JP6050072B2 - Cooling structure of bearing device - Google Patents

Cooling structure of bearing device Download PDF

Info

Publication number
JP6050072B2
JP6050072B2 JP2012209138A JP2012209138A JP6050072B2 JP 6050072 B2 JP6050072 B2 JP 6050072B2 JP 2012209138 A JP2012209138 A JP 2012209138A JP 2012209138 A JP2012209138 A JP 2012209138A JP 6050072 B2 JP6050072 B2 JP 6050072B2
Authority
JP
Japan
Prior art keywords
bearing
outer ring
inner ring
spacer
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012209138A
Other languages
Japanese (ja)
Other versions
JP2014062619A (en
Inventor
水谷 守
守 水谷
健治 玉田
健治 玉田
康由 林
康由 林
裕士 恩田
裕士 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012209138A priority Critical patent/JP6050072B2/en
Application filed by NTN Corp filed Critical NTN Corp
Priority to CN201380048975.5A priority patent/CN104662316B/en
Priority to KR1020157010570A priority patent/KR102208885B1/en
Priority to US14/430,464 priority patent/US9541137B2/en
Priority to EP19180598.5A priority patent/EP3567267B1/en
Priority to EP13839999.3A priority patent/EP2910806B1/en
Priority to PCT/JP2013/075223 priority patent/WO2014046153A1/en
Publication of JP2014062619A publication Critical patent/JP2014062619A/en
Priority to US15/342,279 priority patent/US10280980B2/en
Application granted granted Critical
Publication of JP6050072B2 publication Critical patent/JP6050072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、軸受装置の冷却構造に関し、例えば、工作機械の主軸および主軸に組み込まれる軸受の冷却構造に関する。   The present invention relates to a cooling structure for a bearing device, for example, a main shaft of a machine tool and a cooling structure for a bearing incorporated in the main shaft.

工作機械の主軸装置では、加工精度を確保するために、装置の温度上昇は小さく抑える必要がある。しかしながら最近の工作機械では、加工能率を向上させるため高速化の傾向にあり、主軸を支持する軸受からの発熱も高速化と共に大きくなってきている。また、装置内部に駆動用のモータを組込んだいわゆるモータビルトインタイプが多くなってきており、装置の発熱要因ともなってきている。   In a spindle device of a machine tool, it is necessary to suppress the temperature rise of the device to be small in order to ensure machining accuracy. However, recent machine tools have a tendency to increase the speed in order to improve the processing efficiency, and the heat generated from the bearing supporting the main shaft is also increasing as the speed increases. In addition, so-called motor built-in types in which a driving motor is incorporated in the apparatus are becoming more and more a cause of heat generation of the apparatus.

発熱による軸受の温度上昇は、予圧の増加をもたらす結果となり、主軸の高速化、高精度化を考えると極力抑えたい。主軸装置の温度上昇を抑える方法として、冷却用の圧縮エアを軸受に送り、軸と軸受の冷却を行う方法がある(例えば、特許文献1)。なお、特許文献1では、2つの軸受間の空間に冷風を、回転方向に角度を付けて噴射して旋回流とすることで、軸と軸受の冷却を行っている。   The rise in the temperature of the bearing due to heat generation results in an increase in preload, and we want to suppress it as much as possible in consideration of higher speed and higher accuracy of the spindle. As a method of suppressing the temperature rise of the main shaft device, there is a method of cooling the shaft and the bearing by sending compressed air for cooling to the bearing (for example, Patent Document 1). In Patent Document 1, the shaft and the bearing are cooled by injecting cold air into the space between the two bearings at an angle in the rotational direction to form a swirling flow.

特開2000−161375号公報JP 2000-161375 A

上記圧縮エアによる冷却方法は、冷却効果が高いので、主軸装置の温度上昇を効果的に抑えることが期待できる。しかし、圧縮エアによる冷却方法をグリース潤滑の軸受装置に適用すると、軸受内のグリースが圧縮エアによって吹き飛ばされて排除される事態が生じる可能性がある。よって、上記事態を回避する方策を講じることが必要となる。   Since the cooling method using the compressed air has a high cooling effect, it can be expected to effectively suppress the temperature rise of the spindle device. However, when the cooling method using compressed air is applied to a grease lubricated bearing device, there is a possibility that the grease in the bearing is blown off by the compressed air and eliminated. Therefore, it is necessary to take measures to avoid the above situation.

この発明の目的は、グリース潤滑の軸受装置において、圧縮エアにより軸受装置を効率良く冷却することができ、しかも軸受内のグリースが圧縮エアによって排除されることを防止できる冷却構造を提供することである。   An object of the present invention is to provide a cooling structure capable of efficiently cooling a bearing device with compressed air and preventing grease in the bearing from being eliminated by compressed air in a grease lubricated bearing device. is there.

この発明の軸受装置の冷却構造は、軸方向に並ぶ複数の転がり軸受の外輪間および内輪間に外輪間座および内輪間座それぞれ介在、前記外輪および外輪間座がハウジングに設置され、前記内輪および内輪間座が主軸に嵌合され、前記転がり軸受が前記外輪と内輪間の軸受空間に封入されたグリースにより潤滑される軸受装置に適用され、前記外輪間座の内周面に、前記内輪間座の外周面に向けて冷却用の圧縮エアを供給する供給口けられ、前記外輪間座の軸方向端面に、前記供給口から供給された圧縮エアを排出する排出口が設けられ、前記内輪間座の軸方向両端部に、外径側に張り出して前記供給口から供給された圧縮エアが前記軸受空間へ流入するのを阻む障害壁けられ、この障害壁の外径端は、前記外輪の内周面に僅かな隙間を介して対向することを特徴とする。 The cooling structure of the bearing device of the invention, interposed outer ring spacer and the inner ring spacer, respectively between the outer ring and the inner ring of a plurality of rolling bearings arranged in the axial direction, the outer ring and the outer ring spacer is disposed in the housing, the An inner ring and an inner ring spacer are fitted to a main shaft, and the rolling bearing is applied to a bearing device that is lubricated by grease sealed in a bearing space between the outer ring and the inner ring. supply ports set for supplying compressed air for cooling toward the outer circumferential surface of the inner ring spacer vignetting, the axial end face of the outer ring spacer, discharge port for discharging the compressed air supplied from the supply port provided is, the both axial ends of the inner ring spacer, disorders wall compressed air supplied from the supply port protrudes radially outwardly is prevent from flowing into the bearing space is set vignetting, outside of the disorder wall The diameter end is slightly on the inner peripheral surface of the outer ring. Wherein the opposed through between.

この構成によると、外輪間座に設けた供給口より、冷却用の圧縮エアが内輪間座の外周面に向けて供給されることで、内輪間座に衝突した圧縮エアが軸受装置およびこの軸受装置に支持された主軸の熱を奪う。それにより、軸受装置および主軸が効率良く冷却される。内輪間座の軸方向両端部に障害壁が設けられており、圧縮エアが軸受空間へ流入することが阻められているため、軸受空間に封入されたグリースが圧縮エアで排除されることが防がれる。そのため、良好な潤滑状態を維持することができる。 According to this configuration, the compressed air that has collided with the inner ring spacer is supplied to the bearing device and the bearing by supplying the compressed air for cooling toward the outer peripheral surface of the inner ring spacer from the supply port provided in the outer ring spacer. Takes away the heat of the spindle supported by the device. Thereby, the bearing device and the main shaft are efficiently cooled. Obstacle walls are provided at both ends of the inner ring spacer in the axial direction to prevent the compressed air from flowing into the bearing space, so that the grease enclosed in the bearing space may be removed by the compressed air. It is prevented. Therefore, a good lubrication state can be maintained.

この発明の軸受装置の冷却構造において、前記障害壁の外径面、軸方向の前記転がり軸受に近い側ほど外径側への張り出し量が大きいテーパ形状であると共に、前記外輪間座の前記排出口が切欠きであっても良い。
この構成であると、供給口から供給された圧縮エアが、内輪間座の外周面に沿って内輪間座と外輪間座との間の空間である間座空間を軸方向外側へ流れ、さらに内輪間座の障害壁のテーパ状外径面に沿って外径側へ導かれ、外輪間座の軸方向端面に設けられた切欠きから排出される。これにより、間座空間での圧縮エアの流れ、ならびに間座空間からの圧縮エアの排出がスムーズとなる。また、間座空間に圧縮エアのスムーズな流れが生じることにより、間座空間の内圧が軸受空間の内圧よりも低くなり、圧縮エアが軸受空間に流入することが抑えられる。
In the cooling structure of the bearing device of the present invention, the outer diameter surface of the disorders walls, both when there in the axial direction of the tapered protruding amount is large to the outer diameter side as the side close to the rolling bearing, the outer ring spacer The outlet may be a notch .
With this configuration, the compressed air supplied from the supply port flows outward in the axial direction through the spacer space, which is the space between the inner ring spacer and the outer ring spacer, along the outer peripheral surface of the inner ring spacer. It is guided to the outer diameter side along the tapered outer diameter surface of the obstacle wall of the inner ring spacer, and is discharged from a notch provided in the axial end surface of the outer ring spacer. Thereby, the flow of the compressed air in the spacer space and the discharge of the compressed air from the spacer space become smooth. Further, since a smooth flow of compressed air is generated in the spacer space, the internal pressure of the spacer space becomes lower than the internal pressure of the bearing space, and the compressed air is suppressed from flowing into the bearing space.

前記供給口および前記切欠きは、それぞれの周方向位置が互いにずれているのが良い。
周方向位置が互いにずれていると、供給口から間座空間に供給された圧縮エアが、内輪間座の外周面に沿って切欠きまで流れるときに、軸方向外側への移動に加えて円周方向の移動を伴うため、圧縮エアが内輪間座と接する時間が長くなり、軸受装置および主軸を冷却する効果が高まる。
The supply port and the notch may be displaced from each other in the circumferential direction.
If the circumferential positions are deviated from each other, the compressed air supplied from the supply port to the spacer space flows to the notch along the outer peripheral surface of the inner ring spacer, in addition to moving outward in the axial direction. Since the movement in the circumferential direction is accompanied, it takes a long time for the compressed air to contact the inner ring spacer, and the effect of cooling the bearing device and the main shaft is enhanced.

この発明の軸受装置の冷却構造において、前記転がり軸受は、前記外輪の軸方向端に前記軸受空間を密封するシール部材を有し、前記障害壁の外径側端が前記内輪の端面の外径側端よりも外径側に位置しかつ前記外輪の端面の内径側端よりも内径側に位置し、前記障害壁の端面前記シール部材とすきまを介して対向する形状であり、前記シール部材と前記障害壁とでラビリンスシール効果を持つようにしても良い。
これにより、圧縮エアが軸受空間に流入することをより一層妨げることができる。
In the cooling structure of the bearing device according to the present invention, the rolling bearing has a seal member that seals the bearing space at an axial end of the outer ring, and an outer diameter side end of the obstacle wall is an outer diameter of the end surface of the inner ring. located on the outer diameter side than the side edge and located on the inner diameter side than the inner diameter side end of the end face of the outer ring has a shape in which the end face of the failure wall is opposed via the seal member and the gap, said seal member it may be one lifting a labyrinth seal effect and the failure wall.
As a result, the compressed air can be further prevented from flowing into the bearing space.

この発明の軸受装置の冷却構造は、工作機械の主軸の支持に好適に用いることができる。その場合、主軸の冷却効果が高いので、高速な領域での運転が可能となる。   The cooling structure for a bearing device according to the present invention can be suitably used for supporting the spindle of a machine tool. In that case, since the cooling effect of the main shaft is high, operation in a high-speed region is possible.

この発明の軸受装置の冷却構造は、軸方向に並ぶ複数の転がり軸受の外輪間および内輪間に外輪間座および内輪間座それぞれ介在、前記外輪および外輪間座がハウジングに設置され、前記内輪および内輪間座が主軸に嵌合され、前記転がり軸受が前記外輪と内輪間の軸受空間に封入されたグリースにより潤滑される軸受装置に適用され、前記外輪間座の内周面に、前記内輪間座の外周面に向けて冷却用の圧縮エアを供給する供給口けられ、前記外輪間座の軸方向端面に、前記供給口から供給された圧縮エアを排出する排出口が設けられ、前記内輪間座の軸方向両端部に、外径側に張り出して前記供給口から供給された圧縮エアが前記軸受空間へ流入するのを阻む障害壁けられ、この障害壁の外径端は、前記外輪の内周面に僅かな隙間を介して対向するため、圧縮エアにより軸受装置を効率良く冷却することができ、しかも軸受内のグリースが圧縮エアによって排除されることを防止できる。 The cooling structure of the bearing device of the invention, interposed outer ring spacer and the inner ring spacer, respectively between the outer ring and the inner ring of a plurality of rolling bearings arranged in the axial direction, the outer ring and the outer ring spacer is disposed in the housing, the An inner ring and an inner ring spacer are fitted to a main shaft, and the rolling bearing is applied to a bearing device that is lubricated by grease sealed in a bearing space between the outer ring and the inner ring. supply ports set for supplying compressed air for cooling toward the outer circumferential surface of the inner ring spacer vignetting, the axial end face of the outer ring spacer, discharge port for discharging the compressed air supplied from the supply port provided is, the both axial ends of the inner ring spacer, disorders wall compressed air supplied from the supply port protrudes radially outwardly is prevent from flowing into the bearing space is set vignetting, outside of the disorder wall The diameter end is slightly on the inner peripheral surface of the outer ring. To face through between the bearing device by compressed air can be cooled efficiently, moreover possible to prevent the grease in the bearing is eliminated by compressed air.

この発明の一実施形態に係る冷却構造を備えた軸受装置の断面図である。It is sectional drawing of the bearing apparatus provided with the cooling structure which concerns on one Embodiment of this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 同軸受装置の内輪間座および外輪間座を軸方向と垂直な平面で切断した断面図である。It is sectional drawing which cut | disconnected the inner ring | wheel spacer and the outer ring | wheel spacer of the same bearing apparatus by the plane perpendicular | vertical to an axial direction. 同軸受装置の外輪間座の一部分を展開して表した図である。It is the figure which expanded and represented a part of outer ring spacer of the same bearing device. この発明の異なる実施形態に係る冷却構造を備えた軸受装置の断面図である。It is sectional drawing of the bearing apparatus provided with the cooling structure which concerns on different embodiment of this invention. 同軸受装置の外輪間座の一部分を展開して表した図である。It is the figure which expanded and represented a part of outer ring spacer of the same bearing device. この発明のさらに異なる実施形態に係る軸受装置の内輪間座および外輪間座を軸方向と垂直な平面で切断した断面図である。It is sectional drawing which cut | disconnected the inner ring | wheel spacer and the outer ring | wheel spacer of the bearing apparatus which concerns on further different embodiment of this invention by the plane perpendicular | vertical to an axial direction. 図5および図6に示す軸受装置を工作機械の主軸装置に組込んだ状態を示す断面図である。It is sectional drawing which shows the state which integrated the bearing apparatus shown in FIG.5 and FIG.6 in the main shaft apparatus of a machine tool.

この発明の一実施形態に係る軸受装置の冷却構造を図1ないし図4と共に説明する。
図1に示すように、この軸受装置Jは、軸方向に並ぶ複数の転がり軸受1,1の外輪2,2間および内輪3,3間に、外輪間座4および内輪間座5をそれぞれ介在させている。各転がり軸受1としてアンギュラ玉軸受が適用されている。これらアンギュラ玉軸受が背面組合せで設置され、内輪外周面および外輪内周面における接触角の反偏り側にそれぞれカウンタボアが設けられている。内外輪3,2の軌道面間に複数の転動体8が介在され、これら転動体8が保持器9により円周等配に保持される。転がり軸受1,1はグリース潤滑であり、外輪2の軸方向両端に、外輪2と内輪3との間の軸受空間S1を密封するシール部材31,32がそれぞれ取り付けられている。
A cooling structure for a bearing device according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the bearing device J includes an outer ring spacer 4 and an inner ring spacer 5 interposed between outer rings 2 and 2 and between inner rings 3 and 3 of a plurality of rolling bearings 1 and 1 arranged in the axial direction. I am letting. An angular ball bearing is applied as each rolling bearing 1. These angular ball bearings are installed in a combination on the back surface, and counter bores are provided on the opposite sides of the contact angles on the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring. A plurality of rolling elements 8 are interposed between the raceway surfaces of the inner and outer rings 3, 2, and these rolling elements 8 are held by a cage 9 in a circumferentially equidistant manner. The rolling bearings 1 and 1 are grease-lubricated, and seal members 31 and 32 that seal the bearing space S1 between the outer ring 2 and the inner ring 3 are attached to both ends of the outer ring 2 in the axial direction.

この軸受装置Jは、例えば工作機械の主軸の支持に用いられるものであり、その場合、図3のように、各転がり軸受1の外輪2はハウジング6内に固定され、内輪3は主軸7の外周面に嵌合する。   The bearing device J is used, for example, for supporting a main shaft of a machine tool. In this case, as shown in FIG. 3, the outer ring 2 of each rolling bearing 1 is fixed in a housing 6, and the inner ring 3 is fixed to the main shaft 7. Fits to the outer peripheral surface.

上記軸受装置Jの冷却構造について説明する。
図1において、前記外輪間座4の内周面と前記内輪間座5の外周面との間には径方向すきまδ1が設けられており、外輪間座4の内周面に、内輪間座5の外周面に向けて冷却用の圧縮エアを供給する供給口10が設けられている。この例では、図3に示すように、供給口10の数は3個であり、各供給口10は円周方向に等配とされている。
The cooling structure of the bearing device J will be described.
In FIG. 1, a radial clearance δ <b> 1 is provided between the inner peripheral surface of the outer ring spacer 4 and the outer peripheral surface of the inner ring spacer 5, and an inner ring spacer is provided on the inner peripheral surface of the outer ring spacer 4. A supply port 10 is provided for supplying compressed air for cooling toward the outer peripheral surface of 5. In this example, as shown in FIG. 3, the number of the supply ports 10 is three, and each supply port 10 is equally distributed in the circumferential direction.

図1および図3に示すように、外輪間座4の外周面には、圧縮エアAを導入する環状の導入溝11が設けられている。この導入溝11は、外輪間座4の外周面における軸方向中間部に設けられ、接続孔11aを介して各供給口10に連通している。軸受装置Jの外部に設けた圧縮エア供給装置(図示せず)より、ハウジング6に設けた圧縮エア導入孔46を通って、導入溝11に圧縮エアAが供給される。   As shown in FIGS. 1 and 3, an annular introduction groove 11 for introducing the compressed air A is provided on the outer peripheral surface of the outer ring spacer 4. The introduction groove 11 is provided in an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 4 and communicates with each supply port 10 through a connection hole 11a. Compressed air A is supplied to the introduction groove 11 from a compressed air supply device (not shown) provided outside the bearing device J through the compressed air introduction hole 46 provided in the housing 6.

図1に示すように、内輪間座5の軸方向両端部は、外径側に張り出した障害壁33となっている。この例では、障害壁33は、軸方向の転がり軸受1に近い側ほど外径側への張り出し量が大きいテーパ形状である。また、外輪間座4の軸方向端面には、供給口10から供給された圧縮エアAの排出口となる切欠き34が設けられている。切欠き34は例えば図4のような矩形の断面形状であり、外輪間座4に隣接して転がり軸受1の外輪2が配置されることで、切欠き34が、外輪間座4と内輪間座5間の間座空間S2と軸受装置Jの外部とを連通する開口形状となる。なおこの構成において、外輪間座4を組立可能にするため(外輪間座4の内周と障害壁33との干渉を防ぐため)、内輪間座5は、例えば、軸方向中間部が分割された二つの内輪間座分割体からなる。   As shown in FIG. 1, both end portions in the axial direction of the inner ring spacer 5 are obstruction walls 33 projecting to the outer diameter side. In this example, the obstacle wall 33 has a tapered shape in which the protruding amount toward the outer diameter side is larger toward the side closer to the axial rolling bearing 1. Further, a notch 34 serving as a discharge port for the compressed air A supplied from the supply port 10 is provided on the axial end surface of the outer ring spacer 4. For example, the notch 34 has a rectangular cross-sectional shape as shown in FIG. 4, and the outer ring 2 of the rolling bearing 1 is disposed adjacent to the outer ring spacer 4, so that the notch 34 is formed between the outer ring spacer 4 and the inner ring spacer. It becomes an opening shape which communicates between the space S2 between the seats 5 and the outside of the bearing device J. In this configuration, in order to assemble the outer ring spacer 4 (in order to prevent interference between the inner periphery of the outer ring spacer 4 and the obstacle wall 33), the inner ring spacer 5 is divided, for example, in the axial intermediate portion. It consists of two inner ring spacer divided bodies.

図1の部分拡大図である図2に示すように、前記障害壁33の外径端は、外輪間座4の内周面と僅かな径方向すきまδ2を介して対向している。また、障害壁33の端面は前記軸方向内側のシール部材31と僅かな軸方向すきまδ3を介して対向している。これにより、シール部材31と障害壁33とでラビリンスシール効果を持つラビリンスシール部35が構築され、このラビリンスシール部35により軸受空間S1と間座空間S2とが隔てられている。   As shown in FIG. 2, which is a partially enlarged view of FIG. 1, the outer diameter end of the obstacle wall 33 faces the inner peripheral surface of the outer ring spacer 4 with a slight radial clearance δ2. Further, the end face of the obstacle wall 33 faces the axially inner sealing member 31 with a slight axial clearance δ3. Thereby, the labyrinth seal portion 35 having a labyrinth seal effect is constructed by the seal member 31 and the obstacle wall 33, and the bearing space S1 and the spacer space S2 are separated by the labyrinth seal portion 35.

この軸受装置Jは、運転時等に、軸受装置Jの外部に設けた圧縮エア供給装置から送られる冷却用の圧縮エアAが、外輪間座4の供給口10から内輪間座5の外周面に向けて供給される。この圧縮エアAは、内輪間座5に衝突した後、内輪間座5の外周面に沿って軸方向両側へ流れ、さらに内輪間座5の障害壁33のテーパ状外径面に沿って外径側へ導かれて、外輪間座5の切欠き34から排出される。障害壁33によって圧縮エアAを外径側へ導くことにより、間座空間S2での圧縮エアAの流れ、ならびに間座空間S2からの圧縮エアAの排出がスムーズになる。圧縮エアAが間座空間S2を通過する間に、軸受装置Jおよびこの軸受装置Jに支持された主軸7の熱を奪う。それにより、軸受装置Jおよび主軸7が効率良く冷却される。   In the bearing device J, the cooling compressed air A sent from the compressed air supply device provided outside the bearing device J during operation is supplied from the supply port 10 of the outer ring spacer 4 to the outer peripheral surface of the inner ring spacer 5. Supplied towards The compressed air A collides with the inner ring spacer 5, then flows axially along the outer peripheral surface of the inner ring spacer 5, and further flows along the tapered outer diameter surface of the obstacle wall 33 of the inner ring spacer 5. It is guided to the radial side and discharged from the notch 34 of the outer ring spacer 5. By guiding the compressed air A to the outer diameter side by the obstacle wall 33, the flow of the compressed air A in the spacer space S2 and the discharge of the compressed air A from the spacer space S2 become smooth. While the compressed air A passes through the spacer space S2, the heat of the bearing device J and the main shaft 7 supported by the bearing device J is taken away. Thereby, the bearing device J and the main shaft 7 are efficiently cooled.

内輪間座5の軸方向両端に障害壁33が設けられていることにより、圧縮エアAが軸受空間S1へ流入することが阻められる。特にこの実施形態では、軸受空間S1と間座空間S2とがラビリンスシール部35により隔てられているため、圧縮エアAの軸受空間S1への流入をより一層効果的に阻められる。さらに、間座空間S2において圧縮エアAがスムーズに流れるため、間座空間S2の内圧が軸受空間S1の内圧よりも低くなっており、圧縮エアAが軸受空間S1に流入し難い。これらのことから、圧縮エアAが軸受空間S1に流入することを極力抑えることができ、軸受空間S1に封入されたグリースが圧縮エアAで排除されることが防がれる。そのため、良好な潤滑状態を維持することができる。 By the opposite axial ends of the inner ring spacer 5 fault wall 33 is provided, the compressed air A is no possible is Habame flowing into the bearing space S1. In particular, in this embodiment, since the bearing space S1 and the spacer space S2 are separated by a labyrinth seal portion 35, Ru is Habame from flowing into the bearing space S1 of the compressed air A more effectively. Furthermore, since the compressed air A flows smoothly in the spacer space S2, the internal pressure of the spacer space S2 is lower than the internal pressure of the bearing space S1, and the compressed air A hardly flows into the bearing space S1. For these reasons, the compressed air A can be prevented from flowing into the bearing space S1 as much as possible, and the grease enclosed in the bearing space S1 can be prevented from being removed by the compressed air A. Therefore, a good lubrication state can be maintained.

上記実施形態では、供給口10および切欠き34が同じ円周方向位置に配置されているが、図5および図6に示す実施形態のように、供給口10および切欠き34を互いに円周方向位置をずらして配置してもよい。供給口10および切欠き34の周方向位置が互いにずれていると、供給口10から間座空間S2に供給された圧縮エアAが、内輪間座5の外周面に沿って切欠き34まで流れるときに、軸方向外側への移動に加えて円周方向の移動を伴うため、圧縮エアAが内輪間座5と接する時間が長くなり、軸受装置Jおよび主軸7を冷却する効果が高まる。   In the above embodiment, the supply port 10 and the notch 34 are arranged at the same circumferential position, but the supply port 10 and the notch 34 are arranged in the circumferential direction as in the embodiment shown in FIGS. The positions may be shifted. When the circumferential positions of the supply port 10 and the notch 34 are shifted from each other, the compressed air A supplied from the supply port 10 to the spacer space S2 flows to the notch 34 along the outer peripheral surface of the inner ring spacer 5. Sometimes, in addition to the movement outward in the axial direction, the movement in the circumferential direction is accompanied, so that the time for the compressed air A to contact the inner ring spacer 5 becomes longer, and the effect of cooling the bearing device J and the main shaft 7 is enhanced.

また、軸受装置Jにより支持される軸が、工作機械の主軸7のように回転方向が一定している場合、図7のように、各供給口10のエア吐出方向を、内輪3(図1)および主軸7の回転方向L1の前方へ傾斜させてもよい。各供給口10は、それぞれ直線状であって、外輪間座4の軸心に垂直な断面における任意の半径方向の直線L2から、この直線L2と直交する方向にオフセット(オフセット量OS)した位置にある。このように、各供給口10のエア吐出方向を傾斜させると、吐出された圧縮エアAが内輪間座5の外周面に当たる際に、圧縮エアAの押圧力を内輪間座5に与えることができ、主軸7を駆動する作用を期待することができる。   Further, when the rotation direction of the shaft supported by the bearing device J is constant like the main shaft 7 of the machine tool, the air discharge direction of each supply port 10 is set to the inner ring 3 (FIG. 1) as shown in FIG. ) And the rotation direction L1 of the main shaft 7 may be inclined forward. Each supply port 10 is linear and is offset (offset amount OS) from an arbitrary radial straight line L2 in a cross section perpendicular to the axis of the outer ring spacer 4 in a direction perpendicular to the straight line L2. It is in. Thus, when the air discharge direction of each supply port 10 is inclined, when the discharged compressed air A hits the outer peripheral surface of the inner ring spacer 5, the pressing force of the compressed air A can be applied to the inner ring spacer 5. And the operation of driving the main shaft 7 can be expected.

図8は、図5および図6に示す軸受装置が組込まれた工作機械の主軸装置の一部を示す断面図である。軸受装置Jは、転がり軸受1,1の外輪2,2および外輪間座4がハウジング6の内周面に嵌合し、転がり軸受1,1の内輪3,3および内輪間座5が工作機械の主軸7の外周面に嵌合している。例えば、外輪2および外輪間座4はハウジング6に対してすきま嵌めとされ、内輪3および内輪間座5は軸7に対して締まり嵌めとされる。片方(図の右側)の転がり軸受1の外輪3はハウジング6の段部6aで軸方向の位置決めがされ、同転がり軸受1の内輪3は位置決め間座41により軸方向の位置決めがされている。そして、もう片方(図の左側)の転がり軸受1の外輪2および内輪3に、外輪押さえ42および外輪押さえ43をそれぞれ押し当てることで、軸受装置Jがハウジング6に固定されている。   FIG. 8 is a cross-sectional view showing a part of the spindle device of the machine tool in which the bearing device shown in FIGS. 5 and 6 is incorporated. In the bearing device J, the outer rings 2, 2 of the rolling bearings 1, 1 and the outer ring spacer 4 are fitted to the inner peripheral surface of the housing 6, and the inner rings 3, 3 and the inner ring spacer 5 of the rolling bearings 1, 1 are machine tools. The main shaft 7 is fitted on the outer peripheral surface. For example, the outer ring 2 and the outer ring spacer 4 have a clearance fit with respect to the housing 6, and the inner ring 3 and the inner ring spacer 5 have an interference fit with respect to the shaft 7. The outer ring 3 of the rolling bearing 1 on one side (right side of the figure) is positioned in the axial direction by the step portion 6 a of the housing 6, and the inner ring 3 of the rolling bearing 1 is positioned in the axial direction by the positioning spacer 41. The bearing device J is fixed to the housing 6 by pressing the outer ring presser 42 and the outer ring presser 43 against the outer ring 2 and the inner ring 3 of the other (left side in the figure) rolling bearing 1.

ハウジング6および外輪押さえ43には、圧縮エア供給装置45から送られてくる冷却用の圧縮エアAを軸受装置Jに導入する圧縮エア導入孔46が設けられている。この圧縮エア導入孔46は、外輪間座5の外周面に設けられた前記導入溝11に連通している。また、ハウジング6および外輪押さえ43には排気孔47が設けられ、この排気孔47は、接続孔48を介して外輪間座5の前記切欠き34と連通している。   The housing 6 and the outer ring retainer 43 are provided with a compressed air introduction hole 46 through which the compressed air A for cooling sent from the compressed air supply device 45 is introduced into the bearing device J. The compressed air introduction hole 46 communicates with the introduction groove 11 provided on the outer peripheral surface of the outer ring spacer 5. The housing 6 and the outer ring retainer 43 are provided with an exhaust hole 47, and the exhaust hole 47 communicates with the notch 34 of the outer ring spacer 5 through the connection hole 48.

この軸受装置Jの冷却構造は、先に説明したように軸受装置Jおよび主軸7の冷却効果が高いので、主軸装置を高速な領域で運転させることが可能となる。このため、この軸受装置Jを、工作機械の主軸の支持に好適に用いることができる。   Since the cooling structure of the bearing device J has a high cooling effect on the bearing device J and the main shaft 7 as described above, the main shaft device can be operated in a high-speed region. For this reason, this bearing apparatus J can be used suitably for support of the main axis | shaft of a machine tool.

1…転がり軸受
2…外輪
3…内輪
4…外輪間座
5…内輪間座
6…ハウジング
7…主軸
10…供給口
31,32…シール部材
33…障害壁
34…切欠き
35…ラビリンスシール部
A…圧縮エア
J…軸受装置
S1…軸受空間
S2…間座空間
δ2…環状すきま
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Outer ring 3 ... Inner ring 4 ... Outer ring spacer 5 ... Inner ring spacer 6 ... Housing 7 ... Main shaft 10 ... Supply port 31, 32 ... Seal member 33 ... Obstacle wall 34 ... Notch 35 ... Labyrinth seal part A Compressed air J Bearing device S1 Bearing space S2 Spacer δ2 Ring clearance

Claims (5)

軸方向に並ぶ複数の転がり軸受の外輪間および内輪間に外輪間座および内輪間座それぞれ介在、前記外輪および外輪間座がハウジングに設置され、前記内輪および内輪間座が主軸に嵌合され、前記転がり軸受が前記外輪と内輪間の軸受空間に封入されたグリースにより潤滑される軸受装置において、
前記外輪間座の内周面に、前記内輪間座の外周面に向けて冷却用の圧縮エアを供給する供給口けられ、前記外輪間座の軸方向端面に、前記供給口から供給された圧縮エアを排出する排出口が設けられ、前記内輪間座の軸方向両端部に、外径側に張り出して前記供給口から供給された圧縮エアが前記軸受空間へ流入するのを阻む障害壁けられ、この障害壁の外径端は、前記外輪の内周面に僅かな隙間を介して対向することを特徴とする軸受装置の冷却構造。
Between the outer ring of a plurality of rolling bearings arranged in the axial direction and the outer ring spacer and the inner ring spacer is interposed respectively between the inner ring, the outer ring and the outer ring spacer is disposed in the housing, fitting the inner ring and the inner ring spacer is the main axis In the bearing device in which the rolling bearing is lubricated by grease sealed in a bearing space between the outer ring and the inner ring,
The inner peripheral surface of the seat between the outer ring, the supply port for supplying compressed air for cooling toward the outer circumferential surface of the inner ring spacer is set vignetting, the axial end face of the outer ring spacer, supplied from the supply port Discharge ports for discharging the compressed air are provided , and the obstruction that prevents the compressed air supplied from the supply port from flowing into the bearing space by projecting to the outer diameter side at both axial ends of the inner ring spacer wall set vignetting, radially outer end of the disorder wall cooling structure of the bearing apparatus characterized by opposed through a slight gap to the inner peripheral surface of the outer ring.
請求項1に記載の軸受装置の冷却構造において、前記障害壁の外径面、軸方向の前記転がり軸受に近い側ほど外径側への張り出し量が大きいテーパ形状であると共に、前記外輪間座の前記排出口が切欠きである軸受装置の冷却構造。 In the cooling structure of the bearing device according to claim 1, the outer diameter surface of said fault wall, with the amount of projection of the outer diameter side as the side closer to the axial direction of the rolling bearing is large tapered between said outer ring A cooling structure for a bearing device, wherein the outlet of the seat is a notch . 請求項2に記載の軸受装置の冷却構造において、前記供給口および前記切欠きは、それぞれの周方向位置が互いにずれている軸受装置の冷却構造。   The cooling structure for a bearing device according to claim 2, wherein the supply port and the notch are displaced from each other in the circumferential direction. 請求項1ないし請求項3のいずれか1項に記載の軸受装置の冷却構造において、前記転がり軸受は、前記外輪の軸方向端に前記軸受空間を密封するシール部材を有し、前記障害壁の外径側端が前記内輪の端面の外径側端よりも外径側に位置しかつ前記外輪の端面の内径側端よりも内径側に位置し、前記障害壁の端面前記シール部材とすきまを介して対向する形状であり、前記シール部材と前記障害壁とでラビリンスシール効果を持軸受装置の冷却構造。 4. The cooling structure for a bearing device according to claim 1, wherein the rolling bearing includes a seal member that seals the bearing space at an axial end of the outer ring, and outer diameter end is located on the inner diameter side than the inner diameter side end of the end surface of and and the outer ring located on the outer diameter side than the outer diameter end of the end face of the inner ring, the end face of the failure wall the sealing member and the gap through a shaped facing, the cooling structure of the seal member and the failure wall and lifting one bearing device a labyrinth seal effect. 工作機械の主軸の支持に用いられる請求項1ないし請求項4のいずれか1項に記載の軸受装置の冷却構造。   The cooling structure for a bearing device according to any one of claims 1 to 4, which is used for supporting a main shaft of a machine tool.
JP2012209138A 2012-09-24 2012-09-24 Cooling structure of bearing device Active JP6050072B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012209138A JP6050072B2 (en) 2012-09-24 2012-09-24 Cooling structure of bearing device
KR1020157010570A KR102208885B1 (en) 2012-09-24 2013-09-19 Cooling structure for bearing device
US14/430,464 US9541137B2 (en) 2012-09-24 2013-09-19 Cooling structure for bearing device
EP19180598.5A EP3567267B1 (en) 2012-09-24 2013-09-19 Bearing device with a cooling structure
CN201380048975.5A CN104662316B (en) 2012-09-24 2013-09-19 The cooling structure of bearing arrangement
EP13839999.3A EP2910806B1 (en) 2012-09-24 2013-09-19 Bearing device with a cooling structure
PCT/JP2013/075223 WO2014046153A1 (en) 2012-09-24 2013-09-19 Cooling structure for bearing device
US15/342,279 US10280980B2 (en) 2012-09-24 2016-11-03 Cooling structure for bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209138A JP6050072B2 (en) 2012-09-24 2012-09-24 Cooling structure of bearing device

Publications (2)

Publication Number Publication Date
JP2014062619A JP2014062619A (en) 2014-04-10
JP6050072B2 true JP6050072B2 (en) 2016-12-21

Family

ID=50618024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209138A Active JP6050072B2 (en) 2012-09-24 2012-09-24 Cooling structure of bearing device

Country Status (1)

Country Link
JP (1) JP6050072B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221687B2 (en) * 2013-11-27 2017-11-01 日本精工株式会社 Bearing device and spindle device
JP7003683B2 (en) * 2017-09-01 2022-01-20 日本精工株式会社 Angular contact ball bearings, bearing devices, and spindle devices
JP6899306B2 (en) 2017-10-11 2021-07-07 Ntn株式会社 Bearing device cooling structure
JP7164962B2 (en) * 2018-03-29 2022-11-02 Ntn株式会社 Cooling structure of bearing device
CN112673186A (en) * 2018-09-13 2021-04-16 Ntn株式会社 Cooling structure for bearing device and spindle device for machine tool
CN109058079A (en) * 2018-09-14 2018-12-21 珠海格力电器股份有限公司 Liquid spraying ring and refrigerant lubricate bearing assembly
CN109127755A (en) * 2018-09-19 2019-01-04 大连交通大学 A kind of continuous extruder of principal axis lubrication, cooling integration
JP2022046960A (en) * 2020-09-11 2022-03-24 Ntn株式会社 Cooling structure of bearing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113649Y2 (en) * 1971-06-28 1976-04-12
JP4003343B2 (en) * 1999-04-07 2007-11-07 いすゞ自動車株式会社 Bearing cooling device
JP2001165177A (en) * 1999-12-08 2001-06-19 Nippon Skf Kk Bearing lubricating device
JP4131312B2 (en) * 2000-10-27 2008-08-13 日本精工株式会社 Bearing device
JP2008075882A (en) * 2007-12-11 2008-04-03 Nsk Ltd Bearing device

Also Published As

Publication number Publication date
JP2014062619A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP6050072B2 (en) Cooling structure of bearing device
US9109630B2 (en) Rolling bearing unit
JP6013112B2 (en) Cooling structure of bearing device
JP5917030B2 (en) Rolling bearing
JP6144024B2 (en) Cooling structure of bearing device
US10001170B2 (en) Rolling bearing
JP7164962B2 (en) Cooling structure of bearing device
JP6740062B2 (en) Bearing device cooling structure
JP6385089B2 (en) Cooling structure of bearing device
JP5321052B2 (en) Rolling bearing device
JP2011106493A (en) Rolling bearing device
JP2018169040A (en) Cooling structure of bearing device
JP6899306B2 (en) Bearing device cooling structure
JP6609003B2 (en) Cooling structure of bearing device
JP2014062620A (en) Cooling structure for bearing device
WO2018181033A1 (en) Cooling structure for bearing device
JP7185546B2 (en) Cooling structure of bearing unit and spindle unit of machine tool
JP6138979B2 (en) Rolling bearing
JP6983029B2 (en) Bearing device cooling structure
WO2018074375A1 (en) Cooling structure for bearing device
WO2018181032A1 (en) Cooling structure for bearing device
JP5353432B2 (en) Rolling bearing device
JP6946224B2 (en) Bearing device cooling structure
EP3851692A1 (en) Bearing device cooling structure, and main spindle device of machine tool
JP2020045942A (en) Cooling structure of bearing device and spacer device with cooling function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6050072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250