JP4283802B2 - Manufacturing method of NdFeB-based sintered magnet - Google Patents

Manufacturing method of NdFeB-based sintered magnet Download PDF

Info

Publication number
JP4283802B2
JP4283802B2 JP2005378823A JP2005378823A JP4283802B2 JP 4283802 B2 JP4283802 B2 JP 4283802B2 JP 2005378823 A JP2005378823 A JP 2005378823A JP 2005378823 A JP2005378823 A JP 2005378823A JP 4283802 B2 JP4283802 B2 JP 4283802B2
Authority
JP
Japan
Prior art keywords
mold
alloy powder
powder
ndfeb
sintering temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005378823A
Other languages
Japanese (ja)
Other versions
JP2007180374A (en
JP2007180374A5 (en
Inventor
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Original Assignee
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermetallics Co Ltd filed Critical Intermetallics Co Ltd
Priority to JP2005378823A priority Critical patent/JP4283802B2/en
Publication of JP2007180374A publication Critical patent/JP2007180374A/en
Publication of JP2007180374A5 publication Critical patent/JP2007180374A5/ja
Application granted granted Critical
Publication of JP4283802B2 publication Critical patent/JP4283802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

この発明は、NdFeB系焼結磁石の製造方法に関し、特に、NdFeB系焼結磁石用合金粉末(以下これを合金粉末という)を、製品の形状と寸法に対応して設計された容器(以下これをモールドという)に充填し、この合金粉末に磁界を印加して粉末の結晶方向をそろえ、合金粉末を入れたまま容器ごと加熱、焼結して所望の形状のNdFeB系焼結磁石を得る方法に関するものである。以下、この方法をプレスなし工程と呼ぶ。   The present invention relates to a method for producing a NdFeB-based sintered magnet, and in particular, an NdFeB-based sintered magnet alloy powder (hereinafter referred to as an alloy powder) is a container designed according to the shape and dimensions of a product (hereinafter referred to as this). To obtain a NdFeB sintered magnet of the desired shape by applying a magnetic field to the alloy powder, aligning the crystal orientation of the powder, and heating and sintering the entire container with the alloy powder in place. It is about. Hereinafter, this method is referred to as a pressless process.

従来のプレスなし工程では、平均粒度2〜5μmの合金粉末を、充填密度が2.7g/cm3〜3.5g/cm3になるようにモールドに充填し、モールド上面にふたを載置して、粉末に磁界を印加して配向し、その後焼結して焼結体をモールドから取出して、時効処理するものであった。その内容は特許文献1に示されている。ここで、合金粉末の粒度の測定方法は特許文献1には記載されていないが、当該文献に係る特許出願当時(1993年)に一般的に用いられていたFisher法によるものと考えられる。 In no conventional press process, the alloy powder having an average particle size of 2 to 5 [mu] m, the filling density is charged into the mold so as to 2.7g / cm 3 ~3.5g / cm 3 , and placing the lid on the mold upper surface, The powder was oriented by applying a magnetic field, then sintered, and the sintered body was taken out of the mold and subjected to an aging treatment. The contents are shown in Patent Document 1. Here, although the measuring method of the particle size of the alloy powder is not described in Patent Document 1, it is considered that the method is based on the Fisher method generally used at the time of patent application related to the document (1993).

特開平7-153612号公報Japanese Unexamined Patent Publication No. 7-13612

本発明者はプレスなし工程の技術を実施する過程で、この技術の重大な問題に気づいた。それは、モールドを精密な加工がしやすいステンレスなどのありふれた金属材料で作ると、モールドが何回も繰返して使えないということである。焼結工程においてモールドが変形したり、合金粉末との溶着によりモールド内面に大きい凹凸ができて使用不能になってしまう。モリブデンやタングステンなどの耐熱金属でモールドを作ると高価で、しかも焼結中の温度上昇によって脆くなってしまうのでやはり多数回の使用はできない。プレスなし工程の技術はNdFeB焼結磁石の量産工程としてあまり使われていない。それはこのモールドの寿命が短いことが一因であった。一方、耐熱性の点ではセラミックを用いることも考えられるが、セラミックは精密な成形が困難であり、且つ機械的に脆いため、モールドの材料としては不適当である。
本発明の課題は、この技術において、ステンレスなど、加工しやすい金属で作製したモールドを多数回使用できる、NdFeB焼結磁石の製造方法を提供することである。
The inventor has noticed a significant problem with this technology in the process of implementing the technology of the pressless process. That is, if a mold is made of a common metal material such as stainless steel, which is easy to process precisely, the mold cannot be used over and over again. In the sintering process, the mold is deformed or welded with the alloy powder, resulting in large irregularities on the inner surface of the mold, making it unusable. If a mold is made of a heat-resistant metal such as molybdenum or tungsten, it is expensive, and it becomes brittle due to a temperature rise during sintering, so it cannot be used many times. The technology of the pressless process is not used much as a mass production process of NdFeB sintered magnet. This was partly due to the short life of this mold. On the other hand, it is conceivable to use ceramic in terms of heat resistance, but ceramic is unsuitable as a mold material because precise molding is difficult and mechanically brittle.
The subject of this invention is providing the manufacturing method of the NdFeB sintered magnet which can use the mold produced with the metal which is easy to process in this technique many times, such as stainless steel.

上述したモールドの変形やモールド内面の損傷は、焼結温度が高すぎることに起因する。特許文献1の実施例には焼結温度は1100℃と記載されている。ステンレスなどの鉄系合金で作られたモールドを1100℃もの高温に加熱すると変形したり、合金粉末と溶着したりするのは避けられない。NdFeB焼結磁石が生まれてから最近まで、焼結温度は一般に1100℃付近であった。最近、合金原料としてストリップキャスト合金が使われるようになってNdFeB焼結磁石の焼結温度は下がる傾向にあり、1050℃〜1070℃付近が一般的になりつつある。しかし、プレスなし工程の技術において金属系モールドを使用するとき、焼結温度は、1050℃でも、モールドの変形や損傷の程度はあまり改善されない。プレスなし工程において、金属製モールドの寿命を伸ばすためには、焼結温度は1000℃以下であることが必要である。   The above-described deformation of the mold and damage to the inner surface of the mold are caused by the sintering temperature being too high. In the example of Patent Document 1, the sintering temperature is described as 1100 ° C. When a mold made of an iron-based alloy such as stainless steel is heated to a high temperature of 1100 ° C, it cannot be deformed or welded to the alloy powder. From the time NdFeB sintered magnets were born until recently, sintering temperatures were generally around 1100 ° C. Recently, the use of a strip cast alloy as an alloy raw material has led to a decrease in the sintering temperature of the NdFeB sintered magnet, and the temperature around 1050 ° C. to 1070 ° C. is becoming common. However, when a metal mold is used in the pressless process technology, even if the sintering temperature is 1050 ° C., the degree of deformation and damage of the mold is not improved so much. In the pressless process, the sintering temperature needs to be 1000 ° C. or less in order to extend the life of the metal mold.

本発明者は合金粉末の粒径を十分小さくして、粉末中の酸素含有量を十分低くすることにより、焼結温度を大きく低下させることができることを見い出し、プレスなし工程に適用した。プレスなし工程により合金組成、粉末粒径、含有酸素量が異なる多種類の合金粉末について、焼結温度を変化させて、NdFeB焼結磁石を作製して、焼結磁石の密度、磁気特性およびモールドと焼結体の溶着の程度、モールドの変形度合を調べた。その結果、レーザー式粒度分布測定器で測定した粒度分布曲線の中央値(D50)で評価した合金粉末の粒度が3μm以下であって酸素含有量が2000ppm以下のとき、焼結温度を1000℃以下にできることを見出した。即ち、この粒度及び酸素含有量を満たせば、焼結温度が900〜1000℃という従来よりも低い温度であっても、焼結密度を7.45g/cm3以上、保磁力HcJを(希土類として主としてNdだけを含む合金組成においても)12kOe以上にすることができ、かつモールドの寿命を大幅に伸ばすことができることを見い出して、本発明を完成した。
ここで合金粉末の酸素含有量は、合金粉末を高温に加熱することにより放出されるガスを、赤外線分光により定量分析することにより測定することができる。この測定は、例えばLECO社の酸素量定量分析装置により行うことができる。
The present inventor has found that the sintering temperature can be greatly reduced by sufficiently reducing the particle size of the alloy powder and sufficiently reducing the oxygen content in the powder, and has applied it to the pressless process. NdFeB sintered magnets are manufactured by changing the sintering temperature for various types of alloy powders with different alloy composition, powder particle size, and oxygen content in the non-pressing process, and the density, magnetic properties and mold of the sintered magnet are produced. The degree of welding of the sintered body and the degree of deformation of the mold were examined. As a result, when the particle size of the alloy powder evaluated by the median value (D 50 ) of the particle size distribution curve measured with a laser type particle size distribution measuring instrument is 3 μm or less and the oxygen content is 2000 ppm or less, the sintering temperature is 1000 ° C. We found out that we can: That is, if this particle size and oxygen content are satisfied, the sintering density is 7.45 g / cm 3 or more and the coercive force H cJ (as a rare earth) even if the sintering temperature is 900 to 1000 ° C., which is lower than the conventional temperature. The present invention has been completed by finding that it can be increased to 12 kOe or higher (even in an alloy composition mainly containing only Nd) and can greatly extend the life of the mold.
Here, the oxygen content of the alloy powder can be measured by quantitatively analyzing the gas released by heating the alloy powder at a high temperature by infrared spectroscopy. This measurement can be performed, for example, with a LECO oxygen quantitative analyzer.

上述した製造条件において、粉末中の酸素量が2000ppm以下でも、粉末の粒径D50を3μm以上にすると、焼結温度を1000℃以下に下げることはできない。焼結温度を1000℃以下に下げると焼結体の密度を7.45g/cm3以上に上げることができず、磁気特性も高くすることができない。また、粉末のD50が3μm以下でも粉末中の酸素量が2000ppm以上では、やはり焼結後の焼結体密度を7.45g/cm3以上にできず、磁気特性を高くすることもできない。 Under the manufacturing conditions described above, even if the amount of oxygen in the powder is 2000 ppm or less, the sintering temperature cannot be lowered to 1000 ° C. or less if the particle diameter D 50 of the powder is 3 μm or more. If the sintering temperature is lowered to 1000 ° C. or lower, the density of the sintered body cannot be increased to 7.45 g / cm 3 or more, and the magnetic properties cannot be improved. Even if the D 50 of the powder is 3 μm or less, if the oxygen content in the powder is 2000 ppm or more, the density of the sintered body after sintering cannot be made 7.45 g / cm 3 or more, and the magnetic properties cannot be improved.

ところで特許文献1には粉末粒度として2μmから5μmの範囲が記載され、実施例の中では粒度3μmの粉末の使用が記載されている。特許文献1に係る出願の当時には信頼できるレーザー式粒度分布測定器が存在しなかったので、Fisher法と呼ばれる空気透過式粒度測定器によって粉末の粒径を評価していた。NdFeB焼結磁石用合金粉末の場合、Fisher法で測定した粒度が2μmの粉末は、レーザー式粒度分布計で測定したときのD50が3μm程度である粉末であると推定される。特許文献1において、粒度3μmの粉末をプレスなし工程によって焼結する実施例が示されているが、このときの焼結温度は1100℃とされている。これは、この実施例における粉末の粒度測定がFisher法で測定されたものであることを示している。なぜなら、Fisher法で粒度3μmと評価された粉末の最適焼結温度は1100℃程度であるからである。それに対して、レーザー式粒度分布計で測定したときの粒度D50が3μmの粉末を1100℃で焼結すると極端な過焼結状態になってしまうことは実験的に容易に証明することができる。過焼結状態とは、焼結体中に平均粒径の50倍から100倍にも達する巨大結晶粒が出現する(異常粒成長という)状態をいう。このような組織を持つNdFeB焼結磁石は、保磁力も磁化曲線の角型性も極端に低く、工業材料としての価値は全くないといってもよい。特許文献1の実施例において、粒度3μmの粉末を1100℃で焼結して作製した焼結磁石が高い磁気特性を示していることからも、特許文献1に記載の3μmという値はFisher法によって評価されたものであることは明らかである。 By the way, Patent Document 1 describes the range of 2 μm to 5 μm as the powder particle size, and describes the use of powder having a particle size of 3 μm in the examples. Since there was no reliable laser type particle size distribution measuring instrument at the time of the application according to Patent Document 1, the particle size of the powder was evaluated by an air transmission type particle size measuring instrument called the Fisher method. In the case of NdFeB sintered magnet alloy powder, the powder having a particle size of 2 μm measured by the Fisher method is estimated to be a powder having a D 50 of about 3 μm when measured by a laser particle size distribution meter. Patent Document 1 discloses an example in which a powder having a particle size of 3 μm is sintered by a pressless process, and the sintering temperature at this time is 1100 ° C. This indicates that the particle size measurement of the powder in this example was measured by the Fisher method. This is because the optimum sintering temperature of the powder evaluated as 3 μm particle size by the Fisher method is about 1100 ° C. On the other hand, when a powder with a particle size D 50 of 3 μm as measured with a laser particle size distribution meter is sintered at 1100 ° C., it can be easily proved experimentally that it becomes an extremely oversintered state. . The oversintered state refers to a state in which giant crystal grains that reach 50 to 100 times the average grain size appear in the sintered body (referred to as abnormal grain growth). An NdFeB sintered magnet having such a structure is extremely low in coercive force and squareness of the magnetization curve, and may be said to have no value as an industrial material. In the example of Patent Document 1, since the sintered magnet produced by sintering powder having a particle size of 3 μm at 1100 ° C. exhibits high magnetic properties, the value of 3 μm described in Patent Document 1 is obtained by the Fisher method. It is clear that it was evaluated.

なお、モールド材料としてステンレスやパーマロイなどFe-Ni合金の他に、耐熱性を改良した各種鉄系、ニッケル系あるいはコバルト系合金がある。これらの耐熱合金によってモールドを作ると、1000℃以上の焼結において、熱変形はステンレスの場合よりも改善される。しかし、実験によると、合金粉末との溶着については全く改善が見られなかった。そのため、モールドの寿命の観点からは、これらの耐熱合金によってモールドを作っても、焼結温度を1000℃以下にすることがプレスなし工程の工業化のための必須の条件である。   In addition to Fe-Ni alloys such as stainless steel and permalloy, there are various iron-based, nickel-based, or cobalt-based alloys with improved heat resistance as mold materials. When a mold is made of these heat-resistant alloys, thermal deformation is improved in the case of sintering at 1000 ° C. or higher than that of stainless steel. However, according to experiments, no improvement was observed in the welding with the alloy powder. Therefore, from the viewpoint of the life of the mold, even if a mold is made of these heat-resistant alloys, it is an essential condition for industrialization of the pressless process that the sintering temperature is 1000 ° C. or less.

本発明により、NdFeB焼結磁石のプレスなし工程において焼結温度を1000℃以下にすることができるようになり、従来のプレスなし工程におけるモールドの寿命が短いという問題、および焼結時にモールドと合金粉末が溶着してモールドが破損するという問題が解決された。これにより、プレスなし工程が工業的に利用できるものになった。   According to the present invention, the sintering temperature can be reduced to 1000 ° C. or less in the NdFeB sintered magnet pressless process, the problem that the mold life in the conventional pressless process is short, and the mold and alloy during sintering The problem that the powder was welded and the mold was broken was solved. As a result, the pressless process can be used industrially.

重量比で31.5%Nd、1%B、0.2%Al、0.1%Cu残部Feの合金をストリップキャスト法で作製し、水素解砕とジェットミルにより、レーザー式粒度分布測定器(SYMPATECH社製)で測定した粒径の中央値D50が2.0μm、2.9μm、5μmの3種類の合金粉末を作製した。これらの粉末に回転羽根の付いた混合撹拌機で、羽根の回転速度を500rpmとして、潤滑剤カプロン酸メチルを0.5%添加して混合した。合金粉末の酸素量を測定したところ、D50=2.0μmの粉末では1600ppm、D50=2.9μmの粉末では1300ppm、D50=5μmの粉末では980ppmであった。 An alloy of 31.5% Nd, 1% B, 0.2% Al, and 0.1% Cu balance Fe by weight ratio was prepared by strip casting, and laser particle size distribution analyzer (manufactured by SYMPATECH) with hydrogen crushing and jet mill. Three types of alloy powders having a measured median D 50 of 2.0 μm, 2.9 μm, and 5 μm were prepared. These powders were mixed with a mixing stirrer equipped with a rotating blade at a rotation speed of the blade of 500 rpm and 0.5% of the lubricant methyl caproate was added. When the oxygen content of the alloy powder was measured, it was 1600 ppm for the D 50 = 2.0 μm powder, 1300 ppm for the D 50 = 2.9 μm powder, and 980 ppm for the D 50 = 5 μm powder.

合金粉末を充填するモールドとして、深絞りで作製したステンレス容器を使用した。このステンレス容器は、携帯電話の電池ケースとして作製されたもので、およそ、深さ47.7mm、縦7mm、横33mmの直方体キャビティーをもち、厚さ0.3mmの非磁性ステンレス製である。この容器内面に次のようにしてコーティングを施した。まず融点が50℃のロウと平均粒径5μmのBN粉末を重量比で60:40に混合し、この混合物2.5gを直径0.5mmのジルコニアボール1kgに添加した。このジルコニアボールをインパクトメディアと呼ぶ。インパクトメディアにロウとBNを添加した混合体を500ccのビーカに入れて80℃に加熱し、ビーカを揺動させて混合体を撹拌した。その後、この混合体を上記ステンレスモールドに入れて、このモールドを3分間揺動させた後、モールドから混合体を出してモールド内面に粉体とロウの混合物の膜を形成した。このようにしてコーティングされたモールドに前記合金粉末を充填密度が3.7g/cm3になるように充填し、モールドの縦方向(直方体の一番短い辺に平行な方向)に磁界を印加して合金粉末を配向した後、モールドごと加熱することにより、合金粉末の焼結体を作製した。なお、本実施例では、合金粉末を取扱う工程を全て高純度のAr中で行うと共に、焼結を高真空中で行うことにより、合金粉末の酸化を極力防止した。 A stainless container made by deep drawing was used as a mold for filling the alloy powder. This stainless steel container is manufactured as a battery case for a mobile phone, and has a rectangular parallelepiped cavity of depth 47.7 mm, length 7 mm, width 33 mm, and is made of nonmagnetic stainless steel having a thickness of 0.3 mm. Coating was applied to the inner surface of the container as follows. First, wax having a melting point of 50 ° C. and BN powder having an average particle diameter of 5 μm were mixed at a weight ratio of 60:40, and 2.5 g of this mixture was added to 1 kg of zirconia balls having a diameter of 0.5 mm. This zirconia ball is called impact media. A mixture obtained by adding wax and BN to impact media was placed in a 500 cc beaker and heated to 80 ° C., and the beaker was shaken to stir the mixture. Thereafter, the mixture was placed in the stainless steel mold and the mold was rocked for 3 minutes, and then the mixture was taken out of the mold to form a film of a mixture of powder and wax on the inner surface of the mold. The alloy powder thus coated is filled with the alloy powder so that the packing density is 3.7 g / cm 3 , and a magnetic field is applied in the longitudinal direction of the mold (direction parallel to the shortest side of the rectangular parallelepiped). After orientation of the alloy powder, the entire mold was heated to produce a sintered body of the alloy powder. In this example, all the steps for handling the alloy powder were performed in high-purity Ar, and sintering was performed in a high vacuum to prevent the alloy powder from being oxidized as much as possible.

D50が異なる前記3種類の合金粉末について、焼結温度を変化させて、焼結後の密度を測定した。その結果、それぞれの合金粉末について、密度が7.45g/cm3を越える温度は次の通りであった。
D50=2.0μmの合金粉末:焼結温度800℃
D50=2.9μmの合金粉末:焼結温度950℃
D50=5.0μmの合金粉末:焼結温度1040℃
密度が7.45g/cm3以上であることは、工業製品としてのNdFeB焼結磁石の必須用件の1つである。密度がこの値より低いと、そのような磁石は磁気特性が低く、腐食されやすい。密度が7.45g/cm3以上が必須要件であるということは、上述の3種類の合金粉末でプレスなし工程により焼結磁石を作るとき、焼結温度の下限は上述のそれぞれの温度800℃、950℃、および1040℃であるということである。
For the three types of alloy powders having different D 50 , the sintering temperature was changed and the density after sintering was measured. As a result, the temperature at which the density exceeded 7.45 g / cm 3 for each alloy powder was as follows.
D 50 = 2.0μm alloy powder: sintering temperature 800 ° C
D 50 = 2.9μm alloy powder: sintering temperature 950 ° C
D 50 = 5.0 μm alloy powder: sintering temperature 1040 ° C
A density of 7.45 g / cm 3 or more is one of the essential requirements for NdFeB sintered magnets as industrial products. If the density is below this value, such magnets have poor magnetic properties and are susceptible to corrosion. A density of 7.45 g / cm 3 or more is an essential requirement. When a sintered magnet is made by a press-free process using the above-mentioned three types of alloy powder, the lower limit of the sintering temperature is the above-mentioned respective temperature of 800 ° C., 950 ° C and 1040 ° C.

焼結温度の最適値は焼結体の密度が7.45g/cm3以上であるということに加えて、磁気特性が最高になる温度の観点からも決定される。磁気特性、特に保磁力HcJが最高になる温度は、焼結体の密度が上限に達してそれ以上上がらなくなる温度よりも少し高温側にあることを確認した。 In addition to the fact that the density of the sintered body is 7.45 g / cm 3 or more, the optimum value of the sintering temperature is also determined from the viewpoint of the temperature at which the magnetic properties are maximized. It was confirmed that the temperature at which the magnetic properties, particularly the coercive force H cJ, was the highest, was slightly higher than the temperature at which the density of the sintered body reached the upper limit and no longer increased.

以上の結果から、上述の3種類の合金粉末について最適な焼結温度は次の通りであった。
D50=2.0μmの合金粉末:焼結温度940℃
D50=2.9μmの合金粉末:焼結温度975℃
D50=5.0μmの合金粉末:焼結温度1050℃
これらの焼結温度でモールドに充填したそれぞれの合金粉末をモールドに入れたまま焼結し、冷却後、モールドから焼結体を取出して熱処理を施し、焼結磁石を作製した。
From the above results, the optimum sintering temperature for the above-mentioned three types of alloy powders was as follows.
D 50 = 2.0 μm alloy powder: sintering temperature 940 ° C
D 50 = 2.9μm alloy powder: sintering temperature 975 ° C
D 50 = 5.0 μm alloy powder: sintering temperature 1050 ° C.
Each alloy powder filled in the mold at these sintering temperatures was sintered while being put in the mold, and after cooling, the sintered body was taken out of the mold and subjected to heat treatment to produce a sintered magnet.

3種類の焼結磁石の磁気特性を測定した結果、残留磁束密度、最大エネルギー積はどの磁石も同程度であったが、保磁力HcJの大きさに差があった。D50=5.0μmの粉末から作った磁石の保磁力は13.2kOeであったが、D50=2.9μmの粉末から作ったものは16.5kOeもあり、D50=2.0μmの粉末からの磁石も17.3kOeの保磁力を有していた。 As a result of measuring the magnetic properties of the three types of sintered magnets, the residual magnetic flux density and the maximum energy product were almost the same for all magnets, but there was a difference in the coercive force H cJ . The coercive force of the magnet made from D 50 = 5.0 μm powder was 13.2 kOe, but the one made from D 50 = 2.9 μm powder was 16.5 kOe, and the magnet from D 50 = 2.0 μm powder was also It had a coercive force of 17.3 kOe.

このように、粒径が小さい粉末ほど低温度で焼結でき、保磁力が高くなる。しかし、焼結温度が低すぎると、焼結密度は十分に高くとも、保磁力は十分に大きい値とされる12kOeに達しない場合がある。例えば、上述のD50=2.0μmの合金粉末の場合、焼結温度が800℃という低い温度であっても焼結密度は7.45g/cm3以上という高密度に達するが、保磁力は12kOeには達しない。保磁力が12kOe以上に達するのは、焼結温度が900℃以上のときである。この900℃という下限値は、合金粉末のD50が3.0μm以下であって酸素含有量が2000ppmの範囲内にある場合にはほとんど変化しない。従って、本発明での焼結温度は900℃以上であって、且つ前述のように1000℃以下とすることが望ましい。 Thus, powder with smaller particle size can be sintered at a lower temperature and the coercive force becomes higher. However, if the sintering temperature is too low, the coercive force may not reach a sufficiently large value of 12 kOe even if the sintering density is sufficiently high. For example, in the case of the above-mentioned alloy powder of D 50 = 2.0 μm, the sintering density reaches a high density of 7.45 g / cm 3 or more even when the sintering temperature is as low as 800 ° C., but the coercive force is 12 kOe. Does not reach. The coercive force reaches 12 kOe or higher when the sintering temperature is 900 ° C. or higher. This lower limit of 900 ° C. hardly changes when the D 50 of the alloy powder is 3.0 μm or less and the oxygen content is in the range of 2000 ppm. Therefore, it is desirable that the sintering temperature in the present invention is 900 ° C. or higher and 1000 ° C. or lower as described above.

上述の3種類の粉末により、同じモールドに毎回コーティングを施して上述のそれぞれの焼結温度で焼結する実験を繰返した。その結果、D50=2.0μmとD50=2.9μmの合金粉については、焼結温度を1000℃以下にすることができるため、30回以上のサイクルを繰返してもモールドの変形や損傷はなく、さらに多数回の使用に耐えられる状態であった。しかし、D50=5.0μmの合金粉末の焼結に使用したモールドは焼結温度を1000℃以上にしなければならないため、1回の焼結でモールド内面に焼結体が溶着したり、モールドが変形してしまい、モールドの再使用ができなくなる場合もあり、1個のモールドで5回以上のサイクルに耐えることはなかった。D50=5.0μmの粉末における1050℃という焼結温度は、ステンレスなどのFe系あるいはNi系などの工業的によく使われる合金に対して苛酷であり、合金粉末との溶着だけではなく、熱応力やクリープによりモールドの変形が進んでモールドが使用不能になってしまうになってしまうことが実証された。 An experiment was repeated in which the same mold was coated each time with the above-mentioned three types of powders and sintered at the respective sintering temperatures described above. As a result, for alloy powders with D 50 = 2.0 μm and D 50 = 2.9 μm, the sintering temperature can be reduced to 1000 ° C or lower, so there is no deformation or damage to the mold even after 30 or more cycles. Furthermore, it was in a state that could withstand many uses. However, since the mold used to sinter the alloy powder with D 50 = 5.0 μm must have a sintering temperature of 1000 ° C. or higher, the sintered body is welded to the inner surface of the mold in one sintering process. The mold could be deformed and the mold could not be reused, and a single mold could not withstand more than 5 cycles. The sintering temperature of 1050 ° C in the powder of D 50 = 5.0 μm is severe for industrially used alloys such as stainless steel and other Fe-based and Ni-based alloys. It has been demonstrated that the deformation of the mold progresses due to stress and creep, making the mold unusable.

比較のために、上述したD50=2.9μm(酸素含有量1300ppm)の合金粉末を、0.1%の酸素を含むArに晒すことにより、酸素含有量が2500ppm、3100ppm及び3500ppmである3種類の試料を作製した。これらの試料粉末により、上述の方法と同じ方法で焼結磁石を作製した結果、いずれの場合も1000℃以下の焼結温度で焼結密度を7.45g/cm3以上に上げることはできなかった。 For comparison, by exposing the above-mentioned alloy powder of D 50 = 2.9 μm (oxygen content 1300 ppm) to Ar containing 0.1% oxygen, three types of samples with oxygen content of 2500 ppm, 3100 ppm and 3500 ppm Was made. As a result of producing sintered magnets with these sample powders by the same method as described above, in any case, the sintering density could not be increased to 7.45 g / cm 3 or more at a sintering temperature of 1000 ° C. or less. .

Claims (1)

製品の形状と寸法に対応して設計された充填容器にNdFeB系磁石用合金粉末(以下これを合金粉末という)を充填し、この合金粉末に磁界を印加して配向し、その後この合金粉末を充填容器ごと加熱して、所望の形状と寸法を持つ焼結体を得るNdFeB系焼結磁石の製法において、レーザー法で測定された合金粉末の粒径の中央値が3μm以下であり、合金粉末中に含まれる酸素含有量が2000ppm以下であり、前記加熱時の温度が900℃以上1000℃未満であり、かつ、焼結密度が7.45g/cm 3 以上であることを特徴とするNdFeB系焼結磁石の製造方法。 An NdFeB magnet alloy powder (hereinafter referred to as alloy powder) is filled in a filling container designed for the shape and dimensions of the product, and this alloy powder is oriented by applying a magnetic field. In the manufacturing method of the NdFeB series sintered magnet to obtain a sintered body having a desired shape and size by heating the whole filled container , the median particle diameter of the alloy powder measured by the laser method is 3 μm or less, and the alloy powder NdFeB oxygen content in the is at 2000ppm or less, Ri temperature 900 ° C. or higher 1000 ° C. less der during the heating, and the sintered density and wherein der Rukoto 7.45 g / cm 3 or more Manufacturing method of sintered magnet.
JP2005378823A 2005-12-28 2005-12-28 Manufacturing method of NdFeB-based sintered magnet Expired - Fee Related JP4283802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378823A JP4283802B2 (en) 2005-12-28 2005-12-28 Manufacturing method of NdFeB-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378823A JP4283802B2 (en) 2005-12-28 2005-12-28 Manufacturing method of NdFeB-based sintered magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008201034A Division JP4966269B2 (en) 2008-08-04 2008-08-04 Manufacturing method of NdFeB-based sintered magnet

Publications (3)

Publication Number Publication Date
JP2007180374A JP2007180374A (en) 2007-07-12
JP2007180374A5 JP2007180374A5 (en) 2007-08-23
JP4283802B2 true JP4283802B2 (en) 2009-06-24

Family

ID=38305251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378823A Expired - Fee Related JP4283802B2 (en) 2005-12-28 2005-12-28 Manufacturing method of NdFeB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP4283802B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112055B2 (en) 2019-05-23 2022-08-03 三菱電機株式会社 Information processing device, program generation method and program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2273513B1 (en) 2008-03-31 2019-10-16 Hitachi Metals, Ltd. R-t-b-type sintered magnet and method for production thereof
EP2980815A4 (en) * 2013-03-25 2016-03-16 Intermetallics Co Ltd Sintered magnet production method
JP6372088B2 (en) * 2013-03-29 2018-08-15 大同特殊鋼株式会社 Method for producing RFeB magnet
CN112614685B (en) * 2020-11-26 2022-06-24 宁波源盛磁业有限公司 Sintered neodymium-iron-boron permanent magnet oxygen control preparation method and prepared neodymium-iron-boron permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112055B2 (en) 2019-05-23 2022-08-03 三菱電機株式会社 Information processing device, program generation method and program

Also Published As

Publication number Publication date
JP2007180374A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5462230B2 (en) Manufacturing method of NdFeB-based sintered magnet
JP6555170B2 (en) R-Fe-B sintered magnet and method for producing the same
KR101185930B1 (en) Production method for magnetic-anisotropy rare-earth sintered magnet and production device therefor
JP6274216B2 (en) R-T-B system sintered magnet and motor
JP6330813B2 (en) R-T-B system sintered magnet and motor
JP4103938B1 (en) R-T-B sintered magnet
JP4391980B2 (en) Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
JP4879843B2 (en) Method for producing NdFeB-based sintered magnet and mold for producing NdFeB sintered magnet
WO2010113482A1 (en) Nanocomposite bulk magnet and process for producing same
JP6476640B2 (en) R-T-B sintered magnet
WO2013108830A1 (en) Method for producing r-t-b sintered magnet
JP4283802B2 (en) Manufacturing method of NdFeB-based sintered magnet
WO2015019513A1 (en) Process for manufacturing neodymium-iron-boron-based rare earth powder or sputtering target, neodymium-iron-boron-based rare earth powder or sputtering target, and neodymium-iron-boron-based thin film for rare earth magnet or manufacturing process therefor
CN108352233B (en) R-Fe-B rare earth sintered magnet compositely containing Pr and W
JP5850052B2 (en) RH diffusion source and method for producing RTB-based sintered magnet using the same
JP4966269B2 (en) Manufacturing method of NdFeB-based sintered magnet
US10726980B2 (en) Rare earth magnet
JP2013207134A (en) Bulk rh diffusion source
JP6984716B2 (en) R-TM-B system sintered magnet
JP4819104B2 (en) Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
JP4879583B2 (en) NdFeB-based sintered magnet manufacturing mold and method for manufacturing NdFeB-based sintered magnet
JP4819105B2 (en) NdFeB-based sintered magnet manufacturing mold and method for manufacturing NdFeB-based sintered magnet
JPH07201545A (en) Sintered magnet and its manufacture thereof
CN117766287A (en) Method for producing R-T-B sintered magnet
JP2005285854A (en) Setter for sintering sintered magnet and manufacturing method of sintered magnet using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070611

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees