JP2014063711A - 金属空気電池 - Google Patents
金属空気電池 Download PDFInfo
- Publication number
- JP2014063711A JP2014063711A JP2013007498A JP2013007498A JP2014063711A JP 2014063711 A JP2014063711 A JP 2014063711A JP 2013007498 A JP2013007498 A JP 2013007498A JP 2013007498 A JP2013007498 A JP 2013007498A JP 2014063711 A JP2014063711 A JP 2014063711A
- Authority
- JP
- Japan
- Prior art keywords
- lath
- plate
- negative electrode
- metal
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Hybrid Cells (AREA)
Abstract
【課題】安全でエネルギー密度の高い金属空気電池を提供する。
【解決手段】酸素を酸化還元する炭素グラファイトを含む正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は正電極触媒13、当該外面は空気中の酸素透過膜10及び金属メッシュ11で構成すると共に、アルミニウムやマグネシウム合金等からなる負電極1の内面は表面処理膜12からなり、電解質6にはアルミニウムやマグネシウム等の塩化物を主成分として電解質添加物14を含むことを特徴とする金属空気電池。
【選択図】図1
【解決手段】酸素を酸化還元する炭素グラファイトを含む正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は正電極触媒13、当該外面は空気中の酸素透過膜10及び金属メッシュ11で構成すると共に、アルミニウムやマグネシウム合金等からなる負電極1の内面は表面処理膜12からなり、電解質6にはアルミニウムやマグネシウム等の塩化物を主成分として電解質添加物14を含むことを特徴とする金属空気電池。
【選択図】図1
Description
本発明は、正電極及び負電極の電極間に電解質を採用した二次電池において、正極、負極及び電解質の構造と材料に関するものである。
最近、パーソナルコンピューター及び携帯電話等のポータブル機器、及び自動車やスマートグリッドの普及に伴い、当該機器の電源である二次電池の需要が急速に増大していて、このような二次電池の典型例はリチウム(Li)を負極として、フッ化炭素等を正極とするリチウム電池であり、正極と負極との間に非水電解質を介在させることによって、金属リチウムの摘出を防止することが可能となったことを原因として、リチウム電池は広範に普及しているが、リチウムは希少高価であり、廃棄した場合にはリチウムが流出し環境上好ましくない。
電気自動車をはじめ、スマートハウス、ロボットや種々の携帯機器の進展により、蓄電デバイスの高容量化が強く望まれ、革新的な電源への要求が極めて高まっている。エネルギーの大量消費に伴う地球温暖化問題や自然エネルギーの平準化などからも高容量な蓄電デバイスへの要求が高く、金属空気電池開発への期待が高まっている。金属空気電池は、すでに亜鉛空気電池は実用化されている。しかし、これらの空気電池はいずれも1 次電池であり、繰り返し充放電に課題がある。空気電池は正極活物質が空気なので、原理的に半電池で機能できることに加え、金属というエネルギー密度が極めて大きな活物質を用いることから、軽くて高容量で、安価な電池となる可能性があり、二次電池化が実現できると、ポストLiイオン二次電池として極めて有望である。金属・空気電池は二次電池として開発も行われてきたが、デンドライト(金属樹)生成の抑制や空気中の水蒸気や炭酸ガスとの反応といった課題があり、まだ実現していない。近年、メソポーラス材料や負極金属の形状制御、電解質の固体化などにナノテク技術に立脚した大きな進展があり、二次電池化にとっての要素技術が整いつつある。
特許文献1の特許公開 2012−89266は、金属空気電池において放電電圧を高めるために、負極と、酸素の酸化還元触媒を有する正極と、フラーレン誘導体塩を含む非水電解液とを備えている非水電解液空気電池に関するものである。本発明の非水電解液空気電池は、酸素の酸化還元触媒を有する正極と、負極活物質を有する負極と、正極と負極との間に介在し、非金属多価カチオン塩を含む非水電解液と、を備えたものである。非水電解液空気電池において、非水電解液は、非金属多価カチオン塩を含むものである。このような非水電解液空気電池では、放電電圧をより高めることができる。空気電池において、放電時には、正極上に酸素ラジカルが生成する。例えば、カチオンとしてリチウムイオンだけが含まれている場合には、生成した酸素ラジカルとリチウムイオンとの反応は1電子反応であると考えられる。これに対して、カチオンとして多価カチオンが含まれている場合には、酸素ラジカルとリチウムイオンとの反応が、1電子反応だけでなく2電子反応や4電子反応を含むものとなると考えられる。
特許文献2の特許公開2012−89328は、金属空気電池において負電極において析出したデンドライトを負極に回収するために、少なくとも空気極と、負極と、当該空気極と当該負極との間に介在する電解液層を備える金属空気電池を備える密閉型の金属空気電池システムであって、前記空気極と前記電解液層との間に、前記電解液層中の電解液が透過する性質を有するセパレータがさらに介在し、少なくとも充電開始後に、前記電解液層中において、前記空気極側から前記負極側の方向に向かって前記セパレータを移動させ、前記セパレータを前記負極に押し付ける押圧手段を備えることを特徴とする、金属空気電池システムである。デンドライトは金属工学の分野、特に金属組織、結晶成長などと関連した用語で、金属融液を凝固させた際に典型的に観察される組織で、樹枝状結晶とも呼ばれる。
特許文献3の特許公開2012−64314 は、金属空気電池において活性酸素種が電解質間を移動することで充電および放電が行われるので、活性酸素種を輸送するキャリアとして、非水系の有機分子を用いることを主要な特徴としている。負極活物質を含有する負極活物質層を有する負極層、および前記負極層の集電を行う負極集電体を有する負極と、空気極触媒を含有する空気極層、および前記空気極層の集電を行う空気極集電体を有する空気極と、前記負極、および前記空気極の間で、O2−、O22−、O−、HO2−のいずれかの活性酸素種の輸送を行うキャリアを含有する電解質キャリア層を有する電解質とを有する空気電池であって前記電解質キャリア層の数は1層以上であり、前記キャリアは、非水系の有機分子であることを特徴とする空気電池を提供する。従来の空気電池で用いられる水系電解質と異なり、キャリアとして用いられる非水系の有機分子は、金属を含む負極活物質に対して不活性であるために、寄生反応が起こらない。また、高い蒸気圧を有する非水系の有機分子をキャリアとして選べば、系からの分子の蒸発を無視できる程度に小さくすることができ、従って湿度を含む周囲環境に影響を受けにくい電池の設計が可能である。さらに、キャリアとして用いられる非水系の有機分子は金属酸化物の溶出を引き起こさないため、充電過程における金属化合物の不均一な析出を防ぐことができ、繰り返し充電が可能となる。また、稼働領域温度が水に依存しないために、水の融点以上沸点以下よりも広い温度領域で稼働する。、キャリアは、アルコール類、スルホキシド類、スルホン類、アミン類、ウレアーゼ類、アリルアゾ化合物類、複素環化合物類、大環状化合物類、大環状化合物の金属錯体、および、これら化合物の水素原子がハロゲノ基群、ニトロ基群、スルホニル基群に置換された化合物のいずれかであってもよい。
特許文献4の特許公開2011−249175は、金属空気電池において、マグネシウム電池用の負極として有用な電極材料を提供するために、マグネシウム初晶と共晶物を含む鋳造材等の初晶の選択的腐食反応を利用し、表面から所定の深さまで粒界に残存したネットワーク状の共晶物からなる多孔質状マグネシウム合金表面を有する電極材料とその製造方法である。前記マグネシウム合金は、マグネシウムと少なくともアルミニウム、亜鉛、マンガン、ケイ素、希土類元素、カルシウム、ストロンチウム、スズ、ゲルマニウム、リチウム、ジルコニウム、ベリリウムから成る群から選ばれる少なくとも1種の金属からなる。
特許文献5の特許公表2005−538512では、金属空気電池において、少なくとも1つの空気アクセス通路は非液体のバルブにより閉じられ、このバルブは差圧により駆動可能となっており少なくとも1つの開口を生じさせて空気を電池内に送ることを特徴とする電池である。空気電池のある種類のものにおいて、負極として亜鉛粉末を用いるとともに正極として二酸化マンガン(MnO2)を用い、電解液として水酸化カリウムの水溶液を用いている。負極において亜鉛は酸化されて亜鉛酸塩になり、正極においてMnO2はマンガンのオキシ水酸化物に還元する。電池が使用されないときや、放電量が非常に低いときには、大気の酸素が電池に入り、正極と反応を起こす。マンガンのオキシ水酸化物は酸化されてMnO2を形成する。放電量が大きいときには、空気回収電池は従来のアルカリ電池のように、「新しい(還元されていない)」MnO2を還元することにより作動する。放電量が低く電流フローがないような期間の間、「消費された(還元された)」MnO2は大気の酸素により再復元または再充電されて新しい状態のものとされる。空気回収電池において、正極は標準的にはコンテナ(例えば容器)により収容されており、少なくとも1つの空気アクセス通路がコンテナに設けられ、空気が流入して正極に接触するようになっている。しかしながら、空気回収電池に空気アクセス通路を設ける方法においては、亜鉛/空気電池における場合と同様に、上述と同一または似たような問題が発生してしまう。このような電池における空気アクセスを制御する方法においては、単純かつ経済的であるとともに信頼性が高く非常に効果的な改善が求められている。空気電極を備えた電池において、少なくとも1つの空気アクセス通路は非液体のバルブにより閉じられ、このバルブは差圧により駆動可能となっており少なくとも1つの開口を生じさせて空気を電池内に送るような電池を提供する。本発明の非常に好ましい特徴においては、バルブは少なくとも1つの薄い弾力性のある膜を有し、この膜は通常時は前記通路を閉じ、差圧により変形して前記の少なくとも1つの開口を生じさせるようになっている。このような一の形態において、1または複数の膜は切れ目を有し、この切れ目は通常時は閉じているが差圧により開くようになっている。切れ目は、膜の材料を取り除くことなく前記膜を切断することにより形成されることが好ましい。切れ目は直線形状であり3〜7mmの長さであることがより好ましい。切れ目は6mmの長さであることが更に好ましい。また、1または複数の前記膜は、ヤング率が28MPa以下である材料からなることが良い。膜の材料のヤング率は2kPa以下であり、1.6kPa以下となっていてもよい。更に、膜は、弾性が50MPa以下である材料からなることが好ましい。膜の材料の弾性は2MPa以下であることが好ましく、約1.1MPaであることが良い。複数の前記膜は、天然ゴム、ネオプレンゴム、ニトリルゴム、ポリブタジエン、ブタジエンの共重合体、ポリイソプレン、ブチルゴムまたはシリコーン・エラストマーであり、前記膜は天然ゴムまたは添加物により硬化されたビニルシロキサンであることが更に好ましい。シロキサンは、ケイ素(Si)酸素(O)水素(H)の化合物で且つSi-0-Siを含むポリマーを指し、撥水性、潤滑性、電気絶縁性を持つ成分であり、化粧品やシャンプーなどにも含まれている。
従来のリチウムイオン2次電池に使用しているLiは、資源は偏在していて、火災及び腐蝕をしたり、エネルギー密度を倍増する必要があり、これらを解決をすることを課題とする二次電池モジュール、及び製造方法を提供する。
炭素グラファイトを含む正電極と、金属電極からなる負電極と、電解質層とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極内部は二酸化マンガン及びシリコン(ケイ素Si)微粒子からなる正電極触媒、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜及びチタン等の金属メッシュで構成すると共に、アルミニウムやマグネシウム等からなる負電極の内面は凹凸の多い負電極表面処理膜からなり、電解質にはアルミニウムやマグネシウム等の塩化物を主成分としシロキサン等の電解質添加物を含める。 二次電池を組み立てるために、正極及び負極を製造した後、各電極に電解質を塗布して、張り合わせることにより、当該の単位電池を迅速に組み立て製造できる。単位電池を直列に積層してから、加圧可能なボルトで締めて接合して気密を維持でき、強い振動や衝撃にも耐えうる。標準電極電位は、そのイオンが1mol/Lで存在する溶液につけたとき,単体と溶液の間に生じる起電力である。標準単極電位の例としては、
リチウム Li -3.04、 アルミニウム Al -1.662、
カルシウム Ca -2.76、 亜鉛 Zn -0.76、
銅 Cu +0.342、 白金 Pt +1.118、
マグネシウム Mg -2.37、 金 Au +1.498。
マグネシウム空気電池において、最大出力電位は−2.76ボルトである。
リチウム Li -3.04、 アルミニウム Al -1.662、
カルシウム Ca -2.76、 亜鉛 Zn -0.76、
銅 Cu +0.342、 白金 Pt +1.118、
マグネシウム Mg -2.37、 金 Au +1.498。
マグネシウム空気電池において、最大出力電位は−2.76ボルトである。
リチウムイオン2次電池に使用しているLiは、火災及び腐蝕をしたり、エネルギー密度を倍増する必要があり、これらを解決をすることを課題とする二次電池モジュール、及び製造方法を提供する。グラファイトを含む正電極と、金属電極からなる負電極と、電解質層とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極内部は二酸化マンガン及びシリコン微粒子からなる正電極触媒、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜及びチタン等の金属メッシュで構成すると共に、アルミニウムやマグネシウム等からなる負電極の内面は凹凸の多い負電極表面処理膜からなり、電解質には金属塩化物を主成分としシロキサン等の電解質添加物を含める。二次電池を組み立てるために、正極及び負極を製造した後、各電極に電解質を塗布して、張り合わせることにより、当該の単位電池を迅速に組み立て製造できる。単位電池を直列に積層してから、加圧可能なボルトで締めて接合して気密を維持でき、エネルギー密度を倍増(1 Wh/g 以上)すると 共に、強い振動や衝撃にも耐えうる。
正電極1の重量を極く薄くて軽くする目的と、正電極1の内部を空気中の酸素を自由に通過をさせて透過させる目的にて図4に示している、例えば、日本金属工業株式会社(以下、略して、日金工株式会社とする)が製造販売をしている、商品名がNTK U−1、及びNTK U−2の化学成分(%)、特性、及び耐食性を、下記の表1、及び表2に示している。
特 性
NTK U−1およびNTK U−2は超低炭素の18%クロム・2%モリブデンのフェライト系ステンレス鋼である。SUS304よりすぐれた一般耐食性を有し、特に塩化物による応力腐食割れに対して極めて強い抵抗性を持っている。溶接材の粒界腐蝕を防止する目的で、NTK U−1はチタンを、NTK U−2はニオブを少量添加している。
NTK U−1は研磨用途には不向きである。
NTK U−1およびNTK U−2は超低炭素の18%クロム・2%モリブデンのフェライト系ステンレス鋼である。SUS304よりすぐれた一般耐食性を有し、特に塩化物による応力腐食割れに対して極めて強い抵抗性を持っている。溶接材の粒界腐蝕を防止する目的で、NTK U−1はチタンを、NTK U−2はニオブを少量添加している。
NTK U−1は研磨用途には不向きである。
耐食性
耐食性:硫酸濃度約0.5%以下ではSUS316と同等以上の耐食性を示す。また、有機酸に対しては抵抗性がすぐれており、SUS316と同程度の耐食性を示す。
粒界腐食感受性:溶接の熱影響によっても、ほとんど粒界腐食を生じない。
耐食性:硫酸濃度約0.5%以下ではSUS316と同等以上の耐食性を示す。また、有機酸に対しては抵抗性がすぐれており、SUS316と同程度の耐食性を示す。
粒界腐食感受性:溶接の熱影響によっても、ほとんど粒界腐食を生じない。
図4に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2、又はチタン(以下、略して、U−2ラスとする)を使用して、本考案の正電極1、及び負電極2を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造をした、U−2ラスの表面上に、例えば、会社の所在地が福岡市に本社があるフジケミカル株式会社が製造販売をしているドータイトXC−12、又はドータイトXC−32、又はドータイトSH−3Aなどの、炭素グラファイト15、又はカーボンナノチューブ15(以下、略して、炭素グラファイト15とする)が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極1を形成することにより、正電極1の重量が極く軽くて、正電極1の内部を空気中の酸素が自由に通過をして透過をするメッシュ構造をしたU−2ラス11の表面上に、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極1を形成しているので、酸素を酸化させる効果が高い空気電池の正電極1とすることが出来る効果がある。
また、図4、及び図5に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、U−2ラス、又はチタンとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2(以下、略して、U−2ラスとする)を使用して、本考案の正電極1、及び負電極2を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造の内部に炭素グラファイト15、又は鍍金層16を形成することが出来るので、極く薄くて、軽くて、表面積が広い、上記の表1に記載をしている合金板部分17である鍍金層16を含有している、U−2ラスの表面上に合金板部分17を形成した負電極2、又は炭素グラファイト15をU−2ラスの表面上に塗布をした正電極1を形成することが出来る効果がある。
さらに、図5に示しているように、負電極2の重量を極く薄くて軽くする目的と、負電極2の表面上に凹−凸を形成して、負電極2の表面積を極力広くする目的にて、エキスパンドメタル11(以下、略して、U−2ラスとする)の表面上に、亜鉛、アルミニウム、マグネシウム、及びシリコンを溶融した合金を使用して表面処理をした鍍金層16を形成して、負電極2を形成することにより、負電極2の重量が極く軽くて、負電極2を構成しているメッシュ構造をした網の目の内部を鍍金層16を使用して、メッシュ構造をした網の目の内部を、鍍金層16を使用して詰めて、合金板部分17を形成することにより、負電極2の表面上はもともとがメッシュ構造をしたU−2ラス構造をした凹−凸形状をした構造にて出来ているので、この凹−凸形状をしたU−2ラス構造の表面上に、合金板部分17を形成をした鍍金層16を形成することになり、負電極2の重量が極く軽くて、負電極2の表面積が極力広い効率が高い負電極2を形成することが出来る効果がある。
また、図6に示しているように、空気中の酸素だけを効率よく、取り込んで空気中の酸素を効率よく酸化をさせて、極力効率が高い空気電池を形成する目的にて、エキスパンドメタル(以下、略して、U−2ラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下で、空気中の二酸化炭素、窒素、及び水分を透過させないで、酸素だけを自由に通過をさせて透過させることが出来る、極くメッシュが小さいU−2ラスを使用して酸素透過膜10を形成することにより、効率よく空気中の酸素だけを自由に通過をさせて透過をさせることが出来ることになる効果がある。
さらに、U−2ラス、又はチタンは腐蝕、及び酸化に強力に耐えることが出来る合金で出来ているので、耐用年数が長い空気電池の酸素透過膜10としては最適で、耐用年数が長い空気電池を形成することが出来る効果がある。
また、負電極1を形成する目的のために、第1の加工工程としては、U−1、又はU−2で出来ている、極く薄い板18の表面上に、亜鉛、アルミニウム、マグネシュウム、リチウム、及びシリコンなどの金属を溶融した合金を使用して鍍金層16を形成する。第2の加工工程としては、鍍金層16を形成した、極く薄い板18の表面上に穴径が、例えば、6μm以下の穴径、又は10μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成することにより、金属を多孔質にしたガス拡散電極よりも、U−2であるエキスパンドメタルに形成をした穴径が、極く小さい穴径なので、ガス拡散電極よりも表面積が広い負電極1を形成することが出来る。このエキスパンドメタル(以下、略して、U−1ラス、又はU−2ラスとする)の表面上に鍍金層16を形成しているU−1ラス、又はU−2ラスで出来ている、極く薄い板18を使用して、負電極1を形成することが出来る効果がある。
さらに、正電極2を形成する目的のために、第1の加工工程としては、U−1、又はU−2で出来ている、極く薄い平板20の表面上に炭素グラファイト、又は活性炭で出来ている塗料、例えば、上記にて説明をした、フジケミカル株式会社が製造販売をしているドータイトXC−12、又はドータイトXC−32、又はドータイトSH−3Aなどの炭素グラファイト、又は活性炭が主たる主成分の塗料(以下、略して、炭素グラファイト、又は活性炭とする)15を塗布して硬化をさせているU−1、又はU−2で出来ている、極く薄い平板20の表面上に炭素グラファイト15を塗布して硬化をさせる。第2の加工工程としては、炭素グラファイト15を表面上に塗布をして硬化をさせた、極く薄い平板20の表面上に穴径が、例えば、10μm以下の穴径、又は20μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成する。このエキスパンドメタル(以下、略して、U−1ラス、又はU−2ラスとする)の表面上に炭素グラファイト15を塗布して硬化をさせたU−1ラス、又はU−2ラスで出来ている、極く薄い平板20を使用して、正電極2を形成することが出来る効果がある。
また、金属空気電池に於いて、最大出力電位、及び帯電容量を高めるのには、多種多様の金属を溶融させた合金を使用すると、最大出力電位、及び帯電容量が高くなることを発見した。このことにより、例えば、亜鉛、アルミニウム、マグネシュウム、及び金属シリコン(以下、略して、シリコンとする)などの4種類の金属を溶融させた合金よりも、亜鉛、アルミニウム、マグネシュウム、シリコン、リチウム、カルシウム、銅、白金、金、及び鉄などの10種類の金属を溶解させたほうが、単位面積当たりの、最大出力電位、及び帯電容量が相乗効果により、より一段と多くの金属を溶融させた合金を鍍金層16の原材料として使用して、金属空気電池の正電極2を形成すると、最大出力電位、及び帯電容量が高い金属空気電池を形成することが出来る効果がある。
さらに、アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23、及び不織布23に吸着をさせた電解物質30(以下、略して、不織布23とする)を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加することが出来る、単電池の2次イオン電池が出来る効果がある。
また、アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加したあとの放電をすることが出来る、単電池の2次イオン電池を形成が出来る効果がある。
さらに、アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて、さらに、負電極板25の下部の部分に、不織布23を介在させて、下部の部分に正電極板24を圧接させて、さらに、不織布23を介在させて、下部の部分に負電極板25を上下から圧接をさせて、アクリル樹脂板22を上下から使用して、ボルト26、及びナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを交互に圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加することが出来る、組み電池の2次イオン電池が出来る効果がある。
また、アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて、さらに、負電極板25の下部の部分に、不織布23を介在させて、下部の部分に正電極板24を圧接させて、さらに、不織布23を介在させて、下部の部分に負電極板25を上下から圧接をさせて、アクリル樹脂板22を上下から使用して、ボルト26、及びナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを交互に圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加したあとの放電をすることが出来る、組み電池の2次イオン電池が出来る効果がある。
さらに、限りなく薄くて、限りなく柔軟で強くて、マグネシウムの微粉末が、一切酸化を起こさない負電極1、又は正電極2を形成する目的に、板厚が10μmから50μm前後のチタンで出来ている板、又は表1に示している、極く薄いフェライト系ステンレス鋼で出来ている板、又はアルミホイル、又は極く薄い銅板で出来ている平板、又はエキスパンドメタル11(以下、略して、極く薄い平板、U−1ラス、又はU−2ラス、又はラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下、又は穴径が50μm以下、又は穴径が100μm以下の穴径を、アルミホイルなどの極く薄い金属板に形成をして、メッシュ構造を形成しているラスの両側面上から活性炭の微粉末、又はカーボンブラックの微粉末、又はマグネシウムの微粉末、又はアルミニウムの微粉末、又は亜鉛の微粉末、又はリチウムの微粉末などを、例えば、所在地が大阪市中央区道修町1−7−1にある、会社名がコニシ株式会社が製造販売をしている、酢酸ビニル樹脂系溶剤系接着剤で、商品名が金属接着剤K120と、活性炭、又はカーボンブラックと、マグネシウムの微粉末との3者を混合して、導電性としたマグネシウム金属の微粉末を混入した塗料31を、図21に示している、ラス11を中心としてサンドイッチ形状に両側面上から、ラス11を中心としてラスの表面上にサンドイッチ形状に全面積に塗布をして、ラス11の表面上を密封することにより、導電性の性質があり、金属マグネシウムの性質があり、金属マグネシウムの微粉末が、一切酸化を起こさない、マグネシウム2次金属空気電池の負電極1、又は正電極2を形成することが出来る。また、金属接着剤K120と、活性炭、又はカーボンブラックと、アルミニウムの微粉末との3者を混合して、導電性としたアルミニウム金属の微粉末を混入した塗料31を、図21に示している、ラス11を中心としてサンドイッチ形状に両側面上から、ラス11を中心としてラス11の表面上にサンドイッチ形状に全面積に塗布をして、ラス11の表面上を密封することにより、導電性の性質があり、金属アルミニウムの性質があり、金属アルミニウムの微粉末が、一切酸化を起こさない、アルミニウム2次金属空気電池の負電極1、又は正電極2を形成することが出来る。さらに、上記にて説明をした、マグネシウムの微粉末、又はアルミニムの微粉末の変わりに、亜鉛の微粉末、又はリチウムの微粉末を使用して、負電極1、又は正電極2を形成すると、亜鉛、又はリチウム2次金属空気電池の負電極1、又は正電極2を形成することが出来る効果がある。
また、限りなく薄くて、限りなく柔軟で強くて、マグネシウムの微粉末が、一切酸化を起こさない負電極1、又は正電極2を形成する目的に、板厚が10μmから50μm前後のチタンで出来ている板、又は表1に示している、極く薄いフェライト系ステンレス鋼で出来ている板、又はアルミホイル、又は極く薄い銅板で出来ている平板、又はエキスパンドメタル11(以下、略して、極く薄い平板、U−1ラス、又はU−2ラス、又はラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下、又は穴径が50μm以下、又は穴径が100μm以下の穴径を、アルミホイルなどの極く薄い金属板に形成をして、メッシュ構造を形成しているラスの両側面上から活性炭の微粉末、又はカーボンブラックの微粉末などを、例えば、所在地が大阪市中央区道修町1−7−1にある、会社名がコニシ株式会社が製造販売をしている、酢酸ビニル樹脂系溶剤系接着剤で、商品名が金属接着剤K120と、活性炭、又はカーボンブラックの2者を混合して、接着剤を混入して、導電性とした塗料32を、図21に示している、ラス11を中心としてサンドイッチ形状に両側面上から、ラス11を中心としてラスの表面上にサンドイッチ形状に全面積に塗布をして、ラス11の表面上を密封することにより、導電性の性質があり、一切酸化を起こさない、2次金属空気電池の負電極1、又は正電極2を形成することが出来る効果がある。
グラファイト正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は二酸化マンガン及びシリコン(ケイ素Si)微粒子からなる正電極触媒13、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜10及びチタンメッシュ11で構成すると共に、マグネシウム合金からなる負電極1の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはマグネシウム塩化物を主成分としシロキサン等の電解質添加物14を含むことを特徴とする金属空気単電池を製作した。トタンは鉄に亜鉛を鍍金したもので、鋼板には、亜鉛系、アルミニウム系、亜鉛・アルミニウム系の鍍金が主に用いられている。亜鉛(91%)-アルミニウム(6%)-マグネシウム(3%)の鍍金層を持つ新しいZAM鋼板(日新製鋼)は、耐食性が従来の溶融亜鉛めっき鋼板に比べ10〜20倍、溶融亜鉛-5%アルミニウム合金めっき鋼板に比べ5〜8倍優れている。厳しい腐食環境下でも優れた耐食性を示すことから、溶かした亜鉛に鋼材を漬けてめっきを施す溶融亜鉛めっきや、電気亜鉛めっきを施した後に、クロムを含む溶液に漬けて、耐食性向上や外観(装飾性)向上を図るクロメート処理を代替することが可能である。さらに、めっき層が硬いため優れた耐傷付き性を有するとともに様々な加工にも対応できる。この二次電池に対し、0.2アンペアの電流密度となるような定電流源で充電を行ったところ、充電電圧を2.1Vから2.7Vの範囲にて約30分で充電することができた。
正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は二酸化マンガン及びシリコン微粒子からなる正電極触媒13、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜10及びチタンメッシュ11で構成すると共に、アルミニウム合金からなる負電極1の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはアルミニウム塩化物を主成分としクエン酸(HOOC-CH2-C(OH)(COOH)-CH2-COOH)又はリンゴ酸(HOOC-CH(OH)-CH2-COOH) を含む金属空気電池を製作した。この二次電池に0.1アンペアの電流密度となるような定電流源で充電を行い、充電電圧を2.1Vから2.7Vにて約1時間で充電することができた。
正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は二酸化マンガン及びシリコン微粒子からなる正電極触媒13、当該外面は酸素透過膜10及びチタンメッシュ11で構成すると共に、マグネシウムからなる負電極1の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはマグネシウム塩化物を主成分とし、電解質添加物14を含むことを特徴とする金属空気単電池を二対製作した。これらの四個の単電池を並列にして空気供給の正電極2を共用してから、さらに一対の単電池を直列にしてマグネシウム空気組電池として、放電電流0.3Aの1モーターを約1時間運転して、エネルギー密度を倍増(1 Wh/g 以上)できた。
図4に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2、又はチタン(以下、略して、U−2ラスとする)を使用して、本考案の正電極2、及び負電極1を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造をした、U−2ラスの表面上に、例えば、会社の所在地が福岡市に本社があるフジケミカル株式会社が製造販売をしているドータイトXC−12、又はドータイトXC−32、又はドータイトSH−3Aなどの、炭素グラファイト15、又はカーボンナノチューブ15(以下、略して、炭素グラファイト15とする)が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極2を形成することにより、正電極2の重量が極く軽くて、正電極2の内部を空気中の酸素が自由に通過をして透過をするメッシュ構造をしたU−2ラス11の表面上に、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極2を形成しているので、酸素を酸化させる効果が高い空気電池の正電極2とすることが出来た。
図4、及び図5に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2(以下、略して、U−2ラスとする)を使用して、本考案の正電極2、及び負電極1を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造の内部に炭素グラファイト15、又は鍍金層16を形成することが出来るので、極く薄くて、軽くて、表面積が広い、上記の表1に記載をしている合金板部分17である鍍金層16を含有している、U−2ラスの表面上に合金板部分17を形成した負電極1、又は炭素グラファイト15をU−2ラスの表面上に塗布をした正電極2を形成することが出来た。
図5に示しているように、負電極1の重量を極く薄くて軽くする目的と、負電極1の表面上に凹−凸を形成して、負電極1の表面積を極力広くする目的にて、エキスパンドメタル11(以下、略して、U−2ラスとする)の表面上に、亜鉛、アルミニウム、マグネシウム、リチウム、及びシリコンを溶融した合金を使用して表面処理をした鍍金層16を形成して、負電極1を形成することにより、負電極1の重量が極く軽くて、負電極1を構成しているメッシュ構造をした網の目の内部を鍍金層16を使用して、メッシュ構造をした網の目の内部を、鍍金層16を使用して詰めて、合金板部分17を形成することにより、負電極1の表面上はもともとがメッシュ構造をしたU−2ラス構造をした凹−凸形状をした構造にて出来ているので、この凹−凸形状をしたU−2ラス構造の表面上に、合金板部分17を形成をした鍍金層16を形成することになり、負電極1の重量が極く軽くて、負電極1の表面積が極力広い効率が高い負電極1を形成することが出来た。
図6に示しているように、空気中の酸素だけを効率よく、取り込んで空気中の酸素を効率よく酸化をさせて、極力効率が高い空気電池を形成する目的にて、エキスパンドメタル(以下、略して、U−2ラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下で、空気中の二酸化炭素、窒素、及び水分を透過させないで、酸素だけを自由に通過をさせて透過させることが出来る、極くメッシュが小さいU−2ラスを使用して酸素透過膜10を形成することにより、効率よく空気中の酸素だけを自由に通過をさせて透過をさせることが出来た。
負電極1を形成する目的のために、第1の加工工程としては、U−1、又はU−2で出来ている、極く薄い板18の表面上に、亜鉛、アルミニウム、マグネシュウム、リチウム、及びシリコンなどの金属を溶融した合金を使用して鍍金層16を形成する。第2の加工工程としては、鍍金層16を形成した、極く薄い板18の表面上に穴径が、例えば、6μm以下の穴径、又は10μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成することにより、金属を多孔質にしたガス拡散電極よりも、U−2であるエキスパンドメタルに形成をした穴径が、極く小さい穴径なので、ガス拡散電極よりも表面積が広い負電極1を形成することが出来る。このエキスパンドメタル(以下、略して、U−1ラス、又はU−2ラスとする)の表面上に鍍金層16を形成しているU−1ラス、又はU−2ラスで出来ている、極く薄い板18を使用して、負電極1を形成することが出来た。
正電極2を形成する目的のために、第1の加工工程としては、U−1、又はU−2で出来ている、極く薄い板20の表面上に炭素グラファイト、又は活性炭で出来ている塗料、例えば、上記にて説明をした、フジケミカル株式会社が製造販売をしているドータイトXC−12、又はドータイトXC−32、又はドータイトSH−3Aなどの炭素グラファイト、又は活性炭が主たる主成分の塗料(以下、略して、炭素グラファイト、又は活性炭とする)15を塗布して硬化をさせているU−1、又はU−2で出来ている、極く薄い平板20
の表面上に炭素グラファイト15を塗布して硬化をさせる。第2の加工工程としては、炭素グラファイト15を表面上に塗布をして硬化をさせた、極く薄い平板20の表面上に穴径が、例えば、10μm以下の穴径、又は20μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成する。このエキスパンドメタル(以下、略して、U−1ラス、又はU−2ラスとする)の表面上に炭素グラファイト15を塗布して硬化をさせたU−1ラス、又はU−2ラスで出来ている、極く薄い板20を使用して、正電極2を形成することが出来た。
の表面上に炭素グラファイト15を塗布して硬化をさせる。第2の加工工程としては、炭素グラファイト15を表面上に塗布をして硬化をさせた、極く薄い平板20の表面上に穴径が、例えば、10μm以下の穴径、又は20μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成する。このエキスパンドメタル(以下、略して、U−1ラス、又はU−2ラスとする)の表面上に炭素グラファイト15を塗布して硬化をさせたU−1ラス、又はU−2ラスで出来ている、極く薄い板20を使用して、正電極2を形成することが出来た。
アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23、及び不織布23に吸着をさせた電解物質30(以下、略して、不織布23とする)を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加することが出来る、単電池の2次イオン電池が出来た。
アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加したあとの放電をすることが出来る、単電池の2次イオン電池が出来た。
アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて、さらに、負電極板25の下部の部分に、不織布23を介在させて、下部の部分に正電極板24を圧接させて、さらに、不織布23を介在させて、下部の部分に負電極板25を上下から圧接をさせて、アクリル樹脂板22を上下から使用して、ボルト26、及びナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを交互に圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加することが出来る、組み電池の2次イオン電池が出来た。
アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて、さらに、負電極板25の下部の部分に、不織布23を介在させて、下部の部分に正電極板24を圧接させて、さらに、不織布23を介在させて、下部の部分に負電極板25を上下から圧接をさせて、アクリル樹脂板22を上下から使用して、ボルト26、及びナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを交互に圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加したあとの放電をすることが出来る、組み電池の2次イオン電池が出来た。
限りなく薄くて、限りなく柔軟で強くて、マグネシウムの微粉末が、一切酸化を起こさない負電極1、又は正電極2を形成する目的に、板厚が10μmから50μm前後のチタンで出来ている板、又は表1に示している、極く薄いフェライト系ステンレス鋼で出来ている板、又はアルミホイル、又は極く薄い銅板で出来ている平板、又はエキスパンドメタル11(以下、略して、極く薄い平板、U−1ラス、又はU−2ラス、又はラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下、又は穴径が50μm以下、又は穴径が100μm以下の穴径を、アルミホイルなどの極く薄い金属板に形成をして、メッシュ構造を形成しているラスの両側面上から活性炭の微粉末、又はカーボンブラックの微粉末、又はマグネシウムの微粉末、又はアルミニウムの微粉末、又は亜鉛の微粉末、又はリチウムの微粉末などを、例えば、所在地が大阪市中央区道修町1−7−1にある、会社名がコニシ株式会社が製造販売をしている、酢酸ビニル樹脂系溶剤系接着剤で、商品名が金属接着剤K120と、活性炭、又はカーボンブラックと、マグネシウムの微粉末との3者を混合して、導電性としたマグネシウム金属の微粉末を混入した塗料31を、図21に示している、ラス11を中心としてサンドイッチ形状に両側面上から、ラス11を中心としてラスの表面上にサンドイッチ形状に全面積に塗布をして、ラス11の表面上を密封することにより、導電性の性質があり、金属マグネシウムの性質があり、金属マグネシウムの微粉末が、一切酸化を起こさない、マグネシウム2次金属空気電池の負電極1、又は正電極2を形成することが出来る。また、金属接着剤K120と、活性炭、又はカーボンブラックと、アルミニウムの微粉末との3者を混合して、導電性としたアルミニウム金属の微粉末を混入した塗料31を、図21に示している、ラス11を中心としてサンドイッチ形状に両側面上から、ラス11を中心としてラス11の表面上にサンドイッチ形状に全面積に塗布をして、ラス11の表面上を密封することにより、導電性の性質があり、金属アルミニウムの性質があり、金属アルミニウムの微粉末が、一切酸化を起こさない、アルミニウム2次金属空気電池の負電極1、又は正電極2を形成することが出来る。さらに、上記にて説明をした、マグネシウムの微粉末、又はアルミニムの微粉末の変わりに、亜鉛の微粉末、又はリチウムの微粉末を使用して、負電極1、又は正電極2を形成すると、亜鉛、又はリチウム2次金属空気電池の負電極1、又は正電極2を形成することが出来ることを実施例14とする。
限りなく薄くて、限りなく柔軟で強くて、マグネシウムの微粉末が、一切酸化を起こさない負電極1、又は正電極2を形成する目的に、板厚が10μmから50μm前後のチタンで出来ている板、又は表1に示している、極く薄いフェライト系ステンレス鋼で出来ている板、又はアルミホイル、又は極く薄い銅板で出来ている平板、又はエキスパンドメタル11(以下、略して、極く薄い平板、U−1ラス、又はU−2ラス、又はラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下、又は穴径が50μm以下、又は穴径が100μm以下の穴径を、アルミホイルなどの極く薄い金属板に形成をして、メッシュ構造を形成しているラスの両側面上から活性炭の微粉末、又はカーボンブラックの微粉末などを、例えば、所在地が大阪市中央区道修町1−7−1にある、会社名がコニシ株式会社が製造販売をしている、酢酸ビニル樹脂系溶剤系接着剤で、商品名が金属接着剤K120と、活性炭、又はカーボンブラックの2者を混合して、接着剤を混入して、導電性とした塗料32を、図21に示している、ラス11を中心としてサンドイッチ形状に両側面上から、ラス11を中心としてラスの表面上にサンドイッチ形状に全面積に塗布をして、ラス11の表面上を密封することにより、導電性の性質があり、一切酸化を起こさない、2次金属空気電池の負電極1、又は正電極2を形成することが出来ることを実施例15とする。
1 負電極
2 正電極
3 空気入口
4 空気出口
5 ケース
6 電解質
7 セパレータ
8 正電極リード
9 負電極リード
10 酸素透過膜、又はエキスパンドメタル(以下、略して、U−2ラスとする)、又は(以下、略して、酸素透過膜とする)
11 金属メッシュ、又はエキスパンドメタル(以下、略して、金属メッシュ、又はエキスパンドメタルとする)
12 負電極表面処理
13 正電極触媒
14 電解質添加物
15 炭素グラファイト、又は炭素グラファイト層、又は活性炭(以下、略して、 炭素グラファイトとする)
16 亜鉛、アルミニウム、マグネシウム、、リチウム、及びシリコンを溶融した合金を使用して表面処理をして合金板部分17を形成した鍍金層(以下、略して、鍍金層とする)
17 合金板部分
18 チタン、又は表1に示している、フェライト系ステンレス鋼(以下、略して、U−1、又はU−2とする)で出来ている、例えば、板厚が50μm以下、又は100μm以下の、極く薄い板の表面上に、亜鉛、アルミニウム、マグネシュウム、及びシリコンなどの金属を溶融した合金を使用して鍍金層16を形成したU−1、又はU−2で出来ている極く薄い板
19 鍍金層16を形成したあとの、極く薄い板18を使用して穴径が、例えば、10μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成した、エキスパンドメタル(以下、略して、チタンラス、U−1ラス、又はU−2ラスとする)の表面上に鍍金層16を形成しているチタンラス、U−1ラス、又はU−2ラス
20 チタン、又は表1に示している、フェライト系ステンレス鋼(以下、略して、U−1、又はU−2とする)で出来ている、例えば、板厚が50μm以下、又は100μm以下の、極く薄い板の表面上に炭素グラファイト、又は活性炭(以下、略して、炭素グラファイト、又は活性炭とする)15を塗布しているU−1、又はU−2
21 炭素グラファイト15を表面上に塗布をしたあとの、極く薄い板のU−1、又はU−2を使用して穴径が、例えば、10μm以下の穴径、又は20μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成したエキスパンドメタル(以下、略して、U−1ラス、又はU−2ラスとする)の表面上に炭素グラファイト15を塗布しているU−1ラス、又はU−2ラス
22 アクリル樹脂で出来ている樹脂板(以下、略して、アクリル樹脂板とする)
23 不織布、又はその他のセパレーター(以下、略して、不織布とする)
24 正電極板
25 負電極板
26 ボルト
27 ナット
28 乾電池
29 アクリル樹脂板22に形成をしている貫通穴
30 電解物質30にはアルミニウムやマグネシウム等の塩化物を主成分とすると共に、クエン酸(HOOC-CH2-C(OH)(COOH)-CH2-COOH)、酒石酸(HOOC-CH(OH)-CH(OH)-COOH)、又はリンゴ酸 (HOOC-CH(OH)-CH2-COOH)等の電解質添加物14を含み、アセトニトリル等からなる中性溶媒に溶かしている非水系の電解液、又は非水系の電解物質、又は水系の電解液、例えば、希硫酸(以下、略して、電解液、又は電解物質とする)
31 活性炭の微粉末、又はカーボンブラックの微粉末、又はマグネシウムの微粉末、又はアルミニウムの微粉末、又は亜鉛の微粉末、又はリチウムの微粉末、又はシリコンの微粉末などの金属の微粉末を、例えば、金属接着剤K120との3者を混合して、導電性としたマグネシウムの微粉末を混入した塗料
32 活性炭の微粉末、又はカーボンブラックの微粉末、又はシリコンの微粉末などと、例えば、金属接着剤K120との2者を混合して、導電性とした塗料、又は導電性とした接着剤(以下、略して、塗料、又は接着剤とする)
2 正電極
3 空気入口
4 空気出口
5 ケース
6 電解質
7 セパレータ
8 正電極リード
9 負電極リード
10 酸素透過膜、又はエキスパンドメタル(以下、略して、U−2ラスとする)、又は(以下、略して、酸素透過膜とする)
11 金属メッシュ、又はエキスパンドメタル(以下、略して、金属メッシュ、又はエキスパンドメタルとする)
12 負電極表面処理
13 正電極触媒
14 電解質添加物
15 炭素グラファイト、又は炭素グラファイト層、又は活性炭(以下、略して、 炭素グラファイトとする)
16 亜鉛、アルミニウム、マグネシウム、、リチウム、及びシリコンを溶融した合金を使用して表面処理をして合金板部分17を形成した鍍金層(以下、略して、鍍金層とする)
17 合金板部分
18 チタン、又は表1に示している、フェライト系ステンレス鋼(以下、略して、U−1、又はU−2とする)で出来ている、例えば、板厚が50μm以下、又は100μm以下の、極く薄い板の表面上に、亜鉛、アルミニウム、マグネシュウム、及びシリコンなどの金属を溶融した合金を使用して鍍金層16を形成したU−1、又はU−2で出来ている極く薄い板
19 鍍金層16を形成したあとの、極く薄い板18を使用して穴径が、例えば、10μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成した、エキスパンドメタル(以下、略して、チタンラス、U−1ラス、又はU−2ラスとする)の表面上に鍍金層16を形成しているチタンラス、U−1ラス、又はU−2ラス
20 チタン、又は表1に示している、フェライト系ステンレス鋼(以下、略して、U−1、又はU−2とする)で出来ている、例えば、板厚が50μm以下、又は100μm以下の、極く薄い板の表面上に炭素グラファイト、又は活性炭(以下、略して、炭素グラファイト、又は活性炭とする)15を塗布しているU−1、又はU−2
21 炭素グラファイト15を表面上に塗布をしたあとの、極く薄い板のU−1、又はU−2を使用して穴径が、例えば、10μm以下の穴径、又は20μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成したエキスパンドメタル(以下、略して、U−1ラス、又はU−2ラスとする)の表面上に炭素グラファイト15を塗布しているU−1ラス、又はU−2ラス
22 アクリル樹脂で出来ている樹脂板(以下、略して、アクリル樹脂板とする)
23 不織布、又はその他のセパレーター(以下、略して、不織布とする)
24 正電極板
25 負電極板
26 ボルト
27 ナット
28 乾電池
29 アクリル樹脂板22に形成をしている貫通穴
30 電解物質30にはアルミニウムやマグネシウム等の塩化物を主成分とすると共に、クエン酸(HOOC-CH2-C(OH)(COOH)-CH2-COOH)、酒石酸(HOOC-CH(OH)-CH(OH)-COOH)、又はリンゴ酸 (HOOC-CH(OH)-CH2-COOH)等の電解質添加物14を含み、アセトニトリル等からなる中性溶媒に溶かしている非水系の電解液、又は非水系の電解物質、又は水系の電解液、例えば、希硫酸(以下、略して、電解液、又は電解物質とする)
31 活性炭の微粉末、又はカーボンブラックの微粉末、又はマグネシウムの微粉末、又はアルミニウムの微粉末、又は亜鉛の微粉末、又はリチウムの微粉末、又はシリコンの微粉末などの金属の微粉末を、例えば、金属接着剤K120との3者を混合して、導電性としたマグネシウムの微粉末を混入した塗料
32 活性炭の微粉末、又はカーボンブラックの微粉末、又はシリコンの微粉末などと、例えば、金属接着剤K120との2者を混合して、導電性とした塗料、又は導電性とした接着剤(以下、略して、塗料、又は接着剤とする)
Claims (17)
- 酸素を酸化還元する炭素グラファイトを含む正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は正電極触媒13、当該外面は空気中の酸素透過膜10及び金属メッシュ11で構成すると共に、アルミニウムやマグネシウム合金等からなる負電極1の内面は表面処理膜12からなり、電解質6にはアルミニウムやマグネシウム等の塩化物を主成分として電解質添加物14を含むことを特徴とする金属空気電池、及び当該製造方法。
- 請求項1において、正電極2の内部は二酸化マンガン及びシリコン(ケイ素Siシロキサン、)微粒子等からなる正電極触媒13、当該外面は空気中の二酸化炭素及び水分を透過しないポリイソプレンゴム等の酸素透過膜10含むことを特徴とする金属空気電池。
- 請求項1において、アルミニウムやマグネシウム等からなる負電極1の内面は、機械的又は酸化等による凹凸の多い負電極表面処理膜12からなる金属空気電池。
- 請求項1において、電解質6にはアルミニウムやマグネシウム等の塩化物を主成分とすると共に、クエン酸(HOOC-CH2-C(OH)(COOH)-CH2-COOH)、酒石酸(HOOC-CH(OH)-CH(OH)-COOH)、又はリンゴ酸(HOOC-CH(OH)-CH2-COOH)等の電解質添加物14を含み、アセトニトリル等からなる中性溶媒に溶かしていることを特徴とする金属空気電池。
- 請求項1において、正電極2外部はチタン等の金属メッシュ11で構成すると共に、マグネシウム等からなる負電極1、電解質6に電解質添加物14を含3む金属空気単電池を一対(二個)の単電池を並列にして空気供給3に繋がる正電極2を共用してから、さらに一対以上の単電池を直列にすることを特徴とする金属空気組電池。
- 図4に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2、又はチタン(以下、略して、U−2ラスとする)を使用して、本考案の正電極2、及び負電極1を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造をした、U−2ラスの表面上に、例えば、会社の所在地が福岡市に本社があるフジケミカル株式会社が製造販売をしているドータイトXC−12、又はドータイトXC−32、又はドータイトSH−3Aなどの、炭素グラファイト15、又はカーボンナノチューブ15(以下、略して、炭素グラファイト15とする)が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極2を形成することにより、正電極2の重量が極く軽くて、正電極2の内部を空気中の酸素が自由に通過をして透過をするメッシュ構造をしたU−2ラス11の表面上に、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極2を形成しているので、酸素を酸化させる効果が高い空気電池の正電極2とすることが出来ることを特徴とする金属空気組電池。
- 図4、及び図5に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2(以下、略して、U−2ラスとする)を使用して、本考案の正電極2、及び負電極1を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造の内部に炭素グラファイト15、又は鍍金層16を形成することが出来るので、極く薄くて、軽くて、表面積が広い、上記の表1に記載をしている合金板部分17である鍍金層16を含有している、U−2ラスの表面上に合金板部分17を形成した負電極1、又は炭素グラファイト15をU−2ラスの表面上に塗布をした正電極2を形成することが出来ることを特徴とする金属空気組電池。
- 図5に示しているように、負電極1の重量を極く薄くて軽くする目的と、負電極1の表面上に凹−凸を形成して、負電極1の表面積を極力広くする目的にて、エキスパンドメタル11(以下、略して、U−2ラスとする)の表面上に、亜鉛、アルミニウム、マグネシウム、リチウム、及びシリコンを溶融した合金を使用して表面処理をした鍍金層16を形成して、負電極1を形成することにより、負電極1の重量が極く軽くて、負電極1を構成しているメッシュ構造をした網の目の内部を鍍金層16を使用して、メッシュ構造をした網の目の内部を、鍍金層16を使用して詰めて、合金板部分17を形成することにより、負電極1の表面上はもともとがメッシュ構造をしたU−2ラス構造をした凹−凸形状をした構造にて出来ているので、この凹−凸形状をしたU−2ラス構造の表面上に、合金板部分17を形成をした鍍金層16を形成することになり、負電極2の重量が極く軽くて、負電極1の表面積が極力広い効率が高い負電極1を形成することが出来ることを特徴とする金属空気組電池。
- 図6に示しているように、空気中の酸素だけを効率よく、取り込んで空気中の酸素を効率よく酸化をさせて、極力効率が高い空気電池を形成する目的にて、エキスパンドメタル(以下、略して、U−2ラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下で、空気中の二酸化炭素、窒素、及び水分を透過させないで、酸素だけを自由に通過をさせて透過させることが出来る、極くメッシュが小さいU−2ラスを使用して酸素透過膜10を形成することにより、効率よく空気中の酸素だけを自由に通過をさせて透過をさせることが出来ることを特徴とする金属空気組電池。
- 負電極1を形成する目的のために、第1の加工工程としては、U−1、又はU−2で出来ている、極く薄い板18の表面上に、亜鉛、アルミニウム、マグネシュウム、リチウム、及びシリコンなどの金属を溶融した合金を使用して鍍金層16を形成する。第2の加工工程としては、鍍金層16を形成した、極く薄い板18の表面上に穴径が、例えば、6μm以下の穴径、又は10μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成することにより、金属を多孔質にしたガス拡散電極よりも、U−2であるエキスパンドメタルに形成をした穴径が、極く小さい穴径なので、ガス拡散電極よりも表面積が広い負電極1を形成することが出来る。このエキスパンドメタル(以下、略して、U−1ラス、又はU−2ラスとする)の表面上に鍍金層16を形成しているU−1ラス、又はU−2ラスで出来ている、極く薄い板18を使用して、負電極1を形成することが出来ることを特徴とする金属空気組電池。
- 正電極2を形成する目的のために、第1の加工工程としては、U−1、又はU−2で出来ている、極く薄い平板20の表面上に炭素グラファイト、又は活性炭で出来ている塗料、例えば、上記にて説明をした、フジケミカル株式会社が製造販売をしているドータイトXC−12、又はドータイトXC−32、又はドータイトSH−3Aなどの炭素グラファイト、又は活性炭が主たる主成分の塗料(以下、略して、炭素グラファイト、又は活性炭とする)15を塗布して硬化をさせているU−1、又はU−2で出来ている、極く薄い平板20の表面上に炭素グラファイト15を塗布して硬化をさせる。第2の加工工程としては、炭素グラファイト15を表面上に塗布をして硬化をさせた、極く薄い平板20の表面上に穴径が、例えば、10μm以下の穴径、又は20μm以下の穴径、又は30μm以下の穴径、又は50μm以下の穴径の穴を形成する。このエキスパンドメタル(以下、略して、U−1ラス、又はU−2ラスとする)の表面上に炭素グラファイト15を塗布して硬化をさせたU−1ラス、又はU−2ラスで出来ている、極く薄い板20を使用して、正電極2を形成することが出来ることを特徴とする金属空気組電池。
- アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23、及び不織布23に吸着をさせた電解物質30(以下、略して、不織布23とする)を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加することが出来る、単電池の2次イオン電池が出来ることを特徴とする2次金属空気電池。
- アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加したあとの放電をすることが出来る、単電池の2次イオン電池が出来ることを特徴とする2次金属空気電池。
- アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて、さらに、負電極板25の下部の部分に、不織布23を介在させて、下部の部分に正電極板24を圧接させて、さらに、不織布23を介在させて、下部の部分に負電極板25を上下から圧接をさせて、アクリル樹脂板22を上下から使用して、ボルト26、及びナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを交互に圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加することが出来る、組み電池の2次イオン電池が出来ることを特徴とする2次金属空気電池。
- アクリル樹脂で出来ている樹脂板22(以下、略して、アクリル樹脂板とする)を上下に配置をして、このアクリル樹脂板22との中間に、不織布23を中心として、上部の部分にはチタンで出来ているエキスパンドメタルの表面上に、鍍金層16を形成している正電極板24を圧接させて、下部の部分にはチタンで出来ているエキスパンドメタルの表面上に炭素グラファイト、又はカーボンナノチューブ、又はグラフェン、又は活性炭(以下、略して、炭素グラファイトとする)15を塗布している負電極板25を圧接させて、アクリル樹脂板22を上下から使用して、ボルト26とナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを上下から圧接をさせて、さらに、負電極板25の下部の部分に、不織布23を介在させて、下部の部分に正電極板24を圧接させて、さらに、不織布23を介在させて、下部の部分に負電極板25を上下から圧接をさせて、アクリル樹脂板22を上下から使用して、ボルト26、及びナット27を使用して、不織布23を中心として、正電極板24と負電極板25とを交互に圧接をさせて形成をした、2次イオン電池に乾電池28を4本を直列に使用して6Vの電圧を印加したあとの放電をすることが出来る、組み電池の2次イオン電池が出来ることを特徴とする2次金属空気電池。
- 限りなく薄くて、限りなく柔軟で強くて、マグネシウムの微粉末が、一切酸化を起こさない負電極1、又は正電極2を形成する目的に、板厚が10μmから50μm前後のチタンで出来ている板、又は表1に示している、極く薄いフェライト系ステンレス鋼で出来ている板、又はアルミホイル、又は極く薄い銅板で出来ている平板、又はエキスパンドメタル11(以下、略して、極く薄い平板、U−1ラス、又はU−2ラス、又はラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下、又は穴径が50μm以下、又は穴径が100μm以下の穴径を、アルミホイルなどの極く薄い金属板に形成をして、メッシュ構造を形成しているラスの両側面上から活性炭の微粉末、又はカーボンブラックの微粉末、又はマグネシウムの微粉末、又はアルミニウムの微粉末、又は亜鉛の微粉末、又はリチウムの微粉末などを、例えば、所在地が大阪市中央区道修町1−7−1にある、会社名がコニシ株式会社が製造販売をしている、酢酸ビニル樹脂系溶剤系接着剤で、商品名が金属接着剤K120と、活性炭、又はカーボンブラックと、マグネシウムの微粉末との3者を混合して、導電性としたマグネシウム金属の微粉末を混入した塗料31を、図21に示している、ラス11を中心としてサンドイッチ形状に両側面上から、ラス11を中心としてラスの表面上にサンドイッチ形状に全面積に塗布をして、ラス11の表面上を密封することにより、導電性の性質があり、金属マグネシウムの性質があり、金属マグネシウムの微粉末が、一切酸化を起こさない、マグネシウム2次金属空気電池の負電極1、又は正電極2を形成することが出来る。また、金属接着剤K120と、活性炭、又はカーボンブラックと、アルミニウムの微粉末との3者を混合して、導電性としたアルミニウム金属の微粉末を混入した塗料31を、図21に示している、ラス11を中心としてサンドイッチ形状に両側面上から、ラス11を中心としてラス11の表面上にサンドイッチ形状に全面積に塗布をして、ラス11の表面上を密封することにより、導電性の性質があり、金属アルミニウムの性質があり、金属アルミニウムの微粉末が、一切酸化を起こさない、アルミニウム2次金属空気電池の負電極1、又は正電極2を形成することが出来る。さらに、上記にて説明をした、マグネシウムの微粉末、又はアルミニムの微粉末の変わりに、亜鉛の微粉末、又はリチウムの微粉末を使用して、負電極1、又は正電極2を形成すると、亜鉛、又はリチウム2次金属空気電池の負電極1、又は正電極2を形成することが出来ることを特徴とする2次金属空気電池。
- 限りなく薄くて、限りなく柔軟で強くて、マグネシウムの微粉末が、一切酸化を起こさない負電極1、又は正電極2を形成する目的に、板厚が10μmから50μm前後のチタンで出来ている板、又は表1に示している、極く薄いフェライト系ステンレス鋼で出来ている板、又はアルミホイル、又は極く薄い銅板で出来ている平板、又はエキスパンドメタル11(以下、略して、極く薄い平板、U−1ラス、又はU−2ラス、又はラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下、又は穴径が50μm以下、又は穴径が100μm以下の穴径を、アルミホイルなどの極く薄い金属板に形成をして、メッシュ構造を形成しているラスの両側面上から活性炭の微粉末、又はカーボンブラックの微粉末などを、例えば、所在地が大阪市中央区道修町1−7−1にある、会社名がコニシ株式会社が製造販売をしている、酢酸ビニル樹脂系溶剤系接着剤で、商品名が金属接着剤K120と、活性炭、又はカーボンブラックの2者を混合して、接着剤を混入して、導電性とした塗料32を、図21に示している、ラス11を中心としてサンドイッチ形状に両側面上から、ラス11を中心としてラスの表面上にサンドイッチ形状に全面積に塗布をして、ラス11の表面上を密封することにより、導電性の性質があり、一切酸化を起こさない、2次金属空気電池の負電極1、又は正電極2を形成することが出来ることを特徴とする2次金属空気電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013007498A JP2014063711A (ja) | 2012-08-29 | 2013-01-18 | 金属空気電池 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012189097 | 2012-08-29 | ||
JP2012189097 | 2012-08-29 | ||
JP2013007498A JP2014063711A (ja) | 2012-08-29 | 2013-01-18 | 金属空気電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014063711A true JP2014063711A (ja) | 2014-04-10 |
Family
ID=50618758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013007498A Pending JP2014063711A (ja) | 2012-08-29 | 2013-01-18 | 金属空気電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014063711A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017073467A1 (ja) * | 2015-10-27 | 2017-05-04 | 住友化学株式会社 | マグネシウム空気電池用電極およびマグネシウム空気電池、並びに、芳香族化合物および金属錯体 |
CN107210503A (zh) * | 2014-12-05 | 2017-09-26 | 兰州金福乐生物工程有限公司 | 空气金属燃料电池 |
US10263305B2 (en) | 2015-12-01 | 2019-04-16 | Denso Corporation | Magnesium oxygen battery |
KR20190074485A (ko) * | 2017-12-20 | 2019-06-28 | 현대자동차주식회사 | 금속 공기 전지 시스템 |
JP2020524874A (ja) * | 2017-06-22 | 2020-08-20 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | 電池および電池を形成する方法 |
WO2024117421A1 (en) * | 2022-11-28 | 2024-06-06 | Samsung Electro-Mechanics Co., Ltd. | Solid oxide cell stack |
-
2013
- 2013-01-18 JP JP2013007498A patent/JP2014063711A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107210503A (zh) * | 2014-12-05 | 2017-09-26 | 兰州金福乐生物工程有限公司 | 空气金属燃料电池 |
JP2018504766A (ja) * | 2014-12-05 | 2018-02-15 | 蘭州金福楽生物工程有限公司Lan−Zhou Jinfule Biotechnology Co.Ltd. | 金属空気燃料電池 |
WO2017073467A1 (ja) * | 2015-10-27 | 2017-05-04 | 住友化学株式会社 | マグネシウム空気電池用電極およびマグネシウム空気電池、並びに、芳香族化合物および金属錯体 |
US10263305B2 (en) | 2015-12-01 | 2019-04-16 | Denso Corporation | Magnesium oxygen battery |
JP2020524874A (ja) * | 2017-06-22 | 2020-08-20 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | 電池および電池を形成する方法 |
US11205777B2 (en) | 2017-06-22 | 2021-12-21 | International Business Machines Corporation | Thin cathode for micro-battery |
JP7041692B2 (ja) | 2017-06-22 | 2022-03-24 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 電池および電池を形成する方法 |
US11289704B2 (en) | 2017-06-22 | 2022-03-29 | International Business Machines Corporation | Thin cathode for micro-battery |
KR20190074485A (ko) * | 2017-12-20 | 2019-06-28 | 현대자동차주식회사 | 금속 공기 전지 시스템 |
KR102484898B1 (ko) * | 2017-12-20 | 2023-01-04 | 현대자동차주식회사 | 금속 공기 전지 시스템 |
WO2024117421A1 (en) * | 2022-11-28 | 2024-06-06 | Samsung Electro-Mechanics Co., Ltd. | Solid oxide cell stack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability | |
Li et al. | Metal–air batteries: will they be the future electrochemical energy storage device of choice? | |
Han et al. | Metal–air batteries: from static to flow system | |
Christensen et al. | A critical review of Li/air batteries | |
CN1320674C (zh) | 非水电化学电池用电解质添加剂 | |
JP2014063711A (ja) | 金属空気電池 | |
Bi et al. | Rechargeable zinc–air versus lithium–air battery: from fundamental promises toward technological potentials | |
US20030162087A1 (en) | Electric devices with improved bipolar electrode | |
CN105576325B (zh) | 用于金属-空气蓄电池的两相电解质 | |
EP3229309B1 (en) | Rechargeable aluminum-air electrochemical cell | |
WO2014104282A1 (ja) | 静止型バナジウムレドックス電池 | |
TW201421770A (zh) | 撓性透明空氣金屬電池 | |
Na et al. | Surface-functionalized graphite felts: Enhanced performance in cerium-based redox flow batteries | |
KR101167829B1 (ko) | 실리콘 화합물에 의한 고체형 이차전지 및 그 제조방법 | |
JP5851624B2 (ja) | リチウム空気電池用の水性電解液 | |
JP2018055902A (ja) | 二次電池 | |
Ikeuba et al. | Advances on lithium, magnesium, zinc, and iron-air batteries as energy delivery devices—a critical review | |
Oltean et al. | On the electrophoretic and sol–gel deposition of active materials on aluminium rod current collectors for three-dimensional Li-ion micro-batteries | |
JP2001266961A (ja) | 空気電池 | |
CN103123961B (zh) | 一种水体系锂空气电池 | |
Mandai et al. | Oxygen–a fatal impurity for reversible magnesium deposition/dissolution | |
JP2013239245A (ja) | 金属空気電池 | |
JP2014007029A (ja) | 金属空気電池 | |
WO2017087907A1 (en) | Transition metal depositi0n and oxidation on symmetric metal oxide electrodes for storage application | |
US20170012293A1 (en) | Cathode for metal-air current sources and metal-air current source with such cathode |