JP2022100371A - Rare earth sintered magnet and manufacturing method thereof - Google Patents

Rare earth sintered magnet and manufacturing method thereof Download PDF

Info

Publication number
JP2022100371A
JP2022100371A JP2022072976A JP2022072976A JP2022100371A JP 2022100371 A JP2022100371 A JP 2022100371A JP 2022072976 A JP2022072976 A JP 2022072976A JP 2022072976 A JP2022072976 A JP 2022072976A JP 2022100371 A JP2022100371 A JP 2022100371A
Authority
JP
Japan
Prior art keywords
sintered magnet
rare earth
surface layer
intermediate layer
earth sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022072976A
Other languages
Japanese (ja)
Other versions
JP7320102B2 (en
Inventor
隆之 辻
Takayuki Tsuji
早人 橋野
Hayato Hashino
貴博 秋屋
Takahiro Akiya
史弥 北西
Fumiya Kitanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Daido Electronics Co Ltd
Original Assignee
Daido Steel Co Ltd
Daido Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018167328A external-priority patent/JP7145701B2/en
Application filed by Daido Steel Co Ltd, Daido Electronics Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2022072976A priority Critical patent/JP7320102B2/en
Publication of JP2022100371A publication Critical patent/JP2022100371A/en
Application granted granted Critical
Publication of JP7320102B2 publication Critical patent/JP7320102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare earth sintered magnet containing a rare earth element and iron, which has a surface layer having a nearly uniform appearance color.
SOLUTION: A rare earth sintered magnet 10 includes, on the outermost surface of the sintered magnet body 11 containing a rare earth element (excluding La) and iron, a surface layer made of an amorphous material containing a rare earth element of the same kind as the rare earth element, iron, and oxygen, and has no other layer on the outside of the surface layer 12. The surface layer 12 is chemically stable and prevents the internal sintered magnet body 11 from being oxidized. Since the surface layer 12 is easily formed such that the color of the appearance is close to uniform, a problem in which the surface layer 12 is mistakenly recognized as a defective product having cracks, scratches, etc. when the appearance is image-analyzed can be prevented from occurring.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、希土類焼結磁石、特に希土類元素(以下、「R」とする)及び鉄(Fe)を含有する焼結磁石及びその製造方法に関する。 The present invention relates to a rare earth sintered magnet, particularly a sintered magnet containing a rare earth element (hereinafter referred to as “R”) and iron (Fe), and a method for producing the same.

R及びFe、並びに硼素(B)を含有する焼結磁石であるRFeB系焼結磁石は、1982年に佐川眞人らによって見出されたものであり、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりもはるかに高いという特長を有する。そのため、RFeB系焼結磁石は、ハイブリッド自動車や電気自動車等の自動車用モータや産業機械用モータ等の各種モータ、スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。 The RFeB-based sintered magnet, which is a sintered magnet containing R and Fe and boron (B), was discovered by Masato Sagawa et al. In 1982, and has many magnetic properties such as residual magnetic flux density. It has the feature that it is much higher than the permanent magnets up to. Therefore, RFeB-based sintered magnets are used in various products such as automobile motors such as hybrid automobiles and electric automobiles, various motors such as industrial machine motors, speakers, headphones, and permanent magnet type magnetic resonance diagnostic devices. ..

RFeB系焼結磁石は大気中の酸素や水(水蒸気)と反応して酸化すると磁気特性が低下するため、従来より、その表面に金属や樹脂等の被膜を形成することが行われている。そのような被膜形成の例として、特許文献1には、RFeB系焼結磁石を酸素分圧が1×102Pa以上1×105Pa以下、水蒸気分圧が0.1Pa以上1000Pa未満の雰囲気下において200℃以上600℃以下の温度に加熱することにより、RFeB系焼結磁石の表面にヘマタイトから成る表面層を形成することが記載されている。ヘマタイトは化学組成がFe2O3である三方晶系の結晶であって、化学的に安定であるため、内部のRFeB系焼結磁石の酸化を防止することができる。 Since the magnetic properties of RFeB-based sintered magnets deteriorate when they are oxidized by reacting with oxygen or water (water vapor) in the atmosphere, a film of metal, resin, or the like has been conventionally formed on the surface of the RFeB-based sintered magnet. As an example of such film formation, Patent Document 1 describes an RFeB-based sintered magnet in an atmosphere having an oxygen partial pressure of 1 × 10 2 Pa or more and 1 × 10 5 Pa or less and a water vapor partial pressure of 0.1 Pa or more and less than 1000 Pa. It is described that a surface layer made of hematite is formed on the surface of an RFeB-based sintered magnet by heating to a temperature of 200 ° C. or higher and 600 ° C. or lower. Hematite is a trigonal crystal having a chemical composition of Fe 2 O 3 , and since it is chemically stable, it is possible to prevent oxidation of the RFeB-based sintered magnet inside.

国際公開WO2009/041639号(日本国特許第4636207号)International Publication WO 2009/041639 (Japanese Patent No. 4636207) 特開2006-019521号公報Japanese Unexamined Patent Publication No. 2006-019521

特許文献1に記載のRFeB系焼結磁石では、外観の色が不均一となる、いわゆる色ムラが生じることがある。このような色ムラを生じたRFeB系焼結磁石は、製造の最終工程として不良品を発見するために外観を画像解析する際に、誤ってひび割れや傷等を有する不良品と認識してしまう原因となる。 In the RFeB-based sintered magnet described in Patent Document 1, so-called color unevenness may occur in which the appearance color becomes non-uniform. RFeB-based sintered magnets with such color unevenness are mistakenly recognized as defective products with cracks or scratches when the appearance is image-analyzed in order to find defective products in the final manufacturing process. It causes.

本発明が解決しようとする課題は、R及びFeを含有する焼結磁石であって、外観の色が均一に近い表面層を有する希土類焼結磁石及びその製造方法を提供することである。 An object to be solved by the present invention is to provide a rare earth sintered magnet which is a sintered magnet containing R and Fe and has a surface layer whose appearance color is close to uniform, and a method for producing the same.

上記課題を解決するために成された本発明に係る希土類焼結磁石は、希土類元素及び鉄を含有する焼結磁石本体の表面に、鉄及び酸素を含有するアモルファスから成る表面層を有することを特徴とする。 The rare earth sintered magnet according to the present invention, which has been made to solve the above problems, has a surface layer made of an amorphous substance containing iron and oxygen on the surface of the sintered magnet body containing the rare earth element and iron. It is a feature.

本発明において、前記表面層は、希土類元素(R)を5原子%以下の量だけ含有していてもよい。また、Feの一部がコバルト(Co)で置換されていてもよい。 In the present invention, the surface layer may contain a rare earth element (R) in an amount of 5 atomic% or less. Further, a part of Fe may be replaced with cobalt (Co).

本発明に係る希土類焼結磁石は、Fe及びOを含有するアモルファスから成る表面層を有する。このアモルファス表面層は化学的に安定であって、内部の焼結磁石本体が酸化することを防止する。そして、このようなアモルファス表面層は、特許文献1に記載のヘマタイトから成る表面層よりも外観の色が均一に近くなるように形成し易い。そのため、外観を画像解析する際に、誤ってひび割れや傷等を有する不良品と認識してしまうという問題が生じることを防ぐことができる。 The rare earth sintered magnet according to the present invention has a surface layer made of amorphous material containing Fe and O. This amorphous surface layer is chemically stable and prevents the internal sintered magnet body from oxidizing. Then, such an amorphous surface layer is easy to be formed so that the color of the appearance is closer to uniform than the surface layer made of hematite described in Patent Document 1. Therefore, when the appearance is image-analyzed, it is possible to prevent the problem of erroneously recognizing the defective product as having cracks or scratches.

なお、後述の製造方法を用いて本発明に係る希土類焼結磁石を製造すると、表面層に希土類元素が含まれるが、この希土類元素が表面層の外観に影響を与えることはない。 When the rare earth sintered magnet according to the present invention is manufactured by using the manufacturing method described later, the surface layer contains a rare earth element, but the rare earth element does not affect the appearance of the surface layer.

本発明に係る希土類焼結磁石は、表面層と焼結磁石本体の間に、Fe及びOを含有するアモルファスと、R、Fe及びOを含有する微結晶が混合した第1中間層を備え、該第1中間層と焼結磁石本体の間に、R、Fe及びOを含有する微結晶を有し且つFe及びOを含有するアモルファスを有しない第2中間層を備えていてもよい。これら第1中間層及び第2中間層は、例えば後述の製造方法によって本発明に係る希土類焼結磁石を製造する際に、表面層と焼結磁石本体の間に形成される。これら第1中間層及び第2中間層は、焼結磁石本体よりも耐食性が高く、焼結磁石本体、特に焼結磁石本体中でより希土類元素の含有率が高い粒界相が酸化することを抑えることに寄与する。また、これら2つの中間層が存在することにより、単独の中間層が存在する場合よりも焼結磁石本体の耐食性を高くすることができる。 The rare earth sintered magnet according to the present invention includes a first intermediate layer in which an amorphous substance containing Fe and O and a microcrystal containing R, Fe and O are mixed between the surface layer and the sintered magnet body. A second intermediate layer having microcrystals containing R, Fe and O and not having an amorphous substance containing Fe and O may be provided between the first intermediate layer and the sintered magnet body. These first intermediate layer and second intermediate layer are formed between the surface layer and the sintered magnet main body when the rare earth sintered magnet according to the present invention is manufactured, for example, by the manufacturing method described later. These first intermediate layer and second intermediate layer have higher corrosion resistance than the sintered magnet body, and the grain boundary phase having a higher rare earth element content in the sintered magnet body, particularly the sintered magnet body, is oxidized. Contributes to suppression. Further, the presence of these two intermediate layers makes it possible to increase the corrosion resistance of the sintered magnet body as compared with the case where a single intermediate layer is present.

本発明に係る希土類焼結磁石製造方法は、
希土類元素及び鉄を含有し、酸素の含有率が1000ppm以下であって、炭素の含有率が800ppm以下である焼結磁石から成る基材を大気中で100℃以上300℃以下の加熱温度で加熱することにより、該基材の表面に鉄及び酸素を含有するアモルファスから成る表面層を形成する表面層形成工程を有することを特徴とする。
The method for manufacturing a rare earth sintered magnet according to the present invention is
A substrate made of a sintered magnet containing rare earth elements and iron, having an oxygen content of 1000 ppm or less and a carbon content of 800 ppm or less is heated in the atmosphere at a heating temperature of 100 ° C or higher and 300 ° C or lower. This is characterized by having a surface layer forming step of forming a surface layer made of amorphous material containing iron and oxygen on the surface of the base material.

本発明に係る希土類焼結磁石製造方法によれば、R及びFeを含有する焼結磁石から成る基材中の不純物である酸素及び炭素の含有率をそれぞれ1000ppm以下及び800ppm以下という低い値とし、大気中において上記の範囲内の温度で加熱することにより、Fe及びOを含有するアモルファスから成る表面層(並びに上記第1中間層及び上記第2中間層)を有し、R及びFeを含有する焼結磁石を製造することができる。 According to the method for producing a rare earth sintered magnet according to the present invention, the contents of oxygen and carbon, which are impurities in a substrate composed of a sintered magnet containing R and Fe, are set to low values of 1000 ppm or less and 800 ppm or less, respectively. By heating in the atmosphere at a temperature within the above range, it has a surface layer made of amorphous material containing Fe and O (and the first intermediate layer and the second intermediate layer), and contains R and Fe. Sintered magnets can be manufactured.

ここで、基材中の酸素の含有率が1000ppmを超える場合や、炭素の含有率が800ppmを超える場合には、前記表面層を形成することができない。また、加熱温度が100℃未満である場合には前記表面層を形成することができない。一方、加熱温度が300℃を超える場合には、アモルファスではなくヘマタイトから成る表面層が形成されるうえに、表面層の成長速度が速くなることから、組織が不均一になるため、色ムラが生じてしまう。 Here, when the oxygen content in the substrate exceeds 1000 ppm or the carbon content exceeds 800 ppm, the surface layer cannot be formed. Further, when the heating temperature is less than 100 ° C., the surface layer cannot be formed. On the other hand, when the heating temperature exceeds 300 ° C, a surface layer made of hematite instead of amorphous is formed, and the growth rate of the surface layer becomes high, so that the structure becomes non-uniform and color unevenness occurs. It will occur.

ここで、上記加熱温度が275℃を超え300℃以下であるときには、色ムラは生じないものの、加熱温度が275℃以下である場合よりも表面全体の色が濃くなり、画像認識を行い難くなる。そのため、上記加熱温度は100℃以上275℃以下であることが望ましい。 Here, when the heating temperature exceeds 275 ° C and is 300 ° C or less, color unevenness does not occur, but the color of the entire surface becomes darker than when the heating temperature is 275 ° C or less, and image recognition becomes difficult. .. Therefore, it is desirable that the heating temperature is 100 ° C or higher and 275 ° C or lower.

本発明により、R及びFeを含有する焼結磁石であって、外観の色が均一に近い表面層を有する希土類焼結磁石及びその製造方法を得ることができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain a rare earth sintered magnet which is a sintered magnet containing R and Fe and has a surface layer whose appearance color is close to uniform, and a method for producing the same.

本発明に係る希土類焼結磁石の一実施形態の構成を示す断面図。The cross-sectional view which shows the structure of one Embodiment of the rare earth sintered magnet which concerns on this invention. 本発明に係る希土類焼結磁石の他の実施形態の構成を示す断面図。The cross-sectional view which shows the structure of the other embodiment of the rare earth sintered magnet which concerns on this invention. 本発明に係る希土類焼結磁石製造方法の実施形態を説明するための図。The figure for demonstrating embodiment of the rare earth sintered magnet manufacturing method which concerns on this invention. 本実施形態の希土類焼結磁石の一例における表面付近の断面の透過型電子顕微鏡写真であって、部分拡大写真(a)、及び(a)よりも広い範囲を示す写真(b)。FIG. 3 is a transmission electron micrograph of a cross section near the surface of an example of a rare earth sintered magnet of the present embodiment, and is a partially enlarged photograph (a) and a photograph (b) showing a wider range than (a). 本実施形態の希土類焼結磁石の一例における表面層の電子線回折像。An electron diffraction image of the surface layer in an example of a rare earth sintered magnet of the present embodiment. 本実施形態の希土類焼結磁石を作製する際に用いた基材(a)、本実施形態の希土類焼結磁石の例((b), (c))、及び比較例の希土類焼結磁石(d)の表面の外観を示す写真。The base material (a) used in producing the rare earth sintered magnet of the present embodiment, the examples of the rare earth sintered magnet of the present embodiment ((b), (c)), and the rare earth sintered magnet of the comparative example ( d) A photograph showing the appearance of the surface. 基材(a)、本実施形態の希土類焼結磁石の例((b), (c))について、耐食性試験を実施した後の表面の外観を示す写真。Photograph showing the appearance of the surface of the base material (a) and the examples of the rare earth sintered magnet of the present embodiment ((b), (c)) after the corrosion resistance test.

図1~図7を用いて、本発明に係る希土類焼結磁石及びその製造方法の実施形態を説明する。 An embodiment of a rare earth sintered magnet and a method for manufacturing the same according to the present invention will be described with reference to FIGS. 1 to 7.

(1) 本発明に係る希土類焼結磁石の一実施形態
図1に、本実施形態の希土類焼結磁石の構成を断面図で示す。この希土類焼結磁石10は、焼結磁石本体11の表面に、表面層12が形成されている。表面層12と焼結磁石本体11の間には第1中間層131が存在し、第1中間層131と焼結磁石本体11の間には第2中間層132が存在する。従って、焼結磁石本体11から外側に向かって、第2中間層132、第1中間層131、表面層12の順に、これら各層が配置されていることとなる。
(1) One Embodiment of the rare earth sintered magnet according to the present invention FIG. 1 shows a cross-sectional view of the configuration of the rare earth sintered magnet of the present embodiment. In this rare earth sintered magnet 10, a surface layer 12 is formed on the surface of the sintered magnet main body 11. A first intermediate layer 131 exists between the surface layer 12 and the sintered magnet main body 11, and a second intermediate layer 132 exists between the first intermediate layer 131 and the sintered magnet main body 11. Therefore, each of these layers is arranged in the order of the second intermediate layer 132, the first intermediate layer 131, and the surface layer 12 from the sintered magnet main body 11 toward the outside.

焼結磁石本体11は、R及びFeを含有する焼結磁石から成る。本実施形態では、焼結磁石本体11にはRFeB系焼結磁石を用いる。 The sintered magnet main body 11 is made of a sintered magnet containing R and Fe. In this embodiment, an RFeB-based sintered magnet is used for the sintered magnet main body 11.

表面層12は、Fe及びOを含有するアモルファスから成る。この表面層12には、Rが5原子%以下含まれていてもよい。このRは、後述の製造方法によって表面層12を作製する際に、焼結磁石本体11中の希土類元素に含まれていたものである。 The surface layer 12 is made of an amorphous substance containing Fe and O. The surface layer 12 may contain R in an amount of 5 atomic% or less. This R was contained in the rare earth element in the sintered magnet main body 11 when the surface layer 12 was manufactured by the manufacturing method described later.

第1中間層131は、Fe及びOを含有する(表面層12のアモルファスと同様の)アモルファスと、R、Fe及びOを含有する微結晶が混合した構成を有する。また、第2中間層132は、R、Fe及びOを含有する微結晶から成り、表面層12と同様のアモルファスは含有していない。 The first intermediate layer 131 has a structure in which an amorphous substance containing Fe and O (similar to the amorphous substance of the surface layer 12) and microcrystals containing R, Fe and O are mixed. Further, the second intermediate layer 132 is composed of microcrystals containing R, Fe and O, and does not contain the same amorphous material as the surface layer 12.

本実施形態の希土類焼結磁石10によれば、表面層12が化学的に安定なFe及びOを含有するアモルファスから成ることにより、内部の焼結磁石本体11が酸化することを防止することができる。そして、このようなアモルファスから成る表面層12は外観の色が均一に近くなるように形成し易いため、外観を画像解析する際に、誤ってひび割れや傷等を有する不良品と認識することを防ぐことができる。 According to the rare earth sintered magnet 10 of the present embodiment, the surface layer 12 is made of an amorphous substance containing chemically stable Fe and O, so that the internal sintered magnet body 11 can be prevented from being oxidized. can. Since the surface layer 12 made of such an amorphous substance is easy to be formed so that the color of the appearance is close to uniform, it is recognized that the surface layer 12 is mistakenly recognized as a defective product having cracks, scratches, etc. when analyzing the appearance. Can be prevented.

表面層12の厚みは、薄過ぎると酸化防止の効果を十分に得ることができず、厚すぎると希土類焼結磁石10の磁気特性が低下することから、数nm~数十nmとすることが好ましい。但し、本発明では、表面層12の厚みはこの範囲内には限定されない。また、第1中間層131の厚みは例えば数十nm~数百nm、第2中間層132の厚みは例えば数百nm~数μmとすることができるが、これらの範囲内には限定されない。 If the thickness of the surface layer 12 is too thin, the antioxidant effect cannot be sufficiently obtained, and if it is too thick, the magnetic properties of the rare earth sintered magnet 10 deteriorate. Therefore, the thickness may be set to several nm to several tens of nm. preferable. However, in the present invention, the thickness of the surface layer 12 is not limited to this range. The thickness of the first intermediate layer 131 may be, for example, several tens of nm to several hundred nm, and the thickness of the second intermediate layer 132 may be, for example, several hundred nm to several μm, but the thickness is not limited to these ranges.

第1中間層131及び第2中間層132の技術的意義は以下の通りである。一般に、RFeB系焼結磁石は、結晶粒同士の間(粒界)に、RFeB系の材料の組成よりもRの含有率が高いRリッチ相が存在し、このRリッチ相が酸化しやすいという欠点を有する。それに対して、本実施形態の希土類焼結磁石10は、表面層12と焼結磁石本体11の間に第1中間層131及び第2中間層132が存在し、それら第1中間層131及び第2中間層132自体が焼結磁石本体11よりも耐食性が高いことから、焼結磁石本体11の耐食性を高くすることができる。さらに、中間層が1層のみならず2層存在することにより、焼結磁石本体11の耐食性をより一層高くすることができる。 The technical significance of the first intermediate layer 131 and the second intermediate layer 132 is as follows. Generally, in an RFeB-based sintered magnet, an R-rich phase having a higher R content than the composition of an RFeB-based material exists between crystal grains (grain boundaries), and this R-rich phase is easily oxidized. It has drawbacks. On the other hand, in the rare earth sintered magnet 10 of the present embodiment, the first intermediate layer 131 and the second intermediate layer 132 are present between the surface layer 12 and the sintered magnet main body 11, and the first intermediate layer 131 and the second intermediate layer 132 thereof are present. 2 Since the intermediate layer 132 itself has higher corrosion resistance than the sintered magnet main body 11, the corrosion resistance of the sintered magnet main body 11 can be increased. Further, since the intermediate layer is not only one layer but also two layers, the corrosion resistance of the sintered magnet main body 11 can be further improved.

但し、本発明では第1中間層131及び第2中間層132は必須では無く、図2に示す希土類焼結磁石10Aのように、焼結磁石本体11Aの表面に直接、表面層12Aが形成されていてもよい。 However, in the present invention, the first intermediate layer 131 and the second intermediate layer 132 are not essential, and the surface layer 12A is formed directly on the surface of the sintered magnet body 11A as in the rare earth sintered magnet 10A shown in FIG. May be.

(2) 本発明に係る希土類焼結磁石製造方法の一実施形態
次に、図3を用いて、本発明に係る希土類焼結磁石製造方法の一実施形態を説明する。
(2) One Embodiment of the rare earth sintered magnet manufacturing method according to the present invention Next, one embodiment of the rare earth sintered magnet manufacturing method according to the present invention will be described with reference to FIG.

まず、RとFeを含有し、酸素(O)の含有率が1000ppm以下であって、炭素(C)の含有率が800ppm以下である焼結磁石から成る基材21を作製する。基材21の作製方法は、上記O及びCの含有率を満たすことができるのであれば特に限定されないが、Oの含有率の低い焼結磁石を製造する方法として、特許文献2に記載の方法を用いることが好ましい。特許文献2に記載の方法は、PLP(Press-less Process)法と呼ばれ、焼結磁石の原料となる合金の粉末(原料粉末)を容器に充填した後に磁界中で配向させ、その後、この原料粉末をこの容器に充填したままの状態で加熱することにより焼結するというものである。一般的な焼結磁石の製造方法ではプレス機を用いて原料粉末を圧縮成形する工程を行うのに対して、PLP法はそのような圧縮成形を行わないという特徴を有する。そのため、PLP法ではプレス機を用いる必要がなく、原料粉末のハンドリングが容易になるため、内部を不活性ガス雰囲気にしたグローブボックス内で容器への充填から焼結炉への搬入までの作業を容易に行うことができる。その結果、基材21の作製中に原料粉末が酸化することを防止し易くなり、得られる基材21のOの含有率を低くすることができる。 First, a base material 21 made of a sintered magnet containing R and Fe, having an oxygen (O) content of 1000 ppm or less and a carbon (C) content of 800 ppm or less is prepared. The method for producing the base material 21 is not particularly limited as long as it can satisfy the above O and C contents, but is described in Patent Document 2 as a method for producing a sintered magnet having a low O content. It is preferable to use. The method described in Patent Document 2 is called a PLP (Press-less Process) method, in which an alloy powder (raw material powder) as a raw material for a sintered magnet is filled in a container and then oriented in a magnetic field, and then this method is performed. The raw material powder is sintered by heating it while it is still filled in this container. In the general method for manufacturing a sintered magnet, a step of compression molding the raw material powder is performed using a press machine, whereas the PLP method has a feature that such compression molding is not performed. Therefore, the PLP method does not require the use of a press machine and facilitates the handling of raw material powder. Therefore, the work from filling the container to carrying it into the sintering furnace in the glove box with an inert gas atmosphere inside is performed. It can be done easily. As a result, it becomes easy to prevent the raw material powder from being oxidized during the production of the base material 21, and the O content of the obtained base material 21 can be lowered.

得られた基材21を、加熱炉22内に設けられた載置台221上に載置する。そして、加熱炉22内を、水蒸気分圧が1000Pa以上3500Pa以下である大気で満たした状態で100℃以上300℃以下の温度に加熱する(図3)。ここで、水蒸気分圧が1000Pa未満であると希土類焼結磁石の耐食性を十分に確保することができず、3500Paを超えると、製造時の制御が難しくなる。そして、この温度を所定時間(例えば0.5~300分間)維持した後、0.5℃/分以上の速さで加熱炉22内を冷却する。この加熱により、基材21の表面付近ではR及びFeが酸化する。なお、載置台221は、孔が多数設けられており、大気が透過するようになっている。ここまでの加熱及び冷却の操作により、酸化したR及び/又はFeから、第2中間層132、第1中間層131、表面層12が、基材21に近い側からこの順で形成される。 The obtained base material 21 is placed on a mounting table 221 provided in the heating furnace 22. Then, the inside of the heating furnace 22 is heated to a temperature of 100 ° C. or higher and 300 ° C. or lower while being filled with the atmosphere having a partial pressure of steam of 1000 Pa or more and 3500 Pa or less (FIG. 3). Here, if the partial pressure of water vapor is less than 1000 Pa, the corrosion resistance of the rare earth sintered magnet cannot be sufficiently ensured, and if it exceeds 3500 Pa, control during manufacturing becomes difficult. Then, after maintaining this temperature for a predetermined time (for example, 0.5 to 300 minutes), the inside of the heating furnace 22 is cooled at a speed of 0.5 ° C./min or more. By this heating, R and Fe are oxidized near the surface of the base material 21. The mounting table 221 is provided with a large number of holes so that the atmosphere can pass through. By the heating and cooling operations up to this point, the second intermediate layer 132, the first intermediate layer 131, and the surface layer 12 are formed from the oxidized R and / or Fe in this order from the side closer to the base material 21.

(3) 実験結果
次に、実際に本実施形態の希土類焼結磁石製造方法を用いて本実施形態の希土類焼結磁石を作製した実験結果を説明する。
(3) Experimental Results Next, the experimental results of actually producing the rare earth sintered magnet of the present embodiment by using the rare earth sintered magnet manufacturing method of the present embodiment will be described.

図4に、本実施形態の方法で作製した希土類焼結磁石10B(実施例1)の表面付近における断面の透過型電子顕微鏡写真を示す。図4(a)は(b)の一部を拡大して示している。この希土類焼結磁石は、大気中で基材を250℃で120分間加熱し、その後5℃/分の速さで冷却することにより作製したものである。図4より、希土類焼結磁石10Bの最表面に、それよりも希土類焼結磁石10Bの内側(図の下側)と対比して淡い灰色の層が見られる。この層が表面層12Bである。この表面層12Bにつき、EDX装置(日本電子株式会社製、JED-2300T)を用いて得られる電子線回折像(図5)には、ハローリングが見られる。このハローリングは、表面層12Bがアモルファスであることを示している。 FIG. 4 shows a transmission electron micrograph of a cross section near the surface of the rare earth sintered magnet 10B (Example 1) produced by the method of the present embodiment. FIG. 4 (a) shows an enlarged part of (b). This rare earth sintered magnet was produced by heating a base material at 250 ° C. for 120 minutes in the atmosphere and then cooling it at a rate of 5 ° C./min. From FIG. 4, a light gray layer can be seen on the outermost surface of the rare earth sintered magnet 10B in contrast to the inside of the rare earth sintered magnet 10B (lower side of the figure). This layer is the surface layer 12B. Helloring can be seen in the electron diffraction image (FIG. 5) obtained by using the EDX device (JED-2300T, manufactured by JEOL Ltd.) for the surface layer 12B. This halo ring indicates that the surface layer 12B is amorphous.

また、図4では、表面層12Bよりも内側に、表面層12Bよりは濃く、さらに内側の部分よりは薄い灰色で示された第1中間層131Bが見られる。さらに、第1中間層131Bよりも内側には第2中間層132Bが存在する。なお、焼結磁石本体は、図4の写真で撮影された範囲内には存在せず、この範囲よりも希土類焼結磁石10Bの内側に存在する。 Further, in FIG. 4, the first intermediate layer 131B shown in gray, which is darker than the surface layer 12B and lighter than the inner portion, can be seen inside the surface layer 12B. Further, the second intermediate layer 132B exists inside the first intermediate layer 131B. The sintered magnet body does not exist in the range photographed in the photograph of FIG. 4, but exists inside the rare earth sintered magnet 10B from this range.

各層の厚みは、表面層12Bが約10nm、第1中間層131Bが約200nm、第2中間層132Bが1μm台である。 The thickness of each layer is about 10 nm for the surface layer 12B, about 200 nm for the first intermediate layer 131B, and 1 μm for the second intermediate layer 132B.

図4に示された表面層12B、第1中間層131B及び第2中間層132BにおけるR、Fe及びOの含有率を前述のEDX装置で測定した。第2中間層132Bについては、第1中間層131Bに近い部分と、焼結磁石本体の近い部分の2箇所で測定した。測定結果を表1に示す。

Figure 2022100371000002
The contents of R, Fe and O in the surface layer 12B, the first intermediate layer 131B and the second intermediate layer 132B shown in FIG. 4 were measured by the above-mentioned EDX device. The second intermediate layer 132B was measured at two points, a portion close to the first intermediate layer 131B and a portion close to the sintered magnet body. The measurement results are shown in Table 1.
Figure 2022100371000002

表面層12Bは、主にFe及びOを含有するアモルファスから成る。表面層12BのOの含有量は、ヘマタイト等を構成するFe2O3のOの含有量よりも高く、Feのほぼ2倍である。表面層12BのRの含有量は、第1中間層131B及び第2中間層132BのRの含有量よりも低い2原子%である。第2中間層132BはR、Fe及びOを含有する微結晶であり、表面層12Bよりも、Rの含有量が高く、Oの含有量が低い。また、第2中間層132B内でも希土類焼結磁石10Bの表面から遠いほど、Rの含有量が高く、Oの含有量が低くなっている。第1中間層131Bは、Rの含有量が表面層12Bよりも高く、Oの含有量が表面層12Bと第2中間層132Bの中間の値となっている。これは、第1中間層131Bが、表面層12Bと同様のFe及びOを含有するアモルファスと、第2中間層132Bと同様のR、Fe及びOを含有する微結晶が混合していることを反映している。 The surface layer 12B is mainly composed of an amorphous substance containing Fe and O. The O content of the surface layer 12B is higher than the O content of Fe 2 O 3 constituting hematite and the like, and is almost twice that of Fe. The R content of the surface layer 12B is 2 atomic% lower than the R content of the first intermediate layer 131B and the second intermediate layer 132B. The second intermediate layer 132B is a microcrystal containing R, Fe and O, and has a higher R content and a lower O content than the surface layer 12B. Further, even in the second intermediate layer 132B, the farther from the surface of the rare earth sintered magnet 10B, the higher the R content and the lower the O content. The first intermediate layer 131B has a higher R content than the surface layer 12B, and the O content is an intermediate value between the surface layer 12B and the second intermediate layer 132B. This means that the first intermediate layer 131B is a mixture of an amorphous substance containing Fe and O similar to that of the surface layer 12B and microcrystals containing R, Fe and O similar to those of the second intermediate layer 132B. It reflects.

図6に、上記実施例1の希土類焼結磁石10B(同図(b))と、実施例1とは製造方法の条件が異なる実施例2の希土類焼結磁石10C(同図(c))について、表面の外観を撮影した写真を示す。実施例2の希土類焼結磁石10Cは、実施例1と同じ製造ロットの基材を大気中において300℃で120分間加熱し、その後5℃/分の速さで冷却することにより作製したものである。図6には合わせて、基材(a)並びに比較例1及び2の希土類焼結磁石((d)及び(e))について、表面の外観を撮影した写真を示す。比較例1及び2の希土類焼結磁石は、実施例1と同じ製造ロットの基材を、大気中において350℃(比較例1)又は400℃(比較例2)で120分間(比較例1、2共)加熱し、その後5℃/分の速さ(比較例1、2共)で冷却することにより作製したものである。比較例1及び2は、加熱時の温度が本発明に係る希土類焼結磁石製造方法の製造方法の条件を満たしていない。 FIG. 6 shows the rare earth sintered magnet 10B of Example 1 (FIG. 6 (b)) and the rare earth sintered magnet 10C of Example 2 having different manufacturing method conditions from those of Example 1 (FIG. 6). The photograph which took the appearance of the surface is shown. The rare earth sintered magnet 10C of Example 2 was produced by heating a substrate of the same production lot as that of Example 1 in the air at 300 ° C. for 120 minutes and then cooling at a rate of 5 ° C./min. be. FIG. 6 also shows photographs of the surface appearance of the base material (a) and the rare earth sintered magnets ((d) and (e)) of Comparative Examples 1 and 2. For the rare earth sintered magnets of Comparative Examples 1 and 2, the base material of the same production lot as that of Example 1 was used in the air at 350 ° C. (Comparative Example 1) or 400 ° C. (Comparative Example 2) for 120 minutes (Comparative Example 1, It was produced by heating (both 2) and then cooling at a rate of 5 ° C./min (both Comparative Examples 1 and 2). In Comparative Examples 1 and 2, the temperature at the time of heating does not satisfy the conditions of the manufacturing method of the rare earth sintered magnet manufacturing method according to the present invention.

図6より、実施例1及び2では表面に色ムラがほとんど見られないのに対して、比較例1及び2では表面に色ムラが見られることがわかる。また、実施例1と実施例2を対比すると、実施例1の方が実施例2よりも表面の色が淡い。実施例1のように表面の色が淡い方が、画像認識を行いやすいため好ましい。なお、各写真では左側の方が右側よりも明るくなっているが、これは撮影時の照明の位置によるものであり、本質的な事項ではない。 From FIG. 6, it can be seen that in Examples 1 and 2, almost no color unevenness is observed on the surface, whereas in Comparative Examples 1 and 2, color unevenness is observed on the surface. Further, when Example 1 and Example 2 are compared, the surface color of Example 1 is lighter than that of Example 2. It is preferable that the surface color is light as in Example 1 because it is easy to perform image recognition. In each photograph, the left side is brighter than the right side, but this is due to the position of the lighting at the time of shooting and is not an essential matter.

次に、基材、実施例1及び2、並びに比較例1及び2の各試料について耐食性試験を行った結果を説明する。この耐食性試験では、各試料を温度85℃、湿度85%の恒温恒湿槽内に1000時間収容することによって行った。耐食性試験後の各試料の表面の外観を撮影した写真を図7に示す。基材(図7(a))では表面に斑点状の錆が見られるのに対して、実施例1(同(b))及び実施例2(同(c))ではそのような錆は見られない。この実験結果より、実施例1及び2の希土類焼結磁石では表面層によって、酸化の進行(錆の発生)を防止することができることが確認された。なお、比較例1(図7(d))及び比較例2(同(e))では、耐食性については実施例1及び2と同様の結果であった。 Next, the results of corrosion resistance tests on the substrate, Examples 1 and 2, and Comparative Examples 1 and 2 will be described. This corrosion resistance test was carried out by accommodating each sample in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85% for 1000 hours. FIG. 7 shows a photograph of the appearance of the surface of each sample after the corrosion resistance test. Spotted rust is seen on the surface of the substrate (FIG. 7 (a)), whereas such rust is seen in Example 1 (same (b)) and Example 2 (same (c)). I can't. From this experimental result, it was confirmed that in the rare earth sintered magnets of Examples 1 and 2, the progress of oxidation (generation of rust) can be prevented by the surface layer. In Comparative Example 1 (FIG. 7 (d)) and Comparative Example 2 ((e)), the corrosion resistance was the same as in Examples 1 and 2.

さらに、表面層の作製時の加熱温度を100℃、150℃、200℃及び275℃(その他の条件は実施例1と同じ)とした場合にも上記と同様の実験を行い、色ムラが見られない外観を有する希土類焼結磁石が得られると共に、耐食性試験では錆の発生が見られないことを確認した。 Furthermore, when the heating temperature at the time of preparing the surface layer was set to 100 ° C, 150 ° C, 200 ° C and 275 ° C (other conditions are the same as in Example 1), the same experiment as above was performed, and color unevenness was observed. It was confirmed that a rare earth sintered magnet having an unprecedented appearance was obtained, and that no rust was observed in the corrosion resistance test.

本発明は上記実施形態には限定されず、本発明の主旨の範囲内で種々の変更をすることができる。 The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the gist of the present invention.

10、10A、10B、10C…希土類焼結磁石
11、11A…焼結磁石本体
12、12A、12B…表面層
131、131B…第1中間層
132、132B…第2中間層
21…基材
22…加熱炉
10, 10A, 10B, 10C ... Rare earth sintered magnet 11, 11A ... Sintered magnet body 12, 12A, 12B ... Surface layer 131, 131B ... First intermediate layer 132, 132B ... Second intermediate layer 21 ... Base material 22 ... heating furnace

Claims (2)

希土類元素(但しLaを除く)及び鉄を含有する焼結磁石本体の表面に、前記希土類元素と同種の希土類元素、鉄及び酸素を含有するアモルファスから成る表面層を有し、該表面層の外側には他の層を有しないことを特徴とする希土類焼結磁石。 The surface of the sintered magnet body containing a rare earth element (excluding La) and iron has a surface layer made of an amorphous material containing a rare earth element of the same type as the rare earth element, iron and oxygen, and is outside the surface layer. Is a rare earth sintered magnet characterized by having no other layers. 前記表面層と前記焼結磁石本体の間に、鉄及び酸素を含有するアモルファスと、希土類元素、鉄及び酸素を含有する微結晶が混合した第1中間層を備え、該第1中間層と焼結磁石本体の間に、希土類元素、鉄及び酸素を含有する微結晶を有し且つ鉄及び酸素を含有するアモルファスを有しない第2中間層を備えることを特徴とする請求項1に記載の希土類焼結磁石。 A first intermediate layer in which an amorphous substance containing iron and oxygen and microcrystals containing rare earth elements, iron and oxygen are mixed is provided between the surface layer and the sintered magnet body, and the first intermediate layer is burned. The rare earth according to claim 1, wherein a second intermediate layer having microcrystals containing rare earth elements, iron and oxygen and having no amorphous material containing iron and oxygen is provided between the magnet main bodies. Sintered magnet.
JP2022072976A 2018-09-06 2022-04-27 Rare earth sintered magnet and manufacturing method thereof Active JP7320102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022072976A JP7320102B2 (en) 2018-09-06 2022-04-27 Rare earth sintered magnet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018167328A JP7145701B2 (en) 2018-09-06 2018-09-06 Rare earth sintered magnet and manufacturing method thereof
JP2022072976A JP7320102B2 (en) 2018-09-06 2022-04-27 Rare earth sintered magnet and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018167328A Division JP7145701B2 (en) 2018-09-06 2018-09-06 Rare earth sintered magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2022100371A true JP2022100371A (en) 2022-07-05
JP7320102B2 JP7320102B2 (en) 2023-08-02

Family

ID=87469595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022072976A Active JP7320102B2 (en) 2018-09-06 2022-04-27 Rare earth sintered magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7320102B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285795A (en) * 2004-03-26 2005-10-13 Tdk Corp Rare-earth magnet and its manufacturing method
JP2005286031A (en) * 2004-03-29 2005-10-13 Tdk Corp Rare-earth magnet and method of manufacturing same
JP2008244126A (en) * 2007-03-27 2008-10-09 Tdk Corp Rare-earth permanent magnet
WO2009041639A1 (en) * 2007-09-27 2009-04-02 Hitachi Metals, Ltd. Process for production of surface-modified rare earth sintered magnets and surface-modified rare earth sintered magnets
WO2009041369A1 (en) * 2007-09-27 2009-04-02 Hitachi Metals, Ltd. Ceramic honeycomb structure and process for producing the ceramic honeycomb structure
WO2012128371A1 (en) * 2011-03-23 2012-09-27 愛知製鋼株式会社 Rare-earth magnetic powder, method for manufacturing same, compound of same, and bond magnet of same
JP2014063792A (en) * 2012-09-20 2014-04-10 Hitachi Metals Ltd METHOD OF MANUFACTURING SURFACE-MODIFIED R-Fe-B-BASED SINTERED MAGNET

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285795A (en) * 2004-03-26 2005-10-13 Tdk Corp Rare-earth magnet and its manufacturing method
JP2005286031A (en) * 2004-03-29 2005-10-13 Tdk Corp Rare-earth magnet and method of manufacturing same
JP2008244126A (en) * 2007-03-27 2008-10-09 Tdk Corp Rare-earth permanent magnet
WO2009041639A1 (en) * 2007-09-27 2009-04-02 Hitachi Metals, Ltd. Process for production of surface-modified rare earth sintered magnets and surface-modified rare earth sintered magnets
WO2009041369A1 (en) * 2007-09-27 2009-04-02 Hitachi Metals, Ltd. Ceramic honeycomb structure and process for producing the ceramic honeycomb structure
WO2012128371A1 (en) * 2011-03-23 2012-09-27 愛知製鋼株式会社 Rare-earth magnetic powder, method for manufacturing same, compound of same, and bond magnet of same
JP2014063792A (en) * 2012-09-20 2014-04-10 Hitachi Metals Ltd METHOD OF MANUFACTURING SURFACE-MODIFIED R-Fe-B-BASED SINTERED MAGNET

Also Published As

Publication number Publication date
JP7320102B2 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
TWI673730B (en) R-Fe-B based sintered magnet and manufacturing method thereof
RU2538272C2 (en) Manufacturing method of magnets from rare-earth metals
CN106024254B (en) R-Fe-B sintered magnet and preparation method thereof
US9196403B2 (en) Powder for magnetic member, powder compact, and magnetic member
JP6501005B1 (en) Soft magnetic alloys and magnetic parts
WO2012099186A1 (en) Method of producing r-t-b sintered magnet
JP2018504769A (en) Manufacturing method of RTB permanent magnet
JP2006202956A (en) Soft magnetic material and powder magnetic core
JPWO2012132783A1 (en) COMPOSITE SOFT MAGNETIC POWDER, PROCESS FOR PRODUCING THE SAME, AND DUST CORE WITH THE SAME
JP2019121738A (en) Soft magnetic alloy and magnetic component
US4996022A (en) Process for producing a sintered body
JP5462230B2 (en) Manufacturing method of NdFeB-based sintered magnet
CN105074852B (en) RFeB systems method of manufacturing sintered magnet and RFeB systems sintered magnet
JP4917355B2 (en) Dust core
JP4860493B2 (en) Permanent magnet manufacturing method and permanent magnet manufacturing apparatus
JP2006278833A (en) Manufacturing method of composite soft-magnetic sintered material having high strength, high magnetic-flux density, and high resistance
JP2022100371A (en) Rare earth sintered magnet and manufacturing method thereof
JP4283802B2 (en) Manufacturing method of NdFeB-based sintered magnet
JP7145701B2 (en) Rare earth sintered magnet and manufacturing method thereof
US20160293305A1 (en) Sintered magnet production method
JP4966269B2 (en) Manufacturing method of NdFeB-based sintered magnet
JP4825902B2 (en) Manufacturing method of dust core
JPH09223617A (en) Rare earth-b-fe sintered magnet superior in corrosion resistance and magnetic characteristic and manufacturing method thereof
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP6405881B2 (en) Method for producing magnetic nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230721

R150 Certificate of patent or registration of utility model

Ref document number: 7320102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150