WO2014104282A1 - 静止型バナジウムレドックス電池 - Google Patents

静止型バナジウムレドックス電池 Download PDF

Info

Publication number
WO2014104282A1
WO2014104282A1 PCT/JP2013/085068 JP2013085068W WO2014104282A1 WO 2014104282 A1 WO2014104282 A1 WO 2014104282A1 JP 2013085068 W JP2013085068 W JP 2013085068W WO 2014104282 A1 WO2014104282 A1 WO 2014104282A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
current collector
electrolyte
redox battery
static
Prior art date
Application number
PCT/JP2013/085068
Other languages
English (en)
French (fr)
Inventor
吉田 茂樹
朝雄 山村
清志 坂本
Original Assignee
ブラザー工業株式会社
株式会社東北テクノアーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社, 株式会社東北テクノアーチ filed Critical ブラザー工業株式会社
Publication of WO2014104282A1 publication Critical patent/WO2014104282A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a vanadium redox battery using an electrolyte containing vanadium as an active material.
  • the present invention relates to a static vanadium redox battery (hereinafter also referred to as “SVRB (Static Vanadium Redox Battery)”) having an electrode in which a solid electrolyte is supported on a conductive substance.
  • SVRB Static Vanadium Redox Battery
  • Secondary batteries are widely used not only for digital home appliances but also for electric vehicles and hybrid vehicles using motor power.
  • a redox flow battery using vanadium as an active material is known (Patent Document 1).
  • the redox flow battery uses two sets of redox pairs (redox pairs) that generate redox reactions in an electrolyte solution to charge and discharge by changing the valence of ions.
  • liquid flow type redox flow batteries are known in the field of large-scale power storage.
  • the liquid flow type redox flow battery supplies and discharges a vanadium sulfuric acid solution stored in a tank to a liquid flow type cell.
  • the liquid flow type redox flow battery redoxes +2 and +3 oxidation state vanadium ions (V 2+ and V 3+ ) and +4 and +5 valence oxidation state vanadium ions (V 4+ and V 5+ ). Include as a pair.
  • the configuration of the liquid flow type redox flow battery includes an electrolyte solution tank for positive electrode that contains an electrolyte solution containing an active material on the positive electrode side, an electrolyte solution tank for negative electrode that contains an electrolyte solution containing an active material on the negative electrode side, A stack for discharging and a pump for supplying the electrode electrolyte solution to the stack are provided.
  • the positive electrode electrolyte solution and the negative electrode electrolyte solution are pumped from the positive electrode tank and the negative electrode tank to the stack and circulated.
  • the stack has a structure in which an ion exchange membrane is sandwiched between a positive electrode and a negative electrode. The reaction in the positive electrode solution and the negative electrode solution of the redox flow battery using vanadium as an active material is shown below.
  • the electric capacity of the battery is determined by the amount of active material, for example, vanadium.
  • the electric capacity of a liquid flow type redox flow battery including two electrolyte solutions of positive electrode electrolyte solution and negative electrode electrolyte solution having a constant molar concentration is directly proportional to the volume of the two electrolyte solutions. That is, the electric capacity of the liquid flow type redox flow battery increases as the volume of the electrolyte solution for the positive electrode and the negative electrode is increased.
  • Increasing the volume of the electrolyte solution can be achieved by increasing the volume of the tank in which the electrolyte solution is stored.
  • increasing the concentration of the active material in the electrolyte solution can similarly increase the electric capacity.
  • Battery performance is also expressed by energy density in addition to electrical capacity.
  • the energy density is defined by the amount of energy (electric power) that can be taken out per unit weight of the battery.
  • a lithium ion secondary battery is known as a high energy density secondary battery using an oxidation-reduction reaction.
  • One of the reasons why lithium is used in secondary batteries is that lithium is a light metal (atomic weight 6.94), and a high energy density can be obtained.
  • the liquid flow type redox flow battery needs to circulate the electrolyte with a pump.
  • the liquid flow type redox flow battery uses an electrolytic solution having a concentration that does not cause the electrolyte to be deposited in accordance with the oxidation-reduction reaction. Therefore, the liquid flow type redox flow battery generally has a low energy density, and it is necessary to enlarge the tank in order to obtain a specific electric capacity.
  • a liquid flow type redox flow battery is light and small, and it is difficult to obtain high output performance.
  • the liquid static redox battery includes at least a diaphragm, a positive electrode side and a negative electrode side electrolytic cell, a positive electrode side and a negative electrode side bipolar plate, a metal plate having a positive electrode terminal, and a metal plate having a negative electrode terminal.
  • the positive electrode side and the negative electrode side electrolytic cell of the liquid static redox battery have a configuration filled with a mixture of an electrolytic solution containing vanadium ions as an active material and carbon powder or small pieces as a conductive material. .
  • the liquid static redox battery of Patent Document 2 does not circulate the electrolyte. However, since the liquid static redox battery of Patent Document 2 still needs a large amount of electrolyte, it is difficult to achieve both high output performance with high electric capacity and high energy density and light weight and downsizing. is there. Further, the liquid static redox battery of Patent Document 2 has a disadvantage that it is necessary to take measures against liquid leakage.
  • a solid-state vanadium redox battery has been proposed as a vanadium redox battery that satisfies both requirements of light weight, small size, and high output performance (Patent Document 3).
  • a solid type vanadium redox battery uses an electrode in which a solid electrolyte containing vanadium as an active material is supported on a conductive material such as carbon fiber.
  • the solid-state vanadium redox battery of Patent Document 3 is required to further improve the high output performance.
  • An object of the present invention is to provide a static vanadium redox battery which can reduce the internal resistance of the battery, can efficiently realize a high energy density, has a high capacity, and can be reduced in weight and size.
  • the present invention 1 includes an electrode including a positive electrode and a negative electrode including an electrolyte containing vanadium as an active material, a porous current collector made of a carbon material that supports the electrolyte, and a porous film that partitions between the two electrodes
  • the present invention relates to a static vanadium redox battery characterized in that the current collector has a porosity of 90% or less.
  • the present invention 2 relates to the static vanadium redox battery according to the present invention 1, wherein the current collector has a porosity of 60 to 87%.
  • the present invention 3 relates to the static vanadium redox battery according to the first or second invention, wherein the carbon material is carbon fiber or activated carbon.
  • the present invention 4 relates to the static vanadium redox battery according to any one of the present inventions 1 to 3, wherein the electrode includes two or more current collectors.
  • the negative electrode is selected from the group consisting of vanadium ions whose oxidation number changes between divalent and trivalent by an oxidation-reduction reaction, vanadium salts containing the vanadium ions, and complex salts containing the vanadium ions.
  • the positive electrode comprises a vanadium ion whose oxidation number changes between pentavalent and tetravalent by an oxidation-reduction reaction, a vanadium salt containing the vanadium ion, and a complex salt containing the vanadium ion
  • the present invention relates to a static vanadium redox battery according to any one of the present inventions 1 to 4, which has an electrolyte containing a second vanadium compound selected from the above.
  • the present invention 6 relates to the static vanadium redox battery according to any one of the present inventions 1 to 5, wherein the porous membrane is an ion exchange membrane that allows ions to selectively pass therethrough.
  • the present invention when the porosity of the porous current collector made of the carbon material is 90% or less, the solid state containing an amount of vanadium as an active material sufficient to satisfy a high capacity and a high energy density.
  • a static vanadium redox battery in which a slurry-like electrolyte is supported on a current collector can be provided.
  • the present invention can provide a static vanadium redox battery in which the current collector is closely contacted to improve the conductive path and the internal resistance of the battery is reduced.
  • the present invention can provide a stationary vanadium redox battery that can efficiently realize a high energy density, has a high capacity, and can be reduced in weight and size.
  • FIG. 1 shows a general schematic configuration of a stationary vanadium redox battery.
  • the image of one Embodiment of the static vanadium redox battery of this invention is shown.
  • 1 shows a schematic configuration of one embodiment of a static vanadium redox battery of the present invention.
  • the schematic structure of the other embodiment of the static vanadium redox battery of this invention is shown.
  • the flow of the manufacturing method of a static vanadium redox battery is shown.
  • the relationship between the compressibility of a current collector made of carbon felt and the porosity is shown.
  • the relationship between the compressibility of the current collector made of carbon felt and the internal resistance is shown.
  • the present invention includes an electrode including an electrolyte containing vanadium as an active material, a porous current collector made of a carbon material that supports the electrolyte, and a porous film that partitions between the two electrodes.
  • the present invention relates to a static vanadium redox battery characterized in that the porosity of the body is 90% or less. A preferred embodiment of a stationary vanadium redox battery will be described with reference to FIGS.
  • FIG. 1 shows the general structure of a static vanadium redox battery.
  • a static vanadium redox battery 1 includes a positive electrode current collector 2 carrying an electrolyte containing vanadium as an active material, and a positive electrode having a lead electrode 3 on the side of the positive electrode current collector 2. 4.
  • the stationary vanadium redox battery 1 has a negative electrode current collector 5 carrying an electrolyte containing vanadium as an active material, and a negative electrode 7 provided with a lead electrode 6 on the side of the negative electrode current collector 5. Further, the stationary vanadium redox battery 1 has a porous film 8 that partitions the positive electrode 4 and the negative electrode 7.
  • Vanadium is an element that can take several different oxidation states including divalent, trivalent, tetravalent, and pentavalent, and is an element having a potential difference useful for a battery.
  • FIG. 2 is an image diagram showing an embodiment of the static vanadium redox battery of the present invention.
  • an electrolyte containing the first vanadium compound is supported on the current collector 5 constituting the negative electrode 7.
  • the electrolyte containing the first vanadium compound is a solid selected from the group consisting of vanadium ions whose oxidation number changes between divalent and trivalent by oxidation and reduction reactions, vanadium salts containing vanadium ions, and complex salts containing vanadium ions Or a semi-solid electrolyte containing the first vanadium compound.
  • an electrolyte containing a second vanadium compound is supported on the current collector 2 constituting the positive electrode 4.
  • the electrolyte containing the second vanadium compound is selected from the group consisting of vanadium ions whose oxidation number changes between pentavalent and tetravalent by reduction and oxidation reactions, vanadium salts containing vanadium ions, and complex salts containing vanadium ions.
  • An electrolyte containing a second vanadium compound is selected from the group consisting of vanadium ions whose oxidation number changes between pentavalent and tetravalent by reduction and oxidation reactions, vanadium salts containing vanadium ions, and complex salts containing vanadium ions.
  • the stationary vanadium redox battery is one in which an active material containing vanadium ions is supported on a porous current collector made of a carbon material.
  • a solid or semi-solid electrolyte such as a slurry or a gel is supported on a current collector.
  • the active material containing vanadium is present in the current collector in a liquid state (liquid stationary state) that does not flow.
  • the active material containing vanadium contains a small amount of electrolyte.
  • the electrolyte contained in the active material is an amount that is not excessive or deficient so that the battery can take 0 to 100% in a charged state (hereinafter also referred to as SOC (State of charge)).
  • the first vanadium compound selected from the group consisting of vanadium ions whose oxidation number changes between divalent and trivalent by oxidation and reduction reactions, vanadium salts containing vanadium ions, and complex salts containing vanadium ions is And vanadium sulfate (II) .n hydrate, vanadium sulfate (III) .n hydrate and the like.
  • n represents 0 or an integer of 1 to 6.
  • the electrolyte carried on the current collector contained in the negative electrode is a solution in which an aqueous sulfuric acid solution is added to vanadium sulfate (II) .n hydrate, vanadium sulfate (III) .n hydrate, or a mixture thereof. It is preferable.
  • the concentration of the sulfuric acid aqueous solution is not particularly limited. For example, dilute sulfuric acid having a sulfuric acid concentration of less than 90% by mass is preferably used as the sulfuric acid aqueous solution.
  • the concentration of the first vanadium compound in the electrolyte supported on the current collector is not particularly limited.
  • the electrolyte supported on the current collector preferably has a hardness or viscosity sufficient to adhere to the current collector.
  • the electrolyte preferably contains a first vanadium compound at a concentration that provides a hardness or viscosity sufficient to adhere to the current collector.
  • the electrolyte may be solid or semi-solid.
  • the semi-solid electrolyte includes a slurry electrolyte obtained by adding a sulfuric acid aqueous solution or the like to the first vanadium compound, or a gel electrolyte obtained by adding silica to the first vanadium compound.
  • the amount of sulfuric acid aqueous solution added to the first vanadium compound is not particularly limited.
  • the sulfuric acid aqueous solution is added in an amount that is sufficient for the battery (secondary battery) using the first vanadium compound as an active material to take a charged state of 0 to 100%.
  • the amount of the sulfuric acid aqueous solution added to the first vanadium compound may be an amount that is not excessive or insufficient so that the SOC can be 20 to 80%.
  • a second vanadium compound selected from the group consisting of vanadium ions whose oxidation number changes between pentavalent and tetravalent by reduction and oxidation reactions, vanadium salts containing vanadium ions, and complex salts containing vanadium ions it can be exemplified oxy (VO 2+) vanadium sulfate (IV) ⁇ n-hydrate, dioxy (VO 2 +) vanadium sulfate (V) ⁇ n-hydrate.
  • n represents 0 or an integer of 1 to 6.
  • the electrolyte supported on the current collector contained in the positive electrode is a vanadium oxysulfate (IV) / n hydrate, a vanadium oxysulfate (V) / n hydrate, or a mixture of these with an aqueous sulfuric acid solution. It is preferable that The concentration of the sulfuric acid aqueous solution is not particularly limited. For example, dilute sulfuric acid having a sulfuric acid concentration of less than 90% by mass is preferably used as the sulfuric acid aqueous solution. Further, the concentration of the second vanadium compound in the electrolyte supported on the current collector is not particularly limited.
  • the electrolyte supported on the current collector preferably has a hardness or viscosity sufficient to adhere to the current collector.
  • the electrolyte preferably contains a second vanadium compound at a concentration that provides a hardness or viscosity sufficient to adhere to the current collector.
  • the electrolyte may be solid or semi-solid.
  • the semi-solid electrolyte includes a slurry electrolyte obtained by adding a sulfuric acid aqueous solution or the like to the second vanadium compound, or a gel electrolyte obtained by adding silica to the second vanadium compound.
  • the amount of sulfuric acid aqueous solution added to the second vanadium compound is not particularly limited.
  • the aqueous sulfuric acid solution is added in an amount that is sufficient for a battery (secondary battery) using the second vanadium compound as an active material to take a charged state of 0 to 100%.
  • the amount of the sulfuric acid aqueous solution added to the second vanadium compound may be an amount that is not excessive or insufficient so that the SOC can be 20 to 80%.
  • the carbon material constituting the current collector carrying the active material is preferably carbon fiber or activated carbon.
  • Examples of the porous current collector made of a carbon material include carbon felt using carbon short fibers, carbon fiber fabric using carbon long fibers, carbon fiber knitted fabric, and activated carbon.
  • the porous current collector made of a carbon material carrying an electrolyte preferably has a porosity of 90% or less.
  • V is the true volume (cm 3 ) of the current collector
  • V ′ is the apparent volume (cm 3 ) of the current collector.
  • the true volume (Vcm 3 ) of the current collector can be calculated by dividing the mass (g) of the carbon material constituting the current collector by the density (g / cm 3 ) of the carbon material.
  • the porosity of the porous current collector is 90% or less.
  • the porosity of the porous current collector is preferably 60 to 85%, more preferably 65 to 80%, and particularly preferably 70 to 83%. is there.
  • the porous current collector has a porosity of 90% or less, thereby supporting a solid or semi-solid electrolyte containing a sufficient amount of vanadium as an active material to satisfy a high capacity or high energy density. be able to. Since the porous current collector has a porosity of 90% or less, the contact of the current collector can be made dense, the conductive path can be improved, and the internal resistance of the battery can be reduced. Since the porous current collector has a porosity of 90% or less, it is possible to efficiently realize a high energy density.
  • the porous current collector has a porosity of 90% or less, so that the capacity of the battery can be increased.
  • the porosity of the porous current collector exceeds 90%, there may be a case where the contact of the current collector is reduced and a sufficient conductive path that can reduce the internal resistance cannot be secured.
  • the porosity of the porous current collector is less than 60%, the amount of the active material that can be carried on the porous current collector is reduced, and the battery capacity required for the electrostatic vanadium redox battery (for example, 0.1%). 8Ah or more) may not be satisfied.
  • Some commercially available carbon felts have a porosity exceeding 90%.
  • the carbon felt is compressed and used so that the porosity determined based on the formula (i) is 90% or less. It is preferable.
  • the compression ratio varies depending on the diameter of the fiber constituting the carbon felt, the fiber material, and the like.
  • the carbon felt has elasticity against compression.
  • the contact between the carbon fibers constituting the carbon felt becomes closer due to compression.
  • the carbon felt can improve the conductive path between the carbon fibers and reduce the internal resistance at the portion where the carbon fibers are in contact with each other by compression.
  • a carbon short fiber having a diameter of 10 to 20 ⁇ m for example.
  • a carbon felt having a weight of carbon felt of preferably 250 to 350 g / m 2 , more preferably 280 to 340 g / m 2 , and further preferably 300 to 330 g / m 2 can be used.
  • the static vanadium redox battery of the present invention includes a positive electrode and a negative electrode, and has a porous film between the positive electrode and the negative electrode.
  • the kind of porous film is not particularly limited.
  • the porous membrane include an ion exchange membrane that allows specific ions to pass therethrough.
  • the ion exchange membrane include Salemion (registered trademark) APS (manufactured by Asahi Glass Co., Ltd.), Nafion (registered trademark) (manufactured by DuPont), Neoceptor (registered trademark), and the like.
  • Examples of the ions that can selectively pass through the ion exchange membrane include at least one ion selected from the group consisting of protons, sulfate ions, and sulfite ions.
  • the porous membrane used in the static vanadium redox battery of the present invention is preferably a membrane capable of passing cations.
  • a membrane having a large ion exchange capacity is preferably used.
  • a membrane having high permanent selectivity and high resistivity is preferably used.
  • an ion exchange membrane marketed under the trade name Neocepta (registered trademark) (manufactured by Astom) can be suitably used.
  • FIG. 3 shows a schematic configuration of an embodiment of the static vanadium redox battery of the present invention.
  • the static vanadium redox battery 1 shown in FIG. 3 shows an example in which a carbon felt compressed so as to have a porosity of 90% or less is used as a porous current collector.
  • a stationary vanadium redox battery 1 according to an embodiment of the present invention includes a positive electrode current collector 2 ′ and a positive electrode 4 provided with an extraction electrode 3 on the side of the positive electrode current collector 2 ′.
  • a carbon felt compressed so that the porosity is 90% or less can be used.
  • the positive electrode current collector 2 ′ carries an electrolyte containing vanadium as an active material.
  • the stationary vanadium redox battery 1 includes a negative electrode current collector 5 ′ and a negative electrode 7 having an extraction electrode 6 on the side of the negative electrode current collector 5 ′.
  • As the negative electrode current collector 5 ′ carbon felt compressed so that the porosity is 90% or less can be used.
  • the negative electrode current collector 5 ′ carries an electrolyte containing vanadium as an active material.
  • the stationary vanadium redox battery 1 includes a positive electrode 4 and a porous film 8 that partitions the negative electrode 7.
  • extraction electrodes 3 and 6 for example, extraction electrodes using graphite, carbon sheet, conductive rubber, or the like can be used.
  • FIG. 4 shows a schematic configuration of another embodiment of the static vanadium redox battery of the present invention.
  • the static vanadium redox battery 10 of the present invention may include two or more layers of a porous current collector carrying an electrolyte containing vanadium as an active material in the positive electrode and / or the negative electrode.
  • the static vanadium redox battery 10 includes a positive electrode 13 having two layers of positive electrode current collectors 11, 11 and an extraction electrode 12 on the side of the two layers of positive electrode current collectors 11, 11.
  • the two-layer positive electrode current collectors 11 and 11 each carry an electrolyte containing vanadium as an active material.
  • the stationary vanadium redox battery 10 has two layers of negative electrode current collectors 14, 14 and a negative electrode 16 having an extraction electrode 15 on the side of the two layers of negative electrode current collector 14. As the two-layer negative electrode current collectors 14 and 14, carbon felt compressed so that the porosity is 90% or less can be used.
  • the two-layer negative electrode current collectors 14 and 14 each carry an electrolyte containing vanadium as an active material.
  • the stationary vanadium redox battery 10 includes a porous film 17 that partitions the positive electrode 13 and the negative electrode 16.
  • the static vanadium redox battery of the embodiment of the present invention shown in FIG. 4 is exemplified by an electrode in which two layers of current collectors are stacked.
  • the number of stacked current collectors is not limited to two.
  • the static vanadium redox battery can be stacked with a number of current collectors that satisfy the required high capacity and high energy density.
  • the conductive path between the current collector and the extraction electrode becomes better, and the internal resistance can be further reduced.
  • the elasticity of the carbon felt compressed to reduce the porosity to 90% or less acts on the extraction electrode, and the conductive path between the current collector and the extraction electrode is increased. Can be better.
  • the current collector having two or more layers may be a current collector having a different porosity for each current collector constituting the layer.
  • a porous current collector having a porosity of 90% or less is preferable to use as the current collector in contact with the extraction electrode.
  • the following reaction occurs in the negative electrode supporting the first vanadium compound and the positive electrode supporting the second vanadium compound.
  • Negative electrode VX 3 ⁇ nH 2 O (s) + e ⁇ ⁇ 2VX 2 ⁇ mH 2 O (s) + X ⁇ (4)
  • X represents a monovalent anion.
  • means chemical equilibrium.
  • “equilibrium” means a state in which the amount of change in the product of the reversible reaction matches the amount of change in the starting material.
  • n shows that it can take various values.
  • Batteries are charged by applying an external voltage to cause oxidation and reduction reactions in the positive and negative electrodes. Further, by connecting an electrical load between the positive electrode and the negative electrode, reduction and oxidation reactions proceed in each of the positive electrode and the negative electrode, and the battery is discharged.
  • the static vanadium redox battery of the present invention uses vanadium, which is a material having a relatively light mass among materials having a redox pair, as an active material.
  • An electrolyte containing vanadium as an active material for example, a vanadium salt or a vanadium complex salt causes a redox reaction, whereby a high energy density of the battery can be realized.
  • a static vanadium redox battery uses an electrolyte containing a sufficient amount of vanadium having a high energy density as an active material by setting the porosity of a porous current collector carrying an electrolyte to 90% or less. It can be supported.
  • a static vanadium redox battery has a porous current collector supporting an electrolyte with a porosity of 90% or less, thereby improving the conductive path and reducing the internal resistance by bringing the current collector into close contact with each other.
  • a porous current collector supporting an electrolyte with a porosity of 90% or less, thereby improving the conductive path and reducing the internal resistance by bringing the current collector into close contact with each other.
  • the carbon constituting the carbon felt is used by compressing it so that the porosity is 90% or less, by the action of elasticity against compression.
  • the fibers can be brought into close contact with each other to improve the conductive path and reduce the internal resistance.
  • the static vanadium redox battery of the present invention has a high electric capacity and charge / discharge by supporting an electrolyte containing vanadium as an active material, for example, a vanadium salt or a vanadium complex salt in a solid or semi-solid state on a current collector. It is possible to improve the efficiency.
  • the static vanadium redox battery of the present invention is a first selected from the group consisting of vanadium ions whose oxidation number changes between divalent and trivalent, vanadium salts containing the vanadium ions, and vanadium complex salts containing the vanadium ions.
  • An electrolyte containing a vanadium compound forms one redox pair.
  • the static vanadium redox battery of the present invention is a second selected from the group consisting of vanadium ions whose oxidation number changes between pentavalent and tetravalent, vanadium salts containing the vanadium ions, and vanadium complex salts containing the vanadium ions.
  • An electrolyte containing a vanadium compound forms another redox pair.
  • the static vanadium redox battery of the present invention ensures a large electromotive force and does not deposit an electrolyte by an oxidation-reduction reaction unlike a battery using an electrolyte solution. Therefore, the static vanadium redox battery of the present invention can suppress the formation of dendrite and improve the safety and durability of the battery.
  • the static vanadium redox battery of the present invention prepares a vanadium compound containing vanadium ions having an arbitrary oxidation number of 2 to 5 valences.
  • the static vanadium redox battery can use a vanadium compound as an electrolyte and can carry the electrolyte on a porous current collector having a porosity of 90% or less.
  • a stationary vanadium redox battery can produce a battery that is 0% charged in the initial state or a battery that is 100% charged in the initial state.
  • the reaction in the case where the positive electrode electrolyte contains an aqueous sulfuric acid solution and vanadium oxide sulfate (vanadyl) is shown below.
  • the static vanadium redox battery has an electrolyte containing a solid powder of vanadium (III) sulfate n-hydrate on the negative electrode and an electrolyte containing a solid powder of vanadium oxysulfate (IV) n-hydrate on the positive electrode .
  • VO 2+ (aq) shown in the formula (1) is generated from VOSO 4 (aq) generated by the reaction shown in the formula (7).
  • the static vanadium redox battery is represented by the formula (2) from V 2 (SO 4 ) 3 generated by the reaction shown in the formula (12) among the formulas (12) to (14) showing the reaction in the negative electrode. V 3+ (aq) is generated.
  • FIG. 5 is a flowchart for explaining a method of manufacturing a stationary vanadium redox battery.
  • a static vanadium redox battery first, a positive electrode and a negative electrode are prepared, and then the positive electrode and the negative electrode are assembled, and a necessary amount of electrolyte is injected to manufacture a battery.
  • the method for manufacturing a stationary vanadium redox battery includes steps S1 to S10.
  • Steps S1 to S3 are steps for producing a positive electrode
  • steps S4 to S8 are steps for producing a negative electrode
  • step S9 is a step of assembling a battery
  • step S10 is a step of injecting an electrolyte into the battery. is there.
  • step S1 is a step of obtaining a solution containing a tetravalent vanadium ion or a cation containing vanadium in a tetravalent state, or a solid electrolyte containing vanadium in a tetravalent state.
  • Step S2 is a step in which the solution or solid electrolyte is supported on a solid or semi-solid porous collector.
  • Step S3 is a step of drying the current collector.
  • step S4 is a step of preparing a solution containing a tetravalent vanadium ion or a cation containing vanadium in a tetravalent state.
  • step S5 is a step of electrolytic reduction of this solution.
  • Step S6 is a step of obtaining a solid electrolyte containing a trivalent vanadium ion or vanadium in a trivalent state or a solution containing a cation containing vanadium in a trivalent state by this electrolytic reduction or further drying the solution.
  • Step S7 is a step in which the solution or solid electrolyte is supported on a solid or semi-solid porous collector.
  • Step S8 is step S8 for drying the current collector.
  • Step S9 is a step of assembling a battery using the obtained positive electrode current collector, negative electrode current collector, porous film, and extraction electrode.
  • Step S10 is a step of adding an electrolyte solution, for example, an aqueous sulfuric acid solution, which is not excessive or deficient enough to obtain a state of charge (SOC) of 0 to 100% to the assembled battery.
  • SOC state of charge
  • Step S1 is a step of preparing a solution containing a tetravalent vanadium ion or a cation containing vanadium in a tetravalent state.
  • the solution prepared in step S1 may be used in the next step S2 as it is.
  • the solution prepared in step S1 may be dried in an environment containing oxygen to obtain a solid electrolyte containing tetravalent vanadium ions or vanadium in a tetravalent state.
  • the "cation containing tetravalent vanadium ions or vanadium in the tetravalent state" V 4+ can be exemplified VO 2 +.
  • solution containing tetravalent vanadium ions or cations containing vanadium in a tetravalent state examples include vanadium oxysulfate (IV) aqueous solution (VOSO 4 ⁇ n hydrate).
  • VOSO 4 ⁇ n hydrate examples include vanadium oxysulfate (IV) aqueous solution (VOSO 4 ⁇ n hydrate).
  • in an environment containing oxygen means including air.
  • step S1 is electrolytic oxidation of a tetravalent vanadium ion or a solution containing a cation containing vanadium in a tetravalent state, and a cation containing pentavalent vanadium ions or vanadium in a pentavalent state. It may be a step of preparing a solution containing The solution containing a pentavalent vanadium ion or a cation containing vanadium in a pentavalent state may be used as it is in the next step S2.
  • a solution containing a pentavalent vanadium ion or a cation containing vanadium in a pentavalent state examples include vanadium dioxysulfate (V) aqueous solution ((VO 2 ) 2 SO 4 .n hydrate). it can.
  • Electrolytic oxidation is performed, for example, by applying a constant current of 1 A to a solution containing tetravalent vanadium ions or a cation containing vanadium in a tetravalent state for 2.5 hours. Make sure that the color of the solution has completely changed from blue to yellow. The solution is then left in air for 12 hours. And the solution containing the cation which contains a pentavalent vanadium ion or a vanadium in a pentavalent state is obtained. By drying this solution, a solid electrolyte containing pentavalent vanadium ions or vanadium in a pentavalent state can be obtained.
  • the solution or solid electrolyte containing the pentavalent vanadium ion or the cation containing vanadium in the pentavalent state may be supported on the current collector as the electrolyte containing the positive electrode active material in the next step S2.
  • Step S2 is a step of supporting the solution or solid electrolyte obtained in step S1 on a porous current collector made of a carbon material.
  • Step S2 can be exemplified by carrying method 1 and carrying method 2.
  • the solid electrolyte obtained in step S1 is mixed with a powder obtained by grinding carbon fibers as necessary, and a small amount of sulfuric acid aqueous solution is added to form a slurry.
  • the slurry electrolyte is applied to a porous current collector, and the slurry electrolyte is supported on the current collector.
  • the liquid is obtained by vacuum drying in a state where the porous current collector is immersed in the solution containing the tetravalent vanadium ion obtained in step S1 or the cation containing vanadium in the tetravalent state.
  • the current collector is allowed to evaporate and a solid electrolyte containing vanadium in a tetravalent state is supported on the current collector.
  • a porous current collector made of a carbon material having a porosity of 90% or less is used.
  • the carbon material is activated carbon
  • activated carbon having a porosity of 90% or less represented by the formula (i) can be used as a current collector.
  • the carbon material is carbon fiber and the porous current collector made of the carbon material is carbon felt, carbon fiber woven fabric, or carbon fiber knitted fabric, and the porosity exceeds 90% , And can be used after being compressed so that the porosity is 90% or less.
  • Step S3 is a step of drying the current collector carrying the electrolyte obtained in step S2. In this drying step, excess liquid is evaporated from the electrolyte supported on the current collector.
  • a positive electrode including a porous current collector carrying a solid or semi-solid electrolyte containing vanadium whose oxidation number changes between pentavalent and tetravalent by an oxidation-reduction reaction is obtained.
  • evaporate excess liquid means that the secondary battery can take up to 0 to 100% of SOC (State of Charge), so that the sulfuric acid aqueous solution is left in an excessive amount and other than that. It means that the liquid is evaporated. In some cases, it may mean that the sulfuric acid aqueous solution is left in an amount that can cover the SOC of 20 to 80%, and other liquids are evaporated.
  • Step S4 is a step of preparing a solution containing a tetravalent vanadium ion or a cation containing vanadium in a tetravalent state, as in step S1.
  • Step S5 is a step of electrolytically reducing the solution obtained in step S4 to obtain a solution containing trivalent vanadium ions or cations containing vanadium in a trivalent state.
  • the solution may be exemplified by an aqueous vanadium (III) sulfate solution (V 2 (SO 4 ) 3 ⁇ n hydrate).
  • Electrolytic reduction is performed by applying a constant current of 1 A for 5 hours to a solution containing tetravalent vanadium ions or a cation containing vanadium in a tetravalent state. Next, it is confirmed that the color of the solution has completely changed from blue to purple. The solution is then left in air for 12 hours. A solution containing a trivalent vanadium ion or a cation containing vanadium in a trivalent state is obtained. This solution is green.
  • the electrolytic reduction may be performed under noble gas bubbling such as argon. Further, the electrolytic reduction may be performed while keeping the liquid temperature at a constant temperature.
  • the constant temperature is preferably 10 to 30 ° C.
  • a platinum plate can be used as an electrode when performing electrolytic reduction.
  • an ion exchange membrane for example, Seleion (registered trademark) APS (manufactured by Asahi Glass Co., Ltd.)
  • APS manufactured by Asahi Glass Co., Ltd.
  • step S6 may be a step of electrolytically reducing the solution obtained in step S4 to obtain a solution containing divalent vanadium ions or a cation containing vanadium in a divalent state.
  • divalent vanadium ion or the solution containing a cation containing vanadium in a divalent state include a vanadium sulfate (II) sulfate solution (VSO 4 ⁇ n hydrate).
  • Electrolytic reduction is performed, for example, by applying a constant current of 1 A for 5 hours to a solution containing tetravalent vanadium ions or a cation containing vanadium in a tetravalent state.
  • the solution containing a divalent vanadium ion or a cation containing vanadium in a divalent state is allowed to stand in air for 12 hours. can get.
  • This solution is green. Further, by drying this solution, a solid electrolyte containing divalent vanadium ions or vanadium in a divalent state can be obtained.
  • step S7 the divalent vanadium ion or a solution containing a cation containing vanadium in a divalent state or a solid electrolyte may be supported on the current collector as an electrolyte containing a negative electrode active material.
  • Step S6 is a trivalent vanadium ion obtained in Step 5 or a solution containing a cation containing vanadium in a trivalent state as it is, or a slurry electrolyte, or the solution is further dried to obtain trivalent vanadium.
  • This is a step of obtaining a solid electrolyte containing ions or vanadium in a trivalent state.
  • Step S7 is a step of supporting the solution containing vanadium ions obtained in step S6, a slurry electrolyte, or a solid electrolyte on a porous current collector made of a carbon material.
  • a method for supporting the solution containing vanadium ions obtained in step S6, the slurry electrolyte, or the solid electrolyte on the porous current collector the same supporting method 1 or supporting method 2 as in step 2 is applied. Can do.
  • a porous current collector made of a carbon material having a porosity of 90% or less is used.
  • the carbon material is activated carbon
  • activated carbon having a porosity of 90% or less represented by the formula (i) is used as a current collector.
  • the carbon material is carbon fiber and the porous current collector made of the carbon material is carbon felt, carbon fiber woven fabric, or carbon fiber knitted fabric, and the porosity exceeds 90% Compressed so that the porosity is 90% or less.
  • Step S8 is a step of drying the current collector carrying the electrolyte obtained in step S7. A method similar to Step 3 can be applied to this drying step.
  • Step 8 a negative electrode including a porous current collector carrying a solid or semi-solid electrolyte containing vanadium whose oxidation number changes between trivalent and divalent is obtained.
  • Step S9 is a step of assembling a battery using the obtained positive electrode current collector, negative electrode current collector, porous film, positive electrode extraction electrode, and negative electrode extraction electrode.
  • Step S10 is a step of adding a sufficient amount of electrolyte to the assembled battery so that the state of charge (SOC) can be 0 to 100%.
  • the electrolytic solution include an aqueous sulfuric acid solution.
  • the electrolyte solution may be an electrolyte solution in an amount that does not exceed or is insufficient to obtain an SOC of 20 to 80%.
  • a static vanadium redox battery includes, for example, a solid electrolyte containing vanadium in a tetravalent oxidation state supported on a positive electrode and a solid electrolyte containing vanadium in a trivalent oxidation state supported on a negative electrode.
  • This stationary vanadium redox battery has a high energy density while having a high electric capacity. Further, the static vanadium redox battery is in a 0% charged state immediately after fabrication.
  • the static vanadium redox battery has, for example, a solid electrolyte containing vanadium in a pentavalent oxidation state supported on the positive electrode, and a solid electrolyte containing vanadium in a divalent oxidation state supported on the negative electrode, It can be used as a redox pair.
  • This stationary vanadium redox battery has a high energy density while having a high electric capacity.
  • the static vanadium redox battery is 100% charged immediately after fabrication.
  • the first vanadium compound and / or the second vanadium compound contained in the electrolyte may contain sulfate, chloride, or fluoride as counter ions for the vanadium salt or complex salt.
  • Cl in formulas (15) to (22) may be replaced with F.
  • the static vanadium redox battery configured as described above has a high energy density and a high safety while having a high electric capacity.
  • the static vanadium redox battery can obtain stable energy efficiency in a relatively wide range of the positive electrode and the negative electrode.
  • the stationary vanadium redox battery is suitable not only for business use and industrial use but also for consumer use.
  • the stationary vanadium redox battery 1 has a negative electrode 7 including a negative electrode current collector 5 carrying an electrolyte containing a solid powder of vanadium (III) sulfate as a first vanadium compound.
  • the stationary vanadium redox battery 1 includes a positive electrode 4 including a positive electrode current collector 2 carrying an electrolyte containing a solid powder of vanadyl sulfate (IV) as a second vanadium compound.
  • the stationary vanadium redox battery is 0% charged in the initial state.
  • the solid powder of vanadium sulfate (III) (V 2 (SO 4 ) 3 ⁇ nH 2 O) contained in the electrolyte for the negative electrode is green.
  • the solid powder of vanadyl sulfate (IV) (VOSO 4 ⁇ nH 2 O) contained in the positive electrode electrolyte is blue.
  • the formula (1) is derived from (VO 2 ) 2 SO 4 (aq) generated by the formula (8).
  • V 2 (SO 4 ) 3 generated by the formula (12) to V 3+ (aq) represented by the formula (2). Is generated.
  • the static vanadium redox battery is in a “discharged state” shown in FIG. 2 immediately after being produced.
  • V 4+ (aq) in the positive electrode current collector 5 undergoes the following reaction and is oxidized to V 5+ (aq).
  • V 3+ (aq) in the negative electrode current collector undergoes the following reaction and is reduced to V 2+ (aq).
  • the stationary vanadium redox battery is charged.
  • the stationary vanadium redox battery is in the “charged state” shown in FIG.
  • an electrolyte containing a solid powder of vanadium sulfate (II) as the first vanadium compound is used for the negative electrode, and solid vanadyl sulfate (V The example using the electrolyte containing the solid powder of) is shown.
  • the static vanadium redox battery has a negative electrode 7 including a negative electrode current collector 5 carrying an electrolyte containing a solid powder of vanadium sulfate (II) as a first vanadium compound.
  • the static vanadium redox battery has a positive electrode 4 including a positive electrode current collector 2 carrying an electrolyte containing a solid powder of vanadyl sulfate (V) as a second vanadium compound.
  • the stationary vanadium redox battery is 100% charged in the initial state. This stationary vanadium redox battery has the advantage that it can be discharged immediately after fabrication while exhibiting the effects of all the embodiments.
  • the static vanadium redox battery can realize a high energy density by causing a redox reaction of the vanadium salt or the vanadium complex salt which is an electrolyte.
  • the electrolyte is supported on a porous current collector having a porosity of 90% or less. Therefore, the current collector supports an electrolyte containing a sufficient amount of active material having a high energy density. Can be made.
  • the porosity of the porous current collector supporting the electrolyte is reduced to 90% or less, so that the contact of the current collector is close and the conductive path is improved, and the internal resistance is reduced. Can be small.
  • the static vanadium redox battery of the present invention can efficiently achieve a high energy density by setting the porosity of the porous current collector carrying the electrolyte to 90% or less.
  • the carbon fiber constituting the carbon felt is brought into close contact with the elastic body by compressing it so that the porosity is 90% or less.
  • the conductive path can be improved and the internal resistance can be reduced.
  • the static vanadium redox battery of the present invention can obtain a high electric capacity by using a vanadium salt or a vanadium complex salt in a solid state.
  • the current collector A commercially available carbon felt or activated carbon was used as the porous current collector.
  • the carbon fiber constituting the carbon felt had a diameter of 10 to 20 ⁇ m, a basis weight of 330 g / m 2 , a thickness of 4.2 mm, and a porosity of 95%.
  • This carbon felt was directly used as a current collector of Comparative Example 1 (porosity: 95%) without being compressed.
  • the current collector of Comparative Example 2 compresses the carbon felt so that the compression rate calculated based on the formula (ii) is 20%, and the porosity obtained based on the formula (i) is 94%. Carbon felt was used.
  • Example 1 the carbon felt is compressed so that the compression ratio calculated based on the formula (ii) is 62%, and the carbon felt obtained based on the formula (i) is 87%. It was.
  • Example 2 the carbon felt is compressed so that the compression ratio calculated based on the formula (ii) is 74%, and the carbon felt obtained based on the formula (i) is 81%. It was.
  • Example 3 the carbon felt was compressed so that the compression rate calculated based on the formula (ii) was 82%, and the carbon felt obtained based on the formula (i) was 72%.
  • activated carbon having a porosity of 60% calculated by the following formula (i) was used as a current collector.
  • (Porosity) ⁇ (%) 1 ⁇ V / V ′ ⁇ 100 (i)
  • V is the true volume (cm 3 ) of the current collector
  • V ′ is the apparent volume (cm 3 ) of the current collector.
  • the true volume (Vcm 3 ) of the current collector can be calculated by dividing the mass (g) of the carbon material constituting the current collector by the density (g / cm 3 ) of the carbon material.
  • (Compression rate) ⁇ (%) 1 ⁇ d ′ / d ⁇ 100 (ii)
  • d is the thickness of the carbon felt before compression
  • d ′ is the thickness of the carbon felt after compression.
  • the positive electrode current collector is obtained by immersing each current collector having an area of 57.75 cm 2 in an electrolyte solution for positive electrode and vacuum drying to evaporate the liquid, thereby obtaining a solid electrolyte containing vanadium in a tetravalent state.
  • Each current collector was supported (supporting method 2).
  • the negative electrode current collector is a solid electrolyte containing vanadium in a trivalent state by immersing each current collector having an area of 57.75 cm 2 in the negative electrode electrolyte and vacuum drying to evaporate the liquid.
  • the amount of active material in the electrolyte supported on the positive electrode current collector and the negative electrode current collector is 4.6 ⁇ 10 ⁇ 4 mol (mol) of vanadium, respectively, and the molar ratio between the positive electrode side and the negative electrode side is 1. : 1.
  • a 57.75 cm 2 Neoceptor (registered trademark) was disposed between the positive electrode current collector and the negative electrode current collector.
  • Graphite having the same size as that of the current collector was disposed as an extraction electrode on the outside of the current collector for positive electrode and the current collector for negative electrode.
  • a single stack in which an extraction electrode, a positive electrode current collector, an ion exchange membrane, a negative electrode current collector, and an extraction electrode were stacked in this order was inserted into a cell having a bottom area of 57.75 cm 2 and a thickness of 3.3 mm.
  • a static vanadium redox battery was formed by adding 70 mL of 2M sulfuric acid as an electrolyte in the cell. In the static vanadium redox battery, a conductive carbon fiber connected to each extraction electrode was protruded from the cell.
  • the static vanadium redox batteries of Examples 1 to 4 and Comparative Examples 1 to 2 had an output voltage of 1.5 V when operated at a current density of 5 mA / cm 2 and a cut-off voltage of 0.7 V.
  • Table 1 shows the compression ratio (%), porosity (%), internal resistance ( ⁇ ), and electric capacity (Ah) of the current collector of each battery.
  • FIG. 6 shows the relationship between the compressibility and porosity of carbon felt used as a porous current collector. As shown in FIG. 6, using a commercially available carbon felt having a porosity of 95% (weight per unit: 330 g / m 2 , thickness: 4.2 mm, compression rate: 0%), the porosity is reduced to 90% or less. In order to achieve this, the compression ratio must be 50% or more.
  • FIG. 7 shows the relationship between the compression rate of the current collector of each battery and the internal resistance of each battery.
  • the compression rate of a commercially available carbon felt (porosity: 95%, basis weight: 330 g / m 2 , thickness: 4.2 mm, compression rate: 0%) is 50% or more.
  • the porosity is 90% or less, and the internal resistance is 0.2 ⁇ or less.
  • the batteries of Examples 1 to 4 had an internal resistance of 0.2 ⁇ or less by using a current collector having a porosity of 90% or less.
  • the batteries of Examples 1 to 4 have lower internal resistance than the battery of Comparative Example 1 using a current collector with a porosity exceeding 90%.
  • the current collector of Example 1 has a porosity of 87%
  • the current collector of Example 2 has a porosity of 81%.
  • the internal resistance of the battery of Example 2 is smaller than the internal resistance of the battery of Example 1.
  • the reason why the internal resistance of the battery of Example 2 is smaller than the internal resistance of the battery of Example 1 is considered to be due to a change in the compressibility of the current collector.
  • the current collector of Example 1 has a compression rate of 62%, and the current collector of Example 2 has a compression rate of 74%.
  • the current collector using carbon felt has a higher compression ratio, and the elasticity against compression works, so that the contact between the carbon fibers constituting the carbon felt becomes closer and the conductive path is improved. It is thought that the resistance is made smaller. If the porosity of the current collector is reduced to some extent, the internal resistance cannot be reduced so much.
  • the current collector tends to have a smaller electric capacity because the amount of the electrolyte containing the active material decreases as the porosity of the current collector decreases. Since the electric capacity is preferably 0.8 Ah or more, the porosity of the current collector is preferably 60% or more.
  • a porous current collector made of a carbon material having a porosity of 90% or less is a solid or semi-solid electrolyte containing a sufficient amount of vanadium as an active material to satisfy a high capacity and a high energy density. Can be supported. Also, a battery using a porous current collector made of a carbon material having a porosity of 90% or less can improve the conductive path by close contact with the current collector, and reduce the internal resistance of the battery. it can.
  • the static vanadium redox battery of the present invention can efficiently realize a high energy density, has a high capacity, and can be reduced in weight and size.
  • the stationary vanadium redox battery of the present invention can be miniaturized.
  • the static vanadium redox battery of the present invention has a high capacity.
  • the static vanadium redox battery of the present invention can reduce the internal resistance.
  • the vanadium redox battery of the present invention can efficiently achieve a high energy density.
  • the static vanadium redox battery of the present invention is not only used in the large power storage field, but also a personal computer, a personal digital assistant (PDA), a digital camera, a digital media player, a digital recorder, a game, an electrical appliance, a vehicle, a wireless device, It can be widely used for mobile phones and the like and is industrially useful.
  • PDA personal digital assistant

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inert Electrodes (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

 電池の内部抵抗を小さくし、効率よく高エネルギー密度を実現することが可能であり、高容量であり、軽量小型化が可能な静止型バナジウムレドックス電池を提供することを課題とする。 バナジウムを活物質として含む電解質と、電解質を担持させる炭素材料からなる多孔質の集電体とを含む正極及び負極からなる電極と、2つの電極の間を区画する多孔膜とを有し、集電体の空隙率が90%以下であることを特徴とする静止型バナジウムレドックス電池に関する。

Description

静止型バナジウムレドックス電池
 本発明は、バナジウムを活物質として含む電解質を用いたバナジウムレドックス電池に関する。特に、固体状の電解質を導電性物質に担持させた電極を有する静止型バナジウムレドックス電池(以下、「SVRB(Static Vanadium Redox Battery)」ともいう。)に関する。
 二次電池は、デジタル家電製品のみならず、モーター動力を用いた電気自動車、ハイブリッド自動車にも広く使用される。このような二次電池の中で、バナジウムを活物質として利用したレドックスフロー電池が知られている(特許文献1)。レドックスフロー電池は、電解質溶液中において酸化還元(Reduction / Oxidation、レドックス)反応を生じる2組の酸化還元対(レドックス対)を利用して、イオンの価数変化によって充放電を行う。
 特に、液流通型のレドックスフロー電池は、大型電力貯蔵分野で知られている。液流通型のレドックスフロー電池は、タンクに貯蔵したバナジウムの硫酸溶液を液流通型セルに供給して充放電させる。液流通型のレドックスフロー電池は、+2価及び+3価の酸化状態のバナジウムイオン(V2+及びV3+)、並びに、+4価及び+5価の酸化状態のバナジウムイオン(V4+及びV5+)をレドックス対として含む。
 液流通型のレドックスフロー電池の構成は、正極側の活物質を含む電解質溶液を収容する正極用電解質溶液タンクと、負極側の活物質を含む電解質溶液を収容する負極用電解質溶液タンクと、充放電を行うスタックと、スタックに各電極用電解質溶液を供給するポンプとを備える。正極電解質溶液及び負極用電解質溶液が、ポンプで正極タンク及び負極タンクからスタックに送られ、循環される。スタックは、イオン交換膜を正極及び負極で挟んだ構造を有している。バナジウムを活物質として利用したレドックスフロー電池の正極液中及び負極液中の反応を以下に示す。
正極:VO2+(aq)+HO⇔VO (aq)+e+2H  (1)
 前記式(1)中、「⇔」は化学平衡を示す。また、イオンに付与された添示の(aq)は、そのイオンが溶液中に存在することを示す。本明細書中の他の式においても「⇔」及び「(aq)」は同様の意味である。
負極:V3+(aq)+e⇔V2+(aq)  (2)
 電池の電気容量は、活物質、例えばバナジウムの量によって確定される。例えば、一定のモル濃度の正極用電解質溶液及び負極用電解質溶液の異なる二つの電解質溶液を含む液流通型のレドックスフロー電池の電気容量は、二つの電解質溶液の体積に正比例する。つまり、液流通型のレドックスフロー電池の電気容量は、正極用及び負極用の電解質溶液の体積を増やせば増加する。電解質溶液の体積の増加は、電解質溶液を蓄積しておくタンクの体積の増加によって達成することができる。一方、電解質溶液中の活物質の濃度を濃くすることでも、同様に電気容量の増加を達成することが可能である。
 電池の性能は、電気容量とは別にエネルギー密度によっても表される。エネルギー密度は電池の単位重量当たりに取り出せるエネルギー量(電力量)で定義される。酸化還元反応を利用した高エネルギー密度の二次電池としては、例えばリチウムイオン二次電池が知られている。二次電池において、リチウムが使用される理由の一つには、リチウムが軽い金属(原子量6.94)であり、高いエネルギー密度が得られるからである。
 液流通型のレドックスフロー電池は、電解液をポンプで循環させる必要がある。液流通型のレドックスフロー電池は、酸化還元反応に伴って電解質が析出することのない濃度の電解液を使用する。そのために、液流通型のレドックスフロー電池は、一般的にエネルギー密度が低くなり、特定の電気容量を得るためにタンクを大型化する必要がある。液流通型のレドックスフロー電池は、軽量小型で高出力性能を得ることは困難である。
 軽量小型で高出力性能を有するレドックス電池を得るために、電解液を循環させない液静止型レドックス電池が提案されている(特許文献2)。この液静止型レドックス電池は、電解液貯蔵タンクを有していない。液静止型レドックス電池は、少なくとも隔膜と、正極側及び負極側電解槽と、正極側及び負極側双極板と、並びに正極端子を有する金属板及び負極端子を有する金属板とを有する。液静止型レドックス電池の正極側及び負極側電解槽内には、活物質であるバナジウムイオンを含む電解液と、導電性物質である炭素の粉末又は小片との混合物とが充填された構成を有する。
 特許文献2の液静止型レドックス電池は、電解液を循環させることはない。しかしながら、特許文献2の液静止型レドックス電池は、依然として多量の電解液の存在が必要であるため、高い電気容量及び高エネルギー密度を有する高出力性能と、軽量小型化を両立させることは困難である。また、特許文献2の液静止型レドックス電池は、液漏れ対策等を施す必要がある等の不都合がある。
 軽量小型で高出力性能の両方の要求を満たすバナジウムレドックス電池として、固体型バナジウムレドックス電池が提案されている(特許文献3)。固体型バナジウムレドックス電池は、バナジウムを活物質として含む固体状にある電解質を炭素繊維等の導電性材料に担持させた電極を用いる。
米国特許4786567号公報 特開2002-216833号公報 国際公開2011/049103号公報
 特許文献3の固体型バナジウムレドックス電池は、さらに高出力性能の改善が求められている。
 本発明は、電池の内部抵抗を小さくし、効率よく高エネルギー密度の実現が可能であり、高容量であり、軽量小型化が可能な静止型バナジウムレドックス電池を提供することを課題とする。
 本発明1は、バナジウムを活物質として含む電解質と、電解質を担持させる炭素材料からなる多孔質の集電体とを含む正極及び負極からなる電極と、2つの電極の間を区画する多孔膜とを有し、集電体の空隙率が90%以下であることを特徴とする静止型バナジウムレドックス電池に関する。
 本発明2は、集電体の空隙率が60~87%である、本発明1に記載の静止型バナジウムレドックス電池に関する。
 本発明3は、炭素材料が炭素繊維又は活性炭である、本発明1又は2記載の静止型バナジウムレドックス電池に関する。
 本発明4は、電極が集電体を2層以上含む、本発明1~3のいずれかに記載の静止型バナジウムレドックス電池に関する。
 本発明5は、負極が、酸化還元反応によって2価及び3価の間で酸化数が変化するバナジウムイオン、前記バナジウムイオンを含むバナジウム塩並びに前記バナジウムイオンを含む錯塩からなる群より選ばれる第一のバナジウム化合物を含む電解質を有し、正極が、酸化還元反応によって5価及び4価の間で酸化数が変化するバナジウムイオン、前記バナジウムイオンを含むバナジウム塩並びに前記バナジウムイオンを含む錯塩からなる群より選ばれる第二のバナジウム化合物を含む電解質を有する、本発明1~4のいずれかに記載の静止型バナジウムレドックス電池に関する。
 本発明6は、多孔膜がイオンを選択的に通過させるイオン交換膜である、本発明1~5のいずれかに記載の静止型バナジウムレドックス電池に関する。
 本発明によれば、炭素材料からなる多孔質の集電体の空隙率が90%以下であることによって、高容量及び高エネルギー密度を満たすのに十分な量のバナジウムを活物質として含む固体状又はスラリー状の電解質を集電体に担持させた静止型バナジウムレドックス電池を提供することができる。また、本発明は、集電体の接触を密にして導電パスを向上し、電池の内部抵抗を小さくした静止型バナジウムレドックス電池を提供することができる。また、本発明は、効率よく高エネルギー密度の実現が可能であり、高容量であり、軽量小型化が可能な静止型バナジウムレドックス電池を提供することができる。
静止型バナジウムレドックス電池の一般的な概略構成を示す。 本発明の静止型バナジウムレドックス電池の一実施形態のイメージを示す。 本発明の静止型バナジウムレドックス電池の一実施態様の概略構成を示す。 本発明の静止型バナジウムレドックス電池の他の実施態様の概略構成を示す。 静止型バナジウムレドックス電池の製造方法のフローを示す。 カーボンフェルトからなる集電体の圧縮率と空隙率の関係を示す。 カーボンフェルトからなる集電体の圧縮率と内部抵抗の関係を示す。
 本発明は、バナジウムを活物質として含む電解質と、電解質を担持させる炭素材料からなる多孔質の集電体とを含む電極と、2つの電極の間を区画する多孔膜とを有し、集電体の空隙率が90%以下であることを特徴とする静止型バナジウムレドックス電池に関する。静止型バナジウムレドックス電池の好適な実施形態は、図1から図7に基づいて説明する。
[静止型バナジウムレドックス電池]
 図1は、静止型バナジウムレドックス電池の一般的な構造を示す。図1に示すように、静止型バナジウムレドックス電池1は、バナジウムを活物質として含む電解質を担持させた正極用集電体2と正極用集電体2の側部に引出し電極3を備えた正極4を有する。静止型バナジウムレドックス電池1は、バナジウムを活物質として含む電解質を担持させた負極用集電体5と、負極用集電体5の側部に引出し電極6を備えた負極7を有する。さらに静止型バナジウムレドックス電池1は、正極4と負極7を区画する多孔膜8とを有する。
 バナジウムは、2価、3価、4価、及び5価を含む異なる数種の酸化状態を取り得る元素であり、電池に有用な電位差を有する元素である。
 図2は、本発明の静止型バナジウムレドックス電池の一実施形態を示すイメージ図である。静止型バナジウムレドックス電池1は、負極7を構成する集電体5に、第一のバナジウム化合物を含む電解質が担持される。第一のバナジウム化合物を含む電解質は、酸化及び還元反応によって2価及び3価の間で酸化数が変化するバナジウムイオン、バナジウムイオンを含むバナジウム塩及びバナジウムイオンを含む錯塩からなる群より選ばれる固体状又は半固体状の第一のバナジウム化物を含む電解質である。静止型バナジウムレドックス電池1は、正極4を構成する集電体2に、第二のバナジウム化合物を含む電解質が担持される。第二のバナジウム化合物を含む電解質は、還元及び酸化反応によって5価及び4価の間で酸化数が変化するバナジウムイオン、このバナジウムイオンを含むバナジウム塩及びバナジウムイオンを含む錯塩からなる群より選ばれる第二のバナジウム化合物を含む電解質である。
 本明細書において静止型バナジウムレドックス電池とは、炭素素材からなる多孔質の集電体にバナジウムイオンを含む活物質が担持されたものである。バナジウムを含む活物質は、スラリー状若しくはゲル状のような、固体状又は半固体状の電解質が集電体に担持されている。または、バナジウムを含む活物質は、流動しない液体状(液静止状態)で集電体中に存在する。バナジウムを含む活物質は、少量の電解液を含む。活物質に含まれる電解液は、具体的には電池が充電状態(以下、SOC(State of Charge)ともいう)0~100%まで取り得るのに過不足のない量である。
(負極)
 ここで、「酸化及び還元反応によって2価及び3価の間で酸化数が変化するバナジウムイオン、バナジウムイオンを含むバナジウム塩並びにバナジウムイオンを含む錯塩からなる群より選ばれる第一のバナジウム化合物」は、硫酸バナジウム(II)・n水和物、硫酸バナジウム(III)・n水和物等を例示することができる。ここで、nは、0又は1~6の整数を示す。
 負極に含まれる集電体に担持される電解質は、硫酸バナジウム(II)・n水和物、硫酸バナジウム(III)・n水和物、又はこれらの混合物に、硫酸水溶液を加えたものであることが好ましい。硫酸水溶液の濃度は、特に限定されない。硫酸水溶液は、例えば、硫酸の濃度が90質量%未満の希硫酸等を用いることが好ましい。また、集電体に担持される電解質中の第一のバナジウム化合物の濃度も特に限定されない。集電体に担持される電解質は、集電体に付着する程度の硬度又は粘度を有することが好ましい。電解質は、集電体に付着する程度の硬度又は粘度となる濃度の第一のバナジウム化合物を含むものであることが好ましい。電解質は、固体状又は半固体状であってもよい。ここで、半固体状の電解質は、第一のバナジウム化合物に硫酸水溶液等を加えたスラリー状の電解質、又は第一のバナジウム化合物にシリカを加えたゲル状の電解質が含まれる。
 第一のバナジウム化合物に加える硫酸水溶液の量は特に限定されない。硫酸水溶液は、第一のバナジウム化合物を活物質として用いた電池(二次電池)が充電状態0~100%まで取り得るのに過不足のない量を加える。第一のバナジウム化合物に加える硫酸水溶液の量は、SOCが20~80%まで取り得るのに過不足のない量であってもよい。
(正極)
 また、「還元及び酸化反応によって5価及び4価の間で酸化数が変化するバナジウムイオン、バナジウムイオンを含むバナジウム塩並びにバナジウムイオンを含む錯塩からなる群より選ばれる第二のバナジウム化合物」は、オキシ(VO2+)硫酸バナジウム(IV)・n水和物、ジオキシ(VO )硫酸バナジウム(V)・n水和物等を例示することができる。ここで、nは、0又は1~6の整数を示す。
 正極に含まれる集電体に担持される電解質は、オキシ硫酸バナジウム(IV)・n水和物、ジオキシ硫酸バナジウム(V)・n水和物、又はこれらの混合物に、硫酸水溶液を加えたものであることが好ましい。硫酸水溶液の濃度は、特に限定されない。硫酸水溶液は、例えば、硫酸の濃度が90質量%未満の希硫酸等を用いることが好ましい。また、集電体に担持される電解質中の第二のバナジウム化合物の濃度も特に限定されない。集電体に担持される電解質は、集電体に付着する程度の硬度又は粘度を有することが好ましい。電解質は、集電体に付着する程度の硬度又は粘度となる濃度の第二のバナジウム化合物を含むものであることが好ましい。電解質は、固体状又は半固体状であってもよい。ここで、半固体状の電解質は、第二のバナジウム化合物に硫酸水溶液等を加えたスラリー状の電解質、又は第二のバナジウム化合物にシリカを加えたゲル状の電解質が含まれる。
 第二のバナジウム化合物に加える硫酸水溶液の量は特に限定されない。硫酸水溶液は、第二のバナジウム化合物を活物質として用いた電池(二次電池)が充電状態0~100%まで取り得るのに過不足のない量を加える。第二のバナジウム化合物に加える硫酸水溶液の量は、SOCが20~80%まで取り得るのに過不足のない量であってもよい。
(集電体)
 活物質を担持する集電体を構成する炭素材料は、炭素繊維又は活性炭であることが好ましい。炭素材料からなる多孔質の集電体は、例えば、炭素短繊維を用いたカーボンフェルト、炭素長繊維を用いた炭素繊維織物、炭素繊維編物、活性炭等が例示できる。
 本発明の静止型バナジウムレドックス電池において、電解質を担持する炭素材料からなる多孔質の集電体は、空隙率が90%以下であることが好ましい。ここで、空隙率ηは、下記式(i)から算出される。
η(%)=1-V/V’×100   ・・・(i)
 式(i)中、Vは集電体の真の体積(cm)であり、V’は集電体の見かけの体積(cm)である。集電体の真の体積(Vcm)は、集電体を構成する炭素材料の質量(g)を、炭素材料の密度(g/cm)で除して算出することができる。
 多孔質の集電体の空隙率は90%以下である、多孔質の集電体の空隙率は、好ましくは60~85%、より好ましくは65~80%、特に好ましくは70~83%である。多孔質の集電体は、空隙率が90%以下であることによって、高容量又は高エネルギー密度を満たすのに十分な量のバナジウムを活物質として含む固体状又は半固体状の電解質を担持させることができる。多孔質の集電体は、空隙率が90%以下であることによって、集電体の接触を密にして導電パスを向上し、電池の内部抵抗を小さくすることができる。多孔質の集電体は、空隙率が90%以下であることによって、効率よく高エネルギー密度を実現することが可能である。また、多孔質の集電体は、空隙率が90%以下であることによって、電池を高容量化することができる。多孔質の集電体の空隙率が90%を超えると、集電体の接触が少なくなり、内部抵抗を小さくすることが可能となる十分な導電パスを確保できない場合がある。多孔質の集電体の空隙率が60%未満であると、多孔質の集電体に担持できる活物質の量が減少し、静電型バナジウムレドックス電池に要求される電池容量(例えば0.8Ah以上)を満たすことができない場合がある。
 市販のカーボンフェルトは、その空隙率が90%を超えているものもある。本発明の静止型バナジウムレドックスフロー電池の集電体として市販のカーボンフェルトを用いる場合には、式(i)に基づいて求められる空隙率が90%以下となるようにカーボンフェルトを圧縮して用いることが好ましい。
 カーボンフェルトの空隙率が90%となるように圧縮する場合に、その圧縮率は、カーボンフェルトを構成する繊維の直径や繊維材料等によって異なる。カーボンフェルトを圧縮して空隙率を90%以下にすることによって、カーボンフェルトには、圧縮に対する弾性が働く。カーボンフェルトは、圧縮によってカーボンフェルトを構成する炭素繊維同士の接触がより密になる。カーボンフェルトは、圧縮によって炭素繊維同士が接触している部位において、炭素繊維同士の導電パスがより向上し、内部抵抗を小さくすることができる。
 集電体として市販のカーボンフェルトを用いる場合には、例えば、直径10~20μmの炭素短繊維からなるものを用いることが好ましい。市販のカーボンフェルトは、カーボンフェルトの目付が、好ましくは250~350g/m、より好ましくは280~340g/m、さらに好ましくは300~330g/mであるカーボンフェルトを用いることができる。
(多孔膜)
 本発明の静止型バナジウムレドックス電池は、正極と負極を含み、正極と負極の間に多孔膜を有する。多孔膜の種類は、特に限定されない。多孔膜は、特定のイオンを通過させるイオン交換膜等を例示することができる。イオン交換膜は、Selemion(登録商標) APS(旭硝子社製)やNafion(登録商標)(デュポン社製)、ネオセプタ(登録商標)等を例示することができる。イオン交換膜を選択的に通過することができるイオンは、プロトン、硫酸イオン及び亜硫酸イオンからなる群より選ばれる少なくとも1種のイオンが挙げられる。本発明の静止型バナジウムレドックス電池に用いる多孔膜は、陽イオンを通過させることができる膜を用いることが好ましい。多孔膜は、イオン交換容量が多い膜を用いることが好ましい。多孔膜は、高い永久選択性及び高い抵抗率を有する膜を用いることが好ましい。本発明の静止型バナジウムレドックス電池の多孔膜は、ネオセプタ(登録商標)(アストム社製)なる商品名で市販されているイオン交換膜を好適に用いることができる。
 図3に、本発明の静止型バナジウムレドックス電池の一実施形態の概略構成を示す。図3に示す静止型バナジウムレドックス電池1は、多孔質の集電体として、空隙率が90%以下となるように圧縮したカーボンフェルトを用いた例を示す。図3に示すように、本発明の一実施形態の静止型バナジウムレドックス電池1は、正極用集電体2’と正極用集電体2’の側部に引出し電極3を備えた正極4を有する。正極用集電体2’は、空隙率が90%以下になるように圧縮したカーボンフェルトを用いることができる。正極用集電体2’は、バナジウムを活物質として含む電解質を担持させる。静止型バナジウムレドックス電池1は、負極用集電体5’と、負極用集電体5’の側部に引出し電極6を備えた負極7を有する。負極用集電体5’は、空隙率が90%以下になるように圧縮したカーボンフェルトを用いることができる。負極用集電体5’は、バナジウムを活物質として含む電解質を担持させる。静止型バナジウムレドックス電池1は、正極4と負極7を区画する多孔膜8とを有する。引出し電極3,6は、例えばグラファイト、カーボンシート、導電性ゴム等を使用した引出し電極を用いることができる。
 図4は、本発明の静止型バナジウムレドックス電池の他の実施形態の概略構成を示す。本発明の静止型バナジウムレドックス電池10は、正極及び/又は負極において、バナジウムを活物質として含む電解質を担持した多孔質の集電体を2層以上含んでいてもよい。図4に示すように、静止型バナジウムレドックス電池10は、2層の正極集電体11,11と、2層の正極集電体11、11の側部に引出し電極12とを備えた正極13を有する。2層の正極集電体11,11は、それぞれ空隙率が90%以下となるように圧縮したカーボンフェルトを用いることができる。2層の正極集電体11,11は、それぞれバナジウムを活物質として含む電解質を担持させる。静止型バナジウムレドックス電池10は、2層の負極集電体14、14と、2層の負極集電体14の側部に引出し電極15を備えた負極16を有する。2層の負極集電体14,14は、それぞれ空隙率が90%以下となるように圧縮したカーボンフェルトを用いることができる。2層の負極集電体14,14は、それぞれバナジウムを活物質として含む電解質を担持させる。静止型バナジウムレドックス電池10は、正極13と負極16とを区画する多孔膜17を有する。
 図4に示す本発明の実施形態の静止型バナジウムレドックス電池は、2層の集電体を積層した電極を例示した。集電体の積層数は2層に限定されない。静止型バナジウムレドックス電池は、要求される高容量及び高エネルギー密度を満たす数の集電体を積層することができる。また、電極に2層以上の集電体を用いる場合には、引出し電極に近い側、好ましくは引出し電極に接触する位置に空隙率90%以下の集電体を配置することが好ましい。引出し電極に近い側に空隙率90%以下の集電体を配置した電池は、集電体と引出し電極との導電パスがより良好となり、内部抵抗をより小さくすることができる。例えば、集電体としてカーボンフェルトを用いた場合には、空隙率を90%以下にするために圧縮したカーボンフェルトの圧縮に対する弾性が引出し電極に働き、集電体と引出し電極との導電パスをより良好にすることができる。
 2層以上の集電体は、層を構成する集電体ごとに空隙率が異なる集電体であってもよい。空隙率が異なる集電体を2層以上用いる場合には、引出し電極に接触する集電体は、空隙率が90%以下の多孔質の集電体を用いることが好ましい。
 本発明の静止型バナジウムレドックス電池の一実施形態において、第一のバナジウム化合物を担持した負極、第二のバナジウム化合物を担持した正極では、次のような反応が生じる。
正極:VOX・nHO(s)⇔VOX・mHO(s)+HX+H+e  (3)
負極:VX・nHO(s)+e⇔2VX・mHO(s)+X  (4)
 正極又は負極において生じる反応式(3)又は(4)において、Xは1価の陰イオンを表す。ただし、Xがm価の陰イオンであっても、結合係数(1/m)が考慮されるものとして理解してもよい。またここで、「⇔」は化学平衡を意味するが、反応式(3)又は(4)において平衡とは可逆反応の生成物の変化量と出発物質の変化量が合致した状態を意味する。また、反応式(3)又は(4)において、nは様々な値をとりうることを示す。
 電池は、外部から電圧を印加することによって、正極及び負極において酸化及び還元反応が進行して、充電する。また、正極と負極の間に電気的負荷を接続することによって、正極又は負極のそれぞれにおいて還元、及び酸化反応が進行して、電池は放電をする。
 本発明の静止型バナジウムレドックス電池は、レドックス対を有する物質の中でも質量の比較的軽い物質であるバナジウムを活物質として用いる。バナジウムを活物質として含む電解質、例えばバナジウム塩又はバナジウム錯塩が酸化還元反応を起こすことによって、電池の高いエネルギー密度を実現することができる。静止型バナジウムレドックス電池は、電解質を担持する多孔質の集電体の空隙率を90%以下とすることによって、高いエネルギー密度を有する十分な量のバナジウムを活物質として含む電解質を集電体に担持させることができる。静止型バナジウムレドックス電池は、電解質を担持する多孔質の集電体の空隙率を90%以下にすることによって、集電体の接触を密にして導電パスを向上し、内部抵抗を小さくすることができる。例えば集電体として空隙率が90%を超えるカーボンフェルトを用いる場合には、空隙率が90%以下となるように圧縮して用いることによって、圧縮に対する弾性の働きにより、カーボンフェルトを構成する炭素繊維を密に接触させて導電パスを向上し、内部抵抗を小さくすることができる。また、本発明の静止型バナジウムレドックス電池は、バナジウムを活物質として含む電解質、例えば、バナジウム塩又はバナジウム錯塩を固体状又は半固体状で集電体に担持させることによって、高い電気容量と充放電の効率化を得ることが可能である。
 本発明の静止型バナジウムレドックス電池は、2価及び3価の間で酸化数が変化するバナジウムイオン、このバナジウムイオンを含むバナジウム塩及び前記バナジウムイオンを含むバナジウム錯塩からなる群より選ばれる第一のバナジウム化合物を含む電解質が一つの酸化還元対を形成する。本発明の静止型バナジウムレドックス電池は、5価及び4価の間で酸化数が変化するバナジウムイオン、このバナジウムイオンを含むバナジウム塩及び前記バナジウムイオンを含むバナジウム錯塩からなる群より選ばれる第二のバナジウム化合物を含む電解質がもう一つの酸化還元対を形成する。本発明の静止型バナジウムレドックス電池は、大きな起電力を確保しつつ、電解質溶液を用いた電池のように酸化還元反応によって電解質が析出されることがない。そのため、本発明の静止型バナジウムレドックス電池は、デンドライトの生成を抑制して、電池の安全性と耐久性を向上することができる。
 本発明の静止型バナジウムレドックス電池は、2~5価の任意の酸化数を有するバナジウムイオンを含むバナジウム化合物を調製する。静止型バナジウムレドックス電池は、バナジウム化合物を電解質とし、90%以下の空隙率を有する多孔質の集電体に電解質を担持させることができる。静止型バナジウムレドックス電池は、初期状態において0%充電状態である電池を製造することも、初期状態において100%充電状態である電池を製造することもできる。
 第一のバナジウム化合物がバナジウム酸化物(バナジル)硫酸塩であり、第二のバナジウム化合物がバナジウム硫酸塩である場合の電池における各物質の反応を以下に示す。
2VOSO・nHO(s)⇔(VOSO・nHO(s)+SO 2-+4H+2e  (5)
(SO・nHO(s)+2e⇔2VSO・nHO(s)+SO 2- (6)
 以下に本発明の静止型バナジウムレドックス電池の一実施形態として、負極の電解質中に硫酸水溶液とバナジウム硫酸塩を含む場合の反応を以下に示す。
VOSO・nHO(s)⇔VOSO・nHO(aq)⇔VOSO(aq)+nHO(aq)  (7)
(VOSO・nHO(s)⇔(VOSO・nHO(aq)⇔
(VOSO(aq)+nHO(aq)  (8)
VO2+(aq)+VO (aq)⇔V 3+(aq)  (9)
VO2+(aq)+SO 2-(aq)⇔VOSO(aq)  (10)
2VO2+(aq)+SO 2-(aq)⇔(VOSO(aq)  (11)
 以下に本発明の静止型バナジウムレドックス電池の一実施形態として、正極の電解質中に硫酸水溶液と、バナジウム酸化物硫酸塩(バナジル)を含む場合の反応を以下に示す。
(SO・nHO(s)⇔V(SO・nHO(aq)⇔
(SO+nHO(aq)  (12)
VSO・nHO(s)⇔VSO・nHO(aq)⇔VSO(aq)+nHO(aq)  (13)
2V3+(aq)+3SO 2-⇔V(SO(aq)  (14)
 次に、0%充電状態の静止型バナジウムレドックス電池の一実施形態について説明する。静止型バナジウムレドックス電池は、負極に硫酸バナジウム(III)・n水和物の固体粉末を含む電解質を有し、正極にオキシ硫酸バナジウム(IV)・n水和物の固体粉末を含む電解質を有する。静止型バナジウムレドックス電池は、式(7)に示す反応によって生成するVOSO(aq)から式(1)に示すVO2+(aq)が生成される。
 また、静止型バナジウムレドックス電池は、負極における反応を示す式(12)~(14)の中で、式(12)に示す反応によって生成するV(SOから式(2)に示すV3+(aq)が生成される。
 次に、0%充電状態の静止型バナジウムレドックス電池の正極と負極の間に十分大きな電圧を印加すると、正極中のVO2+(aq)がVO (aq)に酸化される。同時に負極中のV3+(aq)がV2+(aq)に還元される。これらの還元反応又は酸化反応により静止型バナジウムレドックス電池は、充電する。また、充電が完了した後で、正極と負極の間に電気的負荷を接続すると、充電時とは逆の方向に反応が進み、電池は放電する。
[静止型バナジウムレドックス電池の製造方法]
 次に、静止型バナジウムレドックス電池の製造方法について説明する。図5は、静止型バナジウムレドックス電池の製造方法を説明するフロー図である。静止型バナジウムレドックス電池は、まず、正極と負極とを作製し、その後、正極と負極とを組み立てて、必要量の電解液を注入し、電池を製造する。
 図5に示すように、静止型バナジウムレドックス電池の製造方法は、ステップS1~S10を含む。ステップS1~S3は、正極を作製するステップであり、ステップS4~S8は、負極を作製するステップであり、ステップS9は電池を組み立てるステップであり、ステップS10は電池に電解液を注入するステップである。
 正極を作製するステップにおいて、まず、ステップS1は、4価のバナジウムイオン若しくはバナジウムを4価の状態で含む陽イオンを含む溶液、又はバナジウムを4価の状態で含む固体状電解質を得るステップである。ステップS2は、溶液又は固体状電解質を固体状又は半固体状で多孔質の集電体に担持させるステップである。ステップS3は、この集電体を乾燥させるステップである。また、負極を作製するステップにおいて、まず、ステップS4は、4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオンを含む溶液を調製するステップである。ステップS5は、この溶液を電解還元するステップである。ステップS6は、この電解還元により3価のバナジウムイオン若しくはバナジウムを3価の状態で含む陽イオンを含む溶液、又はこの溶液をさらに乾燥させてバナジウムの3価の状態で含む固体状電解質を得るステップである。ステップS7は、溶液又は固体状電解質を固体状又は半固体状で多孔質の集電体に担持させるステップである。ステップS8は、この集電体を乾燥させるステップS8である。ステップS9は、得られた正極用集電体、負極用集電体、多孔膜、引出し電極を用いて電池を組み立てるステップである。ステップS10は、組み立てた電池に充電状態(SOC)0~100%まで取り得るのに過不足のない量の電解液、例えば硫酸水溶液を加えるステップである。
(ステップS1)
 ステップS1は、4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオンを含む溶液を調製するステップである。ステップS1で調製された溶液は、そのまま次のステップS2で用いてもよい。ステップS1で調製された溶液は、酸素を含む環境下で、溶液を乾燥させて4価のバナジウムイオン又はバナジウムを4価の状態で含む固体状電解質を得てもよい。ここで、「4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオン」としては、V4+、VO を例示することができる。「4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオンを含む溶液」としては、オキシ硫酸バナジウム(IV)水溶液(VOSO・n水和物)を例示することができる。また、本明細書において、「酸素を含む環境下」とは、空気中を含む意味である。
 図示を省略したが、ステップS1は、4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオンを含む溶液を電解酸化し、5価のバナジウムイオン又はバナジウムを5価の状態で含む陽イオンを含む溶液を調製するステップであってもよい。5価のバナジウムイオン又はバナジウムを5価の状態で含む陽イオンを含む溶液は、そのまま次のステップS2で用いてもよい。「5価のバナジウムイオン又はバナジウムを5価の状態で含む陽イオンを含む溶液」としては、ジオキシ硫酸バナジウム(V)水溶液((VOSO・n水和物)を例示することができる。
 電解酸化は、例えば、4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオンを含む溶液に1Aの定電流を2.5時間、通電することによって行う。溶液の色が青色から黄色に完全に変化したことを確認する。次に、溶液を空気中で12時間放置する。そして、5価のバナジウムイオン又はバナジウムを5価の状態で含む陽イオンを含む溶液が得られる。この溶液を乾燥させることによって、5価のバナジウムイオン又はバナジウムを5価の状態で含む固体状電解質を得ることができる。この5価のバナジウムイオン又はバナジウムを5価の状態で含む陽イオンを含む溶液又は固体状電解質は、正極の活物質を含む電解質として、次のステップS2で集電体に担持させてもよい。
(ステップS2)
 ステップS2は、ステップS1で得られる溶液又は固体状電解質を炭素材料からなる多孔質の集電体に担持させるステップである。ステップS2は、担持方法1と担持方法2が例示できる。担持方法1は、ステップS1で得られる固体状電解質と、必要に応じてカーボンファイバーとをすり潰して粉末状にしたものとを混合し、さらに少量の硫酸水溶液を加えることによってスラリー状にする。次に、このスラリー状の電解質を多孔質の集電体に塗布して、スラリー状の電解質を集電体に担持させる。担持方法2は、ステップS1で得られる4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオンを含む溶液に、多孔質の集電体を浸漬した状態で、真空乾燥させて、液体を蒸発させ、バナジウムを4価の状態で含む固体状電解質を集電体に担持させる。
 炭素材料からなる多孔質の集電体は、空隙率が90%以下のものを用いる。炭素材料が活性炭である場合には、式(i)で示される空隙率が90%以下の活性炭を集電体として用いることができる。炭素材料が炭素繊維であり、炭素材料からなる多孔質の集電体がカーボンフェルト、炭素繊維織布、炭素繊維編物である場合であって、空隙率が90%を超えるものである場合には、空隙率が90%以下となるように圧縮して用いることができる。
(ステップS3)
 ステップS3は、ステップS2で得られた電解質を担持させた集電体を乾燥するステップである。この乾燥工程において、集電体に担持させた電解質から余分は液体を蒸発させる。ステップS3によって、酸化還元反応によって5価及び4価の間で酸化数が変化するバナジウムを含む固体状又は半固体状の電解質を担持した多孔質の集電体を含む正極が得られる。ここで、「余分な液体を蒸発させる」とは、二次電池がSOC(State of Charge;充電状態)0~100%まで取り得るために過不足ない量だけ硫酸水溶液を残して、それ以外の液体は蒸発させるという意味である。場合によっては、SOC20~80%の値をカバーできる量だけ硫酸水溶液を残して、それ以外の液体は蒸発させるという意味であってもよい。
(ステップS4)
 ステップS4は、ステップS1と同様に、4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオンを含む溶液を調製するステップである。
(ステップS5)
 ステップS5は、ステップS4で得られた溶液を電解還元して、3価のバナジウムイオン又はバナジウムを3価の状態で含む陽イオンを含む溶液を得るステップである。溶液は、硫酸バナジウム(III)水溶液(V(SO・n水和物)を例示することができる。
 電解還元は、4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオンを含む溶液を、1Aの定電流を5時間通電することによって行う。次に、溶液の色が青色から紫色に完全に変化したことを確認する。次に、溶液を空気中で12時間放置する。そして、3価のバナジウムイオン又はバナジウムを3価の状態で含む陽イオンを含む溶液が得られる。この溶液は緑色である。電解還元は、アルゴン等の希ガスバブリング下で行ってもよい。さらに電解還元は、液温を一定温度に保ちながら行ってもよい。一定温度は、10~30℃であることが好ましい。また、電解還元を行う際の電極は、白金板を用いることができる。電解還元を行う際に、2つの電極の間を区画する隔膜は、イオン交換膜(例えばSelemion(登録商標) APS(旭硝子社製))等を用いることができる。
 図示を省略したが、ステップS6は、ステップS4で得られた溶液を電解還元し、2価のバナジウムイオン又はバナジウムを2価の状態で含む陽イオンを含む溶液を得るステップであってもよい。2価のバナジウムイオン又はバナジウムを2価の状態で含む陽イオンを含む溶液は、硫酸バナジウム(II)溶液(VSO・n水和物)が例示できる。
 電解還元は、例えば、4価のバナジウムイオン又はバナジウムを4価の状態で含む陽イオンを含む溶液を、1Aの定電流を5時間通電することによって行う。次に溶液の色が青色から紫色に完全に変化したことを確認した後、空気中で12時間放置することによって、2価のバナジウムイオン又はバナジウムを2価の状態で含む陽イオンを含む溶液が得られる。この溶液は緑色である。また、この溶液を乾燥させることによって、2価のバナジウムイオン又はバナジウムを2価の状態で含む固体状電解質を得ることができる。この2価のバナジウムイオン又はバナジウムを2価の状態で含む陽イオンを含む溶液又は固体状電解質は、ステップS7において、負極の活物質を含む電解質として集電体に担持させてもよい。
(ステップS6)
 ステップ6は、ステップ5で得られた3価のバナジウムイオン若しくはバナジウムを3価の状態で含む陽イオンを含む溶液をそのまま、若しくはスラリー状の電解質、又は前記溶液をさらに乾燥させて3価のバナジウムイオン又はバナジウムを3価の状態で含む固体状の電解質を得るステップである。
(ステップ7)
 ステップS7は、ステップS6で得られるバナジウムイオンを含む溶液、スラリー状の電解質又は固体状の電解質を炭素材料からなる多孔質の集電体に担持させるステップである。ステップS6で得られるバナジウムイオンを含む溶液、スラリー状の電解質又は固体状の電解質を多孔質の集電体に担持させる方法としては、ステップ2と同様の担持方法1又は担持方法2を適用することができる。
 炭素材料からなる多孔質の集電体は、空隙率が90%以下のものを用いる。炭素材料が活性炭である場合には、式(i)で示される空隙率が90%以下の活性炭を集電体として用いる。炭素材料が炭素繊維であり、炭素材料からなる多孔質の集電体がカーボンフェルト、炭素繊維織布、炭素繊維編物である場合であって、空隙率が90%を超えるものである場合には、空隙率が90%以下となるように圧縮して用いる。
(ステップS8)
 ステップS8は、ステップS7で得られた電解質を担持させた集電体を乾燥するステップである。この乾燥工程は、ステップ3と同様の方法を適用することができる。ステップ8によって、3価及び2価の間で酸化数が変化するバナジウムを含む固体状又は半固体状の電解質を担持した多孔質の集電体を含む負極が得られる。
(ステップS9)
 ステップS9は、得られた正極用集電体、負極用集電体、多孔膜、正極用引出し電極、負極用引出し電極を用いて電池を組み立てる工程である。
(ステップS10)
 ステップS10は、組み立てた電池に充電状態(SOC)0~100%まで取り得るのに過不足のない量の電解液を加える工程である。電解液は、例えば硫酸水溶液が例示できる。電解液は、SOCが20~80%まで取り得るのに過不足のない量の電解液であってもよい。
 静止型バナジウムレドックス電池は、例えば、バナジウムを4価の酸化状態で含む固体状の電解質を正極に担持し、バナジウムを3価の酸化状態で含む固体状の電解質を負極に担持して、レドックス対として用いることができる。この静止型バナジウムレドックス電池は、高い電気容量を有しつつ、高いエネルギー密度を有する。また、静止型バナジウムレドックス電池は、作製直後において0%充電状態である。
 また、静止型バナジウムレドックス電池は、例えば、バナジウムを5価の酸化状態で含む固体状の電解質を正極に担持し、バナジウムを2価の酸化状態で含む固体状の電解質を負極に担持して、レドックス対として用いることができる。この静止型バナジウムレドックス電池は、高い電気容量を有しつつ、高いエネルギー密度を有する。また、静止型バナジウムレドックス電池は、作製直後において100%充電状態である。
 電解質に含まれる第一のバナジウム化合物及び/又は第二のバナジウム化合物には、硫酸塩、塩化物、又はフッ化物をバナジウム塩又は錯塩に対するカウンターイオンとして含んでいても良い。
 例えば、カウンターイオンとして塩化物を含む場合、正極側の電解質中では、以下の反応を生じる。
VOCl・nHO(s)⇔VOCl・nHO(aq)⇔
VOCl(aq)+nHO(aq)  (15) 
(VOCl・nHO(s)⇔(VOCl・nHO⇔
(VOCl(aq)+nHO(aq)  (16)
VO2+(aq)+VO (aq)⇔V 3+(aq)  (17)
VO2+(aq)+2Cl(aq)⇔VOCl(aq)  (18)
2VO2+(aq)+2Cl(aq)⇔(VOCl(aq)  (19)
 例えば、カウンターイオンとして塩化物を含む場合、負極側の電解質中では、以下の反応を生じる。
Cl・nHO(s)⇔VCl・nHO(aq)⇔
Cl+nHO(aq)  (20)
VCl・nHO(s)⇔VCl・nHO(aq)⇔
VCl(aq)+nHO(aq)  (21)
2V3+(aq)+6Cl⇔VCl(aq)  (22)
 カウンターイオンとしてフッ化物を用いる場合には、式(15)~式(22)のClをFに置き換えればよい。
 このようにして構成される静止型バナジウムレドックス電池は、高い電気容量を有しつつ、高いエネルギー密度を有し、高い安全性が確保されている。
 また、静止型バナジウムレドックス電池は、正極と負極の比較的広い範囲で安定したエネルギー効率を得ることができる。静止型バナジウムレドックス電池は、業務用、産業用のみならず、民生用としても適している。
[静止型バナジウムレドックス電池の動作(1)]
 静止型バナジウムレドックス電池1の動作を、図2を参照しながら説明する。
 静止型バナジウムレドックス電池1は、第一のバナジウム化合物として硫酸バナジウム(III)の固体粉末を含む電解質を担持した負極用集電体5を含む負極7を有する。静止型バナジウムレドックス電池1は、第二のバナジウム化合物として硫酸バナジル(IV)の固体粉末を含む電解質を担持した正極用集電体2を含む正極4を有する。静止型バナジウムレドックス電池は、初期状態において0%充電状態である。負極用の電解質に含まれる硫酸バナジウム(III)(V(SO・nHO)の固体粉末は、緑色である。正極用の電解質に含まれる硫酸バナジル(IV)(VOSO・nHO)の固体粉末は、青色である。
 図3に示すように、初期状態において、第二のバナジウム化合物を担持した正極用集電体2において、式(8)で生成される(VOSO(aq)から式(1)に示されるVO (aq)が生成される。
 また、初期状態において、第一のバナジウム化合物を担持した負極用集電体5において、式(12)で生成されるV(SOから式(2)で示されるV3+(aq)が生成される。
 すなわち、静止型バナジウムレドックス電池は、作製された直後において、図2に示す「放電状態」にある。
 次に、正極と負極の間に十分大きな電圧を印加すると、正極用集電体5中のV4+(aq)は、以下の反応が進行し、V5+(aq)に酸化される。
VO2+(aq)+HO→VO (aq)+e+2H  (23)
 同時に、負極用集電体中のV3+(aq)は、以下の反応が進行し、V2+(aq)に還元される。そして、静止型バナジウムレドックス電池は充電状態となる。
3+(aq)+e→V2+(aq)  (24)
 充電開始直後では、電池の電極間の電位差は1.0V程度である。その後、充電中は電圧が緩やかな上昇を続け、充電完了時では、電池の開放電圧はおよそ1.58Vとなる。この状態で静止型バナジウムレドックス電池は、図2に示す「充電状態」にある。
 また、充電が完了した後で、正極と負極の間に電気的負荷を接続すると、充電時とは逆の方向に以下の反応が進み、電池は放電する。
VO2+(aq)+HO←VO (aq)+e+2H  (25)
3+(aq)+e←V2+(aq)  (26)
[静止型バナジウムレドックス電池の動作(2)]
 静止型バナジウムレドックス電池の動作(2)では、負極に第一のバナジウム化合物として硫酸バナジウム(III)の固体粉末を含む電解質を用い、正極に第二のバナジウム化合物として固体硫酸バナジル(IV)の固体粉末を含む電解質を用いた例を示した。次に、静止型バナジウムレドックス電池の動作(2)として、負極に第一のバナジウム化合物として硫酸バナジウム(II)の固体粉末を含む電解質を用い、正極に第二のバナジウム化合物として固体硫酸バナジル(V)の固体粉末を含む電解質を用いた例を示す。
 静止型バナジウムレドックス電池は、第一のバナジウム化合物として硫酸バナジウム(II)の固体粉末を含む電解質を担持した負極用集電体5を含む負極7を有する。静止型バナジウムレドックス電池は、第二のバナジウム化合物として硫酸バナジル(V)の固体粉末を含む電解質を担持した正極用集電体2を含む正極4を有する。静止型バナジウムレドックス電池は、初期状態において100%充電状態にある。この静止型バナジウムレドックス電池は、全実施形態における作用効果を奏しながら、作製直後から放電が可能であるという利点を有する。
 静止型バナジウムレドックス電池の反応をまとめると、正極4では、以下の反応を生じる。
VO2+(aq)+HO⇔VO (aq)+e+2H  (1)
VOSO・nHO(s)⇔VOSO・nHO(aq)⇔VOSO(aq)
+nHO⇔VO (aq)+SO 2-(aq)+nHO(aq)  (27)
(VOSO・nHO(s)⇔(VOSO・nHO⇔
(VOSO(aq)+nHO(aq)⇔
2VO (aq)+SO 2-(aq)+nHO(aq)  (28)
 負極7では、以下の反応を生じる。
3+(aq)+e⇔V2+(aq)  (29)
(SO・nHO(s)⇔V(SO・nHO(aq)⇔
(SO+nHO(aq)⇔
2V3+(aq)+3SO 2-(aq)+nHO(aq)  (30)
VSO・nHO(s)⇔VSO・nHO(aq)⇔
VSO(aq)+nHO(aq)⇔V2+(aq)+SO 2-+nHO(aq) (31)
 静止型バナジウムレドックス電池は、電解質であるバナジウム塩又はバナジウム錯塩が酸化還元反応を起こすことによって、高いエネルギー密度を実現することができる。本発明の静止型バナジウムレドックス電池は、空隙率が90%以下の多孔質の集電体に電解質を担持させたため、高いエネルギー密度を有する十分な量の活物質を含む電解質を集電体に担持させることができる。本発明の静止型バナジウムレドックス電池は、電解質を担持する多孔質の集電体の空隙率を90%以下にすることによって、集電体の接触を密にして導電パスを向上し、内部抵抗を小さくすることができる。本発明の静止型バナジウムレドックス電池は、電解質を担持する多孔質の集電体の空隙率を90%以下にすることによって、効率よく高エネルギー密度を実現することができる。例えば集電体としてカーボンフェルトを用いた場合は、空隙率が90%以下となるように圧縮して用いることによって、圧縮に対する弾性の作用により、カーボンフェルトを構成する炭素繊維を密に接触させて導電パスを向上させ、内部抵抗を小さくすることができる。また、本発明の静止型バナジウムレドックス電池は、バナジウム塩又はバナジウム錯塩を固体状で使用することによって、高い電気容量を得ることが可能である。
 次に実施例により本発明の具体的態様を説明するが、本発明はこれらの例によって限定されるものではない。
(正極用電解質)
 硫酸バナジウム(IV)・n水和物(VOSO・nHO)(VOSO含有率、72%)566g(VOSO:408g、2.5mol)に2M(2mol/L)の硫酸を加えて1Lとしたものを撹拌し、正極用の集電体に担持させる電解質溶液とした。
(負極用電解質)
 正極用の電解質溶液と同様の硫酸バナジウム(IV)・n水和物(VOSO・nHO)の硫酸を加えて1Lとしたものを撹拌し、この電解質溶液をビーカー型セルに移した。ビーカー型セルに作用電極として白金板を設置し、隔膜としてイオン交換膜(旭硝子社製、Selmion(登録商標) APS)を設置した。ビーカー型セルに移した溶液をアルゴン(Ar)ガスでバブリングした。Arガスでバブリングを続けながら溶液の温度を15℃に保持し、溶液に1Aの定電流を流し、電解還元を5時間行った。その後、溶液をビーカー型セルからシャーレに移した。次いで、溶液を空気中で12時間放置した。放置後、溶液の色が紫色から緑色に完全に変わったことを目視で確認した。その後、室温、減圧下で1週間乾燥させて、硫酸バナジウム(III)・n水和物(V(SO・nHO)(V(SO含有率、57.1%)854g(V(SO:488g、2.5mol)を得た。得られた硫酸バナジウム(III)・n水和物(V(SO・nHO)に2M硫酸を加えて1Lとしたものを撹拌し、負極用の集電体に担持させる電解質溶液とした。
(集電体)
 多孔質の集電体は、市販のカーボンフェルト又は活性炭を用いた。市販のカーボンフェルトは、カーボンフェルトを構成する炭素繊維の直径が10~20μmであり、目付330g/m、厚さ4.2mm、空隙率95%であった。このカーボンフェルトは、圧縮することなく、そのまま比較例1(空隙率:95%)の集電体として用いた。
 比較例2の集電体は、式(ii)に基づいて算出される圧縮率20%となるようにカーボンフェルトを圧縮して、式(i)に基づいて求められる空隙率が94%となるカーボンフェルトを用いた。
 実施例1は、式(ii)に基づいて算出される圧縮率62%となるようにカーボンフェルトを圧縮して、式(i)に基づいて求められる空隙率が87%となるカーボンフェルトを用いた。
 実施例2は、式(ii)に基づいて算出される圧縮率74%となるようにカーボンフェルトを圧縮して、式(i)に基づいて求められる空隙率が81%となるカーボンフェルトを用いた。
 実施例3は、式(ii)基づいて算出される圧縮率82%となるようにカーボンフェルトを圧縮して、式(i)に基づいて求められる空隙率が72%となるカーボンフェルトを用いた。
 実施例4は、下記式(i)で算出される空隙率が60%の活性炭を集電体として用いた。
(空隙率)
η(%)=1-V/V’×100   ・・・(i)
 式(i)中、Vは集電体の真の体積(cm)であり、V’は集電体の見かけの体積(cm)である。集電体の真の体積(Vcm)は、集電体を構成する炭素材料の質量(g)を、炭素材料の密度(g/cm)で除して算出することができる。
(圧縮率)
ε(%)=1-d’/d×100   ・・・(ii)
 式(ii)中、dは圧縮前のカーボンフェルトの厚さであり、d’は圧縮後のカーボンフェルトの厚さである。
(実施例1~4、比較例1~2)
 正極用集電体は、面積57.75cmの各集電体を正極用電解質溶液に浸漬し、真空乾燥させることによって、液体を蒸発させ、バナジウムを4価の状態で含む固体状の電解質を各集電体に担持させた(担持方法2)。また、負極用集電体は、面積57.75cmの各集電体を負極用電解質に浸漬し、真空乾燥させることによって、液体を蒸発させ、バナジウムを3価の状態で含む固体状の電解質を集電体に担持させた(担持方法2)。正極用集電体、負極用集電体に担持された電解質中の活物質量は、それぞれバナジウムが4.6×10-4モル(mol)であり、正極側と負極側のモル比は1:1である。この正極用集電体及び負極用集電体の間に、57.75cmのネオセプタ(登録商標)を配置した。正極用集電体及び負極用集電体の外側のそれぞれに、引出し電極として集電体と同じ大きさのグラファイトを配置した。引出し電極、正極用集電体、イオン交換膜、負極用集電体、引出し電極をこの順序で積層した単一スタックを底面積57.75cm、厚さ3.3mmのセルに挿入した。セル中に電解液として2M硫酸を70mL加えて静止型バナジウムレドックス電池を形成した。静止型バナジウムレドックス電池は、各引出し電極に接続した導電用のカーボンファイバーをセルから突出させた。
 実施例1~4、比較例1~2の静止型バナジウムレドックス電池は、電流密度:5mA/cm、カットオフ電圧:0.7Vで動作させた場合、出力電圧は1.5Vであった。
 実施例1~4、比較例1~2の静止型バナジウムレドックス電池の内部抵抗、電池容量を以下の方法により測定した。表1は、各電池の集電体の圧縮率(%)、空隙率(%)、内部抵抗(Ω)、電気容量(Ah)を示す。
(内部抵抗)
 各電池の内部抵抗は、JIS C8711 7.6.1項に準拠して測定した。
(容量)
 各電池の電気容量(Ah)は、電流密度5mA/cmで1.6Vまで充電し、電流密度5mA/cmでカットオフ電圧0.7Vまで放電して求めた。
Figure JPOXMLDOC01-appb-T000001
 図6は、多孔質の集電体として用いたカーボンフェルトの圧縮率と空隙率の関係を示す。図6に示すように、市販の空隙率が95%のカーボンフェルト(目付:330g/m、厚さ:4.2mm、圧縮率:0%)を用いて、その空隙率を90%以下にするためには、圧縮率を50%以上にすることが必要である。
 図7は、各電池の集電体の圧縮率と、各電池の内部抵抗の関係を示す。図6及び図7に示すように、市販のカーボンフェルト(空隙率:95%、目付:330g/m、厚さ:4.2mm、圧縮率:0%)の圧縮率を50%以上とすると、空隙率が90%以下となり、内部抵抗が0.2Ω以下となる。
 図7及び表1に示すように、実施例1~4の電池は、空隙率が90%以下である集電体を用いることによって、内部抵抗が0.2Ω以下となった。実施例1~4の電池は、空隙率が90%を超える集電体を用いた比較例1の電池と比べて、内部抵抗が小さい。また、実施例1の集電体は空隙率87%であり、実施例2の集電体は空隙率81%である。実施例1の集電体と実施例2の集電体とを比較すると、集電体の空隙率に大きな差はない。集電体の空隙率に大きな差がない場合であっても、実施例1の電池は内部抵抗が0.14Ωであり、実施例2の電池は内部抵抗が0.08Ωである。実施例2の電池の内部抵抗は、実施例1の電池の内部抵抗と比べて、小さい。実施例1の電池の内部抵抗に比べて、実施例2の電池の内部抵抗が小さいのは、集電体の圧縮率の変化によるものであると考えられる。実施例1の集電体は圧縮率が62%であり、実施例2の集電体は圧縮率が74%である。カーボンフェルトを用いた集電体は、圧縮率が大きくなるほど、圧縮に対する弾性が働くことによって、カーボンフェルトを構成している炭素繊維同士の接触がより密になり、導電パスが向上して、内部抵抗をより小さくすると考えられる。集電体の空隙率がある程度小さくなると、それほど大きく内部抵抗を小さくすることができない。集電体は、集電体の空隙率が小さくなるほど、活物質を含む電解質を担持できる量が減少するため、電気容量が小さくなる傾向がある。電気容量は0.8Ah以上であることが好ましいため、集電体の空隙率は60%以上であることが好ましい。
 図7及び表1に示す結果から、空隙率が90%以下である炭素材料からなる多孔質の集電体を用いた電池は、0.8Ah以上の高容量を保持することができる。また、空隙率が90%以下である炭素材料からなる多孔質の集電体は、高容量及び高エネルギー密度を満たすのに十分な量のバナジウムを活物質として含む固体状又は半固体状の電解質を担持させることができる。また、空隙率が90%以下である炭素材料からなる多孔質の集電体を用いた電池は、集電体の接触を密にして導電パスを向上し、電池の内部抵抗を小さくすることができる。本発明の静止型バナジウムレドックス電池は、効率よく高エネルギー密度の実現が可能であり、高容量であり、軽量小型化が可能である。
 本発明の静止型バナジウムレドックス電池は、小型化することが可能である。本発明の静止型バナジウムレドックス電池は、高容量である。また、本発明の静止型バナジウムレドックス電池は、内部抵抗を小さくすることができる。また、本発明のバナジウムレドックス電池は、効率よく高エネルギー密度の実現が可能である。本発明の静止型バナジウムレドックス電池は、大型電力貯蔵分野のみならず、パーソナルコンピュータ、個人用携帯情報端末(PDA)、デジタルカメラ、デジタルメディアプレーヤー、デジタルレコーダ、ゲーム、電化製品、車両、無線装置、携帯電話等に広く用いることができ、産業上有用である。
  1  静止型バナジウムレドックス電池
  2  正極用集電体
  2’ 空隙率90%以下の正極用集電体
  3  引出し電極
  4  正極
  5  負極用集電体
  5’ 空隙率90%以下の負極用集電体
  6  引出し電極
  7  負極
  8  多孔膜
  10 静止型バナジウムレドックス電池
  11、11 2層の正極集電体
  12 引出し電極
  13 正極
  14、14 2層の負極集電体
  15 引出し電極
  16 負極
  17 多孔膜

Claims (6)

  1.  バナジウムを活物質として含む電解質と、電解質を担持させる炭素材料からなる多孔質の集電体とを含む正極及び負極からなる電極と、2つの電極の間を区画する多孔膜とを有し、集電体の空隙率が90%以下であることを特徴とする静止型バナジウムレドックス電池。
  2.  集電体の空隙率が60~87%である、請求項1記載の静止型バナジウムレドックス電池。
  3.  炭素材料が炭素繊維又は活性炭である、請求項1又は2記載の静止型バナジウムレドックス電池。
  4.  電極が集電体を2層以上含む、請求項1~3のいずれ1項記載の静止型バナジウムレドックス電池。
  5.  負極が、酸化還元反応によって2価及び3価の間で酸化数が変化するバナジウムイオン、前記バナジウムイオンを含むバナジウム塩並びに前記バナジウムを含む錯塩からなる群より選ばれる第一のバナジウム化合物を含む電解質を有し、正極が、酸化還元反応によって5価及び4価の間で酸化数が変化するバナジウムイオン、前記バナジウムイオンを含むバナジウム塩並びに前記バナジウムイオンを含む錯塩からなる群より選ばれる第二のバナジウム化合物を含む電解質を有する、請求項1~4のいずれか1項記載の静止型バナジウムレドックス電池。
  6.  多孔膜がイオンを選択的に通過させるイオン交換膜である、請求項1~5のいずれか1項記載の静止型バナジウムレドックス電池。
PCT/JP2013/085068 2012-12-28 2013-12-27 静止型バナジウムレドックス電池 WO2014104282A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-288809 2012-12-28
JP2012288809A JP2014130778A (ja) 2012-12-28 2012-12-28 静止型バナジウムレドックス電池

Publications (1)

Publication Number Publication Date
WO2014104282A1 true WO2014104282A1 (ja) 2014-07-03

Family

ID=51021352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085068 WO2014104282A1 (ja) 2012-12-28 2013-12-27 静止型バナジウムレドックス電池

Country Status (2)

Country Link
JP (1) JP2014130778A (ja)
WO (1) WO2014104282A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158113A1 (ja) * 2015-03-27 2016-10-06 ブラザー工業株式会社 電極ユニット、電池及び電池の製造方法
WO2021118913A1 (en) * 2019-12-09 2021-06-17 Standard Energy Co., Ltd. Sealed redox battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590931B2 (ja) * 2014-12-19 2019-10-16 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ 電気化学セルのための電極及びその組成物
KR102081767B1 (ko) * 2016-10-13 2020-02-26 주식회사 엘지화학 중공 실리카를 포함하는 바나듐 레독스 플로우 배터리용 전해액 및 이를 포함하는 바나듐 레독스 플로우 배터리
US11063263B2 (en) * 2016-11-09 2021-07-13 Dalian Rongkepower Co., Ltd Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
US20210143437A1 (en) * 2016-12-28 2021-05-13 Showa Denko K.K Redox flow battery
US11342572B2 (en) 2017-08-09 2022-05-24 Sumitomo Electric Industries, Ltd. Redox flow battery
KR102539928B1 (ko) * 2022-06-28 2023-06-05 스탠다드에너지(주) 이차전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245805A (ja) * 1996-03-04 1997-09-19 Kashimakita Kyodo Hatsuden Kk レドックス電池
JP2000200618A (ja) * 1999-01-07 2000-07-18 Kashimakita Kyodo Hatsuden Kk 高出力バナジウムレドックス電池
JP2001085026A (ja) * 1999-09-10 2001-03-30 Toyobo Co Ltd 炭素電極材集合体
JP2001167772A (ja) * 1999-12-08 2001-06-22 Toyobo Co Ltd レドックスフロー電池用電極材および電解槽
JP2008544444A (ja) * 2005-06-20 2008-12-04 ヴィ−フューエル ピーティワイ リミテッド レドックスセルおよび電池の改良されたパーフルオロ膜および改良された電解質
JP2009540549A (ja) * 2006-06-05 2009-11-19 厦▲門▼大学 スーパキャパシタ
WO2011049103A1 (ja) * 2009-10-20 2011-04-28 国立大学法人東北大学 バナジウム電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245805A (ja) * 1996-03-04 1997-09-19 Kashimakita Kyodo Hatsuden Kk レドックス電池
JP2000200618A (ja) * 1999-01-07 2000-07-18 Kashimakita Kyodo Hatsuden Kk 高出力バナジウムレドックス電池
JP2001085026A (ja) * 1999-09-10 2001-03-30 Toyobo Co Ltd 炭素電極材集合体
JP2001167772A (ja) * 1999-12-08 2001-06-22 Toyobo Co Ltd レドックスフロー電池用電極材および電解槽
JP2008544444A (ja) * 2005-06-20 2008-12-04 ヴィ−フューエル ピーティワイ リミテッド レドックスセルおよび電池の改良されたパーフルオロ膜および改良された電解質
JP2009540549A (ja) * 2006-06-05 2009-11-19 厦▲門▼大学 スーパキャパシタ
WO2011049103A1 (ja) * 2009-10-20 2011-04-28 国立大学法人東北大学 バナジウム電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158113A1 (ja) * 2015-03-27 2016-10-06 ブラザー工業株式会社 電極ユニット、電池及び電池の製造方法
WO2021118913A1 (en) * 2019-12-09 2021-06-17 Standard Energy Co., Ltd. Sealed redox battery
US11380928B2 (en) 2019-12-09 2022-07-05 Standard Energy Inc. Sealed redox battery
CN114766068A (zh) * 2019-12-09 2022-07-19 标能有限公司 密封型氧化还原电池

Also Published As

Publication number Publication date
JP2014130778A (ja) 2014-07-10

Similar Documents

Publication Publication Date Title
WO2014104282A1 (ja) 静止型バナジウムレドックス電池
JP5904447B2 (ja) バナジウム電池
US8889300B2 (en) Lithium-based high energy density flow batteries
JP6400577B2 (ja) 最適な膜の電気化学的エネルギー貯蔵システム
US20140050947A1 (en) Hybrid Electrochemical Energy Storage Devices
US9692077B2 (en) Aqueous redox flow batteries comprising matched ionomer membranes
Wang et al. A Li–O2/Air Battery Using an Inorganic Solid-State Air Cathode
JP2014510361A (ja) アルカリ金属−空気フロー電池
WO2004095602A2 (en) Battery with bifunctional electrolyte
US20150357653A1 (en) Vanadium Solid-Salt Battery and Method for Producing Same
JP5712688B2 (ja) レドックスフロー電池
JP4728217B2 (ja) 新規なハロゲン化バナジウム・レドックスフロー・バッテリ
JP2015523697A (ja) 適合するアイオノマー膜を含むレドックスフロー電池
JP2018139227A (ja) 高い開路電位を特徴とする電気化学的システム
JP2016091699A (ja) ナトリウムイオン二次電池用負極、ナトリウムイオン二次電池、リチウムイオン二次電池用負極、リチウムイオン二次電池
JP2019505967A (ja) レドックスフロー電池用電解液およびレドックスフロー電池
JP6308566B2 (ja) 大きな負の半電池電位を特徴とする電気化学的エネルギー貯蔵システムおよび方法
WO2019181526A1 (ja) 電気化学キャパシタ
WO2014156595A1 (ja) バナジウム固体塩電池及びその製造方法
JP2014096213A (ja) アルカリ金属−空気二次電池
WO2016158217A1 (ja) バナジウムレドックス電池
JP6083566B2 (ja) バナジウム固体塩電池及びその製造方法
WO2016158295A1 (ja) バナジウムレドックス電池
KR102210657B1 (ko) 니켈을 전극활물질로 포함하는 수계 레독스 흐름 전지
US20150279575A1 (en) Super hybrid capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867500

Country of ref document: EP

Kind code of ref document: A1