JP2014062620A - Cooling structure for bearing device - Google Patents
Cooling structure for bearing device Download PDFInfo
- Publication number
- JP2014062620A JP2014062620A JP2012209139A JP2012209139A JP2014062620A JP 2014062620 A JP2014062620 A JP 2014062620A JP 2012209139 A JP2012209139 A JP 2012209139A JP 2012209139 A JP2012209139 A JP 2012209139A JP 2014062620 A JP2014062620 A JP 2014062620A
- Authority
- JP
- Japan
- Prior art keywords
- outer ring
- cooling air
- oil
- air
- ring spacer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 232
- 125000006850 spacer group Chemical group 0.000 claims abstract description 183
- 239000000203 mixture Substances 0.000 claims abstract description 47
- 230000002093 peripheral effect Effects 0.000 claims abstract description 23
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 238000005096 rolling process Methods 0.000 claims description 114
- 238000011144 upstream manufacturing Methods 0.000 claims description 22
- 239000003595 mist Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims 2
- 238000005461 lubrication Methods 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 108
- 230000000694 effects Effects 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Landscapes
- Auxiliary Devices For Machine Tools (AREA)
- Turning (AREA)
- Mounting Of Bearings Or Others (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
この発明は、エアとオイルの混合物により潤滑される転がり軸受が3個以上並んで配置され、工作機械、産業機械等に用いられる軸受装置の冷却構造に関する。 The present invention relates to a cooling structure for a bearing device used in a machine tool, an industrial machine, or the like, in which three or more rolling bearings lubricated by a mixture of air and oil are arranged side by side.
工作機械の主軸装置では、加工精度を確保するために、装置の温度上昇は小さく抑える必要がある。しかしながら最近の工作機械では、加工能率を向上させるため高速化の傾向にあり、主軸を支持する軸受からの発熱も高速化と共に大きくなってきている。また、装置内部に駆動用のモータを組込んだいわゆるモータビルトインタイプが多くなってきており、装置の発熱要因ともなってきている。 In a spindle device of a machine tool, it is necessary to suppress the temperature rise of the device to be small in order to ensure machining accuracy. However, recent machine tools have a tendency to increase the speed in order to improve the processing efficiency, and the heat generated from the bearing supporting the main shaft is also increasing as the speed increases. In addition, so-called motor built-in types in which a driving motor is incorporated in the apparatus are becoming more and more a cause of heat generation of the apparatus.
発熱による軸受の温度上昇は、予圧の増加をもたらす結果となり、主軸の高速化、高精度化を考えると極力抑えたい。主軸装置の温度上昇を抑える構造として、外輪間座の内周面と内輪間座の外周面の間の空間に冷却用エアを送り、軸と軸受の冷却を行う構造がある(例えば、特許文献1)。 The rise in the temperature of the bearing due to heat generation results in an increase in preload, and we want to suppress it as much as possible in consideration of higher speed and higher accuracy of the spindle. As a structure that suppresses the temperature rise of the spindle device, there is a structure in which cooling air is sent to a space between the inner peripheral surface of the outer ring spacer and the outer peripheral surface of the inner ring spacer to cool the shaft and the bearing (for example, Patent Documents). 1).
上記冷却用エアによる冷却構造は、冷却効果が高いので、主軸装置の温度上昇を効果的に抑えることが期待できる。しかし、転がり軸受が3個以上軸方向に並んで配置され、かつ各転がり軸受がエアオイルにより潤滑される場合、エアオイルのエアの流れと冷却用エアの流れの相互関係を考慮する必要がある。転がり軸受をオイルミストにより潤滑する潤滑方式である場合も同様である。 Since the cooling structure using the cooling air has a high cooling effect, it can be expected to effectively suppress the temperature rise of the spindle device. However, when three or more rolling bearings are arranged in the axial direction and each rolling bearing is lubricated with air oil, it is necessary to consider the interrelationship between the air flow of air oil and the flow of cooling air. The same applies when the rolling bearing is lubricated by oil mist.
例えば図9のように、アンギュラ玉軸受からなる4個の転がり軸受1A,1B,1C,1Dを、左側2個の転がり軸受1A,1Bおよび右側2個の転がり軸受1C,1Dはそれぞれ並列組合せで配置し、中央の2個の転がり軸受1B,1Cは互いに背面組合せで配置した軸受装置Jでは、一般的にエアオイル20および冷却用エア10の給排経路は次のようになる。
すなわち、エアオイル20に関しては、破線の矢印で示すように、中央の外輪間座4Mの軸方向両端に設けたオイル供給口(図示せず)から中央の2個の転がり軸受1B,1Cに供給すると共に、左右両側の外輪間座4L,4Rに設けたオイル供給口(図示せず)から外側の転がり軸受1A,1Dにそれぞれ供給する。
冷却用エア10に関しては、実線の矢印で示すように、中央の外輪間座4Mに設けた冷却用エア吐出口11Mから中央の外輪間座4Mおよび内輪間座5M間に吐出すると共に、左右両側の外輪間座4L,4Rに設けた各冷却用エア吐出口11L,11Rから左右両側の外輪間座4L,4Rおよび内輪間座5L,5R間に吐出する。
転がり軸受1A,1B,1C,1Dに潤滑用のオイルを供給した後のエアオイル20のエア、および軸受装置Jおよび主軸7を冷却した後の冷却用エア10は、共に各外輪間座4L,4M,4Nの軸方向両端に設けた排気口(図示せず)から、主軸装置の外部に排出される。
For example, as shown in FIG. 9, four
That is, the
The
The air of the
図9の軸受装置Jの場合、中央の外輪間座4Mのオイル供給口から噴射されたエアオイル20のエアは、中央の外輪間座4Mの冷却用エア吐出口11Mから吐出された冷却用エア10と同じ方向に流れる。しかし、左右両側の外輪間座4L,4Rの冷却用エア吐出口11L,11Rから吐出された冷却用エア10は、その一部が中央の転がり軸受1B,1Cにも流れる。この左右両側の外輪間座4L,4Rの冷却用エア吐出口11L,11Rから吐出される冷却用エア10は、その流れ方向が中央の外輪間座4Mのオイル供給口から噴射されたエアオイル20のエアと逆向きであるため、これら冷却用エア10とエアオイル20が中央の転がり軸受1B,1Cの軸方向外側部30で衝突し、エアオイル20がスムーズに流れなくなることがある。すると、エアオイル20のオイルが上記軸方向外側部40に十分供給されなくなり、過昇温に至ることがある。
In the case of the bearing device J in FIG. 9, the
この発明の目的は、転がり軸受が3個以上軸方向に並んで配置された軸受装置において、軸受装置およびこの軸受装置に支持される軸を効率良く冷却することができ、かつ各転がり軸受に潤滑用のオイルを良好に供給することができる冷却構造を提供することである。 An object of the present invention is to efficiently cool a bearing device and a shaft supported by the bearing device in a bearing device in which three or more rolling bearings are arranged in the axial direction, and each rolling bearing is lubricated. It is providing the cooling structure which can supply the oil for use satisfactorily.
この発明の軸受装置の冷却構造は、転がり軸受が3個以上軸方向に並んで配置され、隣合う転がり軸受の各外輪間および各内輪間に外輪間座および内輪間座をそれぞれ介在させ、前記外輪および外輪間座がハウジングに設置され、前記内輪および内輪間座が主軸に嵌合され、前記各外輪間座は、その軸方向端部に、前記転がり軸受にエアとオイルの混合物を供給するオイル供給口を有する軸受装置に適用される。上記軸受装置において、前記各外輪間座の内周面に、前記内輪間座の外周面に向けて冷却用エアを吐出する冷却用エア吐出口を設け、前記転がり軸受を介して隣合い、この中間の転がり軸受に対して片方の外輪間座から前記エアとオイルの混合物を供給する二つの外輪間座につき、前記中間の転がり軸受に供給される前記エアとオイルの混合物の流れ方向の、上流側に位置する外輪間座の前記冷却用エア吐出口、および下流側に位置する外輪間座の前記冷却用エア吐出口からそれぞれ吐出される冷却用エアの流量または圧力の関係が、前記下流側に位置する外輪間座の前記冷却用エア吐出口から吐出される冷却用エアが、前記中間の転がり軸受内における前記エアとオイルの混合物の流れと逆行しない関係となる構成を備えることを特徴とする。 In the cooling structure for a bearing device according to the present invention, three or more rolling bearings are arranged in the axial direction, and an outer ring spacer and an inner ring spacer are interposed between outer rings and inner rings of adjacent rolling bearings. An outer ring and an outer ring spacer are installed in a housing, and the inner ring and the inner ring spacer are fitted to a main shaft, and each outer ring spacer supplies a mixture of air and oil to the rolling bearing at its axial end. It is applied to a bearing device having an oil supply port. In the above bearing device, a cooling air discharge port for discharging cooling air toward the outer peripheral surface of the inner ring spacer is provided on the inner peripheral surface of each outer ring spacer, and adjacent to each other via the rolling bearing. Upstream in the flow direction of the air and oil mixture supplied to the intermediate rolling bearing, with respect to two outer ring spacers supplying the air and oil mixture from one outer ring spacer to the intermediate rolling bearing. The relationship between the flow rate or pressure of the cooling air discharged from the cooling air discharge port of the outer ring spacer positioned on the side and the cooling air discharge port of the outer ring spacer positioned on the downstream side is the downstream side. The cooling air discharged from the cooling air discharge port of the outer ring spacer located at the position where the air and oil mixture flow in the intermediate rolling bearing is not reversed. You .
この構成によると、各冷却用エア吐出口から冷却用エアが内輪間座の外周面に向けて吐出されることで、内輪間座に衝突した冷却用エアが軸受装置およびこの軸受装置に支持された軸の熱を奪う。それにより、軸受装置および軸が効率良く冷却される。前記中間の転がり軸受において冷却用エアがエアとオイルの混合物の流れと逆行しない構成であるため、中間の転がり軸受内において冷却用エアによってエアとオイルの混合物の流れが阻害されることがなく、エアとオイルの混合物が中間の転がり軸受に良好に供給される。 According to this configuration, the cooling air that is collided with the inner ring spacer is supported by the bearing device and the bearing device by discharging the cooling air from each cooling air discharge port toward the outer peripheral surface of the inner ring spacer. Take the heat of the other axis. Thereby, the bearing device and the shaft are efficiently cooled. In the intermediate rolling bearing, since the cooling air does not reverse the flow of the mixture of air and oil, the flow of the mixture of air and oil is not hindered by the cooling air in the intermediate rolling bearing, A mixture of air and oil is well supplied to the intermediate rolling bearing.
前記中間の転がり軸受において冷却用エアがエアとオイルの混合物の流れと逆行しないようにするには、一例を挙げると、前記各冷却用エア吐出口に冷却用エアを供給する冷却用エア供給装置を設け、この冷却用エア供給装置から各冷却用エア吐出口へ供給する冷却用エアの流量の設定によって、前記中間の転がり軸受を介して隣合う二つの外輪間座につき、前記上流側に位置する外輪間座の前記冷却用エア吐出口から吐出される冷却用エアの流量を、前記下流側に位置する外輪間座の前記冷却用エア吐出口から吐出される冷却用エアの流量よりも多くする。なお、外輪間座ごとの冷却用エア吐出口の数は、一個であっても複数個であってもよい。複数個である場合、外輪間座の冷却用エア吐出口から吐出される冷却用エアの流量とは、各冷却用エア吐出口から吐出される冷却用エアの総流量を言う。 In order to prevent the cooling air from reversing the flow of the air and oil mixture in the intermediate rolling bearing, for example, a cooling air supply device that supplies the cooling air to each cooling air discharge port The two outer ring spacers that are adjacent to each other through the intermediate rolling bearing are positioned on the upstream side by setting the flow rate of the cooling air supplied from the cooling air supply device to each cooling air discharge port. The flow rate of the cooling air discharged from the cooling air discharge port of the outer ring spacer is larger than the flow rate of the cooling air discharged from the cooling air discharge port of the outer ring spacer located on the downstream side. To do. The number of cooling air discharge ports for each outer ring spacer may be one or plural. When there are a plurality of cooling air, the cooling air flow rate discharged from the cooling air discharge port of the outer ring spacer means the total flow rate of cooling air discharged from each cooling air discharge port.
他の例として、前記中間の転がり軸受を介して隣合う二つの外輪間座につき、前記下流側に位置する外輪間座の前記冷却用エア吐出口の口径を、前記上流側に位置する外輪間座の前記冷却用エア吐出口の口径よりも大きくする。下流側と上流側とで冷却用エア吐出口の口径を変えることにより、下流側に位置する外輪間座と内輪間座との間の空間の圧力が、上流側に位置する外輪間座と内輪間座との間の空間の圧力よりも低くなる。この場合、各冷却用エア吐出口から吐出される圧縮エアの流量が同じであることが前提となる。外輪間座ごとの冷却用エア吐出口の数は、一個であっても複数個であってもよく、複数個の場合、外輪間座ごとに、各冷却用エア吐出口から吐出される冷却用エアの総流量が同じであることが前提となる。 As another example, for two outer ring spacers that are adjacent via the intermediate rolling bearing, the diameter of the cooling air discharge port of the outer ring spacer located on the downstream side is set between the outer rings located on the upstream side. The diameter of the cooling air discharge port of the seat is made larger. By changing the diameter of the cooling air discharge port between the downstream side and the upstream side, the pressure in the space between the outer ring spacer located on the downstream side and the inner ring spacer is changed to the outer ring spacer and the inner ring located on the upstream side. It becomes lower than the pressure of the space between the spacers. In this case, it is assumed that the flow rate of the compressed air discharged from each cooling air discharge port is the same. The number of cooling air discharge ports for each outer ring spacer may be one or plural, and in the case of a plurality, the cooling air discharged from each cooling air discharge port for each outer ring spacer It is assumed that the total air flow is the same.
さらなる他の例として、前記中間の転がり軸受を介して隣合う二つの外輪間座につき、前記上流側に位置する外輪間座の前記冷却用エア吐出口の数を、前記下流側に位置する外輪間座の前記冷却用エア吐出口の数よりも多くする。上流側と下流側とで冷却用エア吐出口の数を変えることにより、上流側に位置する外輪間座の冷却用エア吐出口から吐出される冷却用エアの流量を、下流側に位置する外輪間座の冷却用エア吐出口から吐出される冷却用エアの流量よりも多くなる。この場合も、各冷却用エア吐出口から吐出される圧縮エアの流量が同じであることが前提となる。 As still another example, for two outer ring spacers adjacent to each other via the intermediate rolling bearing, the number of the cooling air discharge ports of the outer ring spacer located on the upstream side is set to the outer ring located on the downstream side. More than the number of cooling air discharge ports of the spacer. By changing the number of cooling air discharge ports between the upstream side and the downstream side, the flow rate of the cooling air discharged from the cooling air discharge port of the outer ring spacer located on the upstream side is changed to the outer ring located on the downstream side. It becomes larger than the flow rate of the cooling air discharged from the cooling air discharge port of the spacer. Also in this case, it is assumed that the flow rate of the compressed air discharged from each cooling air discharge port is the same.
上記いずれの場合も、エアとオイルの混合物の流れ方向の上流側から下流側に向かって、冷却用エアの圧力勾配ができるため、中間の転がり軸受における冷却用エアの逆行流れが生じない。それにより、エアとオイルの混合物を中間の転がり軸受に良好に供給することができる。 In any of the above cases, since a pressure gradient of the cooling air is generated from the upstream side to the downstream side in the flow direction of the mixture of air and oil, the reverse flow of the cooling air in the intermediate rolling bearing does not occur. Thereby, the mixture of air and oil can be satisfactorily supplied to the intermediate rolling bearing.
この発明の軸受装置の冷却構造において、前記中間の転がり軸受を介して隣合う二つの外輪間座のうち片方の外輪間座は、前記中間の転がり軸受に対してエアとオイルの混合物を供給する第1のオイル供給口を有し、もう片方の外輪間座は、この外輪間座を介して前記中間の転がり軸受と隣合う端の転がり軸受に対してエアとオイルの混合物を供給する第2のオイル供給口を有し、前記第1のオイル供給口から前記中間の転がり軸受に供給されるエアとオイルの混合物の流れ方向と、前記第2のオイル供給口から前記端の転がり軸受に供給されるエアとオイルの混合物の流れ方向とが同一であり、前記中間の転がり軸受から前記端の転がり軸受へ、前記もう片方の外輪間座とこの外輪間座に対向する内輪間座の間を通ってエアとオイルの混合物が流れる場合、前記中間および端の各転がり軸受に供給されるエアとオイルの混合物のうちのエアを排気する排気口を、エアとオイルの混合物の流れ方向の下流側端の1箇所に設けると良い。 In the cooling structure for a bearing device according to the present invention, one outer ring spacer of two adjacent outer ring spacers via the intermediate rolling bearing supplies a mixture of air and oil to the intermediate rolling bearing. A second outer ring spacer having a first oil supply port supplies a mixture of air and oil to the rolling bearing at the end adjacent to the intermediate rolling bearing through the outer ring spacer. And the flow direction of the mixture of air and oil supplied from the first oil supply port to the intermediate rolling bearing, and the second oil supply port to the end rolling bearing. The flow direction of the mixture of air and oil is the same, from the intermediate rolling bearing to the rolling bearing at the end, between the other outer ring spacer and the inner ring spacer facing the outer ring spacer. Mix of air and oil through When an exhaust port for exhausting air out of the mixture of air and oil supplied to the intermediate and end rolling bearings is provided at one downstream end in the flow direction of the mixture of air and oil, good.
各転がり軸受に供給されるエアとオイルの混合物のうちのエアは、各転がり軸受を通過した後、軸受装置が収容されるハウジング等に設けられた排出孔を通ってハウジング等の外部へ排出される。転がり軸受ごとに、転がり軸受内から排出孔へエアを導く排気口が設けられていると、排気管におけるエア流れ方向の下流側で、上流側から流れてくるエアと、排気口から排気管に流れ込むエアとが衝突してエアがスムーズに流れ難くなる。それにより、転がり軸受内でのエアとオイルの混合物の流れも悪くなり、転がり軸受にオイルが十分に供給されなくなる可能性がある。これに対して、上記構成のように、排気口をエアとオイルの混合物の流れ方向の下流側端の1箇所に設けると、排気孔を流れるエアと排気口から排気孔へ流れ込むエアとが衝突する箇所が少なくなる。それにより、転がり軸受内におけるエアとオイルの混合物の流れが良好となる。 The air in the mixture of air and oil supplied to each rolling bearing passes through each rolling bearing and is then discharged to the outside of the housing or the like through a discharge hole provided in the housing or the like in which the bearing device is accommodated. The If each rolling bearing is provided with an exhaust port that guides air from the inside of the rolling bearing to the discharge hole, the air flowing from the upstream side on the downstream side of the air flow direction in the exhaust pipe and the exhaust port to the exhaust pipe The flowing air collides with the air, making it difficult for the air to flow smoothly. Thereby, the flow of the mixture of air and oil in the rolling bearing is also deteriorated, and there is a possibility that the oil is not sufficiently supplied to the rolling bearing. On the other hand, if the exhaust port is provided at one location on the downstream end in the flow direction of the mixture of air and oil as in the above configuration, the air flowing through the exhaust port collides with the air flowing into the exhaust port from the exhaust port There are fewer places to do. Thereby, the flow of the mixture of air and oil in the rolling bearing is improved.
排気口を上記箇所に設ける場合、前記排気口に繋がりエアを軸受装置の外部へ導く排気孔を、前記排気口ごとに設けても良い。
この構成であると、排気孔を流れるエアと排気口から排気孔へ流れ込むエアとが衝突する箇所を完全に無くすことができ、転がり軸受内でのエアとオイルの混合物の流れがより一層良好となる。
When the exhaust port is provided at the above location, an exhaust hole that leads to the outside of the bearing device by connecting to the exhaust port may be provided for each exhaust port.
With this configuration, the location where the air flowing through the exhaust hole collides with the air flowing into the exhaust hole from the exhaust port can be completely eliminated, and the flow of the mixture of air and oil in the rolling bearing can be further improved. Become.
この発明の軸受装置の冷却構造において、前記冷却用エア吐出口から吐出された冷却用エアを前記外輪間座と前記内輪間座との間の空間から排出する排気口を、前記外輪間座の前記冷却用エア吐出口と同じ軸方向位置に設けても良い。
この場合、冷却用エア吐出口から吐出された冷却用エアが、外輪間座と内輪間座との間の空間において軸方向に広がるが、上記冷却用エアの軸方向の流れは生じない。そのため、前記中間の転がり軸受を流れるエアとオイルの混合物に逆行する冷却用エアの流れが生じ難い。
In the cooling structure of the bearing device according to the present invention, an exhaust port for discharging the cooling air discharged from the cooling air discharge port from a space between the outer ring spacer and the inner ring spacer is provided on the outer ring spacer. You may provide in the same axial direction position as the said cooling air discharge outlet.
In this case, the cooling air discharged from the cooling air discharge port spreads in the axial direction in the space between the outer ring spacer and the inner ring spacer, but the axial flow of the cooling air does not occur. Therefore, it is difficult for a flow of cooling air to flow backward to the mixture of air and oil flowing through the intermediate rolling bearing.
この発明の軸受装置の冷却構造において、前記エアとオイルの混合物は、エアにより液状のオイルを搬送するエアオイルであっても良く、またエアにより霧状のオイルを搬送するオイルミストであっても良い。 In the cooling structure of the bearing device of the present invention, the mixture of air and oil may be air oil that conveys liquid oil by air, or may be oil mist that conveys mist-like oil by air. .
この発明の軸受装置の冷却構造は、工作機械の主軸の支持に好適に用いることができる。その場合、主軸の冷却効果が高く、各転がり軸受に潤滑用オイルを良好に供給することができるので、高速な領域での運転が可能となる。 The cooling structure for a bearing device according to the present invention can be suitably used for supporting the spindle of a machine tool. In this case, the cooling effect of the main shaft is high, and lubricating oil can be satisfactorily supplied to each rolling bearing, so that operation in a high speed region is possible.
この発明の軸受装置の冷却構造は、転がり軸受が3個以上軸方向に並んで配置され、隣合う転がり軸受の各外輪間および各内輪間に外輪間座および内輪間座をそれぞれ介在させ、前記外輪および外輪間座がハウジングに設置され、前記内輪および内輪間座が主軸に嵌合され、前記各外輪間座は、その軸方向端部に、前記転がり軸受にエアとオイルの混合物を供給するオイル供給口を有する軸受装置において、前記各外輪間座の内周面に、前記内輪間座の外周面に向けて冷却用エアを吐出する冷却用エア吐出口を設け、前記転がり軸受を介して隣合い、この中間の転がり軸受に対して片方の外輪間座から前記エアとオイルの混合物を供給する二つの外輪間座につき、前記中間の転がり軸受に供給される前記エアとオイルの混合物の流れ方向の、上流側に位置する外輪間座の前記冷却用エア吐出口、および下流側に位置する外輪間座の前記冷却用エア吐出口からそれぞれ吐出される冷却用エアの流量または圧力の関係が、前記下流側に位置する外輪間座の前記冷却用エア吐出口から吐出される冷却用エアが、前記中間の転がり軸受内における前記エアとオイルの混合物の流れと逆行しない関係となる構成を備えるため、軸受装置およびこの軸受装置に支持される軸を効率良く冷却することができ、かつ各転がり軸受に潤滑用のオイルを良好に供給することができる。 In the cooling structure for a bearing device according to the present invention, three or more rolling bearings are arranged in the axial direction, and an outer ring spacer and an inner ring spacer are interposed between outer rings and inner rings of adjacent rolling bearings. An outer ring and an outer ring spacer are installed in a housing, and the inner ring and the inner ring spacer are fitted to a main shaft, and each outer ring spacer supplies a mixture of air and oil to the rolling bearing at its axial end. In the bearing device having an oil supply port, a cooling air discharge port for discharging cooling air toward the outer peripheral surface of the inner ring spacer is provided on the inner peripheral surface of each outer ring spacer, and the rolling bearing is interposed therebetween. The flow of the mixture of air and oil supplied to the intermediate rolling bearing is adjacent to the two outer ring spacers that supply the mixture of air and oil from one outer ring spacer to the intermediate rolling bearing. Direction, The relationship between the flow rate or pressure of the cooling air discharged from the cooling air discharge port of the outer ring spacer located on the flow side and the cooling air discharge port of the outer ring spacer located on the downstream side is the downstream side. Since the cooling air discharged from the cooling air discharge port of the outer ring spacer located on the side has a relationship that does not reverse the flow of the mixture of air and oil in the intermediate rolling bearing, the bearing The device and the shaft supported by the bearing device can be efficiently cooled, and the oil for lubrication can be satisfactorily supplied to each rolling bearing.
この発明の一実施形態に係る軸受装置の冷却構造を図面と共に説明する。
図1ないし図3は、この発明の軸受装置の冷却構造の第1の実施形態を示す。図の例では、軸受装置Jが工作機械の主軸装置に組込まれた状態を示すが、工作機械に限定されるものではない。図1に示すように、この軸受装置Jは、4個の転がり軸受1A,1B,1C,1Dが軸方向に並んで配置され、隣合う転がり軸受の各外輪2間および各内輪3間に、外輪間座4L,4M,4Rおよび内輪間座5L,5M,5Rをそれぞれ介在させている。
A bearing device cooling structure according to an embodiment of the present invention will be described with reference to the drawings.
1 to 3 show a first embodiment of a cooling structure for a bearing device according to the present invention. Although the example of a figure shows the state where the bearing apparatus J was integrated in the spindle apparatus of the machine tool, it is not limited to a machine tool. As shown in FIG. 1, in this bearing device J, four rolling
軸受装置Jは、転がり軸受1A,1B,1C,1Dの各外輪2および外輪間座4L,4M,4Rがハウジング6の内周面に嵌合し、転がり軸受1A,1B,1C,1Dの各内輪2および内輪間座5L,5M,5Rが工作機械の主軸7の外周面に嵌合している。例えば、外輪2および外輪間座4はハウジング6に対してすきま嵌めとされ、内輪3および内輪間座5は軸7に対して締まり嵌めとされる。図の右端の転がり軸受1Dの外輪2はハウジング6の段部6aで軸方向の位置決めがされ、同転がり軸受1Dの内輪3は主軸7の段部7aにより軸方向の位置決めがされている。また、図の左端の転がり軸受1Aの外輪2に外輪押さえ31を押し当てると共に、同転がり軸受1Aの内輪3に対してナット32の締付けにより位置決め間座33を押し当てることで、軸受装置Jがハウジング6に予圧を与えた状態で固定されている。
In the bearing device J, the
主軸7は、ハウジング6に内臓のモータ(図示せず)、またはハウジング6外のモータ(図示せず)により回転させられる。モータによる主軸7の回転方向は、正逆に切替可能であってもよい。その場合、この明細書で言う「回転方向」は、主軸7の正転方向を言う。
The
各転がり軸受1A,1B,1C,1Dはアンギュラ玉軸受であり、内外輪3,2の軌道面間に複数の転動体8を有し、これら転動体8が保持器9により円周等配に保持されている。左側2個の転がり軸受1A,1Bおよび右側2個の転がり軸受1C,1Dは共に、互いに並列組合せであり、中央の2個の転がり軸受1B,1Cは互いに背面組合せである。各転がり軸受1A,1B,1C,1Dの外輪2および各外輪間座4L,4M,4Rが主軸装置のハウジング6に設置され、各転がり軸受1A,1B,1C,1Dの内輪3および各内輪間座5L,5M,5Rが主軸7の外周面に嵌合している。
Each of the rolling
上記軸受装置Jの冷却構造について説明する。
図1および図3に示すように、各外輪間座4L,4M,4Rの内周面と各内輪間座5L,5M,5Rの外周面との間には径方向すきまδ(図1(B))が設けられており、各外輪間座4L,4M,4Rの内周面に、各内輪間座5L,5M,5Rの外周面に向けて冷却用エア10を吐出する冷却用エア吐出口11L,11M,11Rが設けられている。これら冷却用エア吐出口11L,11M,11Rは、例えば円周方向に等配で複数箇所に設けられている。冷却用エア吐出口11L,11M,11Rは、外輪間座4L,4M,4Rごとに1個であっても良い。
The cooling structure of the bearing device J will be described.
As shown in FIGS. 1 and 3, there is a radial clearance δ (FIG. 1B between the inner peripheral surface of each
この実施形態の場合、図3に示すように、各冷却用エア吐出口11L,11M,11Rは、そのエア吐出方向を、内輪3および主軸7の回転方向L1の前方へ傾斜させてある。つまり、各冷却用エア吐出口11L,11M,11Rは、それぞれ直線状であって、外輪間座4の軸心に垂直な断面における任意の半径方向の直線L2から、この直線L2と直交する方向にオフセット(オフセット量OS)した位置にあり、前記直線L2と平行とされている。また、内輪間座5には、冷却用エア吐出口11L,11M,11Rと同じ軸方向位置に、径方向に貫通する孔12が円周方向に等配で複数個設けられている。
In the case of this embodiment, as shown in FIG. 3, the cooling
外輪間座4L,4M,4Rの外周面には、冷却用エア10を導入する環状の導入溝13が設けられている。この導入溝13は、外輪間座4L,4M,4Rの外周面における軸方向中間部に設けられ、各冷却用エア吐出口11L,11M,11Rと同方向に延びる接続孔13aを介して各冷却用エア吐出口11L,11M,11Rに連通している。軸受装置Jの外部に設けられたブロア等の冷却用エア供給装置14より、ハウジング6に設けた冷却用エア導入孔151,152を通って、導入溝13に冷却用エア10が供給される。詳しくは、冷却用エア導入孔151によって中央の外輪間座4Mに設けられた冷却用エア吐出口11Mに圧縮エアが供給され、2本の冷却用エア導入孔152によって左右の外輪間座4L,4Rに設けられた冷却用エア吐出口11L,11Rにそれぞれ圧縮エアが供給される。
An
この実施形態の場合、各冷却用エア吐出口11L,11M,11Rの口径は同じであるが、冷却用エア供給装置14から冷却用エア導入孔151,152に送り出す冷却用エア10の流量を異ならせることで、中央の外輪間座4Mに設けられた冷却用エア吐出口11Mから吐出される冷却用エア10の流量の方が、両側の外輪間座4L,4Mに設けられた冷却用エア吐出口11L.11Rから吐出される冷却用エア10の流量よりも多くしている。冷却用エア供給装置14から送り出す冷却用エア10の流量調整は、例えば流量調整弁等により行う。例えば、冷却用エア吐出口11Mから吐出される冷却用エア10の流量を「100」とした場合、冷却用エア吐出口11L.11Rから吐出される冷却用エア10の流量を「50」とする。
In this embodiment, the cooling
言い換えると、転がり軸受1B(1C)を介して隣り合い、この中間の転がり軸受1B(1C)に対して片方の外輪間座4Mから後記エアオイル20を供給する二つの外輪間座4M,4L(4M,4R)につき、前記中間の転がり軸受1B(1C)に供給されるエアオイル20の流れ方向の上流側に位置する外輪間座4Mの冷却用エア吐出口11Mから吐出される冷却用エア10の流量を、下流側に位置する外輪間座4L(4R)の冷却用エア吐出口11L(11R)から吐出される冷却用エア10の流量よりも多くした。この理由については、後で詳しく説明する。
In other words, two
各外輪間座4L,4M,4Lの軸方向両端面には、切欠きからなる冷却用エア10の排出口17が設けられている。外輪間座4L,4M,4Rに隣接して転がり軸受1A,1B,1C,1Dの外輪2が配置されることで、前記切欠きが、外輪間座4L,4M,4Rと内輪間座5L,5M,5Rとの間の空間と軸受装置Jの外部とを連通する排出口17となる。ハウジング6には排気孔18が設けられ、この排気孔18が、接続孔19を介して各外輪間座4L,4M,4Rの排出口17と連通している。
The
次に、軸受装置Jの潤滑構造について説明する。
この軸受装置Jは、オイルとエアの混合物、例えばエアにより液状のオイルを搬送するエアオイルによって潤滑する。エアオイルの代わりに、エアにより霧状のオイルを搬送するオイルミストとしてもよい。
Next, the lubricating structure of the bearing device J will be described.
The bearing device J is lubricated by a mixture of oil and air, for example, air oil that conveys liquid oil by air. Instead of air oil, an oil mist that conveys mist-like oil by air may be used.
図2に示すように、外輪間座4L,4M,4Rの端面に、転がり軸受1A,1B,1C,1Dの軸受空間にエアオイル20を供給するオイル供給口211,212が設けられている。詳しくは、中央の外輪間座4Mは、両側の転がり軸受1B,1Cにそれぞれエアオイル20を供給する第1のオイル供給口211を両端面に有する。両端の外輪間座5L,5Rは、隣合う両端の転がり軸受1A,1Dにそれぞれエアオイル20を供給する第2のオイル供給口212を片方の端面に有する。
As shown in FIG. 2, oil supply ports 21 1 and 21 2 for supplying
外輪間座4L,4M,4Rには、前記オイル供給口211,212に連通するオイル導入孔23が設けられている。オイル導入孔23は、外輪間座4L,4M,4Rの外周面から径方向内方に所定深さで形成され、孔底付近にてオイル供給口211,212に連通する。各オイル供給口211,212は、オイル導入孔23から転がり軸受1A,1B,1C,1Dに向かうに従って内径側に至るように傾斜した貫通孔状に形成されている。軸受装置Jの外部に設けたエアオイル供給装置24より、ハウジング6に設けたエアオイル供給孔25を通って、オイル導入孔23にエアオイル20が供給される。
The
この軸受装置Jは、運転時等に、図1(B)の部分拡大図に白抜き矢印で示すように、冷却用エア供給装置14から送られてくる冷却用エア10が、各外輪間座4L,4M,4Rの冷却用エア吐出口11L,11M,11Rから内輪間座5L,5M,5Rの外周面に向けて吐出される。これにより、内輪間座5L,5M,5Rを冷却し、さらに冷却された内輪間座5L,5M,5Rにより主軸7を冷却する。また、内輪間座5L,5M,5Rに、冷却用エア吐出口11L,11M,11Rと同じ軸方向位置に孔12が設けられているため、冷却用エア吐出口11L,11M,11Rから吐出された冷却用エア10が上記孔12を通って主軸7に直接当たり、主軸7を効率良く冷却することができる。各冷却用エア吐出口11L,11M,11Rのエア吐出方向が内輪3および主軸7の回転方向L1の前方へ傾斜させてあるため、冷却用エア10が内輪間座5L,5M,5Rの外周面および孔12の壁面に当たる際に、冷却用エア10の噴射力を内輪間座5L,5M,5Rに与えることができ、主軸7を駆動する作用を期待することができる。
In the bearing device J, the cooling
冷却用エア吐出口11L,11M,11Rから吐出された冷却用エア10の大半は、その冷却用エア吐出口11L,11M,11Rが設けられている外輪間座4L,4M,4Rの排出口17から、接続孔19および排気孔18を通って、主軸装置Jの外部に排出される。中央の外輪間座4Mに設けられた冷却用エア吐出口11Mから吐出される冷却用エア10の流量の方が、両側の外輪間座4L,4Mに設けられた冷却用エア吐出口11L.11Rから吐出される冷却用エア10の流量よりも多くしたことにより、中央の外輪間座4Mと内輪間座5Mとの間の空間の圧力の方が、外側の外輪間座4L(4R)と内輪間座5L(5R)との間の空間の圧力よりも高くなっている。そのため、冷却用エア吐出口11Mから吐出される冷却用エア10の一部は、両側の転がり軸受1B(1C)を通り抜けて、外側の外輪間座4L(4R)と内輪間座5L(5R)との間の空間へ流れるが、外側の外輪間座4L(4R)と内輪間座5L(5R)との間の空間から中央の外輪間座4Mと内輪間座5Mとの間の空間へは冷却用エア10が流れない。
Most of the cooling
また、軸受装置Jの運転時等に、図1(B)の部分拡大図に中塗り矢印で示すように、エアオイル供給装置24から送られてくるエアオイル20が、第1のオイル供給口211から中央の転がり軸受1B(1C)の軸受空間に供給され、かつ第2のオイル供給口212から両端の転がり軸受1A(1D)の軸受空間にそれぞれ供給される。先に説明したように、外輪間座4L,4M,4Rと内輪間座5L,5M,5Rとの間の空間の圧力は、中央の方が外側よりも高くなっている。つまり、エアオイル20の流れ方向の上流側から下流側に向かって、冷却用エア10の圧力勾配ができている。よって、中間の転がり軸受1B(1C)において、エアオイル20のエアの流れに冷却用エア10の流れが逆行しない。そのため、エアオイル20のエアがスムーズに流れ、各転がり軸受1A,1B,1C,1Dにオイルを良好に供給することができる。
Further, during operation of the bearing device J, etc., the
図4は、この発明の第2の実施形態を示す。この軸受装置Jの冷却構造は、前記第1の実施形態と比べて、隣合う二つの外輪間座4M,4L(4M,4R)につき、中間の転がり軸受1B(1C)に供給されるエアオイル20の流れ方向の上流側に位置する外輪間座4Mの冷却用エア吐出口11Mの口径D1よりも、下流側に位置する外輪間座4L(4R)の冷却用エア吐出口11L(11R)の口径D2を大きくした点が異なる。冷却用エア供給装置(図示せず)から供給されて各冷却用エア吐出口11L,11M,11Rから吐出される冷却用エア10の流量は同じである。他は、第1の実施形態と同じ構成である。
FIG. 4 shows a second embodiment of the present invention. Compared with the first embodiment, the cooling structure of the bearing device J is such that the
この構成の場合、上記のように冷却用エア吐出口11M,11L(11R)の口径D1,D2を定めたことにより、下流側に位置する外輪間座4L(4R)と内輪間座5L(5R)との間の空間の圧力が、上流側に位置する外輪間座4Mと内輪間座5Mとの間の空間の圧力よりも低くなる。それにより、エアオイル20の流れ方向の上流側から下流側に向かって、冷却用エア20の圧力勾配ができ、中間の転がり軸受1B(1C)における冷却用エア10の逆行流れを防ぐことができる。
In the case of this configuration, by defining the diameters D1 and D2 of the cooling
図5は、この発明の第3の実施形態を示す。この軸受装置Jの冷却構造は、中央の外輪間座4Mに二つの冷却用エア吐出口11Mを設けた点が第1の実施形態と異なる。換言すると、隣合う二つの外輪間座4M,4L(4M,4R)につき、中間の転がり軸受1B(1C)に供給されるエアオイル20の混合物の流れ方向の上流側に位置する外輪間座4Mの冷却用エア吐出口11Mの数を、下流側に位置する外輪間座4L(4R)の冷却用エア吐出口11L(11R)の数よりも多くした。冷却用エア供給装置(図示せず)から供給されて各冷却用エア吐出口11L,11M,11Rから吐出される冷却用エア10の流量は同じである。他は、第1の実施形態と同じ構成である。
FIG. 5 shows a third embodiment of the present invention. The cooling structure of the bearing device J is different from that of the first embodiment in that two cooling
この場合、中央の外輪間座4Mに二つの冷却用エア吐出口11Mを設けたことにより、上流側に位置する外輪間座4Mの冷却用エア吐出口11Mから吐出される冷却用エア10の流量が、下流側に位置する外輪間座4L(4R)の冷却用エア吐出口11L(11R)から吐出される冷却用エア10の流量よりも多くなる。それにより、エアオイル20の流れ方向の上流側から下流側に向かって、冷却用エア20の圧力勾配ができ、中間の転がり軸受1B(1C)における冷却用エア10の逆行流れを防ぐことができる。
In this case, the flow rate of the cooling
図6は、この発明の第4の実施形態を示す。この軸受装置Jの冷却構造は、各外輪間座4L,4M,4Rにおいて、冷却用エア10およびエアオイル20のエアの排気口17が、冷却用エア吐出口11L,11M,11Rと同じ軸方向位置に設けられている。それに伴い、接続孔19も排気口17と同じ軸方向位置とする。排気口17を上記配置とすることにより、冷却用エア吐出口11L,11M,11Rから吐出された冷却用エア10が、外輪間座4L,4M,4Rと内輪間座5L,5M,5Rとの間の空間において軸方向には広がるが、軸方向には流れ難くなる。そのため、中間の転がり軸受1B(1C)を流れるエアオイル20の流れに逆行する冷却用エア10の流れが生じ難い。
FIG. 6 shows a fourth embodiment of the present invention. The cooling structure of this bearing device J is such that in each
図7および図8は、それぞれ冷却用エア10およびエアオイル20のエア(以下、まとめて「エア」とする。)の排出経路を第1の実施形態と異ならせた実施形態を示す。第1の実施形態の排気経路であると、図10のように、各外輪間座4L,4M,4Rの排気口17からエアが排出されるが、各排気口17の圧力バランス等の要因がエアの排出に関与するため、どの排気口17から排出され易いか正確には分からない。一般的には、大気開放口26に近い排気口17は排出され易く、遠い排気口17は排出され難いという傾向がある。また、排気孔18と接続孔19が交わる箇所41で、両孔18,19を流れるエアが衝突することにより、エアがスムーズに流れ難くなる。すると、排気口17からのエアの排出性が悪くなり、エアオイル20のオイルが滞留して焼付き等を引き起こす可能性がある。
FIG. 7 and FIG. 8 show embodiments in which the discharge paths of the cooling
図7に示す軸受装置Jの冷却構造は、第1の実施形態において各外輪間座4L,4M,4Rに設けられている排出口17を無くして、エアオイル20の流れ方向の下流側端となる1箇所だけに排気口17を設けた。これにより、排気孔18を流れるエアと排気口17から排気孔18へ流れ込むエアとが衝突する箇所が少なくなり、転がり軸受1A,1B,1C,1D内におけるエアオイル20の流れが良好となる。
The cooling structure of the bearing device J shown in FIG. 7 eliminates the
また、図8に示す軸受装置Jの冷却構造は、エアオイル20の流れ方向の下流側端となる1箇所だけに排気口17を設けると共に、この排気口17に繋がる排気孔18を排気口17ごとに設けた。これにより、排気孔18を流れるエアと排気口17から排気孔18へ流れ込むエアとが衝突する箇所を完全に無くすことができ、転がり軸受1A,1B,1C,1D内におけるエアオイル20の流れをより一層良好にすることができる。
In addition, the cooling structure of the bearing device J shown in FIG. Provided. Thereby, the location where the air flowing through the
上記各実施形態の説明から明らかなように、この発明の軸受装置Jの冷却構造は、軸受装置Jおよびこの軸受装置Jに支持される主軸7の冷却効果が高く、各転がり軸受1A,1B,1C,1Dに潤滑用のオイルを良好に供給することができるので、主軸装置を高速な領域での運転が可能となる。そのため、この軸受装置Jを、工作機械の主軸7の支持に好適に用いることができる。
As is apparent from the description of the above embodiments, the cooling structure of the bearing device J of the present invention has a high cooling effect on the bearing device J and the
1A,1B,1C,1D…転がり軸受
2…外輪
3…内輪
4L,4M,4R…外輪間座
5L,5M,5R…内輪間座
6…ハウジング
7…主軸
10…冷却用エア
11L,11M,11R…冷却用エア吐出口
17…排気口
18…排気孔
20…エアオイル(エアとオイルの混合物)
21…オイル供給口
211…第1のオイル供給口
212…第2のオイル供給口
J…軸受装置
DESCRIPTION OF
DESCRIPTION OF SYMBOLS 21 ... Oil supply port 21 1 ... 1st oil supply port 21 2 ... 2nd oil supply port J ... Bearing apparatus
Claims (8)
前記各外輪間座の内周面に、前記内輪間座の外周面に向けて冷却用エアを吐出する冷却用エア吐出口を設け、前記転がり軸受を介して隣合い、この中間の転がり軸受に対して片方の外輪間座から前記エアとオイルの混合物を供給する二つの外輪間座につき、前記中間の転がり軸受に供給される前記エアとオイルの混合物の流れ方向の、上流側に位置する外輪間座の前記冷却用エア吐出口、および下流側に位置する外輪間座の前記冷却用エア吐出口からそれぞれ吐出される冷却用エアの流量または圧力の関係が、前記下流側に位置する外輪間座の前記冷却用エア吐出口から吐出される冷却用エアが、前記中間の転がり軸受内における前記エアとオイルの混合物の流れと逆行しない関係となる構成を備えることを特徴とする軸受装置の冷却構造。 Three or more rolling bearings are arranged in the axial direction, an outer ring spacer and an inner ring spacer are interposed between outer rings and inner rings of adjacent rolling bearings, and the outer ring and outer ring spacers are installed in the housing. In the bearing device, the inner ring and the inner ring spacer are fitted to a main shaft, and each outer ring spacer has an oil supply port at its axial end for supplying a mixture of air and oil to the rolling bearing.
Provided on the inner peripheral surface of each outer ring spacer is a cooling air discharge port for discharging cooling air toward the outer peripheral surface of the inner ring spacer, and are adjacent to each other via the rolling bearing. On the other hand, for two outer ring spacers that supply the air and oil mixture from one outer ring spacer, the outer ring located on the upstream side in the flow direction of the air and oil mixture supplied to the intermediate rolling bearing The relationship between the cooling air flow rate or pressure discharged from the cooling air discharge port of the spacer and the cooling air discharge port of the outer ring spacer located on the downstream side is between the outer rings located on the downstream side. The cooling of the bearing device is characterized in that the cooling air discharged from the cooling air discharge port of the seat has a configuration that does not reverse the flow of the mixture of air and oil in the intermediate rolling bearing. Construction.
前記第1のオイル供給口から前記中間の転がり軸受に供給されるエアとオイルの混合物の流れ方向と、前記第2のオイル供給口から前記端の転がり軸受に供給されるエアとオイルの混合物の流れ方向とが同一であり、前記中間の転がり軸受から前記端の転がり軸受へ、前記もう片方の外輪間座とこの外輪間座に対向する内輪間座の間を通ってエアとオイルの混合物が流れ、
前記中間および端の各転がり軸受に供給されるエアとオイルの混合物のうちのエアを排気する排気口を、エアとオイルの混合物の流れ方向の下流側端の1箇所に設けた軸受装置の冷却構造。 5. The cooling structure for a bearing device according to claim 1, wherein one outer ring spacer of the two outer ring spacers adjacent to each other via the intermediate rolling bearing is the intermediate rolling element. A first oil supply port for supplying a mixture of air and oil to the bearing, and the other outer ring spacer is connected to the rolling bearing at the end adjacent to the intermediate rolling bearing through the outer ring spacer. A second oil supply port for supplying a mixture of air and oil,
The flow direction of the mixture of air and oil supplied from the first oil supply port to the intermediate rolling bearing, and the mixture of air and oil supplied from the second oil supply port to the end rolling bearing. The flow direction is the same, and from the intermediate rolling bearing to the end rolling bearing, a mixture of air and oil passes between the other outer ring spacer and the inner ring spacer facing the outer ring spacer. flow,
Cooling of a bearing device in which an exhaust port for exhausting air out of a mixture of air and oil supplied to each of the intermediate and end rolling bearings is provided at one downstream end in the flow direction of the mixture of air and oil. Construction.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012209139A JP6009296B2 (en) | 2012-09-24 | 2012-09-24 | Cooling structure of bearing device |
US14/430,464 US9541137B2 (en) | 2012-09-24 | 2013-09-19 | Cooling structure for bearing device |
KR1020157010570A KR102208885B1 (en) | 2012-09-24 | 2013-09-19 | Cooling structure for bearing device |
CN201380048975.5A CN104662316B (en) | 2012-09-24 | 2013-09-19 | The cooling structure of bearing arrangement |
EP19180598.5A EP3567267B1 (en) | 2012-09-24 | 2013-09-19 | Bearing device with a cooling structure |
EP13839999.3A EP2910806B1 (en) | 2012-09-24 | 2013-09-19 | Bearing device with a cooling structure |
PCT/JP2013/075223 WO2014046153A1 (en) | 2012-09-24 | 2013-09-19 | Cooling structure for bearing device |
US15/342,279 US10280980B2 (en) | 2012-09-24 | 2016-11-03 | Cooling structure for bearing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012209139A JP6009296B2 (en) | 2012-09-24 | 2012-09-24 | Cooling structure of bearing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014062620A true JP2014062620A (en) | 2014-04-10 |
JP6009296B2 JP6009296B2 (en) | 2016-10-19 |
Family
ID=50618025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012209139A Active JP6009296B2 (en) | 2012-09-24 | 2012-09-24 | Cooling structure of bearing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6009296B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016115143A1 (en) | 2015-08-20 | 2017-02-23 | Fanuc Corporation | Radiator structure for a main spindle in a processing device |
WO2018074375A1 (en) * | 2016-10-17 | 2018-04-26 | Ntn株式会社 | Cooling structure for bearing device |
WO2020054661A1 (en) * | 2018-09-13 | 2020-03-19 | Ntn株式会社 | Bearing device cooling structure, and main spindle device of machine tool |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06235425A (en) * | 1993-02-08 | 1994-08-23 | Nippon Seiko Kk | Bearing device |
JPH10299784A (en) * | 1997-04-30 | 1998-11-10 | Nippon Seiko Kk | Lubricating device for rolling bearing device |
JP2000274443A (en) * | 1999-03-24 | 2000-10-03 | Isuzu Motors Ltd | Lubricating and cooling device for bearing |
JP2004324811A (en) * | 2003-04-25 | 2004-11-18 | Koyo Seiko Co Ltd | Roller bearing device and lubricating method for it |
JP2011255443A (en) * | 2010-06-08 | 2011-12-22 | Nachi Fujikoshi Corp | Main shaft lubricating device |
-
2012
- 2012-09-24 JP JP2012209139A patent/JP6009296B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06235425A (en) * | 1993-02-08 | 1994-08-23 | Nippon Seiko Kk | Bearing device |
JPH10299784A (en) * | 1997-04-30 | 1998-11-10 | Nippon Seiko Kk | Lubricating device for rolling bearing device |
JP2000274443A (en) * | 1999-03-24 | 2000-10-03 | Isuzu Motors Ltd | Lubricating and cooling device for bearing |
JP2004324811A (en) * | 2003-04-25 | 2004-11-18 | Koyo Seiko Co Ltd | Roller bearing device and lubricating method for it |
JP2011255443A (en) * | 2010-06-08 | 2011-12-22 | Nachi Fujikoshi Corp | Main shaft lubricating device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016115143A1 (en) | 2015-08-20 | 2017-02-23 | Fanuc Corporation | Radiator structure for a main spindle in a processing device |
US10335912B2 (en) | 2015-08-20 | 2019-07-02 | Fanuc Corporation | Radiating structure for main spindle in machining apparatus |
DE102016115143B4 (en) * | 2015-08-20 | 2020-08-27 | Fanuc Corporation | Radiator structure for a main spindle in a machining device |
WO2018074375A1 (en) * | 2016-10-17 | 2018-04-26 | Ntn株式会社 | Cooling structure for bearing device |
WO2020054661A1 (en) * | 2018-09-13 | 2020-03-19 | Ntn株式会社 | Bearing device cooling structure, and main spindle device of machine tool |
Also Published As
Publication number | Publication date |
---|---|
JP6009296B2 (en) | 2016-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102208885B1 (en) | Cooling structure for bearing device | |
JP5917030B2 (en) | Rolling bearing | |
JP6050072B2 (en) | Cooling structure of bearing device | |
EP3124812B1 (en) | Cooling structure for bearing device | |
JP6144024B2 (en) | Cooling structure of bearing device | |
US8956050B2 (en) | Rolling bearing and rolling bearing assembly | |
JP6013112B2 (en) | Cooling structure of bearing device | |
US10001170B2 (en) | Rolling bearing | |
JPWO2016133050A1 (en) | Spindle device and machine tool | |
JP6009296B2 (en) | Cooling structure of bearing device | |
KR20190076027A (en) | Cooling structure of bearing device | |
JP6665065B2 (en) | Rotary joint | |
JP2014062618A (en) | Lubricating structure of bearing device | |
JP2012087864A (en) | Roller bearing | |
EP3851692B1 (en) | Bearing device cooling structure, and main spindle device of machine tool | |
KR20190044095A (en) | Cooling structure of bearing device | |
KR20150050259A (en) | Spindle structure of machine tool | |
JP6609003B2 (en) | Cooling structure of bearing device | |
WO2018074375A1 (en) | Cooling structure for bearing device | |
JP2018169040A (en) | Cooling structure of bearing device | |
JP2013059834A (en) | Main spindle device | |
WO2019073911A1 (en) | Cooling structure for bearing device | |
KR101336347B1 (en) | Ball screw for machine tool | |
JP5353432B2 (en) | Rolling bearing device | |
JP2024043034A (en) | bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160914 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6009296 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |