JP2014063792A - METHOD OF MANUFACTURING SURFACE-MODIFIED R-Fe-B-BASED SINTERED MAGNET - Google Patents

METHOD OF MANUFACTURING SURFACE-MODIFIED R-Fe-B-BASED SINTERED MAGNET Download PDF

Info

Publication number
JP2014063792A
JP2014063792A JP2012206563A JP2012206563A JP2014063792A JP 2014063792 A JP2014063792 A JP 2014063792A JP 2012206563 A JP2012206563 A JP 2012206563A JP 2012206563 A JP2012206563 A JP 2012206563A JP 2014063792 A JP2014063792 A JP 2014063792A
Authority
JP
Japan
Prior art keywords
magnet
temperature
sintered magnet
oxygen
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012206563A
Other languages
Japanese (ja)
Other versions
JP6037213B2 (en
Inventor
masahide Fujiwara
真秀 藤原
Masayuki Yoshimura
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012206563A priority Critical patent/JP6037213B2/en
Publication of JP2014063792A publication Critical patent/JP2014063792A/en
Application granted granted Critical
Publication of JP6037213B2 publication Critical patent/JP6037213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a surface-modified R-Fe-B-based sintered magnet which has superior corrosion resistance and superior surface adhesive properties.SOLUTION: The method of manufacturing a surface-modified R-Fe-B-based sintered magnet includes a process of creating an atmosphere of 1×10to 1×10Pa in oxygen partial pressure, less than 1000 Pa in partial water vapor pressure, and 1 to 20,000 (excluding 1) in ratio of the oxygen partial pressure and the partial water vapor pressure (oxygen partial pressure/partial water vapor pressure) so that a positive pressure state is produced in a processing chamber by introducing an atmosphere gas under conditions of 0.028 m/minute or higher in oxygen flow rate and 3 m/minute or lower in total flow rate for every capacity of 1 min the processing chamber, and subjecting the R-Fe-B-based sintered magnet to a heat treatment at 260-450°C in the processing chamber, the temperature of the magnet being lowered from the temperature at which the heat treatment is performed down to at least 100°C at an average cooling speed of 650°C/hour.

Description

本発明は、優れた耐食性を有するとともに、優れた表面接着性を有する表面改質されたR−Fe−B系焼結磁石の製造方法に関する。   The present invention relates to a method for producing a surface-modified R—Fe—B sintered magnet having excellent corrosion resistance and excellent surface adhesion.

R−Fe−B系焼結磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから今日様々な分野で使用されているが、反応性の高い希土類元素:Rを含むため、大気中で酸化腐食されやすいという特質を有する。従って、R−Fe−B系焼結磁石は、通常、その表面に金属被膜や樹脂被膜などの耐食性被膜を形成して実用に供される。
近年、R−Fe−B系焼結磁石に対して耐食性を付与する方法として、酸化性雰囲気下での熱処理(酸化熱処理)を磁石に対して行うことによって磁石の表面を改質する方法が注目されている。例えば、特許文献1や特許文献2には、酸素を利用して酸化性雰囲気を形成して熱処理する方法が記載され、特許文献3〜特許文献7には、水蒸気を単独で利用して、或いは、水蒸気に酸素を組み合わせて酸化性雰囲気を形成して熱処理する方法が記載されている。しかしながら、これらの方法で磁石に対して表面改質を行っても、温度や湿度の管理がされていない輸送環境や保管環境などのような、温度や湿度が変動することで磁石の表面に微細な結露を繰り返し生じさせてしまう環境では必ずしも十分な耐食性が得られないこと、特許文献3〜特許文献7においては、水蒸気分圧は10hPa(1000Pa)以上が好適とされているが、このような水蒸気分圧が高い雰囲気下で熱処理を行うと、磁石の表面で起こる酸化反応によって水素が副産物として大量に生成し、磁石が生成した水素を吸蔵して脆化することで磁気特性が低下してしまうことが本発明者らの検討によって明らかになった。そこで本発明者らは、R−Fe−B系焼結磁石に対するより優れた表面改質方法として、酸素分圧と、特許文献3〜特許文献7において不適とされている10hPa未満の水蒸気分圧を適切に制御した酸化性雰囲気下での熱処理方法、具体的には、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が0.1Pa〜1000Pa(但し1000Paを除く)の雰囲気下、200℃〜600℃で熱処理を行う方法を特許文献8において提案した。
R-Fe-B-based sintered magnets are used in various fields today because they use resource-rich and inexpensive materials and have high magnetic properties, but they are highly reactive. Rare earth element: Since it contains R, it has the property of being easily oxidized and corroded in the atmosphere. Therefore, R-Fe-B based sintered magnets are usually put to practical use by forming a corrosion-resistant film such as a metal film or a resin film on the surface thereof.
In recent years, as a method for imparting corrosion resistance to an R—Fe—B based sintered magnet, a method of modifying the surface of the magnet by performing heat treatment (oxidation heat treatment) in an oxidizing atmosphere on the magnet has been attracting attention. Has been. For example, Patent Document 1 and Patent Document 2 describe a method of forming an oxidizing atmosphere using oxygen and performing a heat treatment, and Patent Documents 3 to 7 use water vapor alone, or A method is described in which oxygen is combined with water vapor to form an oxidizing atmosphere and heat treatment is performed. However, even if surface modification is performed on the magnet by these methods, the surface of the magnet is finely affected by fluctuations in temperature and humidity, such as in transportation and storage environments where temperature and humidity are not controlled. In an environment where repeated condensation occurs repeatedly, sufficient corrosion resistance is not always obtained. In Patent Documents 3 to 7, the water vapor partial pressure is preferably 10 hPa (1000 Pa) or more. When heat treatment is performed in an atmosphere with a high water vapor partial pressure, a large amount of hydrogen is generated as a by-product due to an oxidation reaction that occurs on the surface of the magnet, and the magnetic properties are reduced by occlusion and embrittlement of the hydrogen generated by the magnet. This has been clarified by the study of the present inventors. Therefore, the present inventors have proposed an oxygen partial pressure and a water vapor partial pressure of less than 10 hPa, which are considered inappropriate in Patent Documents 3 to 7, as a better surface modification method for R-Fe-B based sintered magnets. Is a heat treatment method in an oxidizing atmosphere appropriately controlled, specifically, an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 0.1 Pa to 1000 Pa (excluding 1000 Pa) Patent Document 8 proposed a method of performing heat treatment at 200 ° C. to 600 ° C. in the atmosphere described above.

特許第2844269号公報Japanese Patent No. 2844269 特開2002−57052号公報JP 2002-57052 A 特開2006−156853号公報JP 2006-156853 A 特開2006−210864号公報JP 2006-210864 A 特開2007−103523号公報JP 2007-103523 A 特開2007−207936号公報JP 2007-207936 A 特開2008−244126号公報JP 2008-244126 A 国際公開第2009/041639号International Publication No. 2009/041639

ところで、R−Fe−B系焼結磁石がSPMモータなどのモータに使用される場合、R−Fe−B系焼結磁石はロータなどの部材に接着剤で接着される。特にSPMモータにおいては、磁石はロータの外周に接着され、樹脂埋めされることも少ないため、R−Fe−B系焼結磁石の表面には良好な接着性が求められる。しかしながら、本発明者らが特許文献8において提案したR−Fe−B系焼結磁石に対する表面改質方法によれば、期待通りの耐食性向上効果が得られる一方で、磁石表面の接着性が表面改質前に比べてわずかではあるが劣化することがわかった。そこで本発明は、優れた耐食性を有するとともに、優れた表面接着性を有する、表面改質されたR−Fe−B系焼結磁石の製造方法を提供することを目的とする。   By the way, when an R—Fe—B based sintered magnet is used for a motor such as an SPM motor, the R—Fe—B based sintered magnet is bonded to a member such as a rotor with an adhesive. In particular, in the SPM motor, the magnet is bonded to the outer periphery of the rotor and is rarely buried in the resin, so that the surface of the R—Fe—B based sintered magnet is required to have good adhesion. However, according to the surface modification method for the R—Fe—B based sintered magnet proposed by the present inventors in Patent Document 8, the expected corrosion resistance improvement effect is obtained, while the adhesion of the magnet surface is the surface. It was found that it deteriorated slightly compared to before the reforming. Accordingly, an object of the present invention is to provide a method for producing a surface-modified R—Fe—B based sintered magnet having excellent corrosion resistance and excellent surface adhesion.

発明者らが、特許文献8の表面改質方法によって表面改質された磁石に対する接着強度試験において、接着強度が低かった磁石の表面を調査したところ、多くが接着剤の凝集破壊であったが、一部磁石素材自体の破壊が観察された。このことから、接着性劣化の原因のひとつに、表面改質のための熱処理によって表面改質層が比較的脆くなっていることがあるのではないかと考え、この現象の解消を図るべくさらに検討を重ねた結果、陽圧環境下で熱処理を行い、さらにその後の磁石の降温を急速に行うことが、この現象の解消に有効であることを見出した。   When the inventors investigated the surface of a magnet having a low adhesive strength in an adhesive strength test for a magnet whose surface was modified by the surface modification method of Patent Document 8, many of them were cohesive failure of the adhesive. Some destruction of the magnet material itself was observed. For this reason, it is thought that one of the causes of adhesive deterioration may be that the surface modification layer becomes relatively brittle due to the heat treatment for surface modification, and further studies are made to eliminate this phenomenon. As a result, it has been found that it is effective to eliminate this phenomenon by performing heat treatment in a positive pressure environment and then rapidly lowering the temperature of the magnet.

上記の知見に基づいて完成された本発明の表面改質されたR−Fe−B系焼結磁石の製造方法は、請求項1記載の通り、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1000Pa未満であり、かつ、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)が1〜20000(但し1を除く)の雰囲気を、処理室内の容積1mあたりの雰囲気ガスの導入を酸素流量として0.028m/分以上、かつ、全体流量として3m/分以下の条件で行うことで処理室内が陽圧状態になるようにして形成し、R−Fe−B系焼結磁石に対し前記処理室内で260℃〜450℃で熱処理を行う工程を含み、熱処理を行った温度からの磁石の降温を、少なくとも100℃に至るまで650℃/時間以上の平均冷却速度で行うことを特徴とする。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、平均冷却速度を2000℃/時間以下とすることを特徴とする。
また、本発明の表面改質されたR−Fe−B系焼結磁石は、請求項3記載の通り、請求項1または2記載の製造方法によって製造されてなる表面改質されたR−Fe−B系焼結磁石であって、表面改質された部分が、磁石の内側から順に、α‐Feおよび非晶質のR酸化物を構成成分として含む主層、少なくともR、Feおよび酸素を含む非晶質層、ヘマタイトを主体とする酸化鉄を構成成分として含む最表層の少なくとも3層を有する表面改質層からなることを特徴とする。
The manufacturing method of the surface-modified R—Fe—B sintered magnet of the present invention completed based on the above findings has an oxygen partial pressure of 1 × 10 3 Pa to 1 × as described in claim 1. An atmosphere having a water vapor partial pressure of less than 1000 Pa at 10 5 Pa and an oxygen partial pressure to water vapor partial pressure ratio (oxygen partial pressure / water vapor partial pressure) of 1 to 20000 (excluding 1) is 0.028 m 3 / min or more the introduction of the atmospheric gas per volume 1 m 3 as an oxygen flow, and formed as the processing by making the entire flow 3m 3 / min under the following conditions chamber is a positive pressure state And a step of heat-treating the R—Fe—B-based sintered magnet at 260 ° C. to 450 ° C. in the processing chamber, and lowering the temperature of the magnet from the heat-treated temperature to at least 100 ° C. at 650 ° C. / Specially performed at an average cooling rate of over an hour It is a sign.
The manufacturing method according to claim 2 is characterized in that, in the manufacturing method according to claim 1, the average cooling rate is 2000 ° C./hour or less.
Moreover, the surface-modified R—Fe—B based sintered magnet of the present invention, as described in claim 3, is a surface-modified R—Fe produced by the production method according to claim 1 or 2. -B-based sintered magnet, wherein the surface-modified portion includes, in order from the inside of the magnet, a main layer containing α-Fe and amorphous R oxide as constituent components, at least R, Fe and oxygen. It is characterized by comprising a surface modification layer having at least three layers of an outermost layer containing an amorphous layer containing and iron oxide mainly composed of hematite as a constituent component.

本発明によれば、優れた耐食性を有するとともに、優れた表面接着性を有する表面改質されたR−Fe−B系焼結磁石の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while having the outstanding corrosion resistance, the manufacturing method of the surface-modified R-Fe-B type sintered magnet which has the outstanding surface adhesiveness can be provided.

本発明の表面改質されたR−Fe−B系焼結磁石の製造方法に好適に採用することができる連続処理炉の一例の概略図(側面図)である。It is the schematic (side view) of an example of the continuous processing furnace which can be suitably employ | adopted for the manufacturing method of the surface-modified R-Fe-B type sintered magnet of this invention. 本発明の実施例における表面改質されたR−Fe−B系焼結磁石の表面改質層のX線光電子分析結果を示すチャートである。It is a chart which shows the X-ray photoelectron analysis result of the surface modification layer of the surface modified R-Fe-B system sintered magnet in the Example of this invention. 本発明の実施例における表面改質されたR−Fe−B系焼結磁石の表面改質層の透過型電子顕微鏡による低倍明視野像の写真である。It is the photograph of the low double bright field image by the transmission electron microscope of the surface modification layer of the surface-modified R-Fe-B system sintered magnet in the Example of this invention. 本発明の実施例における表面改質されたR−Fe−B系焼結磁石の表面改質層の透過型電子顕微鏡による高分解能格子像の写真である。It is a photograph of the high-resolution lattice image by the transmission electron microscope of the surface modification layer of the surface modified R-Fe-B system sintered magnet in the Example of this invention. 本発明の実施例における表面改質されたR−Fe−B系焼結磁石の表面改質層の透過型電子顕微鏡による電子線回折パターンの写真である。It is a photograph of the electron beam diffraction pattern by the transmission electron microscope of the surface modification layer of the surface modified R-Fe-B system sintered magnet in the Example of this invention. 本発明の実施例において接着強度を測定する方法を説明する図である。It is a figure explaining the method to measure adhesive strength in the Example of this invention.

本発明の表面改質されたR−Fe−B系焼結磁石の製造方法は、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1000Pa未満であり、かつ、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)が1〜20000(但し1を除く)の雰囲気を、処理室内の容積1mあたりの雰囲気ガスの導入を酸素流量として0.028m/分以上、かつ、全体流量として3m/分以下の条件で行うことで処理室内が陽圧状態になるようにして形成し、R−Fe−B系焼結磁石に対し前記処理室内で260℃〜450℃で熱処理を行う工程を含み、熱処理を行った温度からの磁石の降温を、少なくとも100℃に至るまで650℃/時間以上の平均冷却速度で行うことを特徴とするものである。所定の酸化性雰囲気を処理室内が陽圧状態となるように所定の条件で雰囲気ガスを導入することで形成し、かつ、熱処理後の冷却速度を適正に制御することで、磁石表面の接着性の劣化を引き起こすことなく、R−Fe−B系焼結磁石に対して所望する表面改質を行うことができる。 The method for producing a surface-modified R—Fe—B sintered magnet of the present invention has an oxygen partial pressure of 1 × 10 3 Pa to 1 × 10 5 Pa, a water vapor partial pressure of less than 1000 Pa, and oxygen An atmosphere having a ratio of partial pressure to water vapor partial pressure (oxygen partial pressure / water vapor partial pressure) of 1 to 20000 (excluding 1) is 0.028 m with the introduction of atmospheric gas per volume of 1 m 3 in the processing chamber as an oxygen flow rate. The process chamber is formed to be in a positive pressure state by performing the process under conditions of 3 / min or more and a total flow rate of 3 m 3 / min or less, and the R-Fe-B based sintered magnet is formed in the process chamber. Including a step of performing heat treatment at 260 ° C. to 450 ° C., and lowering the temperature of the magnet from the heat-treated temperature at an average cooling rate of 650 ° C./hour or more until reaching at least 100 ° C. . Adhesion of the magnet surface by forming a predetermined oxidizing atmosphere by introducing atmospheric gas under predetermined conditions so that the processing chamber is in a positive pressure state and appropriately controlling the cooling rate after the heat treatment The surface modification desired for the R—Fe—B based sintered magnet can be performed without causing the deterioration.

上記のようにして表面改質を行ったR−Fe−B系焼結磁石の表面改質層は、磁石の内側から順に、α‐Feおよび非晶質のR酸化物を構成成分として含む主層、少なくともR、Fe、および酸素を含む非晶質層、ヘマタイト(α−Fe)を主体とする酸化鉄を構成成分として含む最表層の少なくとも3層を有している。表面改質層のうち、主層の厚みは例えば0.4μm〜9.9μmであり、非晶質層の厚みは例えば100nm以下であり、最表層の厚みは例えば10nm〜300nmであって(表面改質層全体の厚みは例えば0.5μm〜10μm)、主層の厚みが表面改質層全体のおよそ80%〜99%であることから、このα‐Feおよび非晶質のR酸化物を構成成分として含む主層の構造が、本発明のR−Fe−B系焼結磁石の優れた接着性に寄与していると考えられる。なお、特許文献7や特許文献8にも表面改質層の具体的な構造が記載されている。特許文献7の表面改質層は、少なくともR、Fe及び酸素を含む第1の層と、少なくともRおよび酸素を含む非晶質の第2の層と、少なくともFe及び酸素を含む第3の層を有しており、より具体的には、第1の層はRの酸化物及びFeの酸化物を含み、その実施例で第1の層は全体が結晶質であることが確認されており、第1の層、すなわち、主層の構造が本発明の表面改質層と異なる。また、特許文献8の表面改質層は、R、Fe、Bおよび酸素を含む主層、少なくともR、Fe、および酸素を含む非晶質層、ヘマタイト(α−Fe)を主体とする酸化鉄を構成成分として含む最表層の少なくとも3層を有していると記載されているが、主層の具体的な構造は記載されていない。 The surface modified layer of the R-Fe-B sintered magnet subjected to the surface modification as described above mainly contains α-Fe and amorphous R oxide as constituent components in order from the inside of the magnet. A layer, an amorphous layer containing at least R, Fe, and oxygen, and an outermost layer containing iron oxide mainly composed of hematite (α-Fe 2 O 3 ) as a constituent component. Among the surface modified layers, the thickness of the main layer is, for example, 0.4 μm to 9.9 μm, the thickness of the amorphous layer is, for example, 100 nm or less, and the thickness of the outermost layer is, for example, 10 nm to 300 nm (surface The thickness of the entire modified layer is, for example, 0.5 μm to 10 μm), and the thickness of the main layer is approximately 80% to 99% of the entire surface modified layer. It is considered that the structure of the main layer included as a constituent component contributes to the excellent adhesiveness of the R—Fe—B based sintered magnet of the present invention. Patent Document 7 and Patent Document 8 also describe a specific structure of the surface modified layer. The surface modification layer of Patent Document 7 includes a first layer containing at least R, Fe and oxygen, an amorphous second layer containing at least R and oxygen, and a third layer containing at least Fe and oxygen. More specifically, the first layer includes an oxide of R and an oxide of Fe, and in the example, it is confirmed that the first layer is entirely crystalline. The structure of the first layer, that is, the main layer is different from the surface modified layer of the present invention. The surface modification layer of Patent Document 8 is mainly composed of a main layer containing R, Fe, B, and oxygen, an amorphous layer containing at least R, Fe, and oxygen, and hematite (α-Fe 2 O 3 ). Although it is described that it has at least three outermost layers containing iron oxide as a constituent component, the specific structure of the main layer is not described.

熱処理を行う工程における酸素分圧を1×10Pa〜1×10Paと規定するのは、酸素分圧が1×10Paよりも小さいと、雰囲気中の酸素量が少なすぎることで、磁石の表面改質に時間がかかりすぎたり、磁石を保持部材上に配置して熱処理を行う場合、磁石のその保持部材と接する部分の表面改質が十分に行われないことにより、当該部分に十分な耐食性や安定性が付与されなかったり、当該部分に保持部材との接点跡が残ってしまったりする恐れがあるからである。一方、酸素分圧を1×10Paより大きくしても、酸素分圧を大きくすることによる磁石の表面改質効果の向上はさほど認められず、コストアップを招来するだけになってしまう恐れがある。磁石の表面に対して所望する改質をより効果的かつ低コストに行うためには、酸素分圧は1×10Pa〜5×10Paが望ましく、1×10Pa〜3×10Paがより望ましい。 By to define the oxygen partial pressure in the step of performing a heat treatment with 1 × 10 3 Pa~1 × 10 5 Pa is the oxygen partial pressure is less than 1 × 10 3 Pa, the oxygen content in the atmosphere is too low When the surface modification of the magnet takes too much time or when the magnet is disposed on the holding member and heat treatment is performed, the portion of the magnet that is in contact with the holding member is not sufficiently surface modified, This is because there is a risk that sufficient corrosion resistance and stability will not be imparted, or that traces of contact with the holding member may remain in the portion. On the other hand, even if the oxygen partial pressure is made higher than 1 × 10 5 Pa, the improvement of the surface modification effect of the magnet by increasing the oxygen partial pressure is not recognized so much, which may only increase the cost. There is. In order to perform the desired modification on the surface of the magnet more effectively and at low cost, the oxygen partial pressure is preferably 1 × 10 3 Pa to 5 × 10 4 Pa, and 1 × 10 4 Pa to 3 × 10. 4 Pa is more desirable.

水蒸気分圧を1000Pa未満と規定するのは、水蒸気分圧が1000Pa以上であると、雰囲気中の水蒸気量が多すぎることで、磁石の表面を優れた耐食性を発揮する安定なものに改質することができなかったり、磁石の表面で起こる酸化反応によって水素が副産物として大量に生成し、磁石が生成した水素を吸蔵して磁石の表面部分が脆化し、接着性が悪化する恐れがあるからである。磁石の表面に対して所望する改質をより効果的かつ低コストに行うためには、水蒸気分圧は700Pa以下が望ましく、45Pa以下がより望ましい。なお、水蒸気分圧の下限は特段制限されるものではないが、通常、1Paが望ましい。 The water vapor partial pressure is defined as less than 1000 Pa. If the water vapor partial pressure is 1000 Pa or more, the amount of water vapor in the atmosphere is excessive, and the surface of the magnet is modified to a stable one that exhibits excellent corrosion resistance. Or because of the oxidation reaction that occurs on the surface of the magnet, a large amount of hydrogen is generated as a byproduct, and the hydrogen generated by the magnet may be occluded, making the surface of the magnet brittle and deteriorating the adhesion. is there. In order to perform the desired modification on the surface of the magnet more effectively and at low cost, the water vapor partial pressure is desirably 700 Pa or less, and more desirably 45 Pa or less. The lower limit of the water vapor partial pressure is not particularly limited, but is usually 1 Pa.

酸素分圧と水蒸気分圧の比率を1〜20000(但し1を除く)と規定するのは、当該比率が1以下であると、雰囲気中の酸素量に対する水蒸気量が多すぎることで、磁石の表面を優れた耐食性を発揮する安定なものに改質することができない恐れがあるからである。一方、当該比率が20000よりも大きい雰囲気は特殊環境といえ、実用的でないからである。磁石の表面に対して所望する改質をより効果的かつ低コストに行うためには、当該比率は10〜10000が望ましく、300〜5000がより望ましく、450〜4000がさらに望ましい。 The ratio between the oxygen partial pressure and the water vapor partial pressure is defined as 1 to 20000 (excluding 1) because when the ratio is 1 or less, the amount of water vapor with respect to the amount of oxygen in the atmosphere is too large. This is because the surface may not be modified to a stable one that exhibits excellent corrosion resistance. On the other hand, an atmosphere in which the ratio is greater than 20000 is a special environment and is not practical. In order to perform the desired modification on the surface of the magnet more effectively and at a low cost, the ratio is preferably 10 to 10,000, more preferably 300 to 5000, and further preferably 450 to 4000.

処理室内の雰囲気は、雰囲気ガスとして、酸素や水蒸気を所定の分圧となるように個別に導入することによって形成してもよいし、これらが所定の分圧で含まれる露点を有する大気を導入することによって形成してもよいが、いずれの場合であっても、本発明においては、処理室内の雰囲気は、処理室内の容積1mあたりの雰囲気ガスの導入を酸素流量として0.028m/分以上、かつ、全体流量として3m/分以下の条件で行うことで処理室内が陽圧状態になるようにして形成する(雰囲気ガスとして酸素や水蒸気が所定の分圧で含まれる露点を有する大気を用いる場合には大気流量を全体流量として制御すれば酸素流量は自ずと制御される)。処理室内が陽圧であることは、別途処理室内に前記全体同じ流量の不活性ガスを導入して酸素濃度がゼロまたは測定下限値以下である、すなわち、外気が処理室内に侵入していないことによって確認できる。このようにして処理室内の雰囲気形成を行うことで、磁石の表面に接着性に優れた表面改質層を形成することができる。処理室内に導入する酸素流量が少なすぎると所望の接着性向上効果が得られない。磁石の表面改質に時間がかかりすぎてα‐Feおよび非晶質のR酸化物を構成成分として含む主層の構造を得ることができず、主層全体が比較的脆い酸化物となってしまうことや、結果的に取り込まれる酸素の割合が多くなることで、内部応力が高まって脆くなってしまうことが原因であると考えられる。一方、全体流量が多すぎると処理室内の温度分布にばらつきが生じてしまうことで処理室内の全ての磁石に均一な表面改質を行うことができない恐れがある。なお、処理室内には、窒素ガスやアルゴンガスなどの不活性ガスを共存させてもよい。 The atmosphere in the processing chamber may be formed by individually introducing oxygen or water vapor as an atmospheric gas so as to have a predetermined partial pressure, or an atmosphere having a dew point that includes these at a predetermined partial pressure is introduced. However, in any case, in the present invention, the atmosphere in the processing chamber is 0.028 m 3 / introduction of atmospheric gas per volume of 1 m 3 in the processing chamber. It is formed so as to be in a positive pressure state in the processing chamber by performing it under the condition of not less than 3 minutes and not more than 3 m 3 / minute as a whole flow rate (having a dew point in which oxygen or water vapor is contained at a predetermined partial pressure as atmospheric gas) When the atmosphere is used, the oxygen flow rate is naturally controlled if the atmospheric flow rate is controlled as the total flow rate). The positive pressure in the processing chamber means that an inert gas having the same flow rate is introduced into the processing chamber separately and the oxygen concentration is zero or below the lower limit of measurement, that is, outside air does not enter the processing chamber. Can be confirmed. By forming the atmosphere in the processing chamber in this manner, a surface modified layer having excellent adhesion can be formed on the surface of the magnet. If the flow rate of oxygen introduced into the processing chamber is too small, the desired effect of improving adhesion cannot be obtained. It takes too much time to modify the surface of the magnet, and it is impossible to obtain the structure of the main layer containing α-Fe and amorphous R oxide as constituent components, and the entire main layer becomes a relatively brittle oxide. It is thought that this is because the internal stress increases and becomes brittle due to the increase in the proportion of oxygen taken in as a result. On the other hand, if the total flow rate is too large, the temperature distribution in the processing chamber will vary, and it may not be possible to perform uniform surface modification on all the magnets in the processing chamber. Note that an inert gas such as nitrogen gas or argon gas may coexist in the processing chamber.

熱処理の温度を260℃〜450℃と規定するのは、260℃よりも低いと、磁石の表面に対して所望する改質を行い難くなる恐れがある一方、熱処理温度が450℃よりも高いと、磁石の磁気特性に悪影響を及ぼす恐れがあるからである。熱処理の温度は280℃〜430℃が望ましく、300℃〜420℃がより望ましい。熱処理の時間は1分間〜3時間が望ましく、15分間〜2.5時間がより望ましい。時間が短すぎると、磁石の表面に対して所望する改質を行い難くなる恐れがある一方、時間が長すぎると、磁石の磁気特性に悪影響を及ぼす恐れがある。   The temperature of the heat treatment is defined as 260 ° C. to 450 ° C. If the temperature is lower than 260 ° C., it may be difficult to perform the desired modification on the surface of the magnet, while the heat treatment temperature is higher than 450 ° C. This is because the magnetic properties of the magnet may be adversely affected. The temperature of the heat treatment is preferably 280 ° C to 430 ° C, more preferably 300 ° C to 420 ° C. The heat treatment time is preferably 1 minute to 3 hours, more preferably 15 minutes to 2.5 hours. If the time is too short, it may be difficult to perform the desired modification on the surface of the magnet, while if the time is too long, the magnetic properties of the magnet may be adversely affected.

なお、磁石を常温から熱処理を行う温度まで昇温する工程は、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1Pa〜100Paの雰囲気下で行うことが望ましい。このような雰囲気下で昇温することにより、磁石の表面に少なからず自然吸着している水分を早期に脱離させることで、磁石の表面に存在する水分が昇温の際に磁石に対して悪影響を与えることを極力回避することができる。平均昇温速度は、例えば100℃/時間〜2000℃/時間とすればよい。なお、本発明において「常温」とは、表面改質が行われるR−Fe−B系焼結磁石が昇温を開始する時点で置かれている環境の温度(例えば室温)を指し、例示的には、日本工業規格のJIS Z 8703において5℃〜35℃と規定されている温度を意味する。 In addition, it is desirable to perform the process of raising the temperature of the magnet from room temperature to the temperature at which heat treatment is performed in an atmosphere having an oxygen partial pressure of 1 × 10 3 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 Pa to 100 Pa. By raising the temperature in such an atmosphere, moisture that is naturally adsorbed on the surface of the magnet is desorbed at an early stage, so that the moisture present on the surface of the magnet is It is possible to avoid adverse effects as much as possible. The average heating rate may be, for example, 100 ° C./hour to 2000 ° C./hour. In the present invention, “normal temperature” refers to the temperature (for example, room temperature) of the environment in which the R—Fe—B sintered magnet subjected to surface modification is placed at the start of temperature rise, and is illustrative. Means a temperature defined as 5 ° C. to 35 ° C. in JIS Z 8703 of the Japanese Industrial Standard.

熱処理を行った後の磁石を降温する工程(以下、降温工程)は、熱処理温度から少なくとも100℃に至るまで650℃/時間以上の平均冷却速度で行う。本発明者らの検討によれば、上述した条件での熱処理を行うことで表面改質されたR−Fe−B系焼結磁石の接着性向上効果は、熱処理後の降温工程における冷却速度にも依存するようであり、冷却速度が遅いと所望の接着性向上効果が得られない。これは、冷却に時間がかかることにより、上述した条件での熱処理で形成されたα‐Feおよび非晶質のR酸化物を構成成分として含む主層の構造が維持できず、表面改質に時間がかかりすぎた場合と同様、全体が比較的脆い酸化物となってしまうためではないかと推定している。平均冷却速度の上限は特段制限されるものではないが、簡易な方法で低コストに降温を行うためには、2000℃/時間とすることが望ましい。磁石の温度が100℃に達した後のさらなる降温の際は、上記の平均冷却速度を維持してもよいし、維持しなくてもよい。なお、降温工程は、昇温工程において採用する雰囲気と同じ雰囲気を採用して行うことが、工程中に磁石の表面が結露することで磁石が腐食して磁気特性が低下するといった現象を防ぐことができる点において望ましい。   The step of lowering the temperature of the magnet after heat treatment (hereinafter referred to as the temperature drop step) is performed at an average cooling rate of 650 ° C./hour or more from the heat treatment temperature to at least 100 ° C. According to the study by the present inventors, the effect of improving the adhesiveness of the R-Fe-B sintered magnet surface-modified by performing the heat treatment under the above-described conditions is the cooling rate in the temperature lowering process after the heat treatment. The desired adhesion improvement effect cannot be obtained if the cooling rate is slow. This is because, due to the time required for cooling, the structure of the main layer containing α-Fe and amorphous R oxide formed by heat treatment under the above-mentioned conditions cannot be maintained, and surface modification is not possible. Like the case where it took too much time, it is presumed that the whole becomes a relatively brittle oxide. The upper limit of the average cooling rate is not particularly limited, but is preferably 2000 ° C./hour in order to lower the temperature at a low cost by a simple method. When the temperature of the magnet further decreases after reaching 100 ° C., the above average cooling rate may or may not be maintained. In addition, the temperature lowering process should be performed using the same atmosphere as that used in the temperature increasing process to prevent the phenomenon that the magnet surface corrodes and the magnetic properties deteriorate due to condensation on the surface of the magnet. It is desirable in that it can.

熱処理を行った後の磁石を上記の平均冷却速度で降温するための具体的手段は特段限定されるものではない。例えば、昇温工程、熱処理工程、降温工程を、内部に雰囲気ガスを流通させることでその雰囲気の制御が可能なSUS,Ti,Mo,Nbなどの材質からなる耐熱性容器に磁石を収容し、磁石を収容した耐熱性容器をバッチ式の熱処理炉の処理室に収容して耐熱性容器の内部の雰囲気を制御しながら行う場合、磁石の降温工程で用いる雰囲気ガスの流量を増加したり温度を下げたりすることにより、所望する平均冷却速度で磁石を降温することができる。所望する平均冷却速度での磁石の降温は、磁石を収容した耐熱性容器を収容した処理室内を大気開放する方法、耐熱性容器に収容する磁石の個数を減らす方法、磁石を収容した耐熱性容器を熱処理炉から取り出して別途に冷却する方法などによっても行うことができる。   The specific means for lowering the temperature of the magnet after the heat treatment at the above average cooling rate is not particularly limited. For example, a magnet is housed in a heat-resistant container made of a material such as SUS, Ti, Mo, Nb, etc. capable of controlling the atmosphere by circulating an atmosphere gas in the temperature raising process, the heat treatment process, and the temperature lowering process, When a heat-resistant container containing a magnet is housed in a processing chamber of a batch-type heat treatment furnace and the atmosphere inside the heat-resistant container is controlled, the flow rate of the atmospheric gas used in the temperature lowering process of the magnet is increased or the temperature is increased. By lowering the temperature, the magnet can be cooled at a desired average cooling rate. The temperature drop of the magnet at the desired average cooling rate can be achieved by opening the processing chamber containing the heat-resistant container containing the magnet to the atmosphere, reducing the number of magnets contained in the heat-resistant container, and the heat-resistant container containing the magnet. It can also be carried out by a method of taking out from the heat treatment furnace and cooling separately.

また、昇温工程、熱処理工程、降温工程を、磁石が収容された処理室内の環境を順次それぞれの工程を行うための環境に変化させることができるバッチ式の熱処理炉を用いて行う場合、磁石の降温工程に用いる雰囲気ガスの流量を増加したりその温度を下げたりすることにより、所望する平均冷却速度で磁石を降温することができる。 In addition, when performing a temperature raising process, a heat treatment process, and a temperature lowering process using a batch-type heat treatment furnace that can change the environment in the processing chamber in which the magnet is accommodated to an environment for sequentially performing each process, the magnet The magnet can be cooled at a desired average cooling rate by increasing the flow rate of the atmospheric gas used in the temperature lowering step or decreasing the temperature.

また、昇温工程、熱処理工程、降温工程を、内部がそれぞれの工程を行うための環境に制御された領域に分割され、各領域に磁石を順次移動させることができる連続処理炉(例えば図1に示すようなもの)を用いて行う場合、所望する平均冷却速度での磁石の降温は、降温領域における磁石の降温環境を適切に制御することによって行うことができる。例えば図1に示す連続処理炉においては、ベルトコンベアなどの移動手段によって磁石を図の左から右に移動させながら各処理を施す。矢印は図略の給気手段と排気手段によって形成される各領域における雰囲気ガスの流れである。昇温領域の入口および降温領域の出口は、例えばエアカーテンで区画され、昇温領域と熱処理領域の境界および熱処理領域と降温領域の境界は、例えば矢印の雰囲気ガスの流れにより区画される(これらの区画は機械的にシャッターで行われてもよい)。このような連続処理炉を用いれば、大量の磁石に対して安定した品質の表面改質を連続的に行うことができ、所望する平均冷却速度での磁石の降温は、降温領域において用いる雰囲気ガスの流量を増加して温度を下げたりする方法や、移動手段の移動速度を調整する方法によって行うことができる。   Further, the temperature raising process, the heat treatment process, and the temperature lowering process are divided into regions controlled by the environment for performing the respective processes, and a continuous processing furnace (for example, FIG. 1) that can sequentially move the magnet to each region. When the temperature is lowered by using the above-described method, the temperature of the magnet can be lowered at a desired average cooling rate by appropriately controlling the temperature-lowering environment of the magnet in the temperature-lowering region. For example, in the continuous processing furnace shown in FIG. 1, each process is performed while moving the magnet from the left to the right in the figure by a moving means such as a belt conveyor. Arrows indicate the flow of the atmospheric gas in each region formed by an unillustrated air supply means and exhaust means. The inlet of the temperature rising region and the outlet of the temperature falling region are partitioned by, for example, an air curtain, and the boundary between the temperature rising region and the heat treatment region and the boundary between the heat treatment region and the temperature lowering region are partitioned by, for example, the flow of the atmospheric gas indicated by the arrows (these This may be done mechanically with a shutter). If such a continuous processing furnace is used, stable quality surface modification can be continuously performed for a large number of magnets, and the temperature of the magnet at the desired average cooling rate is the atmospheric gas used in the temperature-decreasing region. The flow rate can be increased to decrease the temperature, or the moving speed of the moving means can be adjusted.

上記の工程によってR−Fe−B系焼結磁石の表面に形成される改質層は、厚みが1μm以下(ナノメートルオーダー)の非常に薄いものであっても十分な耐食性を発揮する。   Even if the modified layer formed on the surface of the R—Fe—B based sintered magnet by the above process is very thin with a thickness of 1 μm or less (nanometer order), sufficient corrosion resistance is exhibited.

本発明が適用されるR−Fe−B系焼結磁石としては、例えば、下記の製造方法によって製造されたものが挙げられる。
25質量%〜40質量%の希土類元素Rと、0.6質量%〜1.6質量%のB(硼素)と、残部Feおよび不可避不純物とを包含する合金を用意する。ここで、Rは重希土類元素RHを含んでいてもよい。また、Bの一部はC(炭素)によって置換されていてもよいし、Feの一部(50質量%以下)は、他の遷移金属元素(例えば、CoまたはNi)によって置換されていてもよい。この合金は、種々の目的により、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種の添加元素Mを0.01質量%〜1.0質量%程度含有していてもよい。
上記の合金は、原料合金の溶湯を例えばストリップキャスト法によって急冷して好適に作製され得る。以下、ストリップキャスト法による急冷凝固合金鋳片の作製を説明する。
まず、上記組成を有する原料合金をアルゴン雰囲気中において高周波溶解によって溶解し、原料合金の溶湯を形成する。次に、この溶湯を1350℃程度に保持した後、単ロール法によって急冷し、例えば厚さ約0.3mmのフレーク状合金鋳片を得る。こうして作製した合金鋳片を、次の水素粉砕処理前に例えば1mm〜10mmのフレーク状に粉砕する。なお、ストリップキャスト法による合金鋳片の製造方法は、例えば、米国特許第5、383、978号明細書に開示されている。
[粗粉砕工程]
上記のフレーク状に粗く粉砕された合金鋳片を水素炉の内部へ収容する。次に、水素炉の内部で水素脆化処理(以下、「水素粉砕処理」や単に「水素処理」と称する場合がある)工程を行う。水素粉砕処理後の粗粉砕粉を水素炉から取り出す際、粗粉砕粉が大気と接触しないように、不活性雰囲気下で取り出し動作を実行することが好ましい。そうすれば、粗粉砕粉が酸化・発熱することが防止され、磁石の磁気特性の低下が抑制できるからである。
水素粉砕処理によって、希土類合金は0.1mm〜数mm程度の大きさに粉砕され、その平均粒径は500μm以下となる。水素粉砕処理後、脆化した原料合金をより細かく解砕することが好ましい。
[微粉砕工程]
次に、粗粉砕粉に対してジェットミル粉砕装置を用いて不活性ガス雰囲気下で微粉砕を実行する。本実施形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されている。ジェットミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金(粗粉砕粉)の供給を受け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回収タンクに集められる。こうして、0.1μm〜20μm程度の微粉末を得ることができる。このような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミルであってもよい。粉砕に際して、ステアリン酸亜鉛などの潤滑剤を粉砕助剤として用いてもよい。
[プレス成形]
本実施形態では、上記方法で作製された微粉末に対し、例えばロッキングミキサー内で潤滑剤を例えば0.3質量%添加・混合し、潤滑剤で微粉砕粉末粒子の表面を被覆する。次に、上述の方法で作製した微粉砕粉末を公知のプレス装置を用いて配向磁界中で成形する。印加する磁界の強度は、例えば1.0T〜1.7Tである。また、成形圧力は、成形体のグリーン密度が例えば4g/cm〜4.5g/cm程度になるように設定される。
[焼結工程]
上記の粉末成形体に対して、例えば、1000℃〜1200℃の範囲内の温度で10分間〜240分間行う。650℃〜1000℃の範囲内の温度で10分間〜240分間保持する工程と、その後、上記の保持温度よりも高い温度(例えば、1000℃〜1200℃)で焼結を更に進める工程とを順次行ってもよい。焼結時、特に温度が650℃〜1000℃の範囲内にあるとき、粒界相中のRリッチ相が融け始め、液相が形成される。その後、焼結が進行し、焼結体が形成される。焼結工程の後、時効処理(400℃〜700℃)や寸法調整のための研削を行ってもよい。
Examples of the R—Fe—B based sintered magnet to which the present invention is applied include those manufactured by the following manufacturing method.
An alloy including 25% by mass to 40% by mass of rare earth element R, 0.6% by mass to 1.6% by mass of B (boron), and the balance Fe and inevitable impurities is prepared. Here, R may contain a heavy rare earth element RH. Further, a part of B may be substituted by C (carbon), and a part of Fe (50% by mass or less) may be substituted by another transition metal element (for example, Co or Ni). Good. This alloy is suitable for a variety of purposes, including Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and About 0.01% by mass to 1.0% by mass of at least one additive element M selected from the group consisting of Bi may be contained.
The above-mentioned alloy can be suitably produced by rapidly cooling a molten raw material alloy by, for example, a strip casting method. Hereinafter, preparation of a rapidly solidified alloy slab by the strip casting method will be described.
First, a raw material alloy having the above composition is melted by high-frequency melting in an argon atmosphere to form a molten raw material alloy. Next, after holding this molten metal at about 1350 ° C., it is rapidly cooled by a single roll method to obtain, for example, a flake-shaped alloy slab having a thickness of about 0.3 mm. The alloy slab thus produced is pulverized into, for example, 1 mm to 10 mm flakes before the next hydrogen pulverization treatment. In addition, the manufacturing method of the alloy cast piece by a strip cast method is disclosed by the US Patent 5,383,978 specification, for example.
[Coarse grinding process]
The alloy slab coarsely crushed into flakes is accommodated in the hydrogen furnace. Next, a hydrogen embrittlement treatment process (hereinafter sometimes referred to as “hydrogen pulverization treatment” or simply “hydrogen treatment”) is performed inside the hydrogen furnace. When the coarsely pulverized powder after the hydrogen pulverization treatment is taken out from the hydrogen furnace, the takeout operation is preferably performed in an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere. By doing so, it is possible to prevent the coarsely pulverized powder from oxidizing and generating heat, and to suppress the deterioration of the magnetic properties of the magnet.
By the hydrogen pulverization treatment, the rare earth alloy is pulverized to a size of about 0.1 mm to several mm, and the average particle size becomes 500 μm or less. After the hydrogen pulverization treatment, the embrittled raw material alloy is preferably crushed more finely.
[Fine grinding process]
Next, the coarsely pulverized powder is finely pulverized in an inert gas atmosphere using a jet mill pulverizer. A cyclone classifier is connected to the jet mill crusher used in the present embodiment. The jet mill pulverizer is supplied with the rare earth alloy (coarse pulverized powder) coarsely pulverized in the coarse pulverization step, and pulverizes in the pulverizer. The powder pulverized in the pulverizer is collected in a collection tank through a cyclone classifier. Thus, a fine powder of about 0.1 μm to 20 μm can be obtained. The pulverizer used for such fine pulverization is not limited to a jet mill, and may be an attritor or a ball mill. In grinding, a lubricant such as zinc stearate may be used as a grinding aid.
[Press molding]
In the present embodiment, for example, 0.3% by mass of a lubricant is added to and mixed with the fine powder produced by the above method in a rocking mixer, and the surface of the finely pulverized powder particles is coated with the lubricant. Next, the finely pulverized powder produced by the above-described method is molded in an orientation magnetic field using a known press apparatus. The strength of the applied magnetic field is, for example, 1.0T to 1.7T. Further, the molding pressure is set as green density of the compact is, for example, about 4g / cm 3 ~4.5g / cm 3 .
[Sintering process]
For example, it is performed on the above powder compact at a temperature in the range of 1000 ° C. to 1200 ° C. for 10 minutes to 240 minutes. A step of holding for 10 minutes to 240 minutes at a temperature in the range of 650 ° C. to 1000 ° C., and a step of further proceeding with sintering at a temperature higher than the above holding temperature (for example, 1000 ° C. to 1200 ° C.) sequentially. You may go. During sintering, particularly when the temperature is in the range of 650 ° C. to 1000 ° C., the R-rich phase in the grain boundary phase begins to melt and a liquid phase is formed. Thereafter, the sintering proceeds and a sintered body is formed. After the sintering step, aging treatment (400 ° C. to 700 ° C.) and grinding for dimension adjustment may be performed.

本発明の製造方法によって製造される表面改質されたR−Fe−B系焼結磁石は、優れた耐食性が酸化熱処理によって付与されているとともに、優れた表面接着性を有しているので、例えば、自動車用EPSモータなどのSPMモータとして使用されたり、ハイブリッド自動車や電気自動車の駆動モータとして使用されたり、空調機のコンプレッサーなどに組み込まれたりするIPMモータでの使用に適したものである。なお、本発明の製造方法によって製造される表面改質されたR−Fe−B系焼結磁石を用いてSPMモータを製造する場合、ロータ外周に磁石を接着剤で張り付け工程を経て行えばよい。もちろん、接着後に金属ワイヤー等を巻きつけることで補強してもよい。IPMモータを製造する場合、ロータの内部に磁石を埋め込む工程を経て行えばよい。   The surface-modified R—Fe—B sintered magnet produced by the production method of the present invention has excellent corrosion resistance imparted by an oxidation heat treatment and has excellent surface adhesion. For example, it is suitable for use in an IPM motor that is used as an SPM motor such as an EPS motor for automobiles, a drive motor for a hybrid vehicle or an electric vehicle, or incorporated in a compressor of an air conditioner. In addition, when manufacturing an SPM motor using the surface-modified R—Fe—B sintered magnet manufactured by the manufacturing method of the present invention, the magnet may be attached to the outer periphery of the rotor with an adhesive. . Of course, you may reinforce by winding a metal wire etc. after adhesion. When manufacturing an IPM motor, it may be performed through a step of embedding a magnet in the rotor.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted.

(磁石体試験片1の製造)
Nd:19.0、Pr:5.5、Dy:8.2、B:0.97、Co:0.9、Cu:0.1、Al:0.2、Ga:0.09、残部:Fe(単位はmass%)の組成を有する厚さ0.2mm〜0.3mmの合金鋳片をストリップキャスト法により作製した。
次に、この合金鋳片を容器に充填し、水素処理装置内に収容した。そして、水素処理装置内を圧力500kPaの水素ガスで満たすことにより、室温で合金鋳片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金鋳片を脆化し、大きさ約0.15mm〜0.2mmの粗粉砕粉末を作製した。
上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.04mass%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、粉末粒径が約3μmの微粉末を作製した。
こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1050℃で4時間の焼結工程を行い、焼結体ブロックを得た。
得られた焼結体ブロックを真空中にて490℃で2.5時間の時効処理を行った後、その表面に対し研削加工を行って寸法調整し、厚さ4mm×縦15mm×横18mmの焼結磁石(以下「磁石体試験片1」と称する)を得た。
(磁石体試験片2の製造)
Nd:16.2、Pr:4.5、Dy:9.1、B:0.93、Co:2.0、Cu:0.1、Al:0.15、Ga:0.07、残部:Fe(単位は質量%)の組成を有する厚さ0.2mm〜0.3mmの合金鋳片をストリップキャスト法により作製し、磁石体試験片1の製造と同様にして焼結体ブロックを得た。得られた焼結体ブロックから磁石体試験片1の製造と同様にして厚さ4mm×縦15mm×横18mmのR−Fe−B系焼結磁石(以下「磁石体試験片2」と称する)を得た。
(Manufacture of magnet test piece 1)
Nd: 19.0, Pr: 5.5, Dy: 8.2, B: 0.97, Co: 0.9, Cu: 0.1, Al: 0.2, Ga: 0.09, balance: An alloy slab having a composition of Fe (unit: mass%) and having a thickness of 0.2 mm to 0.3 mm was produced by strip casting.
Next, this alloy slab was filled in a container and accommodated in a hydrogen treatment apparatus. Then, the hydrogen treatment apparatus was filled with hydrogen gas at a pressure of 500 kPa, so that hydrogen was occluded in the alloy slab at room temperature and then released. By performing such a hydrogen treatment, the alloy slab was embrittled and a coarsely pulverized powder having a size of about 0.15 mm to 0.2 mm was produced.
After adding 0.04 mass% zinc stearate as a pulverization aid to the coarsely pulverized powder produced by the above hydrogen treatment and mixing, a pulverization step using a jet mill device is performed to obtain a fine particle diameter of about 3 μm. A powder was prepared.
The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, the powder particles were compressed in a magnetic field-oriented state in an applied magnetic field and pressed. Thereafter, the molded body was extracted from the press apparatus, and a sintering process was performed at 1050 ° C. for 4 hours in a vacuum furnace to obtain a sintered body block.
The obtained sintered body block was subjected to an aging treatment at 490 ° C. for 2.5 hours in a vacuum, and then the surface was ground to adjust the dimensions, and the thickness was 4 mm × length 15 mm × width 18 mm. A sintered magnet (hereinafter referred to as “magnet body test piece 1”) was obtained.
(Manufacture of magnet body test piece 2)
Nd: 16.2, Pr: 4.5, Dy: 9.1, B: 0.93, Co: 2.0, Cu: 0.1, Al: 0.15, Ga: 0.07, balance: An alloy slab having a composition of Fe (unit: mass%) having a thickness of 0.2 mm to 0.3 mm was produced by a strip cast method, and a sintered body block was obtained in the same manner as the production of the magnet body test piece 1. . R-Fe-B sintered magnet having a thickness of 4 mm x length of 15 mm x width of 18 mm (hereinafter referred to as "magnet body test piece 2") in the same manner as the production of the magnet body test piece 1 from the obtained sintered body block. Got.

(実施例1)
磁石体試験片1を超音波水洗した後、図1に示した構成を有する連続処理炉を用いて表面改質を行った。なお、焼結磁石の温度の測定は、熱電対を装着した温度測定用磁石の温度をモニタリングすることにより行った。
(1)昇温工程
常温(25℃。以下同じ)から熱処理を行う温度(400℃)までの昇温を、露点−40℃の大気(酸素分圧20000Pa,水蒸気分圧19Pa,酸素分圧/水蒸気分圧=1052)の雰囲気下、500℃/時間の平均昇温速度で行った。
(2)熱処理工程
露点0℃の大気(酸素分圧20000Pa,水蒸気分圧600Pa,酸素分圧/水蒸気分圧=33.3)の雰囲気下、400℃で20分間行った。熱処理領域(本発明における処理室に相当:容積0.64m)内の雰囲気形成は、0.120m/分の流量で露点0℃の大気を熱処理領域内に導入することで熱処理領域内が陽圧状態になるようにして行った(容積1mあたりの酸素流量は0.037m/分で全体流量は0.188m/分。酸素流量は全体流量である大気流量の1/5として換算。大気流量は面積式流量計で制御。熱処理は雰囲気ガス導入開始から30分以上経過後開始。以下同じ)。陽圧状態の確認は、別途熱処理領域内に上記全体流量と同じ流量の不活性ガスを導入し、導入開始から30分後、酸素濃度が測定下限値以下であることを確認することによって、それぞれ処理室内が陽圧であることを確認した。
(3)降温工程
昇温工程において採用した雰囲気と同じ雰囲気下、400℃から100℃までの降温を690℃/時間の平均冷却速度で行った。なお、平均冷却速度の調整は、降温に用いる雰囲気ガスの流量を調整することにより行った。
以上の方法で焼結磁石の表面に形成された改質層の厚みは1.5μmであった。なお、改質層の厚みは、表面改質された焼結磁石を樹脂埋め研磨後、イオンビーム断面加工装置(SM09010:日本電子社製)を用いて試料作製し、電界放出型走査電子顕微鏡(S−4300:日立ハイテクノロジー社製)を用いて断面観察を行うことによって測定した
(以下同じ)。
Example 1
After magnet body test piece 1 was ultrasonically washed, surface modification was performed using a continuous processing furnace having the configuration shown in FIG. The temperature of the sintered magnet was measured by monitoring the temperature of a temperature measuring magnet equipped with a thermocouple.
(1) Temperature rising step The temperature is raised from room temperature (25 ° C., the same applies hereinafter) to the temperature at which heat treatment is performed (400 ° C.). The atmosphere has a dew point of −40 ° C. (oxygen partial pressure 20000 Pa, water vapor partial pressure 19 Pa, oxygen partial pressure / The reaction was carried out at an average temperature increase rate of 500 ° C./hour in an atmosphere of water vapor partial pressure = 1052).
(2) Heat treatment step The heat treatment step was carried out at 400 ° C. for 20 minutes in an atmosphere having an dew point of 0 ° C. (oxygen partial pressure 20000 Pa, water vapor partial pressure 600 Pa, oxygen partial pressure / water vapor partial pressure = 33.3). The formation of the atmosphere in the heat treatment region (corresponding to the treatment chamber in the present invention: volume 0.64 m 3 ) is achieved by introducing air with a dew point of 0 ° C. into the heat treatment region at a flow rate of 0.120 m 3 / min. (The oxygen flow rate per volume of 1 m 3 is 0.037 m 3 / min and the total flow rate is 0.188 m 3 / min. The oxygen flow rate is 1/5 of the atmospheric flow rate that is the total flow rate. Conversion: Atmospheric flow rate is controlled by an area-type flow meter, and heat treatment is started after 30 minutes or more from the start of introduction of atmospheric gas. Confirmation of the positive pressure state is carried out by separately introducing an inert gas having the same flow rate as the above-mentioned overall flow rate into the heat treatment region, and confirming that the oxygen concentration is below the lower limit of measurement 30 minutes after the start of introduction, It was confirmed that the processing chamber was positive pressure.
(3) Temperature-falling step Under the same atmosphere adopted in the temperature-raising step, the temperature was lowered from 400 ° C. to 100 ° C. at an average cooling rate of 690 ° C./hour. The average cooling rate was adjusted by adjusting the flow rate of the atmospheric gas used for cooling.
The thickness of the modified layer formed on the surface of the sintered magnet by the above method was 1.5 μm. The thickness of the modified layer was determined by preparing a sample using an ion beam cross-section processing device (SM09010: manufactured by JEOL Ltd.) after embedding and polishing a surface-modified sintered magnet, and then using a field emission scanning electron microscope ( S-4300 (manufactured by Hitachi High-Technology Corporation) was used for cross-sectional observation (hereinafter the same).

以上の方法で表面改質された焼結磁石について、その表面付近の断面観察を透過型電子顕微鏡(TEM:HF2100:日立ハイテクノロジー社製)エネルギー分散型X線分析装置(EDX:NORAN社製)および走査型電子顕微鏡(FE−SEM:S−4300:日立ハイテクノロジー社製)を用いて行った結果、磁石表面から順に、厚みが約1.4μmの主層、厚みが約50nmのRとFeと酸素を含む非晶質層(Fe−R酸化物および/またはFe酸化物とR酸化物を含む非晶質層)、厚みが約150nmの実質的にRを含まないFe酸化物層の3層構造を有することがわかった。また、磁石表面付近をX線光電子分析装置(ESCA‐850M:SHIMADZU社製)を用いて分析した結果を図2に示す。主層中のFeは金属状態であり、Rは酸化物であることがわかった。   About the sintered magnet surface-modified by the above method, the cross-sectional observation of the surface vicinity is observed with a transmission electron microscope (TEM: HF2100: manufactured by Hitachi High-Technology Corporation) Energy dispersive X-ray analyzer (EDX: manufactured by NORAN) As a result of using a scanning electron microscope (FE-SEM: S-4300: manufactured by Hitachi High-Technology Co., Ltd.), the main layer having a thickness of about 1.4 μm and the R and Fe having a thickness of about 50 nm were sequentially formed from the magnet surface. 3 of an amorphous layer containing Fe and oxygen (Fe—R oxide and / or amorphous layer containing Fe oxide and R oxide) and a Fe oxide layer having a thickness of about 150 nm and substantially free of R It was found to have a layer structure. Moreover, the result of having analyzed the magnet surface vicinity using the X-ray photoelectron analyzer (ESCA-850M: SHIMADZU company make) is shown in FIG. It was found that Fe in the main layer was in a metallic state and R was an oxide.

主層の断面観察を透過型電子顕微鏡(JEM−3010:日本電子社製)を用いて行った結果を図3〜5に示す。図3は表面改質層全体の低倍明視野像、図4は図3における主層の矢印先端付近の高分解能格子像、また、図5は図3における主層の矢印先端付近φ100nm領域から得た電子線回折パターンである。図3の低倍明視野像から縞状に見えるNdFe14B型結晶相の上層に柱状の主層が生成していることがわかる。なお、図3の低倍明視野像では厚みが約50nmのRとFeと酸素を含む非晶質層は薄すぎて判別できない。また、中央部の白い部分は試料作成時にできた孔である。図3の主層における、矢印先端付近の高分解能観察結果が図4である。母材マトリックスの格子内に2〜5nm程度の非晶質相が分散していることがわかる(格子が崩れていることから非晶質であると判断でき、例えば図4の○囲み部分が非晶質相である)。また、図5の電子線回折パターンは母材マトリックスから得られており、回折パターンがα―Feに帰属出来る事から、母材マトリックスはα―Feである事が分かる。母材マトリックスの格子内に微細分散している非晶質相は微小な為、回折パターンのスポットとしては非常にわかりにくいが、X線光電子分析、及びエネルギー分散型X線分析結果を合わせて判断すると、前記非晶質相はR酸化物であると考えられる。すなわち、主層はα‐Feおよび非晶質のR酸化物を構成成分として含み、具体的には、α‐Fe内に非晶質のR酸化物が分散して存在している構造を有していることがわかった。 The results of cross-sectional observation of the main layer using a transmission electron microscope (JEM-3010: manufactured by JEOL Ltd.) are shown in FIGS. 3 is a low-magnification bright-field image of the entire surface modified layer, FIG. 4 is a high-resolution lattice image near the arrow tip of the main layer in FIG. 3, and FIG. 5 is from the φ100 nm region near the arrow tip of the main layer in FIG. It is the obtained electron beam diffraction pattern. It can be seen from the low-magnification bright-field image of FIG. 3 that a columnar main layer is formed in the upper layer of the Nd 2 Fe 14 B type crystal phase that appears to be striped. In the low-magnification bright-field image of FIG. 3, the amorphous layer containing R, Fe, and oxygen having a thickness of about 50 nm is too thin to be distinguished. The white part in the center is a hole made at the time of sample preparation. FIG. 4 shows a high-resolution observation result near the tip of the arrow in the main layer of FIG. It can be seen that an amorphous phase of about 2 to 5 nm is dispersed in the lattice of the matrix of the base material (it can be determined that the lattice is broken, so that it is amorphous. For example, a circled portion in FIG. Crystalline phase). Further, the electron diffraction pattern of FIG. 5 is obtained from the matrix of the base material, and since the diffraction pattern can be attributed to α-Fe, it can be seen that the base material matrix is α-Fe. Since the amorphous phase finely dispersed in the matrix of the matrix is very small, it is very difficult to understand as a spot of the diffraction pattern, but it is judged based on the results of X-ray photoelectron analysis and energy dispersive X-ray analysis. Then, the amorphous phase is considered to be an R oxide. That is, the main layer includes α-Fe and amorphous R oxide as constituent components, and specifically has a structure in which amorphous R oxide is dispersed in α-Fe. I found out.

また、最表層付近をX線回折分析装置(RINT2400:Rigaku社製)を用いて調べた結果、厚みが約150nmの実質的にRを含まないFe酸化物層はヘマタイト(α−Fe)を主体とする層であることがわかった。 Further, as a result of examining the vicinity of the outermost layer using an X-ray diffraction analyzer (RINT2400: manufactured by Rigaku), an Fe oxide layer having a thickness of about 150 nm and containing substantially no R is hematite (α-Fe 2 O 3 ).

(実施例2)
熱処理工程を露点−40℃の大気(酸素分圧20000Pa,水蒸気分圧19Pa,酸素分圧/水蒸気分圧=1052)の雰囲気下で行ったこと以外は実施例1と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例1と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.3μmであった。
(Example 2)
The sintered magnet was prepared in the same manner as in Example 1 except that the heat treatment step was performed in an atmosphere with a dew point of −40 ° C. (oxygen partial pressure 20000 Pa, water vapor partial pressure 19 Pa, oxygen partial pressure / water vapor partial pressure = 1052). Surface modification was performed. (The confirmation of the positive pressure state is also the same as in Example 1.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.3 μm.

(実施例3)
処理室内の容積が0.0034mのバッチ式の熱処理炉を用い、処理室内の雰囲気形成を0.0041m/分の流量で露点0℃の大気を処理室内に導入することで、処理室内が陽圧状態になるようにして行ったことと(容積1mあたりの酸素流量は0.238m/分で全体流量は1.209m/分。)、熱処理を雰囲気ガス導入開始から5分以上経過後開始したことと、100℃までの降温を平均冷却速度700℃/時間で行ったこと以外は実施例1と同じ方法で焼結磁石の表面改質を行った。陽圧状態の確認は、別途熱処理領域内に上記全体流量と同じ流量の不活性ガスを導入し、導入開始から5分後、酸素濃度が測定下限値以下であることを確認することによって、処理室内が陽圧であることを確認した。その結果、焼結磁石の表面に形成された改質層の厚みは1.4μmであった。
(Example 3)
By using a batch-type heat treatment furnace having a volume of 0.0034 m 3 in the processing chamber and introducing an atmosphere having a dew point of 0 ° C. into the processing chamber at a flow rate of 0.0041 m 3 / min, It was performed in a positive pressure state (the oxygen flow rate per volume of 1 m 3 was 0.238 m 3 / min and the total flow rate was 1.209 m 3 / min.), And the heat treatment was performed for 5 minutes or more from the start of the introduction of the atmospheric gas. The surface modification of the sintered magnet was performed in the same manner as in Example 1 except that it started after the lapse of time and the temperature was lowered to 100 ° C. at an average cooling rate of 700 ° C./hour. The positive pressure state is confirmed by introducing an inert gas having the same flow rate as the above overall flow rate into the heat treatment region, and confirming that the oxygen concentration is below the lower limit of measurement 5 minutes after the start of introduction. It was confirmed that the room was positive pressure. As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.4 μm.

(実施例4)
処理室内の雰囲気形成を露点−40℃の大気を処理室内に導入することで行ったこと以外は実施例3と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例3と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.4μmであった。
Example 4
The surface modification of the sintered magnet was performed in the same manner as in Example 3 except that the atmosphere in the processing chamber was formed by introducing air having a dew point of −40 ° C. into the processing chamber. (The confirmation of the positive pressure state is also the same as in Example 3.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.4 μm.

(実施例5)
処理室内の雰囲気形成を0.0030m/分の流量で露点−40℃の大気を処理室内に導入することで行ったこと以外は(容積1mあたりの酸素流量は0.176m/分で全体流量は0.894m/分。)実施例3と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例3と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.3μmであった。
(Example 5)
Except that the atmosphere in the processing chamber was formed by introducing an atmosphere with a dew point of −40 ° C. at a flow rate of 0.0030 m 3 / min into the processing chamber (the oxygen flow rate per volume of 1 m 3 was 0.176 m 3 / min. The overall flow rate was 0.894 m 3 / min.) Surface modification of the sintered magnet was performed in the same manner as in Example 3. (The confirmation of the positive pressure state is also the same as in Example 3.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.3 μm.

(実施例6)
処理室内の雰囲気形成を0.0101m/分の流量で露点−40℃の大気を処理室内に導入することで行ったこと以外は(容積1mあたりの酸素流量は0.588m/分で全体流量は2.988m/分。)実施例3と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例3と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.5μmであった。
(Example 6)
Except that the atmosphere in the processing chamber was formed by introducing an atmosphere with a dew point of −40 ° C. at a flow rate of 0.0101 m 3 / min into the processing chamber (the oxygen flow rate per volume of 1 m 3 was 0.588 m 3 / min. The overall flow rate was 2.988 m 3 / min.) Surface modification of the sintered magnet was performed in the same manner as in Example 3. (Confirmation of the positive pressure state is the same as in Example 3.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.5 μm.

(実施例7)
処理室内の雰囲気形成を露点−40℃の大気を処理室内に導入することで行ったことと、熱処理工程を340℃で60分間行ったこと以外は実施例3と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例3と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.1μmであった。
(Example 7)
The surface of the sintered magnet was formed in the same manner as in Example 3 except that the atmosphere in the processing chamber was formed by introducing air having a dew point of −40 ° C. into the processing chamber and that the heat treatment step was performed at 340 ° C. for 60 minutes. Modification was performed. (The confirmation of the positive pressure state is also the same as in Example 3.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.1 μm.

(実施例8)
処理室内の雰囲気形成を露点−40℃の大気を処理室内に導入することで行ったことと、熱処理工程を300℃で120分間行ったこと以外は実施例3と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例3と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.2μmであった。
(Example 8)
The surface of the sintered magnet was formed in the same manner as in Example 3 except that the atmosphere in the processing chamber was formed by introducing air having a dew point of −40 ° C. into the processing chamber and the heat treatment step was performed at 300 ° C. for 120 minutes. Modification was performed. (The confirmation of the positive pressure state is also the same as in Example 3.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.2 μm.

(実施例9)
磁石体試験片2を用いたこと、処理室内の雰囲気形成を露点−40℃の大気を処理室内に導入することで行ったこと、熱処理工程を420℃で20分間行ったこと、100℃までの降温を平均冷却速度900℃/時間で行ったこと以外は実施例3と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例3と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.6μmであった。
Example 9
The magnetic body test piece 2 was used, the atmosphere in the processing chamber was formed by introducing air having a dew point of −40 ° C. into the processing chamber, the heat treatment step was performed at 420 ° C. for 20 minutes, and the temperature up to 100 ° C. The surface modification of the sintered magnet was performed in the same manner as in Example 3 except that the temperature was lowered at an average cooling rate of 900 ° C./hour. (Confirmation of the positive pressure state is the same as in Example 3.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.6 μm.

(実施例10)
磁石体試験片2を用いたこと、処理室内の雰囲気形成を露点−40℃の大気を処理室内に導入することで行ったこと、熱処理工程を420℃で20分間行ったこと、100℃までの降温を平均冷却速度650℃/時間で行ったこと以外は実施例3と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例3と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.8μmであった。
(Example 10)
The magnetic body test piece 2 was used, the atmosphere in the processing chamber was formed by introducing air having a dew point of −40 ° C. into the processing chamber, the heat treatment step was performed at 420 ° C. for 20 minutes, and the temperature up to 100 ° C. The surface modification of the sintered magnet was performed in the same manner as in Example 3 except that the temperature was lowered at an average cooling rate of 650 ° C./hour. (Confirmation of the positive pressure state is the same as in Example 3.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.8 μm.

(実施例11)
処理室内の雰囲気形成を露点−40℃の大気を処理室内に導入することで行ったことと、100℃までの降温を平均冷却速度1800℃/時間で行ったこと以外は実施例3と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例3と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.3μmであった。
(Example 11)
The same method as in Example 3 except that the atmosphere in the processing chamber was formed by introducing air having a dew point of −40 ° C. into the processing chamber and that the temperature was lowered to 100 ° C. at an average cooling rate of 1800 ° C./hour. The surface modification of the sintered magnet was performed. (The confirmation of the positive pressure state is also the same as in Example 3.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.3 μm.

(比較例1)
処理室内の雰囲気形成を0.0004m/分の流量で露点0℃の大気を処理室内に導入することで行ったこと以外は(容積1mあたりの酸素流量は0.022m/分で全体流量は0.112m/分。)実施例3と同じ方法で焼結磁石の表面改質を行った。その結果、焼結磁石の表面に形成された改質層の厚みは1.1μmであった。なお陽圧状態の確認は、別途熱処理領域内に上記全体流量と同じ流量の不活性ガスを導入し、酸素濃度を確認したが、不活性ガス導入後5分以上経過しても酸素濃度は測定下限値に達せず、処理室内は陽圧でないことが確認された。
(Comparative Example 1)
Except that the atmosphere in the processing chamber was formed by introducing an atmosphere with a dew point of 0 ° C. at a flow rate of 0.0004 m 3 / min into the processing chamber (the oxygen flow rate per volume of 1 m 3 was 0.022 m 3 / min. The flow rate was 0.112 m 3 / min.) Surface modification of the sintered magnet was performed in the same manner as in Example 3. As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.1 μm. The positive pressure state was confirmed by introducing an inert gas at the same flow rate as the above overall flow rate into the heat treatment region and confirming the oxygen concentration, but the oxygen concentration was measured even after 5 minutes or more after the introduction of the inert gas. The lower limit was not reached, and it was confirmed that the processing chamber was not positive.

(比較例2)
処理室内の雰囲気形成を露点−40℃の大気を処理室内に導入することで行ったこと以外は比較例1と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても比較例1と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.2μmであった。
(Comparative Example 2)
The surface modification of the sintered magnet was performed in the same manner as in Comparative Example 1 except that the atmosphere in the processing chamber was formed by introducing air having a dew point of −40 ° C. into the processing chamber. (The confirmation of the positive pressure state is also the same as in Comparative Example 1.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.2 μm.

(比較例3)
処理室内の雰囲気形成を0.0151m/分の流量で露点−40℃の大気を処理室内に導入することで行ったこと以外は(容積1mあたりの酸素流量は0.882m/分で全体流量は4.482m/分。)比較例1と同じ方法で焼結磁石の表面改質を行った。陽圧状態の確認は、別途熱処理領域内に上記全体流量と同じ流量の不活性ガスを導入し、導入開始から5分後、酸素濃度が測定下限値以下であることを確認することによって、処理室内が陽圧であることを確認した。その結果、焼結磁石の表面に形成された改質層の厚みは1.5μmであった。
(Comparative Example 3)
Except that the atmosphere was formed in the processing chamber by introducing an atmosphere with a dew point of −40 ° C. at a flow rate of 0.0151 m 3 / min into the processing chamber (the oxygen flow rate per volume of 1 m 3 was 0.882 m 3 / min. The total flow rate was 4.482 m 3 / min.) Surface modification of the sintered magnet was performed in the same manner as in Comparative Example 1. The positive pressure state is confirmed by introducing an inert gas having the same flow rate as the above overall flow rate into the heat treatment region, and confirming that the oxygen concentration is below the lower limit of measurement 5 minutes after the start of introduction. It was confirmed that the room was positive pressure. As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.5 μm.

(比較例4)
磁石体試験片2を用いたこと、処理室内の雰囲気形成を露点−40℃の大気を処理室内に導入することで行ったこと、熱処理工程を420℃で20分間行ったこと、100℃までの降温を平均冷却速度420℃/時間で行ったこと以外は実施例1と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例1と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.6μmであった。
(Comparative Example 4)
The magnetic body test piece 2 was used, the atmosphere in the processing chamber was formed by introducing air having a dew point of −40 ° C. into the processing chamber, the heat treatment step was performed at 420 ° C. for 20 minutes, and the temperature up to 100 ° C. The surface modification of the sintered magnet was performed in the same manner as in Example 1 except that the temperature was lowered at an average cooling rate of 420 ° C./hour. (Confirmation of the positive pressure state is also the same as in Example 1.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.6 μm.

(比較例5)
100℃までの降温を平均冷却速度530℃/時間で行ったこと以外は比較例4と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても比較例4と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.6μmであった。
(Comparative Example 5)
The surface modification of the sintered magnet was performed in the same manner as in Comparative Example 4 except that the temperature was lowered to 100 ° C. at an average cooling rate of 530 ° C./hour. (The confirmation of the positive pressure state is also the same as in Comparative Example 4.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.6 μm.

(比較例6)
処理室内の雰囲気形成を露点15℃の大気(酸素分圧20000Pa,水蒸気分圧1711Pa,酸素分圧/水蒸気分圧=11.7)を処理室内に導入することで行ったこと、100℃までの降温を平均冷却速度700℃/時間で行ったこと以外は実施例1と同じ方法で焼結磁石の表面改質を行った。(陽圧状態の確認についても実施例1と同じ。)その結果、焼結磁石の表面に形成された改質層の厚みは1.7μmであった。
(Comparative Example 6)
The atmosphere in the processing chamber was formed by introducing air having a dew point of 15 ° C. (oxygen partial pressure 20000 Pa, water vapor partial pressure 1711 Pa, oxygen partial pressure / water vapor partial pressure = 11.7) into the processing chamber. The surface modification of the sintered magnet was performed in the same manner as in Example 1 except that the temperature was lowered at an average cooling rate of 700 ° C./hour. (The confirmation of the positive pressure state is also the same as in Example 1.) As a result, the thickness of the modified layer formed on the surface of the sintered magnet was 1.7 μm.

(参考例)
磁石体試験片1を洗浄後、表面改質を行わず磁石体試験片とした。
(Reference example)
After the magnet body test piece 1 was washed, the surface modification was not performed and the magnet body test piece was obtained.

(耐食性評価)
実施例1〜11、比較例1〜6それぞれにおいて表面改質を行った焼結磁石、および参考例の焼結磁石に対し、温度:60℃×相対湿度:90%の高温高湿条件下での耐食性試験を24時間行い、試験後の表面発錆の有無を外観観察により調べた。試験に供した各20個の磁石のうち表面発錆が認められた磁石の個数を表1に示す。
(Corrosion resistance evaluation)
With respect to the sintered magnets subjected to surface modification in each of Examples 1 to 11 and Comparative Examples 1 to 6 and the sintered magnet of the reference example, the temperature was 60 ° C. and the relative humidity was 90% under high temperature and high humidity conditions. The corrosion resistance test was conducted for 24 hours, and the presence or absence of surface rust after the test was examined by appearance observation. Table 1 shows the number of magnets on which surface rusting was observed among the 20 magnets subjected to the test.

(接着強度評価)
接着剤に電気化学工業社製ハードロックG55(アクリル系)を用い,実施例1〜11、比較例1〜6のそれぞれにおいて表面改質を行った焼結磁石、および参考例の焼結磁石を図6に示すように鉄治具に接着したのち、2mm/minの速度で打ち抜く方法により接着強度を調べた。接着厚みは約20μmであり、接着面積は約2cmである。接着強度を表1に示す。
(Adhesive strength evaluation)
Using sintered hard magnet G55 (acrylic) manufactured by Denki Kagaku Kogyo Co., Ltd. as the adhesive, surface-modified in each of Examples 1 to 11 and Comparative Examples 1 to 6, and the sintered magnet of the reference example After bonding to an iron jig as shown in FIG. 6, the adhesive strength was examined by a method of punching out at a speed of 2 mm / min. The adhesion thickness is about 20 μm and the adhesion area is about 2 cm 2 . The adhesive strength is shown in Table 1.

(まとめ)
耐食性評価結果から明らかなように、焼結磁石の表面改質によって付与された耐食性は、実施例1〜11、比較例1、2、4、5、参考例の間で差異はなく、いずれにおいても優れたものであったが、比較例3、6はこれらに比べて耐食性に劣るものであった。比較例3は雰囲気ガスの導入流量が多すぎたために、処理室内に温度および雰囲気のばらつきが生じ、表面改質にばらつきが生じたことによるものと考えられ、比較例6は水蒸気分圧が高い雰囲気で熱処理を行ったことによるものと考えられる。また、接着強度評価結果から明らかなように、実施例1〜11は表面改質を行っていない参考例と同等の接着強度を有しているが、比較例1、2、4〜6は接着強度が低下していた。接着強度試験後の接着面を観察したところ、実施例、参考例ではほぼ全体が接着剤の凝集破壊であったのに対し、比較例では一部磁石表面の素材破壊が見られ、実施例、参考例の磁石表面に対して比較例の磁石表面は脆くなっていることがわかった。実施例の接着強度試験結果が参考例のものと差がなかったのに対して、比較例の接着強度試験結果が劣っていた原因は、以下のような理由により、表面改質層(特に主層)の構造が実施例と比較例とで異なるためと考えられる。すなわち、実施例1〜11の磁石は酸素流量が多い陽圧環境で熱処理を行っており、表面改質層の主層は、実施例1で説明した通り、α‐Fe内に非晶質のR酸化物が分散した構造を有している。このような表面改質層が形成されるしくみの詳細は不明であるが、本発明における表面改質反応は、酸素の磁石内部への拡散に伴う酸化反応であり、酸素によってR−Fe−B焼結磁石の主相は分解されて不均化する。この時、酸化性が高い陽圧環境で熱処理を行うことにより、酸素の磁石内部への拡散速度が速まり、比較的反応性が高いRが優先的に酸化されることで、主相のFe原子は酸化されにくくα―Feへと変化する。酸化されたRはα―Fe内に取り残されたまま分散し、酸化による不均化反応が磁石内部に進行する。表面では酸化が促進され、α―Feが酸化するため、最表面にα‐Fe(ヘマタイト)を主体とする酸化鉄層が析出する。この時、α―Fe内に存在したR酸化物はこれ以上酸化しないのでヘマタイトを主体とする酸化鉄層(最表層)下に濃縮され、磁石表面から順に、ヘマタイトを主体とする酸化鉄層、RとFeと酸素を含む非晶質層が形成されるものと推測される。また、冷却速度が早いことでその状態を保ったまま常温に達する。一方、比較例1、2のように酸素流量が少なく陽圧でない雰囲気下で熱処理を行った場合、酸素の内部への拡散速度が遅くなってα‐Feの酸化も進み、主層にはR酸化物とともにα−Feより脆いFe酸化物も生成すると考えられ、主層全体が実施例の表面改質層より脆くなる。さらにこの場合、主層には多くの酸素が取り込まれることになり、内部応力が高まることによっても脆化すると考えられる。降温工程における冷却速度が遅い比較例4、5では、形成された主層の構造が降温工程で維持できず、Feの酸化が進んでしまったために主層が脆くなったものと考えられる。水蒸気分圧が1000Paを超える比較例6では、水蒸気による酸化に伴って発生した水素を磁石が吸蔵することにより、磁石表面が脆くなったものと考えられる。これらの理由により、比較例の磁石は、接着強度評価試験において磁石表面の素材破壊が起こり、接着強度が低下したものと考えられる。
(Summary)
As is clear from the corrosion resistance evaluation results, the corrosion resistance imparted by the surface modification of the sintered magnet is not different between Examples 1 to 11, Comparative Examples 1, 2, 4, 5, and Reference Examples. In Comparative Examples 3 and 6, the corrosion resistance was inferior to these. In Comparative Example 3, since the introduction flow rate of the atmospheric gas was too large, it was considered that the temperature and atmosphere varied in the processing chamber and the surface modification varied, and Comparative Example 6 had a high water vapor partial pressure. This is thought to be due to the heat treatment performed in the atmosphere. In addition, as is apparent from the adhesive strength evaluation results, Examples 1 to 11 have an adhesive strength equivalent to that of the reference example without surface modification, but Comparative Examples 1, 2, 4 to 6 are bonded. The strength was reduced. When observing the adhesive surface after the adhesive strength test, in Examples and Reference Examples, almost the entire material was cohesive failure of the adhesive, while in the comparative example, some material destruction of the magnet surface was seen, Examples, It turned out that the magnet surface of a comparative example is weak with respect to the magnet surface of a reference example. While the adhesive strength test results of the examples were not different from those of the reference examples, the reasons why the adhesive strength test results of the comparative examples were inferior were as follows. This is because the structure of the layer is different between the example and the comparative example. That is, the magnets of Examples 1 to 11 were heat-treated in a positive pressure environment with a large oxygen flow rate, and the main layer of the surface modification layer was amorphous in α-Fe as described in Example 1. It has a structure in which R oxide is dispersed. The details of how such a surface-modified layer is formed are unknown, but the surface-modifying reaction in the present invention is an oxidation reaction accompanying the diffusion of oxygen into the magnet, and R-Fe-B by oxygen. The main phase of the sintered magnet is decomposed and disproportionated. At this time, by performing heat treatment in a positive pressure environment with high oxidizability, the diffusion rate of oxygen into the magnet is increased, and R having relatively high reactivity is preferentially oxidized, so that Fe of the main phase is oxidized. Atoms are hardly oxidized and change to α-Fe. The oxidized R is dispersed while remaining in α-Fe, and a disproportionation reaction due to oxidation proceeds inside the magnet. Since oxidation is promoted on the surface and α-Fe is oxidized, an iron oxide layer mainly composed of α-Fe 2 O 3 (hematite) is deposited on the outermost surface. At this time, since the R oxide present in α-Fe is not oxidized any more, it is concentrated under the iron oxide layer mainly composed of hematite (the outermost layer), and in order from the magnet surface, the iron oxide layer mainly composed of hematite, It is presumed that an amorphous layer containing R, Fe and oxygen is formed. In addition, since the cooling rate is fast, the temperature reaches normal temperature while maintaining the state. On the other hand, when heat treatment is performed in an atmosphere with a low oxygen flow rate and not a positive pressure as in Comparative Examples 1 and 2, the diffusion rate of oxygen into the interior slows down and the oxidation of α-Fe proceeds, and the main layer has R It is considered that Fe oxide that is more brittle than α-Fe is produced together with the oxide, and the entire main layer becomes brittle than the surface modified layer of the example. Furthermore, in this case, a large amount of oxygen is taken into the main layer, and it is considered that the main layer becomes brittle due to an increase in internal stress. In Comparative Examples 4 and 5 where the cooling rate in the temperature lowering process is slow, the structure of the formed main layer cannot be maintained in the temperature lowering process, and it is considered that the main layer became brittle because Fe oxidation progressed. In Comparative Example 6 in which the water vapor partial pressure exceeds 1000 Pa, it is considered that the magnet surface became brittle as the magnet occluded hydrogen generated as a result of oxidation by water vapor. For these reasons, it is considered that the magnet of the comparative example had a material fracture on the surface of the magnet in the adhesive strength evaluation test and the adhesive strength was lowered.

本発明の製造方法によって製造される表面改質されたR−Fe−B系焼結磁石は、優れた耐食性が酸化熱処理によって付与されているとともに、優れた表面接着性を有しているので、例えば、自動車用EPSモータなどのSPMモータとして使用されたり、ハイブリッド自動車や電気自動車の駆動モータとして使用されたり、空調機のコンプレッサーなどに組み込まれたりするIPMモータでの使用に適したものである点において産業上の利用可能性を有する。
The surface-modified R—Fe—B sintered magnet produced by the production method of the present invention has excellent corrosion resistance imparted by an oxidation heat treatment and has excellent surface adhesion. For example, it is suitable for use as an IPM motor that is used as an SPM motor such as an EPS motor for automobiles, a drive motor for hybrid cars or electric cars, or incorporated in a compressor of an air conditioner. Has industrial applicability.

Claims (3)

表面改質されたR−Fe−B系焼結磁石の製造方法であって、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1000Pa未満であり、かつ、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)が1〜20000(但し1を除く)の雰囲気を、処理室内の容積1mあたりの雰囲気ガスの導入を酸素流量として0.028m/分以上、かつ、全体流量として3m/分以下の条件で行うことで処理室内が陽圧状態になるようにして形成し、R−Fe−B系焼結磁石に対し前記処理室内で260℃〜450℃で熱処理を行う工程を含み、熱処理を行った温度からの磁石の降温を、少なくとも100℃に至るまで650℃/時間以上の平均冷却速度で行うことを特徴とする製造方法。 A method for producing a surface-modified R—Fe—B sintered magnet having an oxygen partial pressure of 1 × 10 3 Pa to 1 × 10 5 Pa, a water vapor partial pressure of less than 1000 Pa, and an oxygen content 0.028m atmosphere of the ratio of pressure and water vapor partial pressure (oxygen partial pressure / water vapor partial pressure) is 1 to 20,000 (excluding proviso 1), the introduction of the atmospheric gas per volume 1 m 3 of the processing chamber as the oxygen flow rate 3 / Min. And at a total flow rate of 3 m 3 / min or less, the process chamber is formed to be in a positive pressure state. The R—Fe—B-based sintered magnet is 260 in the process chamber. The manufacturing method characterized by including the process of heat-processing at a C-450 degreeC, and performing the temperature fall of the magnet from the temperature which heat-processed at an average cooling rate of 650 degrees C / hr or more until it reaches at least 100 degreeC. 請求項1記載の製造方法において、平均冷却速度を2000℃/時間以下とすることを特徴とする製造方法。   The manufacturing method according to claim 1, wherein the average cooling rate is 2000 ° C./hour or less. 請求項1または2記載の製造方法によって製造されてなることを特徴とする表面改質されたR−Fe−B系焼結磁石であって、表面改質された部分が、磁石の内側から順に、α‐Feおよび非晶質のR酸化物を構成成分として含む主層、少なくともR、Feおよび酸素を含む非晶質層、ヘマタイトを主体とする酸化鉄を構成成分として含む最表層の少なくとも3層を有する表面改質層からなることを特徴とする磁石。


A surface-modified R-Fe-B sintered magnet manufactured by the manufacturing method according to claim 1 or 2, wherein the surface-modified portions are sequentially formed from the inside of the magnet. , At least 3 of a main layer containing α-Fe and amorphous R oxide as a constituent, at least an amorphous layer containing R, Fe and oxygen, and an outermost layer containing iron oxide mainly composed of hematite as a constituent A magnet comprising a surface modification layer having a layer.


JP2012206563A 2012-09-20 2012-09-20 Method for producing surface-modified R-Fe-B sintered magnet Active JP6037213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012206563A JP6037213B2 (en) 2012-09-20 2012-09-20 Method for producing surface-modified R-Fe-B sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012206563A JP6037213B2 (en) 2012-09-20 2012-09-20 Method for producing surface-modified R-Fe-B sintered magnet

Publications (2)

Publication Number Publication Date
JP2014063792A true JP2014063792A (en) 2014-04-10
JP6037213B2 JP6037213B2 (en) 2016-12-07

Family

ID=50618796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012206563A Active JP6037213B2 (en) 2012-09-20 2012-09-20 Method for producing surface-modified R-Fe-B sintered magnet

Country Status (1)

Country Link
JP (1) JP6037213B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131668A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Method for manufacturing rare-earth metal bond magnet, and rare-earth metal bond magnet
JP2020111794A (en) * 2019-01-11 2020-07-27 トヨタ自動車株式会社 Method of manufacturing soft magnetic member
JP2022100371A (en) * 2018-09-06 2022-07-05 大同特殊鋼株式会社 Rare earth sintered magnet and manufacturing method thereof
JP2023129177A (en) * 2022-03-02 2023-09-14 浙江大学 METHOD OF INCREASING CORROSION RESISTANCE OF NdFeB BY LOW-TEMPERATURE OXIDATION/NITRIDING TREATMENT
CN117854914A (en) * 2024-01-16 2024-04-09 诸暨意创磁性技术有限公司 Process method for magnetic steel dysprosium terbium permeation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257461A (en) * 1985-05-10 1986-11-14 Daido Plant Kogyo Kk Bluing method
JPH04328804A (en) * 1991-04-26 1992-11-17 Sumitomo Special Metals Co Ltd Corrosion-proof permanent magnet and manufacture thereof
JP2005310975A (en) * 2004-04-20 2005-11-04 Toyota Motor Corp Sintered neodymium magnet, its manufacturing method and rotary machine
WO2009041639A1 (en) * 2007-09-27 2009-04-02 Hitachi Metals, Ltd. Process for production of surface-modified rare earth sintered magnets and surface-modified rare earth sintered magnets
JP2012142400A (en) * 2010-12-28 2012-07-26 Hitachi Metals Ltd METHOD OF MANUFACTURING ANTICORROSIVE R-Fe-B-BASED SINTERED MAGNET

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257461A (en) * 1985-05-10 1986-11-14 Daido Plant Kogyo Kk Bluing method
JPH04328804A (en) * 1991-04-26 1992-11-17 Sumitomo Special Metals Co Ltd Corrosion-proof permanent magnet and manufacture thereof
JP2005310975A (en) * 2004-04-20 2005-11-04 Toyota Motor Corp Sintered neodymium magnet, its manufacturing method and rotary machine
WO2009041639A1 (en) * 2007-09-27 2009-04-02 Hitachi Metals, Ltd. Process for production of surface-modified rare earth sintered magnets and surface-modified rare earth sintered magnets
JP2012142400A (en) * 2010-12-28 2012-07-26 Hitachi Metals Ltd METHOD OF MANUFACTURING ANTICORROSIVE R-Fe-B-BASED SINTERED MAGNET

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131668A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Method for manufacturing rare-earth metal bond magnet, and rare-earth metal bond magnet
CN111566766A (en) * 2017-12-28 2020-08-21 日立化成株式会社 Method for producing rare earth metal bonded magnet and rare earth metal bonded magnet
JPWO2019131668A1 (en) * 2017-12-28 2020-12-10 昭和電工マテリアルズ株式会社 Rare earth metal bond magnet manufacturing method and rare earth metal bond magnet
CN111566766B (en) * 2017-12-28 2022-11-15 昭和电工材料株式会社 Method for producing rare earth metal bonded magnet and rare earth metal bonded magnet
JP7180615B2 (en) 2017-12-28 2022-11-30 昭和電工マテリアルズ株式会社 Manufacturing method of rare earth metal bonded magnet and rare earth metal bonded magnet
JP2022100371A (en) * 2018-09-06 2022-07-05 大同特殊鋼株式会社 Rare earth sintered magnet and manufacturing method thereof
JP7320102B2 (en) 2018-09-06 2023-08-02 大同特殊鋼株式会社 Rare earth sintered magnet and manufacturing method thereof
JP2020111794A (en) * 2019-01-11 2020-07-27 トヨタ自動車株式会社 Method of manufacturing soft magnetic member
JP7260304B2 (en) 2019-01-11 2023-04-18 トヨタ自動車株式会社 Method for manufacturing soft magnetic member
JP2023129177A (en) * 2022-03-02 2023-09-14 浙江大学 METHOD OF INCREASING CORROSION RESISTANCE OF NdFeB BY LOW-TEMPERATURE OXIDATION/NITRIDING TREATMENT
CN117854914A (en) * 2024-01-16 2024-04-09 诸暨意创磁性技术有限公司 Process method for magnetic steel dysprosium terbium permeation

Also Published As

Publication number Publication date
JP6037213B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP4636207B2 (en) Method for producing surface-modified rare earth sintered magnet and surface modified rare earth sintered magnet
JP5515539B2 (en) Magnet molded body and method for producing the same
JP5572673B2 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
JP6434828B2 (en) Rare earth cobalt permanent magnet
JP2017147426A (en) R-iron-boron based sintered magnet and method for manufacturing the same
JP2017147427A (en) R-iron-boron based sintered magnet and method for manufacturing the same
JP6037213B2 (en) Method for producing surface-modified R-Fe-B sintered magnet
JPWO2012008623A1 (en) Rare earth magnet manufacturing method and rare earth magnet
JP5900335B2 (en) Method for producing surface-modified rare earth sintered magnet
JP5786398B2 (en) Surface-modified R-Fe-B based sintered magnet and method for producing the same
JP5691515B2 (en) Method for producing corrosion-resistant R—Fe—B sintered magnet
JP7315888B2 (en) RTB permanent magnet and manufacturing method thereof
JP5613856B1 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
JP5326747B2 (en) Method for preventing degranulation of R-Fe-B sintered magnet
JP2018174312A (en) R-T-B based sintered magnet
JP5262903B2 (en) Method for producing surface-modified rare earth sintered magnet
JP5326746B2 (en) Method for producing surface-modified R-Fe-B sintered magnet
JP5914974B2 (en) Method for producing surface-modified R-Fe-B sintered magnet
JP7243609B2 (en) rare earth sintered magnet
JP5262902B2 (en) Method for producing surface-modified rare earth sintered magnet
JP7380369B2 (en) Manufacturing method of RTB sintered magnet and alloy for diffusion
CN113614864B (en) R-T-B permanent magnet and method for manufacturing same
JP7424388B2 (en) R-Fe-B sintered magnet
JP5445125B2 (en) Method for producing surface-modified R-Fe-B sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161020

R150 Certificate of patent or registration of utility model

Ref document number: 6037213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350