JP4945499B2 (ja) 単相電圧型交直変換装置
Savaghebi et al. Experimental evaluation of voltage unbalance compensation in an islanded microgrid
JP5580377B2 (ja) 静止型無効電力補償装置及び電圧制御方法
Deokar et al. DVR control strategy for dynamic power quality disturbance mitigation
Somkun et al. Fast DC bus voltage control of single-phase PWM rectifiers using a ripple voltage estimator
JP5616411B2 (ja) 単相電圧型交直変換装置
WO2014050759A1 (ja) 単相電圧型交直変換装置
JP5616412B2 (ja) 単相電圧型交直変換装置
JP4777913B2 (ja) 三相電圧型交直変換装置
Razali et al. Real-time implementation of dq control for grid connected three phase voltage source converter
WO2014050758A1 (ja) 単相電圧型交直変換装置
JP5497941B2 (ja) 分散電源用インバータ及び分散電源用インバータの制御方法
WO2014050934A1 (ja) 単相電圧型交直変換装置
JP2008172971A (ja) 三相電圧型交直変換装置
WO2014050760A1 (ja) 単相電圧型交直変換装置
JP5497945B2 (ja) 単相電圧型交直変換装置及び単相電圧型交直変換装置の制御方法
RU2734554C1 (ru) Устройство управления трехфазными трехуровневыми активными выпрямителями напряжения
Jiao et al. A Novel DROGI Based Control Algorithm Without PLL for Shunt Compensation Using Four-leg Converter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5616412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees