JP2014070227A - 成膜装置とその蒸発源の温度制御方法及び温度制御装置 - Google Patents

成膜装置とその蒸発源の温度制御方法及び温度制御装置 Download PDF

Info

Publication number
JP2014070227A
JP2014070227A JP2012214895A JP2012214895A JP2014070227A JP 2014070227 A JP2014070227 A JP 2014070227A JP 2012214895 A JP2012214895 A JP 2012214895A JP 2012214895 A JP2012214895 A JP 2012214895A JP 2014070227 A JP2014070227 A JP 2014070227A
Authority
JP
Japan
Prior art keywords
heater
rate
rate sensor
vapor deposition
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012214895A
Other languages
English (en)
Inventor
Kurazo Suzuki
庫三 鈴木
Makoto Izaki
良 井崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012214895A priority Critical patent/JP2014070227A/ja
Publication of JP2014070227A publication Critical patent/JP2014070227A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 外乱によるレート値の変動にもかかわらず、所望の膜厚を得る値に調節し可能な真空成膜装置とそのための蒸発源の温度制御方法及び装置を提供する。
【解決手段】 真空中において蒸着源からの蒸着部材を基板表面に蒸着する真空成膜装置において、少なくとも、内部に蒸着源収納する坩堝を加熱するためのヒータへの加熱電力を監視し、蒸着源に近接して配置されたレートセンサからの出力に基づいて発生するレート値により当該ヒータへの加熱電力を制御する蒸発源の温度制御方法及び装置において、レートセンサからのレート値と電力センサからの加熱電力の変動により前記レートセンサの外乱によるレート値の変化を検出し、レートセンサの外乱によるレート値の変化を検出した場合には、レートセンサからの出力に基づいてレート値を発生する際に用いる係数であるツーリングファクタを変更する。
【選択図】 図5

Description

本発明は、有機デバイス等の製造に用いられる成膜装置に関し、特に、蒸発源からの蒸着材料の蒸発速度を制御しながら蒸着材料を加熱して物理蒸着(PVC)を行なう蒸発源の温度制御方法及び温度制御装置に関する。
フラットパネルディスプレイ(以下、「FPD」とも記す)の製造技術においては、基板表面に薄膜を形成するため、例えば、以下の特許文献1にも示すように、蒸着材料の蒸発速度をモニタ可能なレート検出用クリスタルセンサ(所謂、ATカットの水晶振動子)を用いて蒸発源の温度制御することが、一般的な手段として、常用的に用いられている。即ち、成膜したい部材を坩堝に充填し、この坩堝をヒータ等で加熱して充填した材料の温度をその融点若しくは昇華点に達するまで上昇させることで、当該坩堝から蒸着部材が蒸発/昇華し、もって、対象となる基板の表面に薄膜を形成する方式である。
このような蒸着方式において、坩堝より吐出した蒸気の量を知り得る方法としては、例えば、以下の特許文献2にも知られる水晶発振式膜厚モニタ用センサ等(単に、「レートセンサ」とも言う)を用いることにより、常に、リアルタイムで現状の吐出量を監視する方式が、最も一般的に、採用されている。なお、当該レートセンサは、水晶板を吐出蒸気に暴露する事により、坩堝より吐出される蒸着材料成分を当該水晶板の表面に堆積する事で、蒸着物の堆積に伴って変化する自身の固有振動数の変動に基づいて、吐出蒸気量を、一秒間当たりの体積量:[Å/s]として算出するものである。即ち、ここで得られる蒸着レート(蒸気量)を指標としてヒータの温調をフィードバック制御する事により、吐出量をコントロールし、もって、所望の膜厚を得る事のできる蒸気に調節するものである。
特開2011−42868号公報 特開2003−139505号公報
しかしながら、蒸着レートを検出する上述したレートセンサは、以下にも詳細に述べるように、環境の変動(例えば、輻射熱等)に対し非常に弱く、そのため、当該変動に対する対策(熱対策等)として、複雑な機構を備える必要がある。しかし、当該変動に対する対策機構を備えた場合でも、レートセンサは或る程度の影響を受けざるをえず、そして、当該影響は、それを受けたレートセンサからは、周波数の変化として現れることとなり、その結果、吐出される蒸気量は同じであるにもかかわらず、検出した蒸着レートは変化することとなる。即ち、上述したレートセンサからの蒸着レートを指標としてヒータの温調をフィードバック制御した場合、上述した変動に起因して、所望の膜厚を得る事ができなくなってしまうという課題があった。
そこで、本発明では、上述した従来技術における課題に鑑みて達成されたものであり、その目的は、上述したようなレートセンサから出力である蒸着レートの変動にもかかわらず、蒸着レート(蒸気量)を所望の膜厚を得る事のできる値に調節し、もって、所望の膜厚を得る事が可能な成膜装置、更には、そのための蒸発源の温度制御方法及び温度制御装置を提供することを目的とする。
上述した目的を達成するため、本発明によれば、まず、真空中において蒸着源からの蒸着部材を基板表面に蒸着する真空成膜装置において、内部に蒸着源収納する坩堝を加熱するためのヒータへの加熱電力を監視し、蒸着源に近接して配置されたレートセンサからの出力に基づいて発生するレート値により当該ヒータへの加熱電力を制御する、蒸発源の温度制御方法であって、前記レートセンサが検出した蒸着レートが変化し、かつ、前記ヒータへの加熱電力が所定の範囲を超えた場合には、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させる蒸発源の温度制御装置が提供される。
加えて、本発明によれば、真空中において蒸着源からの蒸着部材を基板表面に蒸着する成膜装置において、内部に蒸着源収納する坩堝を加熱するためのヒータへの加熱電力を監視し、蒸着源に近接して配置されたレートセンサからの出力に基づいて発生するレート値により当該ヒータへの加熱電力を制御する蒸発源の温度制御装置であって、前記ヒータへの加熱電力を制御する温調部と、前記ヒータへの加熱電力を検出する電力センサと、前記レートセンサからの出力に基づいてレート値を発生するレートセンサ制御部と、少なくとも前記温調部と前記レートセンサ制御部と協働して制御を行う制御部とを備えたものにおいて、前記レートセンサが検出した蒸着レートが変化し、かつ、前記ヒータへの加熱電力が所定の範囲を超えた場合には、前記制御部は、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させる真空成膜装置が提供される。
更に、本発明によれば、蒸着材料を収納する坩堝と、当該坩堝を内部に収容する蒸発源と、当該蒸発源から蒸発する蒸着材料の蒸着レートを検出するレートセンサと、前記蒸発源に収容された坩堝を加熱するためのヒータと、前記レートセンサが検出した蒸着レートに基づいて前記ヒータへの加熱電力を制御するヒータ制御部とを備えた成膜装置であって、更に、前記ヒータへの加熱電力の変化を検出する電力検出手段を備えており、前記レートセンサが検出した蒸着レートが変化し、かつ、当該電力検出手段が検出した加熱電力が所定の範囲を超えた場合には、前記ヒータ制御部は、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させる成膜装置が提供される。
なお、本発明によれば、上述した蒸発源の温度制御方法及び温度制御装置、更には、成膜装置において、前記レートセンサからのレート値が変動し、かつ、前記ヒータへの加熱電力の変化が1%〜5%以内で、当該電力の変化が60秒以上続いた場合、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることが好ましく、また、ツーリングファクタの変更により、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることが好ましい。加えて、前記レートセンサは、水晶発振式膜厚モニタ用センサであることが好ましい。
以上に述べた本発明によれば、レートセンサからのレート値の変動にもかかわらず、蒸着レート(蒸気量)を所望の膜厚を得る事のできる値に調節し、もって、所望の膜厚を得る事が可能な真空成膜装置、更には、そのための蒸発源の温度制御方法及び温度制御装置が提供されるという優れた効果が発揮される。
本発明の一実施の形態になる成膜装置をその一部に利用した有機ELデバイス製造装置の一例を示す図である。 上述した有機ELデバイス製造装置の搬送チャンバと共に、その内部に有機EL材料を蒸着するための成膜装置を備えた処理(成膜)チャンバの構成を示す図である。 上記成膜装置における蒸着源を中心とした制御部の構成の一例を示すブロック図である。 レートセンサに外乱がない場合と、外乱が発生した場合における成膜装置の動作状態を説明するための図である。 上記成膜装置の制御部で実行される蒸発源の温度制御の詳細について示すフローチャート図である。 本発明になる成膜装置における外乱が発生した場合における蒸発源の温度制御の動作状態を説明するための図である。
以下、本発明の一実施の形態になる成膜装置、特に、有機ELデバイス用の大型の基板に有機EL材料を蒸着するための成膜装置について、添付の図を参照しながら詳細に説明する。
まず、添付の図1は、本発明の一実施の形態になる成膜装置をその一部に利用した有機ELデバイス製造装置の一例を示しており、図において、当該有機ELデバイス製造装置100は、概略、処理対象(ワーク)であるガラス基板6を搬入するロードクラスタ3、基板6をそれぞれ処理する4つのクラスタ(A〜D)と、隣接するクラスタの間、又は、クラスタAとロードクラスタ3の間、更には、次工程(例えば、封止工程)との間に設置された、合計、5つの受渡室4とから構成されている。
ロードクラスタ3は、前後に真空を維持するためにゲート弁10を有するロードロック室31と、当該ロードロック室31からガラス基板6を受け取り、これを旋回して受渡室4aに基板6を搬入する搬送ロボット5Rからなる。また、各ロードロック室31及び各受渡室4は、その前後にゲート弁10を有し、当該ゲート弁10の開閉を制御することにより、内部の真空を維持しながら、ロードクラスタ3又は次のクラスタ等に対して、上記ガラス基板6を受け渡しする。
各クラスタ(A〜D)は、一台の搬送ロボット5を有する搬送チャンバ2と、搬送ロボット5から基板を受け取って所定の処理を行う(図面上で上下に配置されている)2つの処理チャンバ1(添え字a〜dはクラスタを示し、添え字u、dは上側下側を示す)を有する。また、搬送チャンバ2と処理チャンバ1の間には、ゲート弁10が設けられている。
次に、添付の図2は、上述した有機ELデバイス製造装置の一部、特に、搬送チャンバ2と共に、その内部に有機EL材料を蒸着するための成膜装置を備えた処理(成膜)チャンバの構成を示す。なお、ここでは、当該処理チャンバの構成として、真空中で発光材料を蒸着してガラス基板6上にEL層を形成するための真空蒸着チャンバ1buが示されている。
真空蒸着チャンバ1buは、図にも示すように、大別して、発光材料を蒸発させ基板6に蒸着させる蒸着部7と、ガラス基板6の必要な部分に蒸着させるアライメント部8と、搬送チャンバ2内の搬送ロボット5との間で基板6の受け渡たしを行い、蒸着部7へガラス基板6を移動させる処理受渡部9によって構成されている。ここでは、蒸着部7、アライメント部8及び処理受渡部9の概略構成を説明する。
アライメント部8と処理受渡部9は、それぞれ、右側Rラインと左側Lラインの2系統が設けられる。処理受渡部9は、搬送ロボット5の櫛歯状ハンド52と干渉することなくガラス基板6を受渡し可能であり、かつ、ガラス基板6を固定する手段を有する基板チャック91と、前記基板チャック91を旋回させて基板6を直立させアライメント部8に移動するハンド旋回駆動手段92を有する。なお、ガラス基板6を固定する手段としては、真空中であることを考慮して、例えば、電磁吸着やクリップ等が用いられる。
また、アライメント部8は、マスク81mとフレーム81fとからなるシャドウマスク81と、ここでは図示しないガラス基板上のアライメントマークによって基板6とシャドウマスク81とを位置合せするためのアライメント駆動部83とを有する。
蒸着部7は、蒸発源71と、当該蒸着源を上下方向に移動させるための蒸発源駆動手段(図示せず)を有する。なお、この蒸発源71は、当該蒸発源を構成する坩堝の内部に蒸着材料である発光材料が充填され、そして、当該蒸着材料を加熱制御することにより、蒸発した有機EL材料が安定した蒸発速度で得られる。
続いて、添付の図3には、上述した蒸着源71を中心とした制御部の構成の一例が示されている。即ち、図において、蒸着源71を構成する坩堝の下部には、加熱のためのヒータ711が設けられており、かつ、その内部には、坩堝の内部温度を検出するための熱電対712が設けられると共に、その外部においては、近傍に、例えば、水晶発振式膜厚モニタ用センサからなるレートセンサ713が配置されている。即ち、ヒータ711による加熱により発生した蒸着材料は、蒸着源71に対向するように配置されたガラス基板6の表面に蒸着すると共に、その一部がレートセンサ713を構成するクリスタル片にも蒸着する。なお、図中の符号714は、上記蒸着源71のガラス基板との対向面に設けられた複数のノズルを示しており、上記蒸着材料はこれら複数のノズルを介してガラス基板6の表面に導かれる。
一方、上記レートセンサ713からの出力は、レートセンサ制御部720へ入力されると共に、熱電対712の(温度)検出出力は、加熱用の電力を供給する電力を制御するヒータ制御部730を介して上記ヒータ711の温度を調整する温調部740へ入力されている。更に、上記レートセンサ制御部720は、例えば、パーソナルコンピュータ等により構成され、全体を制御するための統合制御部750に接続され、当該制御部750は、上記温調部740に対して目標温度を設定すると共に、ヒータ制御部730を制御する。また、ヒータ制御部730から上記ヒータ711へ供給される電力は、電力センサ760により検出され、当該検出されたヒータへの供給電力は、当該制御部750に入力される。
なお、ここで、上記レートセンサ713からの出力は、レートセンサ制御部720へ入力されると、当該制御部の内部で所定の演算処理を行うことによってレート値が算出される。その際、レート値を算出のための係数は、ツーリングファクタ(以下、「T/F」)と呼ばれ、通常、蒸着材料に対応して外部から指定する。即ち、かかる構成によれば、制御部750は、蒸着のための温調を、レートセンサ713からの出力に基づいてレートセンサ制御部720で算出されるレート値、あるいは、上記熱電対712により測定された蒸着源71内の温度に基づいて、温調部740とヒータ制御部730を介して、実行する。
ここで、本発明をより明らかにするため、本発明者等による各種の実験や経験等により得られた本発明の基礎となる現象や知見等について、以下に述べる。
一般的に、蒸着速度(レート値)は、レートセンサからは、その周波数の変化として現れることとなり、当該レートセンサからの蒸着レートを指標として、ヒータの温調をフィードバック制御することにより、所望の膜厚を得る事ができる。
しかしながら、上述した水晶発振式膜厚モニタ用センサ等のレートセンサは、その構造から、例えば、輻射熱による温度の変化等を含む、所謂、環境の変動に対して非常に影響を受け易く、そのため、影響を受けたレートセンサからの出力に、当該変動が周波数の変化として現れることとなる。
より具体的に説明すると、例えば、添付の図4には、変動がなかった場合と、変動が発生した場合にける、各種信号(ヒータ電力と、レートセンサ713の出力である成膜レート値(Rate[Å/s]);単位時間当たりの成膜量)、そして、基板に実際に形成されている膜厚レート、更には、目標の膜厚レートが示されている。
図4(A)にも示すように、レートセンサに外乱がない時は、ヒータ電力は、蒸着源71の坩堝内における蒸着材料量の減少等によって僅かに上昇していくが、これに対し、レート値(Rate[Å/s]))は一定となり、その結果、図に実線で示すように、基板に実際に成膜される膜厚レートも一定になる。
他方、図4(B)にも示すように、レートセンサに外乱が発生した時には、レート値(Rate[Å/s]))の変化(具体的には、レート値の低下;図の(1)を参照)に対し、温調部740はフィードバック制御により坩堝の温度をコントロールしてしまうため(具体的には、坩堝の温度の上昇:図の(2)を参照)、その結果、基板上に実際に成膜される成膜レートは、目標としている膜厚レート(目標膜厚レート)とは異なることになる(具体的には、実際の膜厚レートが目標膜厚レートより大きい:図の(3)を参照)。その結果、基板上に所望の膜厚を得る事ができなくなってしまうという怖れがあった。
なお、本発明者等による各種の実験や経験等により得られた知見によれば、上述したレート値の変動は、以下のようにして検出することが出来る。
(1)レート値の変動の検出:
通常の蒸着材料の消費によるヒータ電力の変化は緩やかであるが、レートセンサに上述した変動が発生した時のヒータ電力の変化は急峻である。また、一時的な外乱の場合、数秒でヒータ電力は元に戻る。それに対し、レートセンサに対する外乱などの影響で検出レート値が変化した場合には、その状態は保持され、短時間(数時間以上)では元の状態に戻らないことが多い。即ち、レートセンサの出力と、加熱電力が同期して変化し、かつ、加熱電力の変化が所定の範囲を超えている場合には、電力制御アルゴリズム(レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係)を変化させる必要がある。
このことより、以下の変化を検出した場合には、電力制御アルゴリズムを変化させる必要があるレート値の変化として検出する:
(a)ヒータ電力量の変化が1%〜5%以内であること、かつ、
(b)(a)の電力量の変化が60秒以上つづいていること。
そして、レートセンサの検出レート値にかかる変化が生じた場合には、既述したように、そのための対策機構を備えた場合であっても、或る程度の外乱の影響を受けてしまう。即ち、変動を受けたレートセンサは、当該変動をも含めてそれ自身の周波数の変化として出力しまい、その結果、吐出される蒸気量は同じであるにもかかわらず、検出したレート値は変化したてしまうことなる。
そこで、本発明では、基本的に、先にも述べたように、レートセンサが検出しているレート値が変化した場合、ヒータの温調によるフィードバック制御により、目標のレート値となるように、坩堝の温度を調整すべく、ヒータ電力を調整する。そして、通常、レートセンサが外乱の影響を受けていない場合は、坩堝内蒸着材料の消費により蒸着量(レート値)は緩やかに減少することなり、その結果、目標の蒸着量を保つため、ヒータ電力は緩やかに増大することとなる。
しかし、上述したレートセンサの検出レート値の変化を検出した場合には、従来のヒータの温調によるフィードバック制御では、目標としていない蒸気量で成膜を続けることとなり、また、レートセンサが検出しているレート値は、目標としているレートを示しているため、レートセンサの異常の検出も不可能である。
一方、レート値が変化した場合、短時間に急激にレート値が変化し、ヒータ電力も短時間に急激に変化することから、上述したように、レート値と共に、ヒータ電力をも、常時、監視することにより、外乱によるレート値の変化を識別することを容易としている。また、ヒータ電力の変化量より、不正に変化したレート値を容易に算出することが可能である。
(2)変化電力量分(不正なレート値変動)の補正:
本発明では、蒸着材料の蒸着量(レート値)はヒータ電力量に比例するとの知見に基づいて、ヒータ電力量から蒸着量(レート値)を算出可能である。従って、外乱に伴うヒータ電力の変化量により、レートセンサが不正に変化した場合のレート値(変動量)が算出出来る。
そして、先にも述べたように、レート値はレートセンサの周波数にT/Fを係数として掛ける(レートセンサ制御部内の処理)ことにより算出するので、上記のようにして算出した、不正に変化したレート値(変動量)をキャンセルするように係数であるT/Fを補正する。これによれば、外乱によって検出レート値に現れる不正な変化分を解消し、もって、レートセンサからの出力に基づいて得られるレート値を本来のものとすることが出来る。
なお、本発明では、有機ELデバイス製造装置である成膜装置、特に、その蒸着源71を構成する制御部では、以上の2機能を装置に組み込むことにより、環境によるレートセンサの変動に影響されることなく、所望の膜厚を得る事が可能な真空成膜装置を提供することができる。
以下には、上記成膜装置の蒸着源71を構成する制御部で実行される蒸発源の温度制御の詳細について、添付の図5に示すフローチャートに従って説明する。なお、この処理は、例えば、上記図3に示した制御部750(パーソナルコンピュータ等)を中心として、その内部メモリに格納されたソフトウェアに基づいて、レートセンサ制御部720や温調部740との間で、実行されるものである。
図5において、温調部は、まず、制御部750から蒸着材料に対応したT/Fをレートセンサ制御部720へ送信する(ステップS51)。その後、ヒータ711がONされ、蒸着源71の坩堝の昇温が開始される(ステップS52)。蒸着材料が蒸発する温度まで温度が上げられた後、レートセンサ713からの出力は、レートセンサ制御部720及び制御部750を介して、温調部740へ送信され、もって、レート値が目標値になるように、温調部740を介してヒータ711がコントロールされる(ステップS53)。このため、上記図4(A)に示すと同様に、基板6の表面上に形成される膜厚は、目標の膜厚となる。なお、この時、ヒータ電力は蒸着材料消費に伴い、緩やかに上昇し、レート値(Rate[Å/s])および実際の膜厚レートは、それぞれ、目標と一致する。
この状態で、上述したレートセンサの変動が発生した場合、添付の図6において(1)’で示すように、レートセンサ713は、当該変動によって不正なレート値を出力する(本例では下がる)。但し、この時、実際の膜厚レートは変わらない。しかしながら、レート値の低下に伴って、ヒータ711は、温調部740を介して、図に(2)’で示すように、上述した不正なレート値を参照してコントロールされ(本例では、上昇する)、実際の膜厚レートは、図に(3)’で示すように、目標としない膜厚レート(本例では、目標より厚くなる)となってしまう。
これを解決するため、本発明では、上述したレート値の変動を検出する。より具体的には、制御部750は、電力センサ760によりヒータ電力を、常時、監視しており、その値が急減に変化した場合、より詳細には、上記(a)及び(b)の条件、即ち、(a)ヒータ電力量の変化が1%〜5%以内であること、かつ、(b)当該電力量の変化が60秒以上続いている場合、当該変動は外乱によるレート値の変動であると判定する(ステップS54)。
そして、レート値の変動が電力制御アルゴリズムを変化させる必要があるものである場合(ステップS54で「YES」)、以下のような処理を実行する。まず、電力センサ760からの検出出力に基づいて、ヒータ電力の変化分を取得し(ステップS55)、次いで、取得したヒータ電力の変化分を基にして、実際に変化したであろうレート値を算出する(ステップS56)。更に、算出された変化したであろうレート値を基に、外乱により補正すべきT/F(補正T/F)を算出する(ステップS57)。
その後、算出された補正T/Fをレートセンサ制御部720へ送信し(ステップS58)、そして、レートセンサ制御部720では、予め設定された、レート値を算出のための係数、即ち、ツーリングファクタ(T/F)を上記補正T/Fに変更する(ステップS59)。
即ち、本発明では、電力制御アルゴリズムを変化させる必要があるレート値の変動であると判断した場合、変動により下がった分(又は、上がった分)のレート値の変動量を、ツーリングファクタ(T/F)の補正によりキャンセルする。このことによれば、図6からも明らかなように、ヒータ電力は外乱前の電力量となり(図の(5)’を参照)、外乱の後でも安定した成膜が可能となる(図の(4)’を参照)。
なお、上記の例では、電力制御アルゴリズムを変化させる一例として、ツーリングファクタ(T/F)を変化させる方法について述べたが、本発明では、これに限定されることなく、同様の効果が達成することが出来る他の方法を用いてもよい。
100…有機ELデバイス製造装置、1…処理(成膜)チャンバ、6…ガラス基板、7…蒸着部、71…蒸発源、711…ヒータ、712…レートセンサ、720…レートセンサ制御部、740…温調部、750…統合制御部、760…電力センサ。

Claims (10)

  1. 真空中において蒸着源からの蒸着部材を基板表面に蒸着する真空成膜装置において、内部に蒸着源収納する坩堝を加熱するためのヒータへの加熱電力を監視し、蒸着源に近接して配置されたレートセンサからの出力に基づいて発生するレート値により当該ヒータへの加熱電力を制御する、蒸発源の温度制御方法であって、
    前記レートセンサが検出した蒸着レートが変化し、かつ、前記ヒータへの加熱電力が所定の範囲を超えた場合には、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることを特徴とする蒸発源の温度制御方法。
  2. 前記請求項1に記載した蒸発源の温度制御方法において、前記レートセンサからのレート値が変動し、かつ、前記ヒータへの加熱電力の変化が1%〜5%以内で、当該電力の変化が60秒以上続いた場合、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることを特徴とする蒸発源の温度制御方法。
  3. 前記請求項2記載した蒸発源の温度制御方法において、ツーリングファクタの変更により、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることを特徴とする蒸発源の温度制御方法。
  4. 真空中において蒸着源からの蒸着部材を基板表面に蒸着する成膜装置において、内部に蒸着源収納する坩堝を加熱するためのヒータへの加熱電力を監視し、蒸着源に近接して配置されたレートセンサからの出力に基づいて発生するレート値により当該ヒータへの加熱電力を制御する蒸発源の温度制御装置であって、
    前記ヒータへの加熱電力を制御する温調部と、
    前記ヒータへの加熱電力を検出する電力センサと、
    前記レートセンサからの出力に基づいてレート値を発生するレートセンサ制御部と、少なくとも前記温調部と前記レートセンサ制御部と協働して制御を行う制御部とを備えたものにおいて、
    前記レートセンサが検出した蒸着レートが変化し、かつ、前記ヒータへの加熱電力が所定の範囲を超えた場合には、前記制御部は、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることを特徴とする蒸発源の温度制御装置。
  5. 前記請求項4記載した蒸発源の温度制御装置において、前記制御部は、前記レートセンサからのレート値が変動し、かつ、前記ヒータへの加熱電力の変化が1%〜5%以内で、当該電力の変化が60秒以上続いた場合、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることを特徴とする蒸発源の温度制御装置。
  6. 前記請求項5記載した蒸発源の温度制御装置において、前記制御部は、ツーリングファクタの変更により、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることを特徴とする蒸発源の温度制御装置。
  7. 前記請求項6記載した蒸発源の温度制御装置において、前記レートセンサは、水晶発振式膜厚モニタ用センサであることを特徴とする蒸発源の温度制御装置。
  8. 蒸着材料を収納する坩堝と、当該坩堝を内部に収容する蒸発源と、当該蒸発源から蒸発する蒸着材料の蒸着レートを検出するレートセンサと、前記蒸発源に収容された坩堝を加熱するためのヒータと、前記レートセンサが検出した蒸着レートに基づいて前記ヒータへの加熱電力を制御するヒータ制御部とを備えた成膜装置であって、
    更に、前記ヒータへの加熱電力の変化を検出する電力検出手段を備えており、
    前記レートセンサが検出した蒸着レートが変化し、かつ、当該電力検出手段が検出した加熱電力が所定の範囲を超えた場合には、前記ヒータ制御部は、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることを特徴とする成膜装置。
  9. 前記請求項8に記載した成膜装置において、前記ヒータ制御部は、前記レートセンサからのレート値の変動し、かつ、前記ヒータへの加熱電力の変化が1%〜5%以内で、かつ、当該電力の変化が60秒以上続いた場合、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることを特徴とする成膜装置。
  10. 前記請求項9記載した成膜装置において、ツーリングファクタの変更により、前記レートセンサが検出した蒸着レートに対する前記ヒータへの加熱電力の電力値の関係を変化させることを特徴とする成膜装置。
JP2012214895A 2012-09-27 2012-09-27 成膜装置とその蒸発源の温度制御方法及び温度制御装置 Pending JP2014070227A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214895A JP2014070227A (ja) 2012-09-27 2012-09-27 成膜装置とその蒸発源の温度制御方法及び温度制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214895A JP2014070227A (ja) 2012-09-27 2012-09-27 成膜装置とその蒸発源の温度制御方法及び温度制御装置

Publications (1)

Publication Number Publication Date
JP2014070227A true JP2014070227A (ja) 2014-04-21

Family

ID=50745727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214895A Pending JP2014070227A (ja) 2012-09-27 2012-09-27 成膜装置とその蒸発源の温度制御方法及び温度制御装置

Country Status (1)

Country Link
JP (1) JP2014070227A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011760A (zh) * 2019-05-28 2020-12-01 佳能特机株式会社 加热装置、蒸发源装置、成膜装置、成膜方法及电子器件的制造方法
CN112011761A (zh) * 2019-05-28 2020-12-01 佳能特机株式会社 蒸发源装置、成膜装置、成膜方法及电子器件的制造方法
CN112011767A (zh) * 2019-05-28 2020-12-01 佳能特机株式会社 加热装置、蒸发源装置、成膜装置、成膜方法及电子设备的制造方法
JP2021181606A (ja) * 2020-05-20 2021-11-25 キヤノントッキ株式会社 蒸発源装置、蒸着装置、及び蒸発源装置の制御方法
CN114481078A (zh) * 2022-02-25 2022-05-13 深圳市捷佳伟创新能源装备股份有限公司 透明导电膜pvd腔体的加热控制方法、装置及存储介质

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011760A (zh) * 2019-05-28 2020-12-01 佳能特机株式会社 加热装置、蒸发源装置、成膜装置、成膜方法及电子器件的制造方法
CN112011761A (zh) * 2019-05-28 2020-12-01 佳能特机株式会社 蒸发源装置、成膜装置、成膜方法及电子器件的制造方法
CN112011767A (zh) * 2019-05-28 2020-12-01 佳能特机株式会社 加热装置、蒸发源装置、成膜装置、成膜方法及电子设备的制造方法
JP2021181606A (ja) * 2020-05-20 2021-11-25 キヤノントッキ株式会社 蒸発源装置、蒸着装置、及び蒸発源装置の制御方法
KR20210143659A (ko) * 2020-05-20 2021-11-29 캐논 톡키 가부시키가이샤 증발원 장치, 증착 장치, 및 증발원 장치의 제어 방법
JP7162639B2 (ja) 2020-05-20 2022-10-28 キヤノントッキ株式会社 蒸発源装置、蒸着装置、及び蒸発源装置の制御方法
KR102549982B1 (ko) * 2020-05-20 2023-06-29 캐논 톡키 가부시키가이샤 증발원 장치, 증착 장치, 및 증발원 장치의 제어 방법
CN114481078A (zh) * 2022-02-25 2022-05-13 深圳市捷佳伟创新能源装备股份有限公司 透明导电膜pvd腔体的加热控制方法、装置及存储介质
CN114481078B (zh) * 2022-02-25 2023-09-29 深圳市捷佳伟创新能源装备股份有限公司 透明导电膜pvd腔体的加热控制方法、装置及存储介质

Similar Documents

Publication Publication Date Title
JP2010196082A (ja) 真空蒸着装置
JP2014070227A (ja) 成膜装置とその蒸発源の温度制御方法及び温度制御装置
US9074283B2 (en) Ion gun system, vapor deposition apparatus, and method for producing lens
KR101496667B1 (ko) 진공 증착장치
JP2007291506A (ja) 成膜方法
JP5840055B2 (ja) 蒸着装置
KR20120047809A (ko) 성막 장치 및 성막 방법
US20120114839A1 (en) Vacuum vapor deposition system
JP5936394B2 (ja) 蒸着装置
WO2010038631A1 (ja) 蒸着装置、蒸着方法およびプログラムを記憶した記憶媒体
JP2011162846A (ja) 真空蒸発源
KR101456252B1 (ko) 실시간 증발량 확인이 가능한 박막 증착장치
JP6207319B2 (ja) 真空蒸着装置
KR100779942B1 (ko) 두께측정센서를 구비한 유기 박막 증착 장치 및 이의 증착방법
JP2012012689A (ja) 真空蒸着方法及び真空蒸着装置
JP2009174027A (ja) 真空蒸着装置
JP5180469B2 (ja) 真空蒸着装置
JP2014065942A (ja) 真空蒸着装置
JP2009149919A (ja) 膜厚モニタ装置及びこれを備える成膜装置
JP4952908B2 (ja) 真空蒸着装置及びその制御方法
JP6418388B2 (ja) 蒸着装置及び蒸着方法
JP2005325425A (ja) 有機蒸着方法及び有機蒸着装置
JP2014055335A (ja) 真空成膜装置とその蒸発源の温度制御方法及び装置
JP5460773B2 (ja) 成膜装置及び成膜方法
KR20210085415A (ko) 박막 증착 장치 및 박막 증착 방법