WO2018181032A1 - Cooling structure for bearing device - Google Patents

Cooling structure for bearing device Download PDF

Info

Publication number
WO2018181032A1
WO2018181032A1 PCT/JP2018/011808 JP2018011808W WO2018181032A1 WO 2018181032 A1 WO2018181032 A1 WO 2018181032A1 JP 2018011808 W JP2018011808 W JP 2018011808W WO 2018181032 A1 WO2018181032 A1 WO 2018181032A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
space
compressed air
nozzle hole
outlet
Prior art date
Application number
PCT/JP2018/011808
Other languages
French (fr)
Japanese (ja)
Inventor
惠介 那須
真人 吉野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018181032A1 publication Critical patent/WO2018181032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings

Definitions

  • the present invention relates to, for example, a spindle of a machine tool and a cooling structure for a bearing device incorporated in the spindle.
  • the temperature rise of the bearing due to heat generation results in an increase in preload, and we want to suppress it as much as possible from the viewpoint of speeding up the spindle and increasing accuracy.
  • a method for suppressing the temperature rise of the main shaft device there is a method of cooling the shaft and the bearing by sending cooling air to the bearing (for example, Patent Documents 1 and 2).
  • Patent Documents 1 and 2 cold air is injected into the space between the two bearings at an angle in the rotational direction. Thereby, the cooling of the shaft and the bearing is performed by the cool air becoming a swirling flow.
  • an annular recess is provided in a peripheral surface of the outer ring spacer facing the inner ring spacer, an outlet of the nozzle hole is opened in the recess, and compressed air for cooling is supplied from the nozzle hole to the inner ring. It is discharged toward the circumferential surface of the spacer.
  • the compressed air is adiabatically expanded by being discharged at once from the narrow nozzle hole into the space of the recess. Therefore, the flow rate of compressed air increases and the temperature decreases.
  • JP 2000-161375 A Japanese Patent Laying-Open No. 2015-183738
  • An object of the present invention is to provide a cooling structure for a bearing device that can efficiently cool the bearing device even if the amount of compressed air is relatively small.
  • a cooling structure for a bearing device includes a stationary spacer and a rotating spacer adjacent to a stationary bearing ring and a rotating bearing ring facing the inside and outside of a rolling bearing, respectively.
  • the fixed side spacer is installed on a fixed member of a fixed member and a rotating member, and the rotating side race and the rotating side spacer are installed on a rotating member of the fixed member and the rotating member. It is a cooling structure of a bearing device.
  • a spacer space is formed between the fixed spacer and the rotating spacer.
  • the spacer space is axisymmetric with respect to the axial center of the axial width of the fixed spacer.
  • An opening extending in the axial direction from the spacer space is formed.
  • the stationary spacer has a nozzle hole for discharging compressed air into the spacer space.
  • the outlet of the nozzle hole opens to a surface where the spacers in the fixed side spacer face each other, and the nozzle hole compresses from the outlet toward the surface where the spacers in the rotating side spacer face each other. Air is discharged.
  • the nozzle hole is provided so that the axis of the compressed air discharged from the outlet into the spacer space is biased with respect to the axial center.
  • the axis of the compressed air is biased with respect to the center in the axial direction” means that the flow of the compressed air becomes uneven on both sides of the center in the axial direction of the spacer space.
  • the fixed-side raceway is, for example, an outer ring
  • the rotation-side raceway is, for example, an inner ring.
  • the compressed air for cooling is discharged from the nozzle holes provided in the fixed spacer to the spacer space toward the rotating spacer.
  • the compressed air is adiabatically expanded by being discharged from the narrow nozzle hole to the wide spacer space. This adiabatic expansion increases the flow rate of the compressed air and decreases the temperature. Therefore, the rotating side spacer is efficiently cooled, and the rotating side bearing ring of the rolling bearing in contact therewith is also cooled. Thereafter, the compressed air is discharged from the opening of the interstitial space to the outside of the interstitial space.
  • the axis of the compressed air discharged from the outlet of the nozzle hole is pivoted in the spacer space.
  • a bias can be given to the center in the direction.
  • the said structure WHEREIN: When the axial direction width
  • the central axis of the outlet of the nozzle hole may be inclined in the axial direction. According to this configuration, the axis of the compressed air discharged from the outlet of the nozzle hole is biased with respect to the axial center in the spacer space. Thereby, the vortex which goes to the width direction of a bearing can be produced in the space between spacers, and time for compressed air to stay in the space between spacers becomes long.
  • FIG. 1 is a cross-sectional view of a machine tool spindle device provided with a cooling structure for the bearing device.
  • the cooling structure of the present invention is applied to a spindle device of a machine tool, but is not limited to this.
  • the bearing device J includes two rolling bearings 1 and 1 arranged in the axial direction.
  • An outer ring spacer 4 is interposed between the outer rings 2 and 2 of the two rolling bearings 1 and 1, and an inner ring spacer 5 is interposed between the inner rings 3 and 3.
  • the outer ring 2 and the outer ring spacer 4 are installed in the housing 6, and the inner ring 3 and the inner ring spacer 5 are fitted to the main shaft 7.
  • the rolling bearing 1 is an angular ball bearing, and a plurality of rolling elements 8 are interposed between the raceway surfaces of the outer ring 2 and the raceway surface of the inner ring 3.
  • the rolling elements 8 are held by the cage 9 at equal intervals in the circumferential direction.
  • the two rolling bearings 1 and 1 are arranged in combination with each other on the back surface. Depending on the width dimension difference between the outer ring spacer 4 and the inner ring spacer 5, the initial preload of each rolling bearing 1, 1 is set.
  • the rolling bearing 1 is an inner ring rotating type. That is, the outer ring 2 constitutes a “fixed side raceway ring”, and the inner ring 3 constitutes a “rotation side raceway ring”.
  • the outer ring spacer 4 constitutes a “fixed side spacer”, and the inner ring spacer 5 constitutes a “rotation side spacer”.
  • the main shaft 7 constitutes a “rotating member”, and the housing 6 constitutes a “fixing member”. The same applies to a second embodiment described later.
  • the outer rings 2 and 2 and the outer ring spacer 4 are fitted into the housing 6 with a clearance, and are positioned in the axial direction by the step portion 6a of the housing 6 and the end surface cover 40. Further, the inner rings 3 and 3 and the inner ring spacer 5 are tightly fitted to the main shaft 7 and are positioned in the axial direction by the positioning spacers 41 and 42 on both sides.
  • the left positioning spacer 42 in FIG. 1 is fixed by a nut 43 screwed onto the main shaft 7.
  • the installation method of the outer rings 2, 2, the outer ring spacer 4, the inner rings 3, 3, and the inner ring spacer 5 is not limited to this.
  • the outer ring spacer 4 includes an outer ring spacer body 11 and a ring-shaped lubricating oil hole forming member 12 made of a member different from the outer ring spacer body 11. Twelve.
  • the outer ring spacer main body 11 has a substantially T-shaped cross section.
  • Lubricating oil hole forming members 12 and 12 are fixed to both sides in the axial direction of the outer ring spacer body 11.
  • the two lubricating oil hole forming members 12 and 12 are axisymmetric with respect to the axial center line (line orthogonal to the axial direction) of the outer ring spacer 4. Note that FIG. 1 and FIG. 2 differ in the cut surface of one (right side) rolling bearing 1.
  • the inner diameter of the outer ring spacer body 11 is larger than the inner diameter of the lubricating oil hole forming members 12 and 12.
  • a recess 13 a is formed on the inner peripheral surface of the outer ring spacer 4 by the inner peripheral surface of the outer ring spacer main body 11 and the side surfaces of the lubricating oil hole forming members 12, 12 following the inner peripheral surface.
  • the inner peripheral surface of the outer ring spacer main body 11 constitutes the bottom surface of the recessed portion 13a, and the side surfaces of the lubricating oil hole forming members 12, 12 constitute the side wall surface of the recessed portion 13a.
  • the inner diameter end of the side surface of the lubricating oil hole forming member 12 is chamfered to form a chamfered portion 12a.
  • a spacer space 13 is formed between the outer ring spacer 4 and the inner ring spacer 5.
  • the spacer space 13 is an annular space between the outer ring spacer 4 and the inner ring spacer 5.
  • the spacer space 13 is line symmetric with respect to the center C1 in the axial direction of the outer ring spacer 4.
  • the interstitial space 13 includes a recessed portion 13a and an inner space portion 13b located on the inner diameter side of the recessed portion 13a.
  • the axial direction range of the inner space portion 13 b is a radial gap between the spacer space 13 and the inner ring spacer 5.
  • the axial direction range of the inner space portion 13b is between the inner diameter ends P and P of the chamfered portions 12a and 12a of the lubricating oil hole forming members 12 and 12, respectively.
  • An annular gap 14 is formed between the lubricating oil hole forming member 12 and the inner ring spacer 5.
  • the annular gap 14 constitutes an opening extending in the axial direction from the interstitial space 13.
  • the interstitial space 13 is connected to the internal space of the rolling bearing 2 via an annular gap 14 and an annular gap 22 described later. That is, the interstitial space 13 has a shape in which a part of the closed space is opened.
  • a nozzle hole 15 is provided in the outer ring spacer main body 11.
  • the nozzle hole 15 discharges the compressed air A for cooling to the spacer space 13 toward the outer peripheral surface of the inner ring spacer 5.
  • the outlet 15 a of the nozzle hole 15 opens at the bottom surface of the recessed portion 13 a of the outer ring spacer 4.
  • a plurality of (for example, three) nozzle holes 15 are provided, and the nozzle holes 15 are arranged at equal intervals in the circumferential direction.
  • the axial position of the outlet 15a of the nozzle hole 15 is offset in the axial direction with respect to the axial center C1 of the spacer space 13 (the axial center of the outer ring spacer 4).
  • the axis C2 of the compressed air A discharged from the outlet 15a of the nozzle hole 15 is set so as to be biased with respect to the axial center C1 in the spacer space 13. That is, the flow of the compressed air A discharged from the outlet 15a becomes uneven on both sides of the center C1 in the axial direction of the spacer space 13.
  • a nozzle hole 100 in which the axis of the compressed air coincides with the axial center C1 of the interstitial space 13, that is, the nozzle hole 100 that is not biased with respect to the axial center C1 of the interstitial space 13 is shown in FIG. It is indicated by a dotted line.
  • the offset amount OS is set to (HB / 2) ⁇ 0.1 or more when the axial width of the outer ring spacer 4 is HB.
  • the axis C ⁇ b> 2 of the outlet 15 a of each nozzle hole 15 is inclined forward in the rotational direction of the inner ring spacer 5. That is, in the cross section perpendicular to the axial center of the outer ring spacer 4, the axial center C ⁇ b> 2 of the outlet 15 a is offset from an arbitrary radial straight line L in a direction perpendicular to the straight line L.
  • the compressed air A acts as a swirling flow in the rotation direction of the inner ring spacer 5 and the cooling effect is improved.
  • the outer ring spacer 4 is indicated by a cross section passing through the center line of the nozzle hole 15.
  • An introduction groove 16 for introducing the compressed air A into each nozzle hole 15 from the outside of the bearing is formed on the outer peripheral surface of the outer ring spacer body 11. As shown in FIG. 4, the introduction groove 16 is provided in an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 4, and is formed in an arc shape communicating with each nozzle hole 15. Specifically, the introduction groove 16 is provided over an angular range ⁇ that occupies most of the circumferential direction on the outer peripheral surface of the outer ring spacer body 11.
  • the portion where the introduction groove 16 is not formed on the outer peripheral surface of the outer ring spacer body 11 is a circumferential position where an air oil supply path (not shown) described later is provided.
  • a compressed air introduction path 45 is provided in the housing 6, and the introduction groove 16 communicates with the compressed air introduction path 45.
  • An air supply device (not shown) is provided outside the housing 6, and the compressed air A is supplied to the compressed air introduction hole 45.
  • the outer ring spacer 4 has lubricating oil hole forming members 12 and 12 for supplying lubricating oil into the bearing.
  • air oil is used as the lubricating oil.
  • Each lubricating oil hole forming member 12 has a base portion 20 on the outer ring spacer main body 11 side, and a hook-shaped tip portion 21 that protrudes axially outward from the base portion 20.
  • the inner peripheral surface of the base 20 faces the inner ring spacer 5 with a gap 14 therebetween.
  • the inner peripheral surface of the tip portion 21 faces the outer peripheral surface of the inner ring 3, and an annular gap 22 for passing air oil is formed between the inner peripheral surface of the tip portion 21 and the outer peripheral surface of the inner ring 3.
  • the tip 21 of the lubricating oil hole forming member 12 is disposed so as to enter the bearing so as to cover the outer peripheral surface of the inner ring 3.
  • the distal end portion 21 of the lubricating oil hole forming member 12 is disposed radially inward from the inner peripheral surface of the cage 9.
  • the lubricating oil hole forming member 12 is provided with a lubricating oil hole 23 for supplying air oil to the annular gap 22.
  • the lubricating oil hole 23 is inclined toward the inner diameter side toward the bearing side.
  • the outlet of the lubricating oil hole 23 opens to the inner peripheral side of the tip portion 21.
  • Air oil is supplied to the lubricating oil hole 23 via a lubricating oil supply path (not shown) provided in the housing 6 and the outer ring spacer main body 11.
  • An annular recess 24 is provided on the outer peripheral surface of the inner ring 3.
  • the annular recess 24 is provided at a location facing the lubricating oil hole 23 on the outer peripheral surface of the inner ring 3.
  • the oil of air oil discharged from the lubricating oil hole forming member 12 accumulates in the annular recess 24. This oil is guided to the bearing center side along the outer peripheral surface of the inner ring 3, which is an inclined surface, by centrifugal force accompanying the rotation of the inner ring 3.
  • the exhaust structure will be described. As shown in FIG. 1, the bearing device J is provided with an exhaust passage 46 for exhausting compressed air for cooling and air oil for lubrication.
  • the exhaust path 46 includes an exhaust groove 47, a radial exhaust hole 48, and an axial exhaust hole 49.
  • the exhaust groove 47 is provided in a part of the outer ring spacer body 11 in the circumferential direction.
  • the radial exhaust hole 48 and the axial exhaust hole 49 are provided in the housing 6 and communicate with the exhaust groove 47.
  • the exhaust groove 47 of the outer ring spacer body 11 is formed in a circumferential position diagonally different from the position where the lubricating oil supply path is provided (180 ° phase difference).
  • the axis C2 of the compressed air A discharged from the nozzle hole 15 into the spacer space 13 is biased with respect to the axial center C1. Therefore, the flow of the compressed air A is uneven on both sides of the axial center C1, and vortices are easily generated in the bearing width direction. For this reason, it takes time for the compressed air A to be discharged from the spacer space 13, and the time for the compressed air to remain in the spacer space 13 becomes longer. Thereby, the inner ring spacer 5 can be cooled more efficiently. As a result, the bearing device can be efficiently cooled even if the amount of compressed air is relatively small. Therefore, running cost can be kept low. Moreover, since the capacity of the air compressor is small, the equipment cost can be reduced.
  • the nozzle hole 15 is inclined forward in the rotational direction of the inner ring spacer 5. For this reason, the compressed air A discharged from the nozzle hole 15 flows in the axial direction while turning along the outer peripheral surface of the inner ring spacer 5, and is discharged to the outside of the bearing through the exhaust path 46. Since the compressed air A turns, the time during which the compressed air A is in contact with the outer peripheral surface of the inner ring spacer 5 is longer than when the compressed air A flows straight in the axial direction. Thereby, the inner ring spacer 5 can be cooled more efficiently. For this reason, the inner ring spacer 5 can be cooled more efficiently.
  • FIGS. 5 and 6 show a second embodiment.
  • the central axis C2 of the outlet 15a of the nozzle hole 15 is inclined with respect to the axial direction.
  • the axial position of the outlet 15 a of the nozzle hole 15 may or may not be offset in the axial direction with respect to the axial center C ⁇ b> 1 of the spacer space 13.
  • the nozzle hole 15 is located in the center C ⁇ b> 1 in the axial direction of the spacer space 13, and the outlet 15 a extends obliquely from the nozzle hole 15.
  • the axial position of the outlet 15 a of the nozzle hole 15 is offset in the axial direction with respect to the axial center C ⁇ b> 1 of the spacer space 13.
  • Other configurations are the same as those of the first embodiment.
  • the axis C2 of the compressed air A discharged from the nozzle hole 15 to the spacer space 13 is biased with respect to the axial center C1. Therefore, similarly to the first embodiment, the flow of the compressed air A is uneven on both sides of the axial center C1, and a vortex in the spacer space 13 tends to occur in the bearing width direction. For this reason, the compressed air A stays in the spacer space 13 for a long time, and the inner ring spacer 5 can be efficiently cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

An outer race (2) and an inner race (3), which face inward and outward in a roller bearing (1) of a bearing device (J), are respectively provided with an outer race spacer (4) and an inner race spacer (5) that are adjacent to each other. The outer race (2) and the outer race spacer (4) are installed in a housing (6), and the inner race (3) and the inner race spacer (5) are installed in a main shaft (7). An axial between-spacer space (13) is formed between the outer race spacer (4) and the inner race spacer (5). A nozzle hole (15) that discharges compressed air (A) into the between-spacer space (13) is formed in the outer race spacer (4). An outlet (15a) of the nozzle hole (15) opens in the inner peripheral surface of the outer race spacer (4) and discharges the compressed air (A) from the outlet (15a) toward the outer peripheral surface of the inner race spacer (5). The nozzle hole (15) is provided so that the axis of the compressed air (A) discharged from the outlet (15a) to the between-spacer space (13) is eccentric relative to the axial center of the outer race spacer (4).

Description

軸受装置の冷却構造Cooling structure of bearing device 関連出願Related applications
 この出願は、2017年3月29日出願の特願2017-064941の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-064941 filed on Mar. 29, 2017, which is incorporated herein by reference in its entirety.
 この発明は、例えば、工作機械の主軸および主軸に組み込まれる軸受装置の冷却構造に関する。 The present invention relates to, for example, a spindle of a machine tool and a cooling structure for a bearing device incorporated in the spindle.
 工作機械の主軸装置では、加工精度を確保するために、装置の温度上昇は小さく抑える必要がある。しかしながら、近年の工作機械では、加工能率を向上させるべく高速化の傾向にある。主軸を支持する軸受からの発熱も、高速化と共に大きくなってきている。また、装置内部に駆動用のモータを組込んだ、いわゆるモータビルトインタイプが多くなってきており、装置の発熱要因となっている。 In the spindle device of a machine tool, it is necessary to keep the temperature rise of the device small to ensure machining accuracy. However, recent machine tools have a tendency to increase the speed in order to improve the machining efficiency. Heat generation from the bearing that supports the main shaft is also increasing as the speed increases. In addition, so-called motor built-in types in which a drive motor is incorporated in the apparatus are becoming more and more, and this is a cause of heat generation of the apparatus.
 発熱による軸受の温度上昇は、予圧の増加をもたらす結果となり、主軸の高速化、高精度化の観点から極力抑えたい。主軸装置の温度上昇を抑える方法として、冷却用の圧縮エアを軸受に送り、軸と軸受の冷却を行う方法がある(例えば、特許文献1、2)。特許文献1、2では、冷風が、2つの軸受間の空間に回転方向に角度を付けて噴射されている。これにより、冷風が旋回流となることで、軸と軸受の冷却が行われている。 ¡The temperature rise of the bearing due to heat generation results in an increase in preload, and we want to suppress it as much as possible from the viewpoint of speeding up the spindle and increasing accuracy. As a method for suppressing the temperature rise of the main shaft device, there is a method of cooling the shaft and the bearing by sending cooling air to the bearing (for example, Patent Documents 1 and 2). In Patent Documents 1 and 2, cold air is injected into the space between the two bearings at an angle in the rotational direction. Thereby, the cooling of the shaft and the bearing is performed by the cool air becoming a swirling flow.
 また、特許文献2は、外輪間座の内輪間座と対向する周面に環状の凹み部が設けられ、この凹み部にノズル孔の出口が開口し、ノズル孔から冷却用の圧縮エアが内輪間座の周面に向けて吐出されている。この冷却構造によると、狭いノズル孔から凹み部の空間へ圧縮エアが一気に吐出されることにより、圧縮エアが断熱膨張する。そのため、圧縮エアの流速が増して、温度が下がる。この低温の圧縮エアが内輪間座に当たることにより、内輪間座およびそれに接する転がり軸受の内輪がより一層効率良く冷却される。 Further, in Patent Document 2, an annular recess is provided in a peripheral surface of the outer ring spacer facing the inner ring spacer, an outlet of the nozzle hole is opened in the recess, and compressed air for cooling is supplied from the nozzle hole to the inner ring. It is discharged toward the circumferential surface of the spacer. According to this cooling structure, the compressed air is adiabatically expanded by being discharged at once from the narrow nozzle hole into the space of the recess. Therefore, the flow rate of compressed air increases and the temperature decreases. When this low-temperature compressed air strikes the inner ring spacer, the inner ring spacer and the inner ring of the rolling bearing in contact therewith are more efficiently cooled.
特開2000-161375号公報JP 2000-161375 A 特開2015-183738号公報Japanese Patent Laying-Open No. 2015-183738
 特許文献2の冷却構造の場合、ノズル孔から吐出される圧縮エアの量が増えるほど、冷却効果が高くなる。しかしながら、圧縮エアの量を増やすと、ランニングコストが高くなる。また、圧縮エアの量を増やすためにはエア圧縮機の容量を大きくする必要があり、設備費用も高額になる。 In the cooling structure of Patent Document 2, the cooling effect increases as the amount of compressed air discharged from the nozzle hole increases. However, increasing the amount of compressed air increases the running cost. In addition, in order to increase the amount of compressed air, it is necessary to increase the capacity of the air compressor, which increases the equipment cost.
 この発明の目的は、圧縮エアの量が比較的少なくても軸受装置を効率良く冷却できる軸受装置の冷却構造を提供することである。 An object of the present invention is to provide a cooling structure for a bearing device that can efficiently cool the bearing device even if the amount of compressed air is relatively small.
 この発明の軸受装置の冷却構造は、転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪にそれぞれ隣り合って固定側間座および回転側間座が設けられ、前記固定側軌道輪および前記固定側間座が、固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および前記回転側間座が、前記固定部材および前記回転部材のうちの回転部材に設置される軸受装置の冷却構造である。 A cooling structure for a bearing device according to the present invention includes a stationary spacer and a rotating spacer adjacent to a stationary bearing ring and a rotating bearing ring facing the inside and outside of a rolling bearing, respectively. The fixed side spacer is installed on a fixed member of a fixed member and a rotating member, and the rotating side race and the rotating side spacer are installed on a rotating member of the fixed member and the rotating member. It is a cooling structure of a bearing device.
 この冷却構造において、前記固定側間座と前記回転側間座との間に、間座間空間が形成されている。前記間座間空間は、前記固定側間座の軸方向幅の軸方向中央を基準に線対称である。前記間座間空間から軸方向に延びる開口部が形成されている。前記固定側間座に、前記間座間空間に圧縮エアを吐出するノズル孔を有している。前記ノズル孔の出口は、前記固定側間座における間座同士が対向する面に開口し、前記ノズル孔は、前記出口から前記回転側間座における間座同士が対向する面に向けて前記圧縮エアを吐出する。前記出口から前記間座間空間に吐出される前記圧縮エアの軸線が前記軸方向中央に対して偏りを持つように前記ノズル孔が設けられている。ここで、「圧縮エアの軸線が軸方向中央に対して偏りを持つ」とは、圧縮エアの流れが間座間空間の軸方向中央の両側において不均等となることをいう。前記固定側軌道輪は、例えば、外輪であり、前記回転側軌道輪は、例えば、内輪である。 In this cooling structure, a spacer space is formed between the fixed spacer and the rotating spacer. The spacer space is axisymmetric with respect to the axial center of the axial width of the fixed spacer. An opening extending in the axial direction from the spacer space is formed. The stationary spacer has a nozzle hole for discharging compressed air into the spacer space. The outlet of the nozzle hole opens to a surface where the spacers in the fixed side spacer face each other, and the nozzle hole compresses from the outlet toward the surface where the spacers in the rotating side spacer face each other. Air is discharged. The nozzle hole is provided so that the axis of the compressed air discharged from the outlet into the spacer space is biased with respect to the axial center. Here, “the axis of the compressed air is biased with respect to the center in the axial direction” means that the flow of the compressed air becomes uneven on both sides of the center in the axial direction of the spacer space. The fixed-side raceway is, for example, an outer ring, and the rotation-side raceway is, for example, an inner ring.
 この構成によると、固定側間座に設けられたノズル孔から、冷却用の圧縮エアが、回転側間座に向けて間座間空間に吐出される。圧縮エアが、狭いノズル孔から広い間座間空間に吐出されることにより、圧縮エアが断熱膨張する。この断熱膨張により、圧縮エアの流速が増すと共に、温度が下がる。そのため、回転側間座が効率良く冷却され、それに接する転がり軸受の回転側軌道輪も冷却される。その後、圧縮エアは、間座間空間の開口部から間座間空間の外へ排出される。 According to this configuration, the compressed air for cooling is discharged from the nozzle holes provided in the fixed spacer to the spacer space toward the rotating spacer. The compressed air is adiabatically expanded by being discharged from the narrow nozzle hole to the wide spacer space. This adiabatic expansion increases the flow rate of the compressed air and decreases the temperature. Therefore, the rotating side spacer is efficiently cooled, and the rotating side bearing ring of the rolling bearing in contact therewith is also cooled. Thereafter, the compressed air is discharged from the opening of the interstitial space to the outside of the interstitial space.
 ノズル孔から間座間空間に吐出される圧縮エアの軸線が、軸方向中央に対して偏りを持つので、軸方向中央の両側において圧縮エアの流れが不均等となり軸受の幅方向に向かう渦が生じやすい。このため、圧縮エアが間座間空間から排出されるのに時間がかかり、圧縮エアが間座間空間内に留まる時間が長くなる。これにより、回転側間座をより一層効率良く冷却することができる。よって、比較的圧縮エアの量が少なくても軸受装置を効率良く冷却できる。 Since the axis of the compressed air discharged from the nozzle hole into the spacer space is biased with respect to the axial center, the flow of compressed air is uneven on both sides of the axial center and vortices are generated in the bearing width direction. Cheap. For this reason, it takes time for the compressed air to be discharged from the interstitial space, and the time for the compressed air to remain in the interstitial space becomes longer. Thereby, a rotation side spacer can be cooled much more efficiently. Therefore, the bearing device can be efficiently cooled even if the amount of compressed air is relatively small.
 前記ノズル孔の前記出口の軸方向位置を、前記間座間空間の軸方向中央に対して軸方向にオフセットさせることによって、ノズル孔の出口から吐出される圧縮エアの軸線が前記間座間空間において軸方向中央に対して偏りを持たせることができる。
 上記構成において、前記固定側間座の軸方向幅をHBとした場合、前記出口のオフセット量が(HB/2)×0.1以上としてもよい。この構成によれば、間座間空間内で軸受の幅方向に向かう渦を生じさせることができ、圧縮エアが間座間空間内に留まる時間が長くなる。
By offsetting the axial position of the outlet of the nozzle hole in the axial direction with respect to the axial center of the spacer space, the axis of the compressed air discharged from the outlet of the nozzle hole is pivoted in the spacer space. A bias can be given to the center in the direction.
The said structure WHEREIN: When the axial direction width | variety of the said fixed side spacer is set to HB, the offset amount of the said exit is good also as (HB / 2) x0.1 or more. According to this structure, the vortex which goes to the width direction of a bearing can be produced in the space between spacers, and the time for compressed air to stay in the space between spacers becomes long.
 また、前記ノズル孔の前記出口の中心軸を軸方向に傾斜させてもよい。この構成によれば、ノズル孔の出口から吐出される圧縮エアの軸線が、前記間座間空間において軸方向中央に対して偏りを持つようになる。これにより、間座間空間内で軸受の幅方向に向かう渦を生じさせることができ、圧縮エアが間座間空間内に留まる時間が長くなる。 Further, the central axis of the outlet of the nozzle hole may be inclined in the axial direction. According to this configuration, the axis of the compressed air discharged from the outlet of the nozzle hole is biased with respect to the axial center in the spacer space. Thereby, the vortex which goes to the width direction of a bearing can be produced in the space between spacers, and time for compressed air to stay in the space between spacers becomes long.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の第1実施形態に係る軸受装置の冷却構造を備えた工作機械主軸装置の断面図である。 同軸受装置の冷却構造の拡大断面図である。 同軸受装置の冷却構造の間座間空間を示す図である。 図1のIV-IV断面図である。 この発明の第2実施形態に係る軸受装置の冷却構造の断面図である。 同軸受装置の冷却構造の間座間空間を示す図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part numbers in a plurality of drawings indicate the same or corresponding parts.
It is sectional drawing of the machine tool spindle apparatus provided with the cooling structure of the bearing apparatus which concerns on 1st Embodiment of this invention. It is an expanded sectional view of the cooling structure of the bearing device. It is a figure which shows the spacer space between the cooling structures of the bearing device. FIG. 4 is a sectional view taken along line IV-IV in FIG. 1. It is sectional drawing of the cooling structure of the bearing apparatus which concerns on 2nd Embodiment of this invention. It is a figure which shows the spacer space between the cooling structures of the bearing device.
 この発明の第1実施形態に係る軸受装置の冷却構造を図1ないし図4と共に説明する。
 図1は、この軸受装置の冷却構造を備えた工作機械主軸装置の断面図である。この例では、本発明の冷却構造が工作機械の主軸装置に適用されているが、これに限定されるものではない。
A cooling structure for a bearing device according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view of a machine tool spindle device provided with a cooling structure for the bearing device. In this example, the cooling structure of the present invention is applied to a spindle device of a machine tool, but is not limited to this.
 軸受装置Jは、軸方向に並ぶ2つの転がり軸受1,1を備えている。2つの転がり軸受1,1の外輪2,2の間に外輪間座4が介在され、内輪3,3の間に内輪間座5が介在されている。外輪2および外輪間座4がハウジング6に設置され、内輪3および内輪間座5が主軸7に嵌合されている。転がり軸受1はアンギュラ玉軸受であり、外輪2の各軌道面と内輪3の軌道面との間に複数の転動体8が介在されている。転動体8は、保持器9により円周方向等配に保持されている。2つの転がり軸受1,1は、互いに背面組合せで配置されている。外輪間座4と内輪間座5の幅寸法差により、各転がり軸受1,1の初期予圧が設定されている。 The bearing device J includes two rolling bearings 1 and 1 arranged in the axial direction. An outer ring spacer 4 is interposed between the outer rings 2 and 2 of the two rolling bearings 1 and 1, and an inner ring spacer 5 is interposed between the inner rings 3 and 3. The outer ring 2 and the outer ring spacer 4 are installed in the housing 6, and the inner ring 3 and the inner ring spacer 5 are fitted to the main shaft 7. The rolling bearing 1 is an angular ball bearing, and a plurality of rolling elements 8 are interposed between the raceway surfaces of the outer ring 2 and the raceway surface of the inner ring 3. The rolling elements 8 are held by the cage 9 at equal intervals in the circumferential direction. The two rolling bearings 1 and 1 are arranged in combination with each other on the back surface. Depending on the width dimension difference between the outer ring spacer 4 and the inner ring spacer 5, the initial preload of each rolling bearing 1, 1 is set.
 この実施形態では、転がり軸受1は内輪回転タイプである。つまり、外輪2が「固定側軌道輪」を構成し、内輪3が「回転側軌道輪」を構成する。外輪間座4が「固定側間座」を構成し、内輪間座5が「回転側間座」を構成する。また、主軸7が「回転部材」を構成し、ハウジング6が「固定部材」を構成する。後述の第2実施形態についても同様である。 In this embodiment, the rolling bearing 1 is an inner ring rotating type. That is, the outer ring 2 constitutes a “fixed side raceway ring”, and the inner ring 3 constitutes a “rotation side raceway ring”. The outer ring spacer 4 constitutes a “fixed side spacer”, and the inner ring spacer 5 constitutes a “rotation side spacer”. Further, the main shaft 7 constitutes a “rotating member”, and the housing 6 constitutes a “fixing member”. The same applies to a second embodiment described later.
 この実施形態では、外輪2,2および外輪間座4は、ハウジング6に対して隙間嵌めとされ、ハウジング6の段部6aと端面蓋40とにより軸方向の位置決めがされている。また、内輪3,3および内輪間座5は、主軸7に対して締まり嵌めとされ、両側の位置決め間座41,42により軸方向の位置決めがされている。なお、図1の左側の位置決め間座42は、主軸7に螺着させたナット43により固定されている。ただし、外輪2,2、外輪間座4、内輪3,3および内輪間座5の設置方法はこれに限定されない。 In this embodiment, the outer rings 2 and 2 and the outer ring spacer 4 are fitted into the housing 6 with a clearance, and are positioned in the axial direction by the step portion 6a of the housing 6 and the end surface cover 40. Further, the inner rings 3 and 3 and the inner ring spacer 5 are tightly fitted to the main shaft 7 and are positioned in the axial direction by the positioning spacers 41 and 42 on both sides. The left positioning spacer 42 in FIG. 1 is fixed by a nut 43 screwed onto the main shaft 7. However, the installation method of the outer rings 2, 2, the outer ring spacer 4, the inner rings 3, 3, and the inner ring spacer 5 is not limited to this.
[冷却構造]
 冷却構造について説明する。
 図1の部分拡大図である図2に示すように、外輪間座4は、外輪間座本体11と、この外輪間座本体11とは別部材からなるリング状の潤滑油孔形成部材12,12とを有する。外輪間座本体11は、断面形状が略T字形に形成されている。この外輪間座本体11の軸方向両側に、潤滑油孔形成部材12,12が固定されている。2つの潤滑油孔形成部材12,12は、外輪間座4の軸方向中心線(軸方向に直交する線)に対して線対称である。なお、図1と図2とで、片方(右側)の転がり軸受1の切断面が異なっている。
[Cooling structure]
The cooling structure will be described.
As shown in FIG. 2 which is a partially enlarged view of FIG. 1, the outer ring spacer 4 includes an outer ring spacer body 11 and a ring-shaped lubricating oil hole forming member 12 made of a member different from the outer ring spacer body 11. Twelve. The outer ring spacer main body 11 has a substantially T-shaped cross section. Lubricating oil hole forming members 12 and 12 are fixed to both sides in the axial direction of the outer ring spacer body 11. The two lubricating oil hole forming members 12 and 12 are axisymmetric with respect to the axial center line (line orthogonal to the axial direction) of the outer ring spacer 4. Note that FIG. 1 and FIG. 2 differ in the cut surface of one (right side) rolling bearing 1.
 外輪間座本体11の内径寸法は、潤滑油孔形成部材12,12の内径寸法よりも大きい。これにより、外輪間座本体11の内周面と、この内周面に続く潤滑油孔形成部材12,12の側面とで、外輪間座4の内周面に凹み部13aが形成されている。外輪間座本体11の内周面が凹み部13aの底面を構成し、潤滑油孔形成部材12,12の側面が凹み部13aの側壁面を構成する。図3に示すように、潤滑油孔形成部材12の側面の内径端部は面取りされ、面取り部12aが形成されている。 The inner diameter of the outer ring spacer body 11 is larger than the inner diameter of the lubricating oil hole forming members 12 and 12. Thus, a recess 13 a is formed on the inner peripheral surface of the outer ring spacer 4 by the inner peripheral surface of the outer ring spacer main body 11 and the side surfaces of the lubricating oil hole forming members 12, 12 following the inner peripheral surface. . The inner peripheral surface of the outer ring spacer main body 11 constitutes the bottom surface of the recessed portion 13a, and the side surfaces of the lubricating oil hole forming members 12, 12 constitute the side wall surface of the recessed portion 13a. As shown in FIG. 3, the inner diameter end of the side surface of the lubricating oil hole forming member 12 is chamfered to form a chamfered portion 12a.
 外輪間座4と内輪間座5との間には、間座間空間13が形成されている。間座間空間13は、外輪間座4と内輪間座5との間の環状の空間である。間座間空間13は、外輪間座4の軸方向中央C1を基準にして線対称である。間座間空間13は、凹み部13aと、この凹み部13aの内径側に位置する内側空間部13bとからなる。内側空間部13bの軸方向範囲は、間座間空間13と内輪間座5との径方向の隙間である。内側空間部13bの軸方向範囲は、各潤滑油孔形成部材12,12の面取り部12a,12aの内径端P,Pの間である。 A spacer space 13 is formed between the outer ring spacer 4 and the inner ring spacer 5. The spacer space 13 is an annular space between the outer ring spacer 4 and the inner ring spacer 5. The spacer space 13 is line symmetric with respect to the center C1 in the axial direction of the outer ring spacer 4. The interstitial space 13 includes a recessed portion 13a and an inner space portion 13b located on the inner diameter side of the recessed portion 13a. The axial direction range of the inner space portion 13 b is a radial gap between the spacer space 13 and the inner ring spacer 5. The axial direction range of the inner space portion 13b is between the inner diameter ends P and P of the chamfered portions 12a and 12a of the lubricating oil hole forming members 12 and 12, respectively.
 潤滑油孔形成部材12と内輪間座5との間に、環状の隙間14が形成されている。環状の隙間14は、間座間空間13から軸方向に延びる開口部を構成する。間座間空間13は、環状の隙間14および後述の環状隙間22を介して、転がり軸受2の内部空間に繋がっている。つまり、間座間空間13は、閉塞された空間の一部が開口した形状である。 An annular gap 14 is formed between the lubricating oil hole forming member 12 and the inner ring spacer 5. The annular gap 14 constitutes an opening extending in the axial direction from the interstitial space 13. The interstitial space 13 is connected to the internal space of the rolling bearing 2 via an annular gap 14 and an annular gap 22 described later. That is, the interstitial space 13 has a shape in which a part of the closed space is opened.
 図2に示すように、外輪間座本体11にノズル孔15が設けられている。ノズル孔15は、内輪間座5の外周面に向けて間座間空間13に冷却用の圧縮エアAを吐出する。ノズル孔15の出口15aは、外輪間座4の凹み部13aの底面に開口している。この例では、複数個(例えば3個)のノズル孔15が設けられており、各ノズル孔15が円周方向に等間隔に配置されている。 As shown in FIG. 2, a nozzle hole 15 is provided in the outer ring spacer main body 11. The nozzle hole 15 discharges the compressed air A for cooling to the spacer space 13 toward the outer peripheral surface of the inner ring spacer 5. The outlet 15 a of the nozzle hole 15 opens at the bottom surface of the recessed portion 13 a of the outer ring spacer 4. In this example, a plurality of (for example, three) nozzle holes 15 are provided, and the nozzle holes 15 are arranged at equal intervals in the circumferential direction.
 ノズル孔15の出口15aの軸方向位置が、間座間空間13の軸方向中央C1(外輪間座4の軸方向中央)に対して軸方向にオフセットされている。言い換えると、ノズル孔15の出口15aから吐出される圧縮エアAの軸線C2が、間座間空間13において軸方向中央C1に対して偏りを持つように設定されている。つまり、出口15aから吐出された圧縮エアAの流れは、間座間空間13の軸方向中央C1の両側において不均等となる。なお、圧縮エアの軸線が間座間空間13の軸方向中央C1と一致する、すなわち、間座間空間13の軸方向中央C1に対して偏りを持たないノズル孔100を、比較例として図2に二点鎖線で示している。 The axial position of the outlet 15a of the nozzle hole 15 is offset in the axial direction with respect to the axial center C1 of the spacer space 13 (the axial center of the outer ring spacer 4). In other words, the axis C2 of the compressed air A discharged from the outlet 15a of the nozzle hole 15 is set so as to be biased with respect to the axial center C1 in the spacer space 13. That is, the flow of the compressed air A discharged from the outlet 15a becomes uneven on both sides of the center C1 in the axial direction of the spacer space 13. A nozzle hole 100 in which the axis of the compressed air coincides with the axial center C1 of the interstitial space 13, that is, the nozzle hole 100 that is not biased with respect to the axial center C1 of the interstitial space 13 is shown in FIG. It is indicated by a dotted line.
 オフセット量OSは、外輪間座4の軸方向幅をHBとした場合、(HB/2)×0.1以上に設定されている。このようにオフセットさせることにより、後述するように、ノズル孔15から吐出された圧縮エアAが間座間空間13内で軸受の幅方向に向かう渦を生じる。 The offset amount OS is set to (HB / 2) × 0.1 or more when the axial width of the outer ring spacer 4 is HB. By offsetting in this way, as will be described later, the compressed air A discharged from the nozzle hole 15 creates a vortex in the spacer space 13 in the bearing width direction.
 図4に示すように、各ノズル孔15の出口15aの軸心C2は、内輪間座5の回転方向の前方へ傾斜されている。つまり、外輪間座4の軸心に垂直な断面において、出口15aの軸心C2が、任意の半径方向の直線Lから、この直線Lと直交する方向にオフセットした位置にある。ノズル孔15をオフセットさせることにより、圧縮エアAが内輪間座5の回転方向に旋回流として作用し、冷却効果が向上する。なお、図1、図2では、外輪間座4を、ノズル孔15の中心線を通る断面で表示している。 As shown in FIG. 4, the axis C <b> 2 of the outlet 15 a of each nozzle hole 15 is inclined forward in the rotational direction of the inner ring spacer 5. That is, in the cross section perpendicular to the axial center of the outer ring spacer 4, the axial center C <b> 2 of the outlet 15 a is offset from an arbitrary radial straight line L in a direction perpendicular to the straight line L. By offsetting the nozzle holes 15, the compressed air A acts as a swirling flow in the rotation direction of the inner ring spacer 5 and the cooling effect is improved. In FIGS. 1 and 2, the outer ring spacer 4 is indicated by a cross section passing through the center line of the nozzle hole 15.
 外輪間座本体11の外周面に、軸受外部から各ノズル孔15に圧縮エアAを導入する導入溝16が形成されている。図4に示すように、導入溝16は、外輪間座4の外周面における軸方向中間部に設けられ、各ノズル孔15に連通する円弧状に形成されている。詳細には、導入溝16は、外輪間座本体11の外周面における円周方向の大部分を占める角度範囲αにわたって設けられている。 An introduction groove 16 for introducing the compressed air A into each nozzle hole 15 from the outside of the bearing is formed on the outer peripheral surface of the outer ring spacer body 11. As shown in FIG. 4, the introduction groove 16 is provided in an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 4, and is formed in an arc shape communicating with each nozzle hole 15. Specifically, the introduction groove 16 is provided over an angular range α that occupies most of the circumferential direction on the outer peripheral surface of the outer ring spacer body 11.
 外輪間座本体11の外周面における導入溝16が形成されない部分は、後述のエアオイル供給経路(図示せず)が設けられる円周方向位置である。図1に示すように、ハウジング6に圧縮エア導入経路45が設けられ、この圧縮エア導入経路45に導入溝16が連通している。ハウジング6の外部にエア供給装置(図示せず)が設けられ、圧縮エア導入孔45に圧縮エアAを供給している。 The portion where the introduction groove 16 is not formed on the outer peripheral surface of the outer ring spacer body 11 is a circumferential position where an air oil supply path (not shown) described later is provided. As shown in FIG. 1, a compressed air introduction path 45 is provided in the housing 6, and the introduction groove 16 communicates with the compressed air introduction path 45. An air supply device (not shown) is provided outside the housing 6, and the compressed air A is supplied to the compressed air introduction hole 45.
[潤滑構造]
 潤滑構造について説明する。
 図1に示すように、外輪間座4は、軸受内に潤滑油を供給する潤滑油孔形成部材12,12を有する。この例では、潤滑油としてエアオイルが用いられている。各潤滑油孔形成部材12は、外輪間座本体11側の基部20と、この基部20から軸方向外側に突出する鍔状の先端部21とを有している。基部20の内周面は、内輪間座5に隙間14を介して対向する。
[Lubrication structure]
The lubrication structure will be described.
As shown in FIG. 1, the outer ring spacer 4 has lubricating oil hole forming members 12 and 12 for supplying lubricating oil into the bearing. In this example, air oil is used as the lubricating oil. Each lubricating oil hole forming member 12 has a base portion 20 on the outer ring spacer main body 11 side, and a hook-shaped tip portion 21 that protrudes axially outward from the base portion 20. The inner peripheral surface of the base 20 faces the inner ring spacer 5 with a gap 14 therebetween.
 先端部21の内周面は内輪3の外周面と対向し、先端部21の内周面は内輪3の外周面との間でエアオイル通過用の環状隙間22が形成されている。換言すると、潤滑油孔形成部材12の先端部21が、内輪3の外周面に被さるように軸受内に進入して配置されている。また、潤滑油孔形成部材12の先端部21は、保持器9の内周面よりも半径方向の内方に配置されている。 The inner peripheral surface of the tip portion 21 faces the outer peripheral surface of the inner ring 3, and an annular gap 22 for passing air oil is formed between the inner peripheral surface of the tip portion 21 and the outer peripheral surface of the inner ring 3. In other words, the tip 21 of the lubricating oil hole forming member 12 is disposed so as to enter the bearing so as to cover the outer peripheral surface of the inner ring 3. Further, the distal end portion 21 of the lubricating oil hole forming member 12 is disposed radially inward from the inner peripheral surface of the cage 9.
 図2に示すように、潤滑油孔形成部材12に、環状隙間22にエアオイルを供給する潤滑油孔23が設けられている。潤滑油孔23は、軸受側に向かって内径側に傾斜している。潤滑油孔23の出口は、先端部21の内周側に開口している。エアオイルが、ハウジング6および外輪間座本体11に設けられた潤滑油供給経路(図示せず)を経由して潤滑油孔23に供給される。内輪3の外周面に、環状凹み部24が設けられている。環状凹み部24は、内輪3の外周面おける潤滑油孔23に対向する箇所に設けられている。 As shown in FIG. 2, the lubricating oil hole forming member 12 is provided with a lubricating oil hole 23 for supplying air oil to the annular gap 22. The lubricating oil hole 23 is inclined toward the inner diameter side toward the bearing side. The outlet of the lubricating oil hole 23 opens to the inner peripheral side of the tip portion 21. Air oil is supplied to the lubricating oil hole 23 via a lubricating oil supply path (not shown) provided in the housing 6 and the outer ring spacer main body 11. An annular recess 24 is provided on the outer peripheral surface of the inner ring 3. The annular recess 24 is provided at a location facing the lubricating oil hole 23 on the outer peripheral surface of the inner ring 3.
 潤滑油孔形成部材12から吐出されたエアオイルの油が環状凹み部24に溜る。この油が、内輪3の回転に伴う遠心力により、傾斜面である内輪3の外周面に沿って軸受中心側へと導かれる。 The oil of air oil discharged from the lubricating oil hole forming member 12 accumulates in the annular recess 24. This oil is guided to the bearing center side along the outer peripheral surface of the inner ring 3, which is an inclined surface, by centrifugal force accompanying the rotation of the inner ring 3.
[排気構造]
 排気構造について説明する。
 図1に示すように、この軸受装置Jには、冷却用の圧縮エアおよび潤滑用のエアオイルを排気する排気経路46が設けられている。排気経路46は、排気溝47と、径方向排気孔48と、軸方向排気孔49とを有する。排気溝47は、外輪間座本体11における円周方向の一部に設けられている。径方向排気孔48および軸方向排気孔49は、ハウジング6に設けられ、排気溝47に連通する。外輪間座本体11の排気溝47は、潤滑油供給経路が設けられる位置とは対角の(180°位相が異なる)円周方向位置に形成されている。
[Exhaust structure]
The exhaust structure will be described.
As shown in FIG. 1, the bearing device J is provided with an exhaust passage 46 for exhausting compressed air for cooling and air oil for lubrication. The exhaust path 46 includes an exhaust groove 47, a radial exhaust hole 48, and an axial exhaust hole 49. The exhaust groove 47 is provided in a part of the outer ring spacer body 11 in the circumferential direction. The radial exhaust hole 48 and the axial exhaust hole 49 are provided in the housing 6 and communicate with the exhaust groove 47. The exhaust groove 47 of the outer ring spacer body 11 is formed in a circumferential position diagonally different from the position where the lubricating oil supply path is provided (180 ° phase difference).
[冷却構造の作用]
 上記構成からなる軸受装置の冷却構造の作用について説明する。
 外輪間座4に設けられたノズル孔15より、冷却用の圧縮エアAが、内輪間座5の外周面に向けて間座間空間13に吐出される。圧縮エアAが、狭いノズル孔15から広い間座間空間13に吐出されることにより、圧縮エアAが断熱膨張する。この断熱膨張により、圧縮エアAの流速が増すと共に、温度が下がる。そのため、内輪間座5が効率良く冷却され、それに接する転がり軸受1の内輪3も冷却される。その後、圧縮エアAは、間座間空間13の開口部である隙間14および環状隙間22を通って軸受空間に流れ、さらに排気経路46を通って外部へ排出される。
[Operation of cooling structure]
The effect | action of the cooling structure of the bearing apparatus which consists of the said structure is demonstrated.
From the nozzle hole 15 provided in the outer ring spacer 4, compressed air A for cooling is discharged into the spacer space 13 toward the outer peripheral surface of the inner ring spacer 5. The compressed air A is adiabatically expanded by being discharged from the narrow nozzle hole 15 to the wide spacer space 13. By this adiabatic expansion, the flow rate of the compressed air A increases and the temperature decreases. Therefore, the inner ring spacer 5 is efficiently cooled, and the inner ring 3 of the rolling bearing 1 in contact therewith is also cooled. Thereafter, the compressed air A flows into the bearing space through the gap 14 and the annular gap 22 which are openings of the spacer space 13, and is further discharged to the outside through the exhaust path 46.
 ノズル孔15から間座間空間13に吐出される圧縮エアAの軸線C2が、軸方向中央C1に対して偏りを持っている。したがって、軸方向中央C1の両側において圧縮エアAの流れが不均等となり、軸受の幅方向に向かう渦が生じやすい。このため、圧縮エアAが間座間空間13から排出されるのに時間がかかり、圧縮エアが間座間空間13内に留まる時間が長くなる。これにより、内輪間座5をより一層効率良く冷却することができる。その結果、比較的圧縮エアの量が少なくても軸受装置を効率良く冷却できる。そのため、ランニングコストを低く抑えることができる。また、エア圧縮機の容量が小さくて済むので、設備コストも安くできる。 The axis C2 of the compressed air A discharged from the nozzle hole 15 into the spacer space 13 is biased with respect to the axial center C1. Therefore, the flow of the compressed air A is uneven on both sides of the axial center C1, and vortices are easily generated in the bearing width direction. For this reason, it takes time for the compressed air A to be discharged from the spacer space 13, and the time for the compressed air to remain in the spacer space 13 becomes longer. Thereby, the inner ring spacer 5 can be cooled more efficiently. As a result, the bearing device can be efficiently cooled even if the amount of compressed air is relatively small. Therefore, running cost can be kept low. Moreover, since the capacity of the air compressor is small, the equipment cost can be reduced.
 また、この実施形態では、ノズル孔15が内輪間座5の回転方向の前方へ傾斜されている。このため、ノズル孔15から吐出された圧縮エアAは、内輪間座5の外周面に沿って旋回しながら軸方向に流れ、排気経路46を通って軸受外部へ排出される。圧縮エアAが旋回するので、軸方向に真っ直ぐ流れる場合と比べて、圧縮エアAが内輪間座5の外周面と接している時間が長い。これにより、内輪間座5をより一層効率よく冷却することができる。このため、内輪間座5をより一層効率良く冷却することができる。 In this embodiment, the nozzle hole 15 is inclined forward in the rotational direction of the inner ring spacer 5. For this reason, the compressed air A discharged from the nozzle hole 15 flows in the axial direction while turning along the outer peripheral surface of the inner ring spacer 5, and is discharged to the outside of the bearing through the exhaust path 46. Since the compressed air A turns, the time during which the compressed air A is in contact with the outer peripheral surface of the inner ring spacer 5 is longer than when the compressed air A flows straight in the axial direction. Thereby, the inner ring spacer 5 can be cooled more efficiently. For this reason, the inner ring spacer 5 can be cooled more efficiently.
[他の実施形態]
 図5、図6は第2実施形態を示す。第2実施形態の軸受装置の冷却構造は、ノズル孔15の出口15aの中心軸C2が、軸方向に対して傾斜している。ノズル孔15の出口15aの軸方向位置は、間座間空間13の軸方向中央C1に対して軸方向にオフセットされていても、オフセットされていなくてもよい。図5、図6の例では、ノズル孔15は、間座間空間13の軸方向中央C1に位置し、ノズル孔15から出口15aが斜めに延びている。ノズル孔15の出口15aの軸方向位置は、間座間空間13の軸方向中央C1に対して軸方向にオフセットされている。その他の構成は、第1実施形態と同じである。
[Other Embodiments]
5 and 6 show a second embodiment. In the cooling structure of the bearing device of the second embodiment, the central axis C2 of the outlet 15a of the nozzle hole 15 is inclined with respect to the axial direction. The axial position of the outlet 15 a of the nozzle hole 15 may or may not be offset in the axial direction with respect to the axial center C <b> 1 of the spacer space 13. In the example of FIGS. 5 and 6, the nozzle hole 15 is located in the center C <b> 1 in the axial direction of the spacer space 13, and the outlet 15 a extends obliquely from the nozzle hole 15. The axial position of the outlet 15 a of the nozzle hole 15 is offset in the axial direction with respect to the axial center C <b> 1 of the spacer space 13. Other configurations are the same as those of the first embodiment.
 第2実施形態の軸受装置Jの冷却構造も、ノズル孔15から間座間空間13に吐出される圧縮エアAの軸線C2が、軸方向中央C1に対して偏りを持っている。したがって、第1実施形態と同様に、軸方向中央C1の両側において圧縮エアAの流れが不均等となり、間座間空間13内で軸受の幅方向に向かう渦が生じやすい。このため、圧縮エアAが間座間空間13内に長く留まり、内輪間座5を効率よく冷却することができる。 Also in the cooling structure of the bearing device J of the second embodiment, the axis C2 of the compressed air A discharged from the nozzle hole 15 to the spacer space 13 is biased with respect to the axial center C1. Therefore, similarly to the first embodiment, the flow of the compressed air A is uneven on both sides of the axial center C1, and a vortex in the spacer space 13 tends to occur in the bearing width direction. For this reason, the compressed air A stays in the spacer space 13 for a long time, and the inner ring spacer 5 can be efficiently cooled.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiments have been described with reference to the drawings. However, the present invention is not limited to the above embodiments, and various additions and modifications can be made without departing from the gist of the present invention. Or it can be deleted. Therefore, such a thing is also included in the scope of the present invention.
1…転がり軸受
2…外輪(固定側軌道輪)
3…内輪(回転側軌道輪)
4…外輪間座(固定側間座)
5…内輪間座(回転側間座)
6…ハウジング(固定部材)
7…主軸(回転部材)
13…間座間空間
15…ノズル孔
15a…出口
A…圧縮エア
C2…出口の中心軸(圧縮エアの軸線)
J…軸受装置
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Outer ring (fixed side ring)
3. Inner ring (rotating raceway)
4. Outer ring spacer (fixed side spacer)
5 ... Inner ring spacer (rotating side spacer)
6 ... Housing (fixing member)
7 ... Spindle (Rotating member)
13 ... Space between spacers 15 ... Nozzle hole 15a ... Outlet A ... Compressed air C2 ... Center axis of outlet (axis of compressed air)
J ... Bearing device

Claims (4)

  1.  転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪にそれぞれ隣り合って固定側間座および回転側間座が設けられ、前記固定側軌道輪および前記固定側間座が固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および前記回転側間座が前記固定部材および前記回転部材のうちの回転部材に設置される軸受装置の冷却構造であって、
     前記固定側間座と前記回転側間座との間に、間座間空間が形成され、
     前記間座間空間は、前記固定側間座の軸方向幅の軸方向中央を基準に線対称であり、
     前記間座間空間から軸方向に延びる開口部が形成され、
     前記固定側間座に、前記間座間空間に圧縮エアを吐出するノズル孔を有し、
     前記ノズル孔の出口は、前記固定側間座における間座同士が対向する面に開口し、
     前記ノズル孔は、前記出口から前記回転側間座における間座同士が対向する面に向けて前記圧縮エアを吐出し、
     前記出口から前記間座間空間に吐出される前記圧縮エアの軸線が前記軸方向中央に対して偏りを持つように前記ノズル孔が設けられている軸受装置の冷却構造。
    A stationary spacer and a rotating spacer are provided adjacent to the stationary bearing ring and the rotating bearing ring facing the inside and outside of the rolling bearing, respectively, and the stationary bearing ring and the stationary spacer are fixed and rotated. A cooling structure for a bearing device that is installed on a fixed member of the members, and wherein the rotating raceway and the rotating spacer are installed on the rotating member of the fixed member and the rotating member;
    A spacer space is formed between the fixed spacer and the rotating spacer,
    The spacer space is axisymmetric with respect to the axial center of the axial width of the fixed side spacer,
    An opening extending in the axial direction from the space between the spacers is formed,
    The fixed side spacer has a nozzle hole for discharging compressed air into the spacer space,
    The outlet of the nozzle hole opens to the surface where the spacers in the fixed side spacer face each other,
    The nozzle hole discharges the compressed air from the outlet toward a surface where the spacers in the rotating spacer are opposed to each other,
    The bearing structure cooling structure in which the nozzle hole is provided so that an axis of the compressed air discharged from the outlet to the spacer space is biased with respect to the axial center.
  2.  請求項1に記載の軸受装置の冷却構造において、前記ノズル孔の前記出口の軸方向位置が、前記間座間空間の軸方向中央に対して軸方向にオフセットしている軸受装置の冷却構造。 2. The cooling structure for a bearing device according to claim 1, wherein an axial position of the outlet of the nozzle hole is offset in an axial direction with respect to an axial center of the space between the spacers.
  3.  請求項2に記載の軸受装置の冷却構造において、前記固定側間座の軸方向幅をHBとした場合、前記出口のオフセット量が、(HB/2)×0.1以上である軸受装置の冷却構造。 The cooling structure of the bearing device according to claim 2, wherein when the axial width of the fixed spacer is HB, the offset amount of the outlet is (HB / 2) × 0.1 or more. Cooling structure.
  4.  請求項1に記載の軸受装置の冷却構造において、前記ノズル孔の前記出口の中心軸が軸方向に傾斜している軸受装置の冷却構造。 2. The cooling structure for a bearing device according to claim 1, wherein a central axis of the outlet of the nozzle hole is inclined in the axial direction.
PCT/JP2018/011808 2017-03-29 2018-03-23 Cooling structure for bearing device WO2018181032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-064941 2017-03-29
JP2017064941A JP2018168886A (en) 2017-03-29 2017-03-29 Cooling structure for bearing device

Publications (1)

Publication Number Publication Date
WO2018181032A1 true WO2018181032A1 (en) 2018-10-04

Family

ID=63675824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011808 WO2018181032A1 (en) 2017-03-29 2018-03-23 Cooling structure for bearing device

Country Status (2)

Country Link
JP (1) JP2018168886A (en)
WO (1) WO2018181032A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157403A (en) * 2006-12-26 2008-07-10 Ntn Corp Bearing cooling device
JP2015117820A (en) * 2013-11-18 2015-06-25 Ntn株式会社 Cooling structure of bearing device
JP2015183739A (en) * 2014-03-22 2015-10-22 Ntn株式会社 Cooling structure of bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157403A (en) * 2006-12-26 2008-07-10 Ntn Corp Bearing cooling device
JP2015117820A (en) * 2013-11-18 2015-06-25 Ntn株式会社 Cooling structure of bearing device
JP2015183739A (en) * 2014-03-22 2015-10-22 Ntn株式会社 Cooling structure of bearing device

Also Published As

Publication number Publication date
JP2018168886A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
KR102208885B1 (en) Cooling structure for bearing device
WO2015146569A1 (en) Cooling structure for bearing device
US9109630B2 (en) Rolling bearing unit
JP6013112B2 (en) Cooling structure of bearing device
JP6144024B2 (en) Cooling structure of bearing device
JP6050072B2 (en) Cooling structure of bearing device
US10001170B2 (en) Rolling bearing
KR102448407B1 (en) Cooling structure of bearing device
JP2007321950A (en) Cylindrical roller bearing
EP3848602B1 (en) Rolling bearing and spindle device equipped with rolling bearing
JP5675263B2 (en) Rolling bearing
JP6385089B2 (en) Cooling structure of bearing device
EP3851692B1 (en) Bearing device cooling structure, and main spindle device of machine tool
JP6385090B2 (en) Cooling structure of bearing device
JPH11336767A (en) Cylindrical roller bearing
WO2018181032A1 (en) Cooling structure for bearing device
JP6609003B2 (en) Cooling structure of bearing device
WO2019073911A1 (en) Cooling structure for bearing device
WO2018074375A1 (en) Cooling structure for bearing device
JP7011439B2 (en) Bearing device cooling structure
WO2018181033A1 (en) Cooling structure for bearing device
JP6983029B2 (en) Bearing device cooling structure
JP2020045942A (en) Cooling structure of bearing device and spacer device with cooling function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776932

Country of ref document: EP

Kind code of ref document: A1