WO2018181033A1 - Cooling structure for bearing device - Google Patents

Cooling structure for bearing device Download PDF

Info

Publication number
WO2018181033A1
WO2018181033A1 PCT/JP2018/011809 JP2018011809W WO2018181033A1 WO 2018181033 A1 WO2018181033 A1 WO 2018181033A1 JP 2018011809 W JP2018011809 W JP 2018011809W WO 2018181033 A1 WO2018181033 A1 WO 2018181033A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring spacer
compressed air
inner ring
bearing
outer ring
Prior art date
Application number
PCT/JP2018/011809
Other languages
French (fr)
Japanese (ja)
Inventor
惠介 那須
智彦 小畑
真人 吉野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017197620A external-priority patent/JP6983029B2/en
Priority claimed from JP2017197619A external-priority patent/JP7011439B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018181033A1 publication Critical patent/WO2018181033A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings

Definitions

  • the present invention relates to, for example, a spindle of a machine tool and a cooling structure for a bearing device incorporated in the spindle.
  • Patent Document 2 describes a cooling structure in which the above-described cooling method using compressed air is applied to a grease lubricated bearing device. In that case, in order to prevent the grease in the bearing from being blown away by the compressed air, it has been proposed to provide an obstacle wall that prevents the compressed air from flowing into the bearing space.
  • the cooling method using compressed air described above has a high cooling effect, the temperature rise of the spindle device can be effectively suppressed. Further, like the cooling structure of Patent Document 2, by providing an obstacle wall that prevents the compressed air from flowing into the bearing space, the cooling method using the compressed air can be applied to the grease lubricated bearing device. Become. However, the obstacle wall proposed in Patent Document 2 has a function of preventing compressed air from flowing into the bearing space, but does not have a function of suppressing exhaust. For this reason, the compressed air blown toward the outer peripheral surface of the inner ring spacer does not stay for a long time between the inner ring spacer and the outer ring spacer, and is discharged in a relatively short time. As a result, it is difficult to obtain a sufficient cooling effect.
  • An object of the present invention is to provide a cooling structure capable of preventing grease in a bearing from being blown off by compressed air and efficiently cooling the bearing device by compressed air in a grease lubricated bearing device. .
  • an outer ring spacer and an inner ring spacer are respectively interposed between outer rings and inner rings of a plurality of rolling bearings arranged in the axial direction, and the outer ring and the outer ring spacer are installed in a housing,
  • the inner ring and the inner ring spacer are fitted to a main shaft, and the rolling bearing is lubricated by grease sealed in a bearing space between the outer ring and the inner ring.
  • a supply port for supplying compressed air for cooling toward the outer peripheral surface of the inner ring spacer is provided on the inner peripheral surface of the outer ring spacer, and the axial end surface of the outer ring spacer
  • an exhaust port for compressed air supplied from the supply port is provided.
  • obstacle walls are provided that prevent the compressed air supplied from the supply port from flowing into the bearing space and projecting to the outer diameter side. A part of the obstacle wall faces the outer ring spacer via a minute gap to constitute a first labyrinth seal that inhibits a smooth flow of compressed air from the supply port to the exhaust port.
  • the compressed air for cooling supplied from the supply port is blown onto the outer peripheral surface of the inner ring spacer, whereby the inner ring spacer is cooled, and the inner ring of the rolling bearing in contact therewith is also cooled. Thereafter, the compressed air flows to both sides in the axial direction along the outer peripheral surface of the inner ring spacer.
  • rolling bearings are arranged on both sides in the axial direction, obstacle walls are provided at both axial ends of the inner ring spacer, so that compressed air is prevented from flowing into the bearing space.
  • the exhaust of compressed air is suppressed, and the compressed air after being blown to the outer peripheral surface of the inner ring spacer causes the inner ring spacer and the outer ring spacer to The time to stay in the space between them becomes longer.
  • the inner ring spacer can be efficiently cooled. Thereby, the bearing device and the main shaft are efficiently cooled.
  • the obstacle wall may constitute the first labyrinth seal by a plurality of portions facing the outer ring spacer via a minute gap. In this case, exhaust of the compressed air is further suppressed, and the time during which the compressed air stays in the space between the inner ring spacer and the outer ring spacer is further increased.
  • the rolling bearing has a sealing material that seals the bearing space at an axial end of the outer ring, an end surface of the obstacle wall faces the sealing material in the axial direction, and the sealing material and the obstacle
  • the wall may constitute a second labyrinth seal that inhibits the compressed air from flowing into the bearing space. As a result, the compressed air is less likely to flow into the bearing space.
  • the gap is positioned on the inner side in the axial direction than the exhaust port, and an axial portion between the gap and the exhaust port on the inner peripheral surface of the outer ring spacer faces the exhaust port. It may be a tapered portion where the inner diameter dimension gradually increases.
  • the axial portion on the inner peripheral surface of the outer ring spacer is a tapered portion, the compressed air after passing through the gap flows smoothly to the exhaust port. Therefore, exhaust is performed quickly. This makes it difficult for compressed air to flow into the bearing space of the rolling bearing, and the grease sealed in the bearing space is held for a long period of time.
  • the supply port may be provided to be inclined forward in the rotational direction of the inner ring
  • the exhaust port may be provided to be inclined forward in the rotational direction of the outer ring spacer
  • the cooling by the compressed air of the above-mentioned patent document 1 can be applied to so-called air oil lubrication or oil mist lubrication in which a lubricant is mixed with compressed air to lubricate a rolling bearing.
  • air oil lubrication or oil mist lubrication in which a lubricant is mixed with compressed air to lubricate a rolling bearing.
  • the amount of compressed air passing through the inside of the bearing is excessive, smooth supply / exhaust of air oil may be hindered.
  • noise will increase when compressed air collides with an air curtain-like air flow film generated near the shaft end of the rolling bearing or the rotating rolling element during rotation.
  • Cooling with compressed air can also be applied when the bearing is grease lubricated. In that case, if the amount of compressed air passing through the inside of the bearing is large, the compressed air may discharge the grease inside the bearing and induce poor lubrication.
  • the compressed air for cooling is discharged from the supply port provided in the outer ring spacer toward the peripheral surface of the inner ring spacer. Since the supply port is inclined forward in the rotation direction of the rotary spacer, the compressed air discharged from the supply port flows in the axial direction while turning along the peripheral surface of the inner ring spacer, Cool the seat. Since the compressed air turns, the time during which the compressed air is in contact with the peripheral surface of the inner ring spacer is longer than when the compressed air flows straight in the axial direction. As a result, the inner ring spacer can be efficiently cooled.
  • Compressed air that has passed through the peripheral surface of the inner ring spacer is discharged to the outside through an exhaust port provided in the axial end surface of the outer ring spacer. Since the exhaust port is also inclined forward in the rotational direction of the inner ring spacer, the compressed air that is turning is smoothly discharged from the exhaust port. Thereby, the amount of compressed air passing through the inside of the rolling bearing can be reduced. As a result, it is possible to eliminate or reduce adverse effects caused by a large amount of compressed air flowing inside the rolling bearing.
  • the plurality of supply ports and the same number of exhaust ports may be provided, and the nozzle holes and the exhaust ports may be provided at equal intervals in the circumferential direction.
  • the inner ring spacer can be evenly cooled in the circumferential direction by the compressed air discharged from the nozzle hole. Further, the compressed air that has passed through the circumferential surface of the inner ring spacer is discharged uniformly from each exhaust port. For this reason, discharge of compressed air is performed smoothly.
  • the circumferential distance from any supply port to the exhaust port located on the front side in the rotation direction of the inner ring spacer with respect to the supply port is It may be longer than the distance in the circumferential direction from the exhaust port to the supply port located on the front side in the rotational direction of the inner ring spacer.
  • FIG. 9 is a cross-sectional view of an inner ring spacer and an outer ring spacer of a bearing device different from the bearing devices of FIGS. 1 to 8 cut along a plane perpendicular to the axial direction. It is sectional drawing which shows the state which integrated the bearing apparatus shown in FIG. 1 in the main shaft apparatus of a machine tool.
  • FIG. 13 is a sectional view taken along the line XV-XV in FIG. 12. It is sectional drawing of the principal part of the cooling structure of the bearing apparatus which concerns on the 2nd application example of this invention. It is XVII-XVII sectional drawing of FIG. It is sectional drawing of the principal part of the cooling structure of the bearing apparatus which concerns on the 3rd application example of this invention. It is the elements on larger scale of FIG.
  • this bearing device J includes two rolling bearings 1, 1 arranged in the axial direction, and an outer ring spacer 4 interposed between outer rings 2, 2 of the two rolling bearings 1, 1. And an inner ring spacer 5 interposed between the inner rings 3 and 3.
  • the rolling bearing 1 of this embodiment is an angular ball bearing.
  • the two rolling bearings 1 and 1 are installed in a rear combination.
  • a plurality of rolling elements 8 are interposed between the raceway surface of the outer ring 2 and the raceway surface of the inner ring 3.
  • the rolling elements 8 are held at equal intervals in the circumferential direction by a cage 9.
  • the rolling bearing 1 is grease-lubricated, and seal materials 31 and 32 are attached to both ends of the outer ring 2 in the axial direction.
  • the sealing materials 31 and 32 seal the bearing space 30 between the outer ring 2 and the inner ring 3.
  • This bearing device J is used, for example, to support the spindle of a machine tool.
  • the outer ring 2 of each rolling bearing 1 is fixed in the housing 6, and the inner ring 3 is fitted to the outer peripheral surface of the main shaft 7.
  • the outer ring spacer 4 has a substantially T-shaped cross section. Specifically, the outer ring spacer 4 includes an inner diameter side protruding portion 4a that is a T-shaped vertical line portion and a cylindrical portion 4b that is a T-shaped horizontal line portion. The inner peripheral surface of the inner diameter side protrusion 4 a and the outer peripheral surface of the inner ring spacer 5 are opposed to each other with a radial gap 9 therebetween.
  • a supply port 10 is provided on the inner peripheral surface of the inner diameter side protrusion 4 a of the outer ring spacer 4. The supply port 10 supplies the compressed air A for cooling toward the outer peripheral surface of the inner ring spacer 5.
  • the number of supply ports 10 is three, and each supply port 10 is arranged at equal intervals in the circumferential direction.
  • annular introduction groove 11 for introducing the compressed air A is provided on the outer peripheral surface of the outer ring spacer 4.
  • the introduction groove 11 is provided in an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 4 and communicates with each supply port 10 through a connection hole 11a.
  • Compressed air A is supplied to the introduction groove 11 from the compressed air supply device 45 (FIG. 10) provided outside the bearing device J through the compressed air introduction hole 46 (FIG. 3) provided in the housing 6.
  • the inner ring spacer 5 has a cylindrical body 13 at the center in the axial direction and obstacle wall forming bodies 14 and 14 on both sides in the axial direction of the cylindrical body 13.
  • a barrier wall 15 is provided at the axial end of each barrier wall forming body 14.
  • the main body portion 14 a excluding the obstacle wall 15 in the obstacle wall forming body 14 has a cylindrical shape having the same outer diameter as that of the cylindrical body 13.
  • FIG. 2 is a partially enlarged view of FIG.
  • the obstacle wall 15 includes a flange-shaped portion 15 a that extends to the outer diameter side, and a cylindrical portion 15 b that extends axially inward from the outer diameter end of the flange-shaped portion 15 a.
  • the outer diameter end of the collar portion 15 a extends to the vicinity of the inner peripheral surface of the outer ring 2 of the rolling bearing 1.
  • the axially inner end of the cylindrical portion 15 b is opposed to the inner diameter side protruding portion 4 a of the outer ring spacer 4 via a minute gap 16.
  • a first labyrinth seal LS is configured by a facing portion between the cylindrical portion 15 b and the inner-diameter side protruding portion 4 a of the outer ring spacer 4.
  • An annular cooling space 18 is formed by the main body portion 14 a of the obstacle wall forming body 14, the flange portion 15 a of the obstacle wall 15, the cylindrical portion 15 b, and the inner diameter side protruding portion 4 a of the outer ring spacer 4.
  • An exhaust space 19 is formed between the outer peripheral surface of the cylindrical portion 15 b of the obstacle wall 15 and the inner peripheral surface of the cylindrical portion 4 b of the outer ring spacer 4. The cooling space 18 and the exhaust space 19 communicate with each other through a gap 16 that constitutes the first labyrinth seal LS.
  • An exhaust port 20 is provided at the axial end of the cylindrical portion 4 b of the outer ring spacer 4.
  • the exhaust port 20 has, for example, a rectangular cutout shape as shown in FIG.
  • the bearing space 30 and the cooling space 18 are completely separated by the obstacle wall 15.
  • the outer diameter end of the flange portion 15a of the obstacle wall 15 extends to the vicinity of the inner peripheral surface of the outer ring 3, and the flange portion 15a of the obstacle wall 15 is slightly axially spaced from the sealing material 31 on the inner side in the axial direction. Is facing through. Thereby, a second labyrinth seal is formed between the bearing space 30 and the exhaust space 19.
  • the compressed air A for cooling is sent from the compressed air supply device outside the bearing device J to the introduction groove 11 of the outer ring spacer 4 and from the supply port 10 of the outer ring spacer 4 to the inner ring spacer. 5 is supplied toward the outer peripheral surface.
  • the inner ring spacer 5 is cooled, and the inner ring 3 of the rolling bearing 1 in contact therewith is also cooled.
  • the compressed air A flows along the outer peripheral surface of the inner ring spacer 5 on both sides in the axial direction.
  • the rolling bearings 1 are arranged on both sides in the axial direction, since the obstacle walls 15 are provided at both axial ends of the inner ring spacer 5, the compressed air A hardly flows into the bearing space 30.
  • the exhaust of the compressed air A blown to the outer peripheral surface of the inner ring spacer 5 is suppressed.
  • the time during which the compressed air A stays in the cooling space 18 becomes long, and the inner ring spacer 5 can be efficiently cooled.
  • the inner ring spacer 5 and the inner ring 3 of the rolling bearing 1 in contact therewith are more efficiently cooled.
  • Compressed air A in the cooling space 18 gradually passes through the gap 16 to the exhaust space 19 over time, and is discharged from the exhaust space 19 to the outside of the bearing device J through the exhaust port 20.
  • the compressed air A does not flow directly from the cooling space 18 into the bearing space 30.
  • a second labyrinth seal is formed between the bearing space 30 and the exhaust space 19. For this reason, the compressed air A hardly flows into the bearing space 30, and the grease enclosed in the bearing space 30 can be prevented from being blown off by the compressed air A. As a result, a good lubrication state of the bearing device J can be maintained.
  • FIG. 5 and 6 show a cooling structure for a bearing device according to a second embodiment of the present invention.
  • the bearing device J of the second embodiment has the same configuration as that of the first embodiment except that the shape of the obstacle wall 15 of the inner ring spacer 5 is different. Parts having the same configuration are denoted by the same reference numerals and description thereof is omitted.
  • the obstacle wall 15 of the bearing device J of the second embodiment has two cylindrical portions 15b and 15c.
  • One cylindrical portion 15b extends inward in the axial direction from the outer diameter end of the collar portion 15a.
  • the other cylindrical portion 15c extends inward in the axial direction from a position on the inner diameter side of the outer diameter end of the collar-shaped portion 15a.
  • the axially inner ends of the cylindrical portions 15b and 15c face the inner diameter side protruding portion 4a of the outer ring spacer 4 through minute gaps 16 and 17, respectively.
  • a first labyrinth seal LS is configured by the facing portions of the two cylindrical portions 15b and 15c and the inner diameter side protruding portion 4a of the outer ring spacer 4.
  • FIG. 7 and 8 show a cooling structure for a bearing device according to a third embodiment of the present invention.
  • the bearing device J of the third embodiment differs from the first embodiment in the shape of the axial portion between the clearance 16 and the exhaust port 20 on the inner peripheral surface of the outer ring spacer 4.
  • this axial portion constitutes a tapered portion 23 whose inner diameter dimension gradually increases toward the outer side (exhaust port 20) in the axial direction over the entire circumference.
  • the taper angle ⁇ is, for example, 10 ° to 60 °.
  • Other configurations are the same as those in the first embodiment. Parts having the same configuration are denoted by the same reference numerals and description thereof is omitted.
  • the compressed air A that has passed through the gap 16 flows smoothly to the exhaust port 20, and the exhaust is performed quickly. .
  • the compressed air A is less likely to flow into the bearing space 30 of the rolling bearing 1, and the grease sealed in the bearing space 30 is retained for a long period of time.
  • the bearing device having a tapered shape has a larger discharge amount to the outside of the bearing and a smaller inflow amount to the inside of the bearing than the bearing device having the cylindrical portion in the axial direction.
  • each supply port 10 is changed to the inner ring 3 (FIG. 1) and the main shaft as shown in FIG. 7 may be inclined forward in the rotational direction D1.
  • Each supply port 10 is linear, and is offset from an arbitrary radial straight line L1 in a cross section perpendicular to the axis of the outer ring spacer 4 in a direction orthogonal to the straight line L1 (offset amount OS). is there.
  • FIG. 10 is a cross-sectional view showing a part of the spindle device of the machine tool in which the bearing device J shown in FIG. 1 is incorporated.
  • the outer rings 2, 2 of the rolling bearings 1, 1 and the outer ring spacer 4 are fitted to the inner peripheral surface of the housing 6, and the inner rings 3, 3 and the inner ring spacer 5 of the rolling bearings 1, 1 are machine tools.
  • the main shaft 7 is fitted on the outer peripheral surface.
  • the outer ring 2 and the outer ring spacer 4 are fitted to the housing 6 with a clearance, and the inner ring 3 and the inner ring spacer 5 are fitted to the shaft 7.
  • the outer ring 3 of one (right side of the drawing) of the rolling bearing 1 is axially positioned by the step portion 6 a of the housing 6, and the inner ring 3 of the one (right side of the drawing) is axially positioned by the positioning spacer 41. Positioning has been performed.
  • the bearing device J is fixed to the housing 6 by pressing the outer ring presser 42 and the inner ring presser 43 against the outer ring 2 and the inner ring 3 of the other (left side in the drawing) of the rolling bearing 1.
  • the fixing method of the bearing device J is not limited to this.
  • the housing 6 and the outer ring retainer 42 are provided with a compressed air introduction hole 46 for introducing the compressed air A for cooling from the compressed air supply device 45 into the bearing device J.
  • the compressed air introduction hole 46 communicates with the introduction groove 11 provided on the outer peripheral surface of the outer ring spacer 4.
  • an exhaust hole 47 is provided in the housing 6 and the outer ring retainer 42. The exhaust hole 47 communicates with the exhaust port 20 of the outer ring spacer 4 through the connection hole 48.
  • the main shaft device can be operated in a high-speed region. For this reason, this bearing apparatus J can be used suitably for support of the main axis
  • FIG. 11 shows a cooling structure for a bearing device according to a fourth embodiment of the present invention.
  • the supply port 10 for supplying the compressed air for cooling to the outer peripheral surface of the inner ring spacer 5 is constituted by the nozzle hole 60 a of the nozzle 60.
  • the nozzle hole 60a is inclined forward in the rotational direction D1 of the inner ring spacer 5.
  • the exhaust port 20 is also inclined forward in the rotational direction D1 of the inner ring spacer 5.
  • the compressed air A discharged from the nozzle hole 60a is swung along the peripheral surface of the inner ring spacer 5. It flows in the axial direction, and the inner ring spacer 5 is cooled during this time. Since the compressed air A turns, the time during which the compressed air A is in contact with the peripheral surface of the inner ring spacer 5 is longer than when the compressed air A flows straight in the axial direction. As a result, the inner ring spacer 5 can be efficiently cooled.
  • Compressed air A that has passed through the peripheral surface of the inner ring spacer 5 is discharged to the outside through the exhaust port 20 provided in the axial end surface of the outer ring spacer 4 and the inside of the rolling bearing 1. Since the exhaust port 20 is also inclined forward in the rotation direction D ⁇ b> 1 of the inner ring spacer 5, the compressed air A that is a swirling flow is smoothly discharged from the exhaust port 20. Thereby, the amount of the compressed air A passing through the inside of the rolling bearing 1 can be reduced, and adverse effects caused by a large amount of the compressed air A flowing inside the rolling bearing 1 can be eliminated or reduced.
  • the rolling bearing 1 when the rolling bearing 1 is subjected to air oil lubrication or oil mist lubrication, it is possible to prevent obstructing the smooth supply and exhaust of air oil. In addition, it is possible to suppress noise caused by the collision of the compressed air A with the air curtain-like air flow film generated in the vicinity of the shaft end of the rolling bearing 1 or the rotating rolling element 8. Further, when the rolling bearing 1 is grease lubricated, it is possible to prevent the compressed air A from discharging grease inside the bearing.
  • the inner ring spacer 5 can be evenly cooled in the circumferential direction by the compressed air A discharged from the nozzle hole 60a. Further, the compressed air A that has passed through the peripheral surface of the inner ring spacer 5 is evenly discharged from each exhaust port 20. For this reason, the compressed air A is discharged smoothly.
  • the circumferential distance M is longer than the circumferential distance N from the exhaust port 20 to the nozzle hole 60a located on the front side in the rotational direction D1 of the inner ring spacer 5.
  • the cooling structure of the bearing device provided with the first labyrinth seal LS has been described.
  • the present invention can also be applied to a case where the first labyrinth seal LS is not provided.
  • First application example 12 to 15 show a cooling structure for a bearing device according to a first application example of the present invention.
  • the bearing device cooling structure of the first application example is applied to a spindle device of a machine tool. However, it is not limited only to the spindle device of the machine tool.
  • the bearing device J includes two rolling bearings 101, 101 arranged in the axial direction.
  • An outer ring spacer 104 is interposed between the outer rings 102 and 102 of the rolling bearings 101 and 101, and an inner ring spacer 105 is interposed between the inner rings 103 and 103.
  • the outer ring 102 and the outer ring spacer 104 are installed in the housing 106, and the inner ring 103 and the inner ring spacer 105 are fitted to the main shaft 107.
  • the rolling bearing 101 in this example is an angular ball bearing, and a plurality of rolling elements 108 are interposed between the raceway surface of the outer ring 102 and the raceway surface of the inner ring 103. Each rolling element 108 is held at equal intervals in the circumferential direction by a cage 109.
  • the two rolling bearings 101, 101 are arranged in combination with each other on the back surface.
  • the initial preload of each of the rolling bearings 101 and 101 is set according to the width dimension difference between the outer ring spacer 104 and the inner ring spacer 105.
  • the rolling bearing 101 of the first application example is an inner ring rotating type. That is, the outer ring 102 corresponds to a “fixed side raceway”, and the inner ring 103 corresponds to a “rotation side raceway”.
  • the outer ring spacer 104 corresponds to a “fixed side spacer”, and the inner ring spacer 105 corresponds to a “rotation side spacer”.
  • the main shaft 107 corresponds to a “rotating member”, and the housing 106 corresponds to a “fixing member”. The same applies to other application examples described later.
  • the outer rings 102 and 102 and the outer ring spacer 104 are fitted into the housing 106 with a clearance, and the axial positioning is performed by the step 106a of the housing 106 and the end surface lid 140.
  • the inner rings 103, 103 and the inner ring spacer 105 are interference-fitted to the main shaft 107, and are positioned in the axial direction by positioning spacers 141, 142 on both sides in the axial direction.
  • the left positioning spacer 142 in FIG. 12 is fixed by a nut 143 screwed to the main shaft 107.
  • the fixing method of the outer rings 102 and 102, the outer ring spacer 104, the inner rings 103 and 103, and the inner ring spacer 105 is not limited to this.
  • FIG. 13 is an enlarged cross-sectional view showing the main part of the cooling structure of the bearing device.
  • the outer ring spacer 104 includes an outer ring spacer main body 111 and ring-shaped lubricating nozzles 112 and 112 made of a member different from the outer ring spacer main body 111.
  • the outer ring spacer main body 111 has a substantially T-shaped cross section.
  • Lubricating nozzles 112 and 112 are respectively fixed to both sides of the outer ring spacer body 111 in the axial direction.
  • the lubricating nozzles 112, 112 are arranged symmetrically with respect to the axial center of the outer ring spacer body 111.
  • the inner diameter of the outer ring spacer body 111 is larger than the inner diameter of the lubricating nozzles 112, 112.
  • a recess 113 formed by the inner peripheral surface of the outer ring spacer main body 111 and the side surfaces of the lubricating nozzles 112, 112 following the inner peripheral surface is formed on the inner peripheral surface of the outer ring spacer 104.
  • the recessed portion 113 is an annular groove having a rectangular cross-sectional shape.
  • the inner peripheral surface of the outer ring spacer 104 other than the recess 113, that is, the inner peripheral surface of the lubricating nozzles 112 and 112, and the outer peripheral surface of the inner ring spacer 105 are opposed to each other with a minute radial gap ⁇ a. .
  • an annular space 114 having a larger radial width than the others is formed between the recess 113 and the outer peripheral surface of the inner ring spacer 105.
  • the outer ring spacer main body 111 is provided with a nozzle hole 115 for discharging compressed air A for cooling toward the outer peripheral surface of the inner ring spacer 105.
  • the outlet 115 a of the nozzle hole 115 is open to a recess 113 on the inner peripheral surface of the outer ring spacer 104.
  • three nozzle holes 115 are provided, and the nozzle holes 115 are arranged at equal intervals in the circumferential direction.
  • the number of nozzle holes 115 is not limited to three.
  • each nozzle hole 115 is inclined forward in the rotational direction D1 of the inner ring spacer 105. That is, each nozzle hole 115 is at a position offset from an arbitrary radial straight line L in a cross section perpendicular to the axis of the outer ring spacer 104 in a direction perpendicular to the straight line L.
  • the compressed air A acts as a swirling flow in the rotation direction D1 of the inner ring spacer 105, thereby improving the cooling effect.
  • the outer ring spacer 104 is displayed in a cross section passing through the center line of the nozzle hole 115.
  • An introduction groove 116 for introducing the compressed air A into each nozzle hole 115 from the outside of the bearing is formed on the outer peripheral surface of the outer ring spacer main body 111.
  • the introduction groove 116 is provided in an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 104, and is formed in an arc shape communicating with each nozzle hole 115.
  • the introduction groove 116 is provided over an angular range indicating most of the outer circumferential surface of the outer ring spacer main body 111 in the circumferential direction.
  • An air oil supply path (not shown), which will be described later, is provided at a circumferential position where the introduction groove 116 is not formed on the outer peripheral surface of the outer ring spacer main body 111. As shown in FIG.
  • the housing 106 is provided with a compressed air introduction path 145, and the introduction groove 116 communicates with the compressed air introduction path 145.
  • An air supply device (not shown) that supplies the compressed air A to the compressed air introduction hole 145 is provided outside the housing 106.
  • the lubrication structure will be described.
  • the lubrication nozzles 112, 112 of the outer ring spacer 104 shown in FIG. 12 supply air oil to the inside of the rolling bearing 101.
  • Each of the lubricating nozzles 112 has a tip portion 130 that protrudes into the bearing.
  • the tip portion 130 faces the outer peripheral surface of the inner ring 103 via an annular gap ⁇ b.
  • the annular gap ⁇ b constitutes a passage for air oil passage.
  • the tip portion 130 of the lubricating nozzle 112 is disposed so as to enter the bearing so as to cover the outer peripheral surface of the inner ring 103.
  • the tip portion 130 of the lubricating nozzle 112 is disposed radially inward from the inner peripheral surface of the cage 109.
  • the lubrication nozzle 112 is provided with an air oil supply hole 131 for supplying air oil to the annular gap ⁇ b.
  • the air oil supply hole 131 is inclined toward the inner diameter side toward the bearing side, and an outlet thereof opens to the inner surface of the tip portion 130.
  • Air oil is supplied to the air oil supply hole 131 through an air oil supply path (not shown) provided in the housing 106 and the outer ring spacer main body 111.
  • An annular recess 103 a is provided at a location facing the air oil supply hole 131 on the outer peripheral surface of the inner ring 103.
  • the oil of the air oil discharged from the lubricating nozzle 112 is accumulated in the annular recess 103a and is guided to the bearing center side along the inclined outer peripheral surface of the inner ring 103 by the centrifugal force accompanying the rotation of the inner ring 103.
  • An exhaust port 117 is provided at the axial end of the outer ring spacer main body 111.
  • the exhaust port 117 has, for example, a rectangular cutout shape as shown in the development view of FIG.
  • the exhaust port 117 constitutes an opening that communicates the inside and the outside of the bearing device J.
  • the number of the exhaust ports 117 is the same as that of the nozzle holes 115 (three in this example). Similar to the nozzle holes 115, the exhaust ports 117 are provided at equal intervals in the circumferential direction. Further, similarly to the nozzle hole 115, the exhaust port 117 is inclined forward in the rotational direction D ⁇ b> 1 of the inner ring spacer 105.
  • the nozzle hole 115 and the exhaust port 117 are shown in the same cross section, but actually, as shown in FIG. 15, the positions of the nozzle hole 115 and the exhaust port 117 are shifted in the circumferential direction.
  • the positional relationship in the circumferential direction between the nozzle hole 115 and the exhaust port 117 is as follows.
  • the distance M in the circumferential direction from the outlet 115a of any one nozzle hole 115 to the exhaust port 117 located on the front side in the rotational direction D1 of the inner ring spacer 105 with respect to the nozzle hole 115 is defined as a distance M.
  • a distance N in the circumferential direction from any one exhaust port 117 to the outlet 115a of the nozzle hole 115 positioned in front of the exhaust port 117 in the rotation direction D1 of the inner ring spacer 105 is defined as a distance N.
  • the distance M is longer than the distance N.
  • the position of the nozzle hole 115 is the circumferential position at the center of the outlet 115 a
  • the position of the exhaust port 117 is the central position in the circumferential direction of the inner diameter end of the exhaust port 117.
  • the housing 106 is provided with an exhaust passage 146 for exhausting the compressed air for cooling and the air oil for lubrication from the bearing device J.
  • the exhaust path 146 includes a radial exhaust hole 148 that communicates with the exhaust port 117, and an axial exhaust hole 149 that communicates with the radial exhaust hole 148.
  • Cooling compressed air A is blown toward the outer peripheral surface of the inner ring spacer 105 from the nozzle hole 115 provided in the outer ring spacer 104. At this time, the compressed air A is adiabatically expanded by being discharged from the narrow nozzle hole 115 to the wide space 114.
  • the volume of compressed air in the nozzle hole 115 is V1, the temperature is T1, the volume of compressed air in the space 114 is V2, and the temperature is T2.
  • the inner ring spacer 105 can be efficiently cooled by blowing the high-speed compressed air A at a low temperature onto the inner ring spacer 105.
  • Compressed air A is led out from the gap ⁇ a and the gap ⁇ b. Specifically, the compressed air A flows outward in the axial direction along the outer peripheral surface of the inner ring spacer 105 and the outer peripheral surface of the inner ring 103. Also during this time, the inner ring spacer 105 and the inner ring 103 are cooled by the compressed air A. Since the nozzle hole 115 is inclined forward in the rotational direction D 1 of the inner ring spacer 105, the compressed air A flows in the axial direction while turning along the outer peripheral surface of the inner ring spacer 105 and the outer peripheral surface of the inner ring 103. When flowing in the axial direction while turning, the time during which the compressed air A is in contact with the outer peripheral surface of the inner ring spacer 105 and the outer peripheral surface of the inner ring 103 becomes longer than when the air flows straight in the axial direction.
  • the nozzle hole 115 and the exhaust port 117 are arranged so that the circumferential distance M is larger than the distance N as described above, the compressed air A stays in the bearing device J for a long time. . As a result, the inner ring spacer 105 and the inner ring 103 can be cooled more efficiently.
  • Compressed air A that has passed through the outer peripheral surface of the inner ring spacer 105 and the outer peripheral surface of the inner ring 103 is discharged to the outside through the exhaust port 117 on the axial end surface of the outer ring spacer 104 and the inside of the rolling bearing 101.
  • the exhaust port 117 is inclined forward in the rotational direction D ⁇ b> 1 of the inner ring spacer 105, so that the compressed air A that is a swirling flow is smoothly discharged from the exhaust port 117.
  • the amount of compressed air A passing through the inside of the rolling bearing 101 can be reduced.
  • the rolling bearing 101 when the rolling bearing 101 is air-oil lubricated, it is possible to prevent obstructing the smooth supply and exhaust of air oil. Further, as in the first application example, when the tip portion 130 of the lubricating nozzle 112 enters the bearing, noise due to the compressed air A colliding with the rotating rolling element 108 can be reduced.
  • the inner ring spacer 105 is compressed by the compressed air A discharged from the nozzle holes 115. And the inner ring
  • [Second application example] 16 and 17 show a second application example of the present invention.
  • the bearing device J of the second application example also lubricates the rolling bearing 101 with air oil.
  • the second application example is different from the first application example in which the outer ring spacer 104 includes the outer ring spacer main body 111 and a ring-shaped lubricating nozzle 112 which is a separate member, as shown in FIG. 104 is an integral type.
  • the integral outer ring spacer 104 is provided with a nozzle hole 115 for discharging compressed air A and an air oil supply hole 131.
  • a recess 113 (FIG. 13) like the outer ring spacer 104 of the first application example is formed on the inner peripheral surface of the outer ring spacer 104 where the outlet 115a of the nozzle hole 115 opens. It has not been. Instead, the inner ring spacer 105 is provided with a plurality of through holes 120 (10 in this example) at equal intervals in the circumferential direction. Each through-hole 120 is provided in the axially intermediate portion of the inner ring spacer 105. The through hole 120 has, for example, a round hole shape. Each through-hole 120 is also inclined forward in the rotational direction D1 of the inner ring spacer 105 toward the inner diameter side. By providing the through hole 120, a part of the compressed air A discharged from the nozzle hole 115 collides with the outer peripheral surface of the main shaft 107.
  • the air oil supply hole 131 opens in the side surface portion of the outer ring spacer 104 and faces the inside of the rolling bearing 101. Unlike the first application example, the portion provided with the air oil supply hole 131 in the outer ring spacer 104 does not protrude into the bearing.
  • the air oil supply hole 131 is provided so that the air oil hits the vicinity of the boundary between the raceway surface of the inner ring 103 and the rolling element 8. Specifically, the axis AX of the air oil supply hole 131 is inclined toward the inner diameter side toward the rolling bearing 101.
  • the air oil is supplied to the air oil supply hole 131 through a radial hole 121 (FIG. 17) provided in the outer ring spacer 104 from an air oil supply path (not shown) provided in the housing.
  • an exhaust port 117 is provided on the end surface of the outer ring spacer 104 in the axial direction.
  • the shape of the exhaust port 117 is the same as that of the first application example.
  • the number of the exhaust ports 117 is the same as that of the nozzle holes 115 (three in this example).
  • the nozzle holes 115 and the exhaust ports 117 are provided at equal intervals in the circumferential direction.
  • the nozzle hole 115 and the exhaust port 117 are inclined forward in the rotation direction D1 of the inner ring spacer 105.
  • the positional relationship in the circumferential direction between the nozzle hole 115 and the exhaust port 117 is the same as that in the first application example.
  • the compressed air A for cooling is blown from the nozzle hole 115 to the outer peripheral surface of the inner ring spacer 105 to cool the inner ring spacer 105, and As the part passes through the through hole 120 of the inner ring spacer 105 and hits the main shaft 107, the main shaft 107 is directly cooled. Thereafter, the compressed air A flows along the outer peripheral surface of the inner ring spacer 105 to the outside in the axial direction. Since the nozzle hole 115 is inclined forward in the rotational direction D1 of the inner ring spacer 105, the compressed air A flows in the axial direction while turning along the outer peripheral surface of the inner ring spacer 105. Also during this time, the inner ring spacer 105 is cooled by the compressed air A.
  • Compressed air A after cooling the inner ring spacer 105 is discharged to the outside through the exhaust port 117 of the outer ring spacer 104 and the inside of the rolling bearing 101. Since the exhaust port 117 is also inclined forward in the rotational direction D1 of the inner ring spacer 105, the compressed air A that is a swirling flow is smoothly discharged from the exhaust port 117. Thereby, the amount of compressed air A passing through the inside of the rolling bearing 101 can be reduced. As a result, it is possible to eliminate or reduce adverse effects caused by a large amount of the compressed air A flowing inside the rolling bearing 1.
  • the rolling bearing 101 when the rolling bearing 101 is air-oil lubricated, it is possible to prevent obstructing the smooth supply and exhaust of air oil. Further, as in the second application example, when a part of the outer ring spacer 104 does not protrude into the bearing, the compressed air A is applied to the air curtain-like air flow film generated near the shaft end of the rolling bearing 101 by rotation. Noise generated by the collision can be reduced.
  • the rolling bearing 1 is air-oil lubricated
  • the present invention can also be applied to a type in which the rolling bearing is grease lubricated.
  • FIG. 18 is a sectional view of a bearing device that is grease lubricated
  • FIG. 19 is a partially enlarged view thereof.
  • the bearing device J of the third application example also includes a plurality of rolling bearings 101, 101 arranged in the axial direction, like the air-oil lubricated bearing devices of the first and second application examples.
  • An outer ring spacer 104 is interposed between the outer rings 102 and 102 of the rolling bearings 101 and 101, and an inner ring spacer 105 is interposed between the inner rings 103 and 103.
  • the rolling bearing 101 of the third application example is an angular ball bearing.
  • a plurality of rolling elements 108 are interposed between the raceway surface of the outer ring 102 and the raceway surface of the inner ring 103. These rolling elements 108 are held at equal intervals in the circumferential direction by a cage 109. Further, in the bearing device J of the third application example that is grease lubrication, seal members 151 and 152 that seal the bearing internal space S1 between the outer ring 102 and the inner ring 103 are attached to both ends of the outer ring 102 in the axial direction. .
  • the outer ring spacer 104 has a substantially T-shaped cross section. Specifically, the outer ring spacer 104 includes an inner diameter side protruding portion 104a that is a T-shaped vertical line portion and a cylindrical portion 104b that is a T-shaped horizontal line portion. The inner peripheral surface of the inner protrusion 104a and the outer peripheral surface of the inner ring spacer 105 are opposed to each other with a radial clearance ⁇ 1.
  • the outer ring spacer 104 is provided with a nozzle hole 115 for discharging the compressed air A for cooling toward the outer peripheral surface of the inner ring spacer 105.
  • the outlet 115a of the nozzle hole 115 is open to the inner peripheral surface of the inner diameter side protruding portion 104a.
  • the number of nozzle holes 115 is three, for example.
  • the nozzle holes 115 are arranged at equal intervals in the circumferential direction. Although not shown, each nozzle hole 115 is inclined forward in the rotational direction D1 of the inner ring spacer 105 as in the first and second application examples.
  • An introduction groove 116 is formed on the outer peripheral surface of the outer ring spacer 104.
  • the introduction groove 116 introduces the compressed air A from the outside of the bearing device J into each nozzle hole 115.
  • a discharge port 117 for compressed air A discharged from the nozzle hole 115 is provided on the end surface in the axial direction of the outer ring spacer 104.
  • the discharge port 117 has the same notch shape as the first and second application examples.
  • Each discharge port 117 is inclined forward in the rotation direction D ⁇ b> 1 of the inner ring spacer 105, similarly to the nozzle hole 115.
  • the inner ring spacer 105 has obstacle walls 153 projecting outward at both ends in the axial direction.
  • the obstacle wall 153 of the third application example has a tapered shape in which the amount of protrusion toward the outer diameter side gradually increases toward the rolling bearing 101 in the axial direction.
  • the inner ring spacer 105 of the third application example is divided in the axial direction in order to allow the outer ring spacer 104 to be assembled, that is, to prevent interference between the inner periphery of the outer ring spacer 104 and the obstacle wall 153. It consists of two inner ring spacers.
  • the outer diameter end of the obstacle wall 153 faces the inner peripheral surface of the outer ring spacer 104 with a slight radial gap ⁇ 3. Further, the end face of the obstacle wall 153 faces the axially inner seal member 151 via a slight axial gap ⁇ 4. Thereby, the labyrinth seal portion 55 having a labyrinth seal effect is formed by the seal member 151 and the obstacle wall 153.
  • the bearing internal space S1 and the spacer space S2 communicate with each other through the labyrinth seal portion 55.
  • compressed air A for cooling is sent from a compressed air supply device provided outside the bearing device J, and the inner ring spacer 105 from the nozzle hole 115 of the outer ring spacer 104. It is supplied toward the outer peripheral surface of the.
  • the compressed air A collides with the inner ring spacer 105 and then flows to both axial sides along the outer peripheral surface of the inner ring spacer 105.
  • the compressed air A is further guided to the outer diameter side along the tapered outer diameter surface of the obstacle wall 153 of the inner ring spacer 105, and is discharged from the exhaust port 117 of the outer ring spacer 104.
  • the exhaust port 117 is inclined forward in the rotational direction D1 of the inner ring spacer 105 in the same manner as the nozzle hole 115.
  • the flow of the compressed air A and the discharge of the compressed air A from the spacer space S2 become smooth. While the compressed air A passes through the spacer space S2, the bearing device J and the main shaft 107 supported by the bearing device J are deprived of heat. Thereby, the bearing device J and the main shaft 107 are efficiently cooled.
  • the compressed air A is prevented from flowing into the bearing internal space S1.
  • the labyrinth seal portion 55 is provided between the bearing inner space S1 and the spacer space S2
  • the inflow of the compressed air A into the bearing inner space S1 is more effectively prevented.
  • the compressed air A flows smoothly in the spacer space S2
  • the internal pressure of the spacer space S2 is lower than the internal pressure of the bearing internal space S1, and the compressed air A hardly flows into the bearing internal space S1. From these things, it can suppress that compressed air A flows in into bearing internal space S1, and it is prevented that the grease enclosed with bearing internal space S1 is excluded by compressed air A. Therefore, a good lubrication state can be maintained.
  • the inner ring rotation type rolling bearing 101 has been described, but the present invention can also be applied to an outer ring rotation type rolling bearing.
  • a shaft (not shown) fitted to the inner circumference of the inner ring 103 constitutes a fixing member
  • a roller (not shown) fitted to the outer circumference of the outer ring 2 constitutes a rotating member.
  • FIGS. 12 to 19 include the following modes 1 to 10.
  • a fixed side spacer and a rotary side spacer are respectively provided adjacent to a fixed side raceway and a rotary side raceway facing the inside and outside of the rolling bearing,
  • the side race ring and the fixed side spacer are installed on a fixed member of the fixed member and the rotary member, and the rotary side race ring and the rotary side spacer are installed on the rotary member of the fixed member and the rotary member.
  • a cooling structure for a bearing device The fixed side spacer is provided with a nozzle hole for discharging compressed air toward a circumferential surface facing the fixed side spacer in the rotating side spacer, The outlet of the nozzle hole opens in a circumferential surface facing the rotating side spacer in the fixed side spacer, An exhaust port for compressed air discharged from the nozzle hole is provided on the axial end face of the fixed spacer, The nozzle hole is inclined forward in the rotation direction of the rotation side spacer, and the exhaust port is inclined forward in the rotation direction of the rotation side spacer.
  • compressed air for cooling is discharged from the nozzle hole of the fixed side spacer toward the peripheral surface of the rotary side spacer. Since the nozzle hole is inclined forward in the rotation direction of the rotary spacer, the compressed air discharged from the nozzle hole flows in the axial direction while turning along the peripheral surface of the rotary spacer, and rotates during this period. The side spacer is cooled. Since the compressed air swirls, the time during which the compressed air is in contact with the peripheral surface of the rotating spacer is longer than when the compressed air flows straight in the axial direction. Therefore, the rotating side spacer can be efficiently cooled.
  • Compressed air that has passed through the circumferential surface of the rotating spacer is discharged to the outside through an exhaust port provided on the axial end surface of the fixed spacer and the inside of the rolling bearing. Since the exhaust port is also inclined forward in the rotational direction of the rotating side spacer, the compressed air that is a swirling flow is smoothly discharged from the exhaust port. Thereby, the amount of compressed air passing through the inside of the rolling bearing can be reduced. As a result, it is possible to eliminate or reduce adverse effects caused by a large amount of compressed air flowing inside the rolling bearing.
  • the rolling bearing when the rolling bearing is lubricated with air oil or oil mist, it is possible to prevent obstructing the smooth supply and exhaust of air oil. In addition, it is possible to suppress noise caused by collision of compressed air with a film of an air curtain-like air flow generated near the shaft end of the rolling bearing or a rotating rolling element. In addition, when the rolling bearing is lubricated with grease, it is possible to prevent compressed air from discharging grease inside the bearing.
  • the nozzle hole and the exhaust port may be provided in a plurality, the number of both may be the same, and the nozzle hole and the exhaust port may be provided at equal intervals in the circumferential direction.
  • the rotation side spacer can be evenly cooled in the circumferential direction by the compressed air discharged from the nozzle hole.
  • the compressed air that has passed through the peripheral surface of the rotary spacer is evenly discharged from each exhaust port. For this reason, discharge of compressed air is performed smoothly.
  • the circumferential distance from the outlet of any one of the nozzle holes to the exhaust port positioned in front of the nozzle hole in the rotation direction of the rotary spacer is arbitrary. It may be longer than the circumferential distance from one exhaust port to the outlet of the nozzle hole located on the front side in the rotation direction of the rotary spacer with respect to the exhaust port. With such a positional relationship between the nozzle hole and the exhaust port, the time during which the compressed air is in contact with the peripheral surface of the rotating spacer is long, and the cooling effect is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

An outer ring spacer (4) and an inner ring spacer (5) are interposed between a plurality of rolling bearings (1) arranged in the axial direction in a bearing device (J). A supply port (10) for supplying cooling compressed air A toward the outer circumferential surface of the inner ring spacer (5) is provided in the inner circumferential surface of the outer ring spacer (4). An exhaust port (20) for the compressed air (A) is provided in the axial end surface of the outer ring spacer (4). Barrier walls (15) for preventing the compressed air supplied through the supply port (10) from flowing into a bearing space (30) are provided at both axial ends of the inner ring spacer (5) so as to protrude toward the radially outer side. A part of the barrier walls (15) faces the inner ring spacer (5) through a minute gap (16) to form a first labyrinth seal (LS).

Description

軸受装置の冷却構造Cooling structure of bearing device 関連出願Related applications
 この出願は、2017年3月29日出願の特願2017-065183、2017年10月11日出願の特願2017-197619および2017年10月11日出願の特願2017-197620の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-066513 filed on Mar. 29, 2017, Japanese Patent Application No. 2017-197619 filed on Oct. 11, 2017, and Japanese Patent Application No. 2017-197620 filed on Oct. 11, 2017. The entirety of which is hereby incorporated by reference as part of the present application.
 この発明は、例えば、工作機械の主軸および主軸に組み込まれる軸受装置の冷却構造に関する。 The present invention relates to, for example, a spindle of a machine tool and a cooling structure for a bearing device incorporated in the spindle.
 工作機械の主軸装置では、加工精度を確保するために、装置の温度上昇を抑える必要がある。しかしながら、近年の工作機械では、加工能率を向上させるために、高速化の傾向にある。そのため、主軸を支持する軸受からの発熱も高速化と共に大きくなってきている。また、装置内部に駆動用のモータを組込んだいわゆるモータビルトインタイプが多くなってきており、装置の発熱要因ともなってきている。 In the spindle device of machine tools, it is necessary to suppress the temperature rise of the device in order to ensure machining accuracy. However, recent machine tools have a tendency to increase speed in order to improve machining efficiency. For this reason, the heat generated from the bearing that supports the main shaft is also increasing as the speed increases. In addition, so-called motor built-in types in which a driving motor is incorporated in the apparatus are becoming more and more a cause of heat generation of the apparatus.
 発熱による軸受の温度上昇は、予圧の増加をもたらす結果となり、主軸の高速化、高精度化を考えると極力抑えたい。主軸装置の温度上昇を抑える方法として、冷却用の圧縮エアを軸受に送り、軸と軸受の冷却を行う方法がある(例えば、特許文献1)。特許文献1では、冷風が、2つの軸受間の空間に回転方向に角度を付けて噴射され、旋回流となっている。これにより、軸と軸受の冷却を行っている。 ¡The temperature rise of the bearing due to heat generation results in an increase in the preload, and we want to suppress it as much as possible considering the speed and accuracy of the spindle. As a method of suppressing the temperature rise of the main shaft device, there is a method of cooling the shaft and the bearing by sending compressed air for cooling to the bearing (for example, Patent Document 1). In Patent Document 1, cold air is injected into the space between the two bearings at an angle in the rotational direction to form a swirling flow. Thereby, the shaft and the bearing are cooled.
 また、特許文献2に、上述の圧縮エアによる冷却方法をグリース潤滑の軸受装置に適用した冷却構造が記載されている。その場合、軸受内のグリースが圧縮エアによって吹き飛ばされることを避けるために、圧縮エアが軸受空間へ流入することを阻止する障害壁を設けることが提案されている。 Further, Patent Document 2 describes a cooling structure in which the above-described cooling method using compressed air is applied to a grease lubricated bearing device. In that case, in order to prevent the grease in the bearing from being blown away by the compressed air, it has been proposed to provide an obstacle wall that prevents the compressed air from flowing into the bearing space.
特開2015-183738号公報Japanese Patent Laying-Open No. 2015-183738 特開2014-062619号公報JP 2014-062619 A
 上述の圧縮エアによる冷却方法は、冷却効果が高いので、主軸装置の温度上昇を効果的に抑えることができる。また、特許文献2の冷却構造のように、圧縮エアが軸受空間へ流入することを阻止する障害壁を設けることにより、圧縮エアによる冷却方法をグリース潤滑の軸受装置にも適用することが可能となる。しかしながら、特許文献2に提案されている障害壁は、圧縮エアが軸受空間へ流入することを阻止する機能は有するが、排気を抑制する機能は有していない。このため、内輪間座の外周面に向けて吹き付けられた圧縮エアが、内輪間座と外輪間座との間に長く留まることなく、比較的短時間で排出されてしまう。その結果、十分な冷却効果が得にくい。 Since the cooling method using compressed air described above has a high cooling effect, the temperature rise of the spindle device can be effectively suppressed. Further, like the cooling structure of Patent Document 2, by providing an obstacle wall that prevents the compressed air from flowing into the bearing space, the cooling method using the compressed air can be applied to the grease lubricated bearing device. Become. However, the obstacle wall proposed in Patent Document 2 has a function of preventing compressed air from flowing into the bearing space, but does not have a function of suppressing exhaust. For this reason, the compressed air blown toward the outer peripheral surface of the inner ring spacer does not stay for a long time between the inner ring spacer and the outer ring spacer, and is discharged in a relatively short time. As a result, it is difficult to obtain a sufficient cooling effect.
 この発明の目的は、グリース潤滑の軸受装置において、軸受内のグリースが圧縮エアによって吹き飛ばされることを防止でき、かつ圧縮エアにより軸受装置を効率よく冷却することができる冷却構造を提供することである。 An object of the present invention is to provide a cooling structure capable of preventing grease in a bearing from being blown off by compressed air and efficiently cooling the bearing device by compressed air in a grease lubricated bearing device. .
 この発明の軸受装置の冷却構造は、軸方向に並ぶ複数の転がり軸受の外輪間および内輪間に外輪間座および内輪間座がそれぞれ介在され、前記外輪および前記外輪間座がハウジングに設置され、前記内輪および前記内輪間座が主軸に嵌合され、前記転がり軸受が前記外輪と前記内輪との間の軸受空間に封入されたグリースにより潤滑されている軸受装置の冷却構造である。 In the cooling structure of the bearing device according to the present invention, an outer ring spacer and an inner ring spacer are respectively interposed between outer rings and inner rings of a plurality of rolling bearings arranged in the axial direction, and the outer ring and the outer ring spacer are installed in a housing, In the cooling structure of the bearing device, the inner ring and the inner ring spacer are fitted to a main shaft, and the rolling bearing is lubricated by grease sealed in a bearing space between the outer ring and the inner ring.
 この軸受装置の冷却構造において、前記外輪間座の内周面に、前記内輪間座の外周面に向けて冷却用の圧縮エアを供給する供給口が設けられ、前記外輪間座の軸方向端面に、前記供給口から供給された圧縮エアの排気口が設けられている。
 前記内輪間座の軸方向両端部に、外径側に張り出して前記供給口から供給された圧縮エアが前記軸受空間へ流入することを阻止する障害壁が設けられている。この障害壁の一部が前記外輪間座と微小な隙間を介して対向し、前記供給口から前記排気口への圧縮エアの円滑な流れを阻害する第1ラビリンスシールを構成している。
In the cooling structure of this bearing device, a supply port for supplying compressed air for cooling toward the outer peripheral surface of the inner ring spacer is provided on the inner peripheral surface of the outer ring spacer, and the axial end surface of the outer ring spacer In addition, an exhaust port for compressed air supplied from the supply port is provided.
At both ends of the inner ring spacer in the axial direction, obstacle walls are provided that prevent the compressed air supplied from the supply port from flowing into the bearing space and projecting to the outer diameter side. A part of the obstacle wall faces the outer ring spacer via a minute gap to constitute a first labyrinth seal that inhibits a smooth flow of compressed air from the supply port to the exhaust port.
 この構成によると、供給口から供給される冷却用の圧縮エアが内輪間座の外周面に吹き付けられることで、内輪間座が冷却され、それに接する転がり軸受の内輪も冷却される。その後、圧縮エアは内輪間座の外周面に沿って軸方向の両側へ流れる。軸方向の両側には転がり軸受が配置されているが、内輪間座の軸方向両端部に障害壁が設けられているので、圧縮エアが軸受空間へ流入することが阻止される。障害壁の一部が第1ラビリンスシールとして構成されているので、圧縮エアの排気が抑制され、内輪間座の外周面に吹き付けられた後の圧縮エアが、内輪間座と外輪間座との間の空間に留まる時間が長くなる。その結果、内輪間座を効率よく冷却することができる。これにより、軸受装置および主軸が効率よく冷却される。 According to this configuration, the compressed air for cooling supplied from the supply port is blown onto the outer peripheral surface of the inner ring spacer, whereby the inner ring spacer is cooled, and the inner ring of the rolling bearing in contact therewith is also cooled. Thereafter, the compressed air flows to both sides in the axial direction along the outer peripheral surface of the inner ring spacer. Although rolling bearings are arranged on both sides in the axial direction, obstacle walls are provided at both axial ends of the inner ring spacer, so that compressed air is prevented from flowing into the bearing space. Since a part of the obstacle wall is configured as the first labyrinth seal, the exhaust of compressed air is suppressed, and the compressed air after being blown to the outer peripheral surface of the inner ring spacer causes the inner ring spacer and the outer ring spacer to The time to stay in the space between them becomes longer. As a result, the inner ring spacer can be efficiently cooled. Thereby, the bearing device and the main shaft are efficiently cooled.
 また、上述のように、障害壁によって圧縮エアが軸受空間へ流入することが阻止されるので、軸受空間に封入されたグリースが圧縮エアで吹き飛ばされることが防がれる。これにより、良好な潤滑状態を維持することができる。 Further, as described above, since the compressed air is prevented from flowing into the bearing space by the obstacle wall, the grease sealed in the bearing space is prevented from being blown off by the compressed air. Thereby, a favorable lubrication state can be maintained.
 この発明において、前記障害壁は、複数の部分が前記外輪間座と微小な隙間を介して対向することで、前記第1ラビリンスシールを構成していてもよい。この場合、圧縮エアの排気がさらに抑制され、圧縮エアが内輪間座と外輪間座との間の空間に留まる時間がより一層長くなる。 In this invention, the obstacle wall may constitute the first labyrinth seal by a plurality of portions facing the outer ring spacer via a minute gap. In this case, exhaust of the compressed air is further suppressed, and the time during which the compressed air stays in the space between the inner ring spacer and the outer ring spacer is further increased.
 この発明において、前記転がり軸受は、前記外輪の軸方向端に前記軸受空間を密封するシール材を有し、前記障害壁の端面は前記シール材と軸方向に対向し、前記シール材と前記障害壁とで、前記圧縮エアが前記軸受空間に流入するのを阻害する第2ラビリンスシールを構成していてもよい。これにより、圧縮エアが軸受空間により一層流入し難くなる。 In this invention, the rolling bearing has a sealing material that seals the bearing space at an axial end of the outer ring, an end surface of the obstacle wall faces the sealing material in the axial direction, and the sealing material and the obstacle The wall may constitute a second labyrinth seal that inhibits the compressed air from flowing into the bearing space. As a result, the compressed air is less likely to flow into the bearing space.
 この発明において、前記隙間は前記排気口よりも軸方向の内側に位置し、前記外輪間座の内周面における前記隙間と前記排気口との間の軸方向部分が、前記排気口に向かって徐々に内径寸法が大きくなるテーパ形状部であっていてもよい。外輪間座の内周面における前記軸方向部分がテーパ形状部であると、隙間を通過後の圧縮エアが排気口に円滑に流れる。したがって、排気が迅速に行われる。それにより、圧縮エアが転がり軸受の軸受空間に流入しにくくなり、軸受空間に封入されたグリースが長期間にわたって保持される。 In the present invention, the gap is positioned on the inner side in the axial direction than the exhaust port, and an axial portion between the gap and the exhaust port on the inner peripheral surface of the outer ring spacer faces the exhaust port. It may be a tapered portion where the inner diameter dimension gradually increases. When the axial portion on the inner peripheral surface of the outer ring spacer is a tapered portion, the compressed air after passing through the gap flows smoothly to the exhaust port. Therefore, exhaust is performed quickly. This makes it difficult for compressed air to flow into the bearing space of the rolling bearing, and the grease sealed in the bearing space is held for a long period of time.
 この発明において、前記供給口が前記内輪の回転方向の前方へ傾斜させて設けられていると共に、前記排気口が前記外輪間座の回転方向の前方へ傾斜させて設けられていてもよい。 In the present invention, the supply port may be provided to be inclined forward in the rotational direction of the inner ring, and the exhaust port may be provided to be inclined forward in the rotational direction of the outer ring spacer.
 上記特許文献1の圧縮エアによる冷却は、圧縮エアに潤滑剤を混合して転がり軸受を潤滑する、いわゆる、エアオイル潤滑やオイルミスト潤滑に適用できる。この場合、軸受内部を通る圧縮エアの量が多過ぎると、エアオイルの円滑な給排気が阻害される可能性がある。また、回転によって転がり軸受の軸端付近に生じるエアカーテン状の空気流の膜や回転中の転動体に圧縮エアが衝突することで、騒音が大きくなる可能性がある。
 圧縮エアによる冷却は、軸受をグリース潤滑する場合にも適用できる。その場合、軸受内部を通る圧縮エアの量が多いと、圧縮エアが軸受内部のグリースを排出し、潤滑不良を誘発する可能性がある。
The cooling by the compressed air of the above-mentioned patent document 1 can be applied to so-called air oil lubrication or oil mist lubrication in which a lubricant is mixed with compressed air to lubricate a rolling bearing. In this case, if the amount of compressed air passing through the inside of the bearing is excessive, smooth supply / exhaust of air oil may be hindered. Moreover, there is a possibility that noise will increase when compressed air collides with an air curtain-like air flow film generated near the shaft end of the rolling bearing or the rotating rolling element during rotation.
Cooling with compressed air can also be applied when the bearing is grease lubricated. In that case, if the amount of compressed air passing through the inside of the bearing is large, the compressed air may discharge the grease inside the bearing and induce poor lubrication.
 上記構成によると、外輪間座に設けられた供給口から、冷却用の圧縮エアが内輪間座の周面に向けて吐出される。供給口は回転側間座の回転方向の前方へ傾斜されているので、供給口から吐出された圧縮エアは、内輪間座の周面に沿って旋回しながら軸方向に流れ、この間に内輪間座を冷却する。圧縮エアが旋回するので、軸方向にまっすぐ流れる場合と比べて、圧縮エアが内輪間座の周面と接している時間が長くなる。その結果、内輪間座を効率良く冷却することができる。 According to the above configuration, the compressed air for cooling is discharged from the supply port provided in the outer ring spacer toward the peripheral surface of the inner ring spacer. Since the supply port is inclined forward in the rotation direction of the rotary spacer, the compressed air discharged from the supply port flows in the axial direction while turning along the peripheral surface of the inner ring spacer, Cool the seat. Since the compressed air turns, the time during which the compressed air is in contact with the peripheral surface of the inner ring spacer is longer than when the compressed air flows straight in the axial direction. As a result, the inner ring spacer can be efficiently cooled.
 内輪間座の周面を通過した圧縮エアは、外輪間座の軸方向端面に設けられた排気口を通って外部に排出される。排気口も内輪間座の回転方向の前方へ傾斜されているので、旋回流となっている圧縮エアが排気口から円滑に排出される。それにより、転がり軸受の内部を通る圧縮エアの量を減らすことができる。その結果、圧縮エアが転がり軸受の内部を多く流れることによる弊害を排除また軽減することができる。 Compressed air that has passed through the peripheral surface of the inner ring spacer is discharged to the outside through an exhaust port provided in the axial end surface of the outer ring spacer. Since the exhaust port is also inclined forward in the rotational direction of the inner ring spacer, the compressed air that is turning is smoothly discharged from the exhaust port. Thereby, the amount of compressed air passing through the inside of the rolling bearing can be reduced. As a result, it is possible to eliminate or reduce adverse effects caused by a large amount of compressed air flowing inside the rolling bearing.
 具体的には、転がり軸受をエアオイル潤滑やオイルミスト潤滑する場合、エアオイル等円滑な給排気が阻害されることを防止できる。さらに、転がり軸受の軸端付近に生じるエアカーテン状の空気流の膜や回転中の転動体に圧縮エアが衝突することによる騒音を抑制できる。また、転がり軸受をグリース潤滑する場合、圧縮エアが軸受内部のグリースを排出するのを防止できる。 Specifically, when air-oil lubrication or oil mist lubrication is performed on a rolling bearing, it is possible to prevent obstructing smooth air supply and exhaust such as air oil. Furthermore, it is possible to suppress noise caused by collision of compressed air with an air curtain-like air flow film generated near the shaft end of the rolling bearing or a rotating rolling element. Further, when the rolling bearing is grease lubricated, it is possible to prevent the compressed air from discharging the grease inside the bearing.
 この発明において、前記供給口および前記排気口は複数で同数設けられ、前記ノズル孔および前記排気口が円周方向に等間隔で設けられていてもよい。この場合、ノズル孔から吐出される圧縮エアにより、内輪間座を円周方向に均等に冷却することができる。また、内輪間座の周面を通過した圧縮エアが、各排気口から均等に排出される。このため、圧縮エアの排出が円滑に行われる。 In the present invention, the plurality of supply ports and the same number of exhaust ports may be provided, and the nozzle holes and the exhaust ports may be provided at equal intervals in the circumferential direction. In this case, the inner ring spacer can be evenly cooled in the circumferential direction by the compressed air discharged from the nozzle hole. Further, the compressed air that has passed through the circumferential surface of the inner ring spacer is discharged uniformly from each exhaust port. For this reason, discharge of compressed air is performed smoothly.
 前記供給口および前記排気口は複数設けられる場合、任意の前記供給口からこの供給口に対して前記内輪間座の回転方向の前側に位置する前記排気口までの円周方向の距離が、この排気口から前記内輪間座の回転方向の一つ前側に位置する前記供給口までの円周方向の距離よりも長くてもよい。このようなノズル孔と排気口の位置関係であると、圧縮エアが回転側間座の周面に接している時間が長くなり、冷却効果が高い。 When a plurality of the supply ports and the exhaust ports are provided, the circumferential distance from any supply port to the exhaust port located on the front side in the rotation direction of the inner ring spacer with respect to the supply port is It may be longer than the distance in the circumferential direction from the exhaust port to the supply port located on the front side in the rotational direction of the inner ring spacer. With such a positional relationship between the nozzle hole and the exhaust port, the time during which the compressed air is in contact with the peripheral surface of the rotating spacer is long, and the cooling effect is high.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の第1実施形態に係る冷却構造を備えた軸受装置の断面図である。 図1の部分拡大図である。 同軸受装置の内輪間座および外輪間座を軸方向と垂直な平面で切断した断面図である。 同軸受装置の外輪間座の一部分を展開して表した図である。 この発明の第2実施形態に係る冷却構造を備えた軸受装置の断面図である。 図5の部分拡大図である。 この発明の第3実施形態に係る冷却構造を備えた軸受装置の断面図である。 図7の部分拡大図である。 図1~8の軸受装置とは異なる軸受装置の内輪間座および外輪間座を軸方向と垂直な平面で切断した断面図である。 図1に示す軸受装置を工作機械の主軸装置に組込んだ状態を示す断面図である。 この発明の第4実施形態に係る軸受装置の内輪間座および外輪間座を軸方向と垂直な平面で切断した断面図である。 この発明の第1応用例に係る軸受装置の冷却構造を備えた工作機械主軸装置の断面図である。 同軸受装置の主要部の拡大断面図である。 同軸受装置の外輪間座の一部分を展開して表した図である。 図12のXV-XV断面図である。 この発明の第2応用例に係る軸受装置の冷却構造の主要部の断面図である。 図16のXVII-XVII断面図である。 この発明の第3応用例に係る軸受装置の冷却構造の主要部の断面図である。 図18の部分拡大図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part numbers in a plurality of drawings indicate the same or corresponding parts.
It is sectional drawing of the bearing apparatus provided with the cooling structure which concerns on 1st Embodiment of this invention. It is the elements on larger scale of FIG. It is sectional drawing which cut | disconnected the inner ring | wheel spacer and the outer ring | wheel spacer of the same bearing apparatus by the plane perpendicular | vertical to an axial direction. It is the figure which expanded and represented a part of outer ring spacer of the same bearing device. It is sectional drawing of the bearing apparatus provided with the cooling structure which concerns on 2nd Embodiment of this invention. It is the elements on larger scale of FIG. It is sectional drawing of the bearing apparatus provided with the cooling structure which concerns on 3rd Embodiment of this invention. It is the elements on larger scale of FIG. FIG. 9 is a cross-sectional view of an inner ring spacer and an outer ring spacer of a bearing device different from the bearing devices of FIGS. 1 to 8 cut along a plane perpendicular to the axial direction. It is sectional drawing which shows the state which integrated the bearing apparatus shown in FIG. 1 in the main shaft apparatus of a machine tool. It is sectional drawing which cut | disconnected the inner ring | wheel spacer and the outer ring | wheel spacer of the bearing apparatus which concerns on 4th Embodiment of this invention by the plane perpendicular | vertical to an axial direction. It is sectional drawing of the machine tool spindle apparatus provided with the cooling structure of the bearing apparatus which concerns on the 1st application example of this invention. It is an expanded sectional view of the principal part of the bearing device. It is the figure which expanded and represented a part of outer ring spacer of the same bearing device. FIG. 13 is a sectional view taken along the line XV-XV in FIG. 12. It is sectional drawing of the principal part of the cooling structure of the bearing apparatus which concerns on the 2nd application example of this invention. It is XVII-XVII sectional drawing of FIG. It is sectional drawing of the principal part of the cooling structure of the bearing apparatus which concerns on the 3rd application example of this invention. It is the elements on larger scale of FIG.
[第1の実施形態]
 この発明の第1実施形態に係る軸受装置の冷却構造を、図1ないし図4と共に説明する。
 図1に示すように、この軸受装置Jは、軸方向に並ぶ2個の転がり軸受1,1と、2個の転がり軸受1,1の外輪2,2間に介在された外輪間座4と、内輪3,3間に介在された内輪間座5とを備えている。この実施形態の転がり軸受1は、アンギュラ玉軸受である。2個の転がり軸受1,1は背面組合せで設置されている。外輪2の軌道面と内輪3の軌道面との間に、複数の転動体8が介在されている。転動体8は、保持器9により円周方向に等配に保持されている。転がり軸受1はグリース潤滑であり、外輪2の軸方向両端に、シール材31,32がそれぞれ取り付けられている。シール材31,32は、外輪2と内輪3との間の軸受空間30を密封する
[First Embodiment]
A cooling structure for a bearing device according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, this bearing device J includes two rolling bearings 1, 1 arranged in the axial direction, and an outer ring spacer 4 interposed between outer rings 2, 2 of the two rolling bearings 1, 1. And an inner ring spacer 5 interposed between the inner rings 3 and 3. The rolling bearing 1 of this embodiment is an angular ball bearing. The two rolling bearings 1 and 1 are installed in a rear combination. A plurality of rolling elements 8 are interposed between the raceway surface of the outer ring 2 and the raceway surface of the inner ring 3. The rolling elements 8 are held at equal intervals in the circumferential direction by a cage 9. The rolling bearing 1 is grease-lubricated, and seal materials 31 and 32 are attached to both ends of the outer ring 2 in the axial direction. The sealing materials 31 and 32 seal the bearing space 30 between the outer ring 2 and the inner ring 3.
 この軸受装置Jは、例えば、工作機械の主軸の支持に用いられる。その場合、各転がり軸受1の外輪2はハウジング6内に固定され、内輪3は主軸7の外周面に嵌合されている。 This bearing device J is used, for example, to support the spindle of a machine tool. In that case, the outer ring 2 of each rolling bearing 1 is fixed in the housing 6, and the inner ring 3 is fitted to the outer peripheral surface of the main shaft 7.
 軸受装置Jの冷却構造について説明する。
 図1に示すように、外輪間座4は断面形状が略T字状である。詳細には、外輪間座4は、T字の縦線部分である内径側突出部4aと、T字の横線部分である円筒部4bとを有している。内径側突出部4aの内周面と内輪間座5の外周面とが、径方向隙間9を介して対向している。外輪間座4の内径側突出部4aの内周面に、供給口10が設けられている。供給口10は、内輪間座5の外周面に向けて冷却用の圧縮エアAを供給する。この例では、図3に示すように、供給口10の数は3個であり、各供給口10は円周方向に等間隔に配置されている。
The cooling structure of the bearing device J will be described.
As shown in FIG. 1, the outer ring spacer 4 has a substantially T-shaped cross section. Specifically, the outer ring spacer 4 includes an inner diameter side protruding portion 4a that is a T-shaped vertical line portion and a cylindrical portion 4b that is a T-shaped horizontal line portion. The inner peripheral surface of the inner diameter side protrusion 4 a and the outer peripheral surface of the inner ring spacer 5 are opposed to each other with a radial gap 9 therebetween. A supply port 10 is provided on the inner peripheral surface of the inner diameter side protrusion 4 a of the outer ring spacer 4. The supply port 10 supplies the compressed air A for cooling toward the outer peripheral surface of the inner ring spacer 5. In this example, as shown in FIG. 3, the number of supply ports 10 is three, and each supply port 10 is arranged at equal intervals in the circumferential direction.
 図1および図3に示すように、外輪間座4の外周面には、圧縮エアAを導入する環状の導入溝11が設けられている。導入溝11は、外輪間座4の外周面における軸方向中間部に設けられ、接続孔11aを介して各供給口10に連通している。軸受装置Jの外部に設けた圧縮エア供給装置45(図10)から、ハウジング6に設けられた圧縮エア導入孔46(図3)を通って、導入溝11に圧縮エアAが供給される。 1 and 3, an annular introduction groove 11 for introducing the compressed air A is provided on the outer peripheral surface of the outer ring spacer 4. The introduction groove 11 is provided in an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 4 and communicates with each supply port 10 through a connection hole 11a. Compressed air A is supplied to the introduction groove 11 from the compressed air supply device 45 (FIG. 10) provided outside the bearing device J through the compressed air introduction hole 46 (FIG. 3) provided in the housing 6.
 図1に示すように、内輪間座5は、軸方向中央の円筒体13と、円筒体13の軸方向両側の障害壁形成体14,14とを有している。各障害壁形成体14の軸方向端に、障害壁15が設けられている。障害壁形成体14における障害壁15を除く本体部分14aは、円筒体13と同じ外径の円筒状である。 As shown in FIG. 1, the inner ring spacer 5 has a cylindrical body 13 at the center in the axial direction and obstacle wall forming bodies 14 and 14 on both sides in the axial direction of the cylindrical body 13. A barrier wall 15 is provided at the axial end of each barrier wall forming body 14. The main body portion 14 a excluding the obstacle wall 15 in the obstacle wall forming body 14 has a cylindrical shape having the same outer diameter as that of the cylindrical body 13.
 図2は、図1の部分拡大図である。図2に示すように、障害壁15は、外径側に延びるつば状部15aと、つば状部15aの外径端から軸方向内側に延びる円筒状部15bとを有している。つば状部15aの外径端は、転がり軸受1の外輪2の内周面付近まで延びている。円筒状部15bの軸方向内側端は、外輪間座4の内径側突出部4aと微小な隙間16を介して対向している。円筒状部15bと外輪間座4の内径側突出部4aとの対向部分により、第1ラビリンスシールLSが構成されている。 FIG. 2 is a partially enlarged view of FIG. As shown in FIG. 2, the obstacle wall 15 includes a flange-shaped portion 15 a that extends to the outer diameter side, and a cylindrical portion 15 b that extends axially inward from the outer diameter end of the flange-shaped portion 15 a. The outer diameter end of the collar portion 15 a extends to the vicinity of the inner peripheral surface of the outer ring 2 of the rolling bearing 1. The axially inner end of the cylindrical portion 15 b is opposed to the inner diameter side protruding portion 4 a of the outer ring spacer 4 via a minute gap 16. A first labyrinth seal LS is configured by a facing portion between the cylindrical portion 15 b and the inner-diameter side protruding portion 4 a of the outer ring spacer 4.
 障害壁形成体14の本体部分14a、障害壁15のつば状部15a、円筒状部15bおよび外輪間座4の内径側突出部4aにより、環状の冷却用空間18が形成されている。また、障害壁15の円筒状部15bの外周面と、外輪間座4の円筒部4bの内周面との間に、排気用空間19が形成されている。これら冷却用空間18と排気用空間19は、第1ラビリンスシールLSを構成する隙間16を介して連通している。 An annular cooling space 18 is formed by the main body portion 14 a of the obstacle wall forming body 14, the flange portion 15 a of the obstacle wall 15, the cylindrical portion 15 b, and the inner diameter side protruding portion 4 a of the outer ring spacer 4. An exhaust space 19 is formed between the outer peripheral surface of the cylindrical portion 15 b of the obstacle wall 15 and the inner peripheral surface of the cylindrical portion 4 b of the outer ring spacer 4. The cooling space 18 and the exhaust space 19 communicate with each other through a gap 16 that constitutes the first labyrinth seal LS.
 外輪間座4の円筒部4bの軸方向端に、排気口20が設けられている。排気口20は、例えば、図4のような矩形の切り欠き形状である。外輪間座4に隣接して転がり軸受1の外輪2が配置されることで、図2に示す排気用空間19と軸受装置Jの外部とが排気口20を介して連通される。 An exhaust port 20 is provided at the axial end of the cylindrical portion 4 b of the outer ring spacer 4. The exhaust port 20 has, for example, a rectangular cutout shape as shown in FIG. By disposing the outer ring 2 of the rolling bearing 1 adjacent to the outer ring spacer 4, the exhaust space 19 shown in FIG. 2 and the outside of the bearing device J are communicated with each other through the exhaust port 20.
 図1において、軸受空間30と冷却用空間18とは、障害壁15によって完全に隔離されている。障害壁15のつば状部15aの外径端が外輪3の内周面付近まで延びているうえに、障害壁15のつば状部15aが軸方向内側のシール材31と僅かな軸方向隙間21を介して対向している。これにより、軸受空間30と排気用空間19との間に、第2ラビリンスシールが形成されている。 1, the bearing space 30 and the cooling space 18 are completely separated by the obstacle wall 15. The outer diameter end of the flange portion 15a of the obstacle wall 15 extends to the vicinity of the inner peripheral surface of the outer ring 3, and the flange portion 15a of the obstacle wall 15 is slightly axially spaced from the sealing material 31 on the inner side in the axial direction. Is facing through. Thereby, a second labyrinth seal is formed between the bearing space 30 and the exhaust space 19.
 軸受装置Jの運転時に、冷却用の圧縮エアAが、軸受装置Jの外部の圧縮エア供給装置から外輪間座4の導入溝11に送られ、外輪間座4の供給口10から内輪間座5の外周面に向けて供給される。これにより、内輪間座5が冷却され、これに接する転がり軸受1の内輪3も冷却される。その後、圧縮エアAは内輪間座5の外周面に沿って軸方向の両側に流れる。軸方向の両側には転がり軸受1が配置されているが、内輪間座5の軸方向両端部に障害壁15が設けられているので、圧縮エアAが軸受空間30に流入しにくい。 During operation of the bearing device J, the compressed air A for cooling is sent from the compressed air supply device outside the bearing device J to the introduction groove 11 of the outer ring spacer 4 and from the supply port 10 of the outer ring spacer 4 to the inner ring spacer. 5 is supplied toward the outer peripheral surface. Thereby, the inner ring spacer 5 is cooled, and the inner ring 3 of the rolling bearing 1 in contact therewith is also cooled. Thereafter, the compressed air A flows along the outer peripheral surface of the inner ring spacer 5 on both sides in the axial direction. Although the rolling bearings 1 are arranged on both sides in the axial direction, since the obstacle walls 15 are provided at both axial ends of the inner ring spacer 5, the compressed air A hardly flows into the bearing space 30.
 また、障害壁15の一部が第1ラビリンスシールLSを構成しているので、内輪間座5の外周面に吹き付けられた圧縮エアAの排気が抑制される。その結果、圧縮エアAが冷却用空間18に留まる時間が長くなり、内輪間座5を効率よく冷却することができる。それにより、内輪間座5およびこれに接する転がり軸受1の内輪3がより一層効率よく冷却される。 Further, since a part of the obstacle wall 15 constitutes the first labyrinth seal LS, the exhaust of the compressed air A blown to the outer peripheral surface of the inner ring spacer 5 is suppressed. As a result, the time during which the compressed air A stays in the cooling space 18 becomes long, and the inner ring spacer 5 can be efficiently cooled. Thereby, the inner ring spacer 5 and the inner ring 3 of the rolling bearing 1 in contact therewith are more efficiently cooled.
 冷却用空間18の圧縮エアAは、時間をかけて少しずつ隙間16を通って排気用空間19へ流れ、排気用空間19から排気口20を介して軸受装置Jの外部へ排出される。 Compressed air A in the cooling space 18 gradually passes through the gap 16 to the exhaust space 19 over time, and is discharged from the exhaust space 19 to the outside of the bearing device J through the exhaust port 20.
 障害壁15が設けられているので、冷却用空間18から軸受空間30に直接に圧縮エアAが流れ込むことはない。また、軸受空間30と排気用空間19との間に第2ラビリンスシールが形成されている。このため、圧縮エアAが軸受空間30に流れ込むことがほとんどなく、軸受空間30に封入されているグリースが圧縮エアAで吹き飛ばされるのを防ぐことができる。その結果、軸受装置Jの良好な潤滑状態を維持することができる。 Since the obstacle wall 15 is provided, the compressed air A does not flow directly from the cooling space 18 into the bearing space 30. A second labyrinth seal is formed between the bearing space 30 and the exhaust space 19. For this reason, the compressed air A hardly flows into the bearing space 30, and the grease enclosed in the bearing space 30 can be prevented from being blown off by the compressed air A. As a result, a good lubrication state of the bearing device J can be maintained.
[第2実施形態]
 図5、図6はこの発明の第2実施形態に係る軸受装置の冷却構造を示す。
 第2実施形態の軸受装置Jは、内輪間座5の障害壁15の形状が異なる点を除いて、第1実施形態と同じ構成である。構成が同じ箇所については同一符号を付して示し、その説明は省略する。
[Second Embodiment]
5 and 6 show a cooling structure for a bearing device according to a second embodiment of the present invention.
The bearing device J of the second embodiment has the same configuration as that of the first embodiment except that the shape of the obstacle wall 15 of the inner ring spacer 5 is different. Parts having the same configuration are denoted by the same reference numerals and description thereof is omitted.
 第2実施形態の軸受装置Jの障害壁15は、2つの円筒状部15b,15cを有している。一方の円筒状部15bは、つば状部15aの外径端の箇所から軸方向内側に延びている。他方の円筒状部15cは、つば状部15aの外径端よりも内径側の箇所から軸方向内側に延びている。各円筒状部15b,15cの軸方向内側端は、外輪間座4の内径側突出部4aと微小な隙間16,17を介してそれぞれ対向している。これら2つの円筒状部15b,15cと外輪間座4の内径側突出部4aとの対向部分により、第1ラビリンスシールLSが構成されている。 The obstacle wall 15 of the bearing device J of the second embodiment has two cylindrical portions 15b and 15c. One cylindrical portion 15b extends inward in the axial direction from the outer diameter end of the collar portion 15a. The other cylindrical portion 15c extends inward in the axial direction from a position on the inner diameter side of the outer diameter end of the collar-shaped portion 15a. The axially inner ends of the cylindrical portions 15b and 15c face the inner diameter side protruding portion 4a of the outer ring spacer 4 through minute gaps 16 and 17, respectively. A first labyrinth seal LS is configured by the facing portions of the two cylindrical portions 15b and 15c and the inner diameter side protruding portion 4a of the outer ring spacer 4.
 このように、2つの対向部分を有すると、第1ラビリンスシールLSとしての機能が高まり、圧縮エアAが冷却用空間18に留まる時間がさらに長くなる。したがって、内輪間座5をより一層効率よく冷却することができる。それにより、内輪間座5およびそれに接する転がり軸受1の内輪3がより一層効率よく冷却される。 Thus, having two opposing portions increases the function as the first labyrinth seal LS and further increases the time that the compressed air A stays in the cooling space 18. Therefore, the inner ring spacer 5 can be cooled more efficiently. Thereby, the inner ring spacer 5 and the inner ring 3 of the rolling bearing 1 in contact with the inner ring spacer 5 are more efficiently cooled.
[第3実施形態]
 図7、図8はこの発明の第3実施形態に係る軸受装置の冷却構造を示す。
 第3実施形態の軸受装置Jは、第1の実施形態と比べて、外輪間座4の内周面における隙間16と排気口20との間の軸方向部分の形状が異なる。すなわち、この軸方向部分は、全周にわたって、軸方向の外側(排気口20)に向かって内径寸法が徐々に大きくなるテーパ形状部23を構成している。テーパ角度θは、例えば、10°~60°である。その他の構成は第1実施形態と同じ構成である。構成が同じ箇所については同一符号を付して示し、その説明は省略する。
[Third Embodiment]
7 and 8 show a cooling structure for a bearing device according to a third embodiment of the present invention.
The bearing device J of the third embodiment differs from the first embodiment in the shape of the axial portion between the clearance 16 and the exhaust port 20 on the inner peripheral surface of the outer ring spacer 4. In other words, this axial portion constitutes a tapered portion 23 whose inner diameter dimension gradually increases toward the outer side (exhaust port 20) in the axial direction over the entire circumference. The taper angle θ is, for example, 10 ° to 60 °. Other configurations are the same as those in the first embodiment. Parts having the same configuration are denoted by the same reference numerals and description thereof is omitted.
 このように外輪間座4の内周面における前記軸方向部分をテーパ形状部23とすると、隙間16を通過した圧縮エアAが排気口20に円滑に流れるようになり、排気が迅速に行われる。それにより、圧縮エアAが転がり軸受1の軸受空間30に流入しにくくなり、軸受空間30に封入されたグリースが長期間にわたって保持される。 As described above, when the axial portion on the inner peripheral surface of the outer ring spacer 4 is the tapered portion 23, the compressed air A that has passed through the gap 16 flows smoothly to the exhaust port 20, and the exhaust is performed quickly. . As a result, the compressed air A is less likely to flow into the bearing space 30 of the rolling bearing 1, and the grease sealed in the bearing space 30 is retained for a long period of time.
 前記軸方向部分が円筒形状である軸受装置(図1)とテーパ形状である図7の軸受装置について、流体解析により、圧縮エアの軸受外部への排出量および軸受内部への圧縮エアの流入量を算出した。テーパ形状部23のテーパ角度θは15°に設定した。その結果を表1に示す。 Regarding the bearing device (FIG. 1) having a cylindrical shape in the axial direction and the bearing device in FIG. 7 having a tapered shape, the amount of compressed air discharged to the outside of the bearing and the amount of compressed air flowing into the bearing by fluid analysis. Was calculated. The taper angle θ of the tapered portion 23 was set to 15 °. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
  表1の結果から、前記軸方向部分が円筒形状である軸受装置と比べて、テーパ形状である軸受装置は、軸受外部への排出量が多く、軸受内部への流入量が少ないことが分かる。
Figure JPOXMLDOC01-appb-T000001
From the results in Table 1, it can be seen that the bearing device having a tapered shape has a larger discharge amount to the outside of the bearing and a smaller inflow amount to the inside of the bearing than the bearing device having the cylindrical portion in the axial direction.
[異なる軸受装置]
 軸受装置Jにより支持される軸が、工作機械の主軸のように回転方向が一定している場合、図9のように、各供給口10のエア吐出方向を、内輪3(図1)および主軸7の回転方向D1の前方に傾斜させてもよい。各供給口10は、直線状であって、外輪間座4の軸心に垂直な断面における任意の半径方向の直線L1から、この直線L1と直交する方向にオフセット(オフセット量OS)した位置にある。このように、各供給口10のエア吐出方向を傾斜させると、吐出された圧縮エアAが内輪間座5の外周面に当たる際に、圧縮エアAの押圧力を内輪間座5に与えることができる。これにより、主軸7を駆動する作用を期待することができる。
[Different bearing devices]
When the rotation direction of the shaft supported by the bearing device J is constant like the main shaft of the machine tool, the air discharge direction of each supply port 10 is changed to the inner ring 3 (FIG. 1) and the main shaft as shown in FIG. 7 may be inclined forward in the rotational direction D1. Each supply port 10 is linear, and is offset from an arbitrary radial straight line L1 in a cross section perpendicular to the axis of the outer ring spacer 4 in a direction orthogonal to the straight line L1 (offset amount OS). is there. Thus, when the air discharge direction of each supply port 10 is inclined, when the discharged compressed air A hits the outer peripheral surface of the inner ring spacer 5, the pressing force of the compressed air A can be applied to the inner ring spacer 5. it can. Thereby, the effect | action which drives the main axis | shaft 7 can be anticipated.
[工作機械の主軸装置]
 図10は、図1に示す軸受装置Jが組込まれた工作機械の主軸装置の一部を示す断面図である。軸受装置Jは、転がり軸受1,1の外輪2,2および外輪間座4がハウジング6の内周面に嵌合し、転がり軸受1,1の内輪3,3および内輪間座5が工作機械の主軸7の外周面に嵌合している。
[Machine tool spindle]
FIG. 10 is a cross-sectional view showing a part of the spindle device of the machine tool in which the bearing device J shown in FIG. 1 is incorporated. In the bearing device J, the outer rings 2, 2 of the rolling bearings 1, 1 and the outer ring spacer 4 are fitted to the inner peripheral surface of the housing 6, and the inner rings 3, 3 and the inner ring spacer 5 of the rolling bearings 1, 1 are machine tools. The main shaft 7 is fitted on the outer peripheral surface.
 この例では、外輪2および外輪間座4はハウジング6に対して隙間嵌めとされ、内輪3および内輪間座5は軸7に対して締まり嵌めとされている。一方(図の右側)の転がり軸受1の外輪3はハウジング6の段部6aで軸方向の位置決めがされ、一方(図の右側)の転がり軸受1の内輪3は位置決め間座41により軸方向の位置決めがされている。他方(図の左側)の転がり軸受1の外輪2および内輪3に、外輪押さえ42および内輪押さえ43がそれぞれ押し当てられることで、軸受装置Jがハウジング6に固定されている。ただし、軸受装置Jの固定方法はこれに限定されない。 In this example, the outer ring 2 and the outer ring spacer 4 are fitted to the housing 6 with a clearance, and the inner ring 3 and the inner ring spacer 5 are fitted to the shaft 7. The outer ring 3 of one (right side of the drawing) of the rolling bearing 1 is axially positioned by the step portion 6 a of the housing 6, and the inner ring 3 of the one (right side of the drawing) is axially positioned by the positioning spacer 41. Positioning has been performed. The bearing device J is fixed to the housing 6 by pressing the outer ring presser 42 and the inner ring presser 43 against the outer ring 2 and the inner ring 3 of the other (left side in the drawing) of the rolling bearing 1. However, the fixing method of the bearing device J is not limited to this.
 ハウジング6および外輪押さえ42に、圧縮エア供給装置45からの冷却用の圧縮エアAを軸受装置Jに導入する圧縮エア導入孔46が設けられている。圧縮エア導入孔46は、外輪間座4の外周面に設けられた導入溝11に連通している。また、ハウジング6および外輪押さえ42に排気孔47が設けられている。排気孔47は、接続孔48を介して外輪間座4の排気口20と連通している。 The housing 6 and the outer ring retainer 42 are provided with a compressed air introduction hole 46 for introducing the compressed air A for cooling from the compressed air supply device 45 into the bearing device J. The compressed air introduction hole 46 communicates with the introduction groove 11 provided on the outer peripheral surface of the outer ring spacer 4. Further, an exhaust hole 47 is provided in the housing 6 and the outer ring retainer 42. The exhaust hole 47 communicates with the exhaust port 20 of the outer ring spacer 4 through the connection hole 48.
 この軸受装置Jの冷却構造は、上述のように軸受装置Jおよび主軸7の冷却効果が高いので、主軸装置を高速な領域で運転させることが可能となる。このため、この軸受装置Jを、工作機械の主軸の支持に好適に用いることができる。 Since the cooling structure of the bearing device J has a high cooling effect on the bearing device J and the main shaft 7 as described above, the main shaft device can be operated in a high-speed region. For this reason, this bearing apparatus J can be used suitably for support of the main axis | shaft of a machine tool.
[第4実施形態]
 図11はこの発明の第4実施形態に係る軸受装置の冷却構造を示す。第4実施形態では、内輪間座5の外周面に冷却用の圧縮エアを供給する供給口10が、ノズル60のノズル孔60aで構成されている。ノズル孔60aは内輪間座5の回転方向D1の前方に傾斜している。また、排気口20も、内輪間座5の回転方向D1の前方に傾斜している。
[Fourth Embodiment]
FIG. 11 shows a cooling structure for a bearing device according to a fourth embodiment of the present invention. In the fourth embodiment, the supply port 10 for supplying the compressed air for cooling to the outer peripheral surface of the inner ring spacer 5 is constituted by the nozzle hole 60 a of the nozzle 60. The nozzle hole 60a is inclined forward in the rotational direction D1 of the inner ring spacer 5. The exhaust port 20 is also inclined forward in the rotational direction D1 of the inner ring spacer 5.
 このように、ノズル孔60aが内輪間座5の回転方向D1の前方へ傾斜しているので、ノズル孔60aから吐出された圧縮エアAは、内輪間座5の周面に沿って旋回しながら軸方向に流れ、この間に内輪間座5を冷却する。圧縮エアAが旋回するので、軸方向にまっすぐ流れる場合と比べて、圧縮エアAが内輪間座5の周面と接している時間が長くなる。その結果、内輪間座5を効率良く冷却することができる。 Thus, since the nozzle hole 60a is inclined forward in the rotation direction D1 of the inner ring spacer 5, the compressed air A discharged from the nozzle hole 60a is swung along the peripheral surface of the inner ring spacer 5. It flows in the axial direction, and the inner ring spacer 5 is cooled during this time. Since the compressed air A turns, the time during which the compressed air A is in contact with the peripheral surface of the inner ring spacer 5 is longer than when the compressed air A flows straight in the axial direction. As a result, the inner ring spacer 5 can be efficiently cooled.
 内輪間座5の周面を通過した圧縮エアAは、外輪間座4の軸方向端面に設けられた排気口20や、転がり軸受1の内部を通って外部に排出される。排気口20も内輪間座5の回転方向D1の前方に傾斜しているので、旋回流となっている圧縮エアAが排気口20から円滑に排出される。それにより、転がり軸受1の内部を通る圧縮エアAの量を減らして、圧縮エアAが転がり軸受1の内部を多く流れることによる弊害を排除また軽減することができる。 Compressed air A that has passed through the peripheral surface of the inner ring spacer 5 is discharged to the outside through the exhaust port 20 provided in the axial end surface of the outer ring spacer 4 and the inside of the rolling bearing 1. Since the exhaust port 20 is also inclined forward in the rotation direction D <b> 1 of the inner ring spacer 5, the compressed air A that is a swirling flow is smoothly discharged from the exhaust port 20. Thereby, the amount of the compressed air A passing through the inside of the rolling bearing 1 can be reduced, and adverse effects caused by a large amount of the compressed air A flowing inside the rolling bearing 1 can be eliminated or reduced.
 具体的には、転がり軸受1をエアオイル潤滑やオイルミスト潤滑する場合、エアオイルの円滑な給排気が阻害されることを防止できる。そのうえ、転がり軸受1の軸端付近に生じるエアカーテン状の空気流の膜や回転中の転動体8に圧縮エアAが衝突することによる騒音を抑制できる。また、転がり軸受1をグリース潤滑する場合、圧縮エアAが軸受内部のグリースを排出してしまうことを防止できる。 Specifically, when the rolling bearing 1 is subjected to air oil lubrication or oil mist lubrication, it is possible to prevent obstructing the smooth supply and exhaust of air oil. In addition, it is possible to suppress noise caused by the collision of the compressed air A with the air curtain-like air flow film generated in the vicinity of the shaft end of the rolling bearing 1 or the rotating rolling element 8. Further, when the rolling bearing 1 is grease lubricated, it is possible to prevent the compressed air A from discharging grease inside the bearing.
 さらに、第4実施形態では、ノズル孔60aおよび排気口20が3つずつ設けられており、これらノズル孔60aおよび排気口20がそれぞれ円周方向に等間隔で配置されている。この構成によれば、ノズル孔60aから吐出される圧縮エアAにより、内輪間座5を円周方向に均等に冷却することができる。また、内輪間座5の周面を通過した圧縮エアAが、各排気口20から均等に排出される。このため、圧縮エアAの排出が円滑に行われる。 Furthermore, in the fourth embodiment, three nozzle holes 60a and three exhaust ports 20 are provided, and these nozzle holes 60a and exhaust ports 20 are arranged at equal intervals in the circumferential direction. According to this configuration, the inner ring spacer 5 can be evenly cooled in the circumferential direction by the compressed air A discharged from the nozzle hole 60a. Further, the compressed air A that has passed through the peripheral surface of the inner ring spacer 5 is evenly discharged from each exhaust port 20. For this reason, the compressed air A is discharged smoothly.
 さらに、第4実施形態では、3つのノズル孔60aのうちの任意の1つのノズル孔60aからこのノズル孔60aに対して内輪間座5の回転方向D1の前側に位置する排気口20までの円周方向の距離Mが、この排気口20から内輪間座5の回転方向D1の一つ前側に位置するノズル孔60aまでの円周方向の距離Nよりも長くなっている。このようなノズル孔60aと排気口20の位置関係であると、圧縮エアAが内輪間座5の周面に接している時間が長くなり、冷却効果が高い。 Furthermore, in the fourth embodiment, a circle from any one of the three nozzle holes 60a to the exhaust port 20 located on the front side in the rotation direction D1 of the inner ring spacer 5 with respect to the nozzle hole 60a. The circumferential distance M is longer than the circumferential distance N from the exhaust port 20 to the nozzle hole 60a located on the front side in the rotational direction D1 of the inner ring spacer 5. With such a positional relationship between the nozzle hole 60a and the exhaust port 20, the time during which the compressed air A is in contact with the peripheral surface of the inner ring spacer 5 becomes long, and the cooling effect is high.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiments have been described with reference to the drawings. However, the present invention is not limited to the above embodiments, and various additions and modifications can be made without departing from the gist of the present invention. Or it can be deleted. Therefore, such a thing is also included in the scope of the present invention.
 上述の第1~第4実施形態では、第1ラビリンスシールLSを備えた軸受装置の冷却構造を説明したが、本発明は、第1ラビリンスシールLSを備えない場合にも応用できる。 In the first to fourth embodiments described above, the cooling structure of the bearing device provided with the first labyrinth seal LS has been described. However, the present invention can also be applied to a case where the first labyrinth seal LS is not provided.
[第1応用例]
 図12~図15はこの発明の第1応用例に係る軸受装置の冷却構造を示す。第1応用例の軸受装置の冷却構造は、工作機械の主軸装置に適用されている。ただし、工作機械の主軸装置だけに限定されるものではない。
[First application example]
12 to 15 show a cooling structure for a bearing device according to a first application example of the present invention. The bearing device cooling structure of the first application example is applied to a spindle device of a machine tool. However, it is not limited only to the spindle device of the machine tool.
 図12に示すように、軸受装置Jは、軸方向に並ぶ2つの転がり軸受101,101を備えている。各転がり軸受101,101の外輪102,102の間に外輪間座104が介在され、内輪103,103の間に内輪間座105が介在されている。外輪102および外輪間座104がハウジング106に設置され、内輪103および内輪間座105が主軸107に嵌合されている。 As shown in FIG. 12, the bearing device J includes two rolling bearings 101, 101 arranged in the axial direction. An outer ring spacer 104 is interposed between the outer rings 102 and 102 of the rolling bearings 101 and 101, and an inner ring spacer 105 is interposed between the inner rings 103 and 103. The outer ring 102 and the outer ring spacer 104 are installed in the housing 106, and the inner ring 103 and the inner ring spacer 105 are fitted to the main shaft 107.
 この例の転がり軸受101はアンギュラ玉軸受であり、外輪102の軌道面と内輪103の軌道面の間に、複数の転動体108が介在されている。各転動体108は、保持器109により円周方向に等間隔に保持されている。2つの転がり軸受101,101は互いに背面組合せで配置されている。外輪間座104と内輪間座105の幅寸法差により、各転がり軸受101,101の初期予圧が設定されている。 The rolling bearing 101 in this example is an angular ball bearing, and a plurality of rolling elements 108 are interposed between the raceway surface of the outer ring 102 and the raceway surface of the inner ring 103. Each rolling element 108 is held at equal intervals in the circumferential direction by a cage 109. The two rolling bearings 101, 101 are arranged in combination with each other on the back surface. The initial preload of each of the rolling bearings 101 and 101 is set according to the width dimension difference between the outer ring spacer 104 and the inner ring spacer 105.
 第1応用例の転がり軸受101は内輪回転タイプである。つまり、外輪102が「固定側軌道輪」に相当し、内輪103が「回転側軌道輪」に相当する。また、外輪間座104が「固定側間座」に相当し、内輪間座105が「回転側間座」に相当する。さらに、主軸107が「回転部材」に相当し、ハウジング106が「固定部材」に相当する。後述の他の応用例についても同様である。 The rolling bearing 101 of the first application example is an inner ring rotating type. That is, the outer ring 102 corresponds to a “fixed side raceway”, and the inner ring 103 corresponds to a “rotation side raceway”. The outer ring spacer 104 corresponds to a “fixed side spacer”, and the inner ring spacer 105 corresponds to a “rotation side spacer”. Further, the main shaft 107 corresponds to a “rotating member”, and the housing 106 corresponds to a “fixing member”. The same applies to other application examples described later.
 第1応用例では、外輪102,102および外輪間座104が、ハウジング106に対して隙間嵌めとされ、ハウジング106の段部106aと端面蓋140とにより軸方向の位置決めがされている。また、内輪103,103および内輪間座105は、主軸107に対して締まり嵌めとされ、軸方向両側の位置決め間座141,142により軸方向の位置決めがされている。図12の左側の位置決め間座142は、主軸107に螺着されたナット143により固定されている。外輪102,102、外輪間座104、内輪103,103および内輪間座105の固定方法はこれに限定されない。 In the first application example, the outer rings 102 and 102 and the outer ring spacer 104 are fitted into the housing 106 with a clearance, and the axial positioning is performed by the step 106a of the housing 106 and the end surface lid 140. The inner rings 103, 103 and the inner ring spacer 105 are interference-fitted to the main shaft 107, and are positioned in the axial direction by positioning spacers 141, 142 on both sides in the axial direction. The left positioning spacer 142 in FIG. 12 is fixed by a nut 143 screwed to the main shaft 107. The fixing method of the outer rings 102 and 102, the outer ring spacer 104, the inner rings 103 and 103, and the inner ring spacer 105 is not limited to this.
 冷却構造について説明する。
 図13は軸受装置の冷却構造の主要部を拡大して示す断面図である。外輪間座104は、外輪間座本体111と、外輪間座本体111とは別部材からなるリング状の潤滑用ノズル112,112とを有する。外輪間座本体111は、断面形状が略T字形状に形成されている。外輪間座本体111の軸方向両側に潤滑用ノズル112,112がそれぞれ固定されている。潤滑用ノズル112,112は、外輪間座本体111の軸方向中心に対して対称に配置されている。
The cooling structure will be described.
FIG. 13 is an enlarged cross-sectional view showing the main part of the cooling structure of the bearing device. The outer ring spacer 104 includes an outer ring spacer main body 111 and ring-shaped lubricating nozzles 112 and 112 made of a member different from the outer ring spacer main body 111. The outer ring spacer main body 111 has a substantially T-shaped cross section. Lubricating nozzles 112 and 112 are respectively fixed to both sides of the outer ring spacer body 111 in the axial direction. The lubricating nozzles 112, 112 are arranged symmetrically with respect to the axial center of the outer ring spacer body 111.
 外輪間座本体111の内径寸法は、潤滑用ノズル112,112の内径寸法よりも大きい。これにより、外輪間座104の内周面に、外輪間座本体111の内周面と、この内周面に続く潤滑用ノズル112,112の側面とで構成される凹み部113が形成されている。凹み部113は、断面形状が長方形の環状溝である。外輪間座104の凹み部113以外の内周面、すなわち潤滑用ノズル112,112の内周面と、内輪間座105の外周面とは、微小な径方向隙間δaを介して対向している。これにより、凹み部113と内輪間座105の外周面との間に、他よりも径方向幅の広い環状の空間114が形成されている。 The inner diameter of the outer ring spacer body 111 is larger than the inner diameter of the lubricating nozzles 112, 112. As a result, a recess 113 formed by the inner peripheral surface of the outer ring spacer main body 111 and the side surfaces of the lubricating nozzles 112, 112 following the inner peripheral surface is formed on the inner peripheral surface of the outer ring spacer 104. Yes. The recessed portion 113 is an annular groove having a rectangular cross-sectional shape. The inner peripheral surface of the outer ring spacer 104 other than the recess 113, that is, the inner peripheral surface of the lubricating nozzles 112 and 112, and the outer peripheral surface of the inner ring spacer 105 are opposed to each other with a minute radial gap δa. . Thus, an annular space 114 having a larger radial width than the others is formed between the recess 113 and the outer peripheral surface of the inner ring spacer 105.
 外輪間座本体111に、内輪間座105の外周面に向けて冷却用の圧縮エアAを吐出するノズル孔115が設けられている。ノズル孔115の出口115aは、外輪間座104の内周面における凹み部113に開口している。この例では、3個のノズル孔115が設けられており、各ノズル孔115が円周方向に等間隔に配置されている。ノズル孔115の数は3つに限定されない。 The outer ring spacer main body 111 is provided with a nozzle hole 115 for discharging compressed air A for cooling toward the outer peripheral surface of the inner ring spacer 105. The outlet 115 a of the nozzle hole 115 is open to a recess 113 on the inner peripheral surface of the outer ring spacer 104. In this example, three nozzle holes 115 are provided, and the nozzle holes 115 are arranged at equal intervals in the circumferential direction. The number of nozzle holes 115 is not limited to three.
 図12のXV-XV断面図である図15に示すように、各ノズル孔115は、内輪間座105の回転方向D1の前方に傾斜している。つまり、各ノズル孔115は、外輪間座104の軸心に垂直な断面における任意の半径方向の直線Lから、この直線Lと直交する方向にオフセットした位置にある。ノズル孔115をオフセットさせることにより、圧縮エアAを内輪間座105の回転方向D1に旋回流として作用させ、冷却効果を向上させている。なお、図12、図13では、外輪間座104が、ノズル孔115の中心線を通る断面で表示されている。 As shown in FIG. 15 which is an XV-XV sectional view of FIG. 12, each nozzle hole 115 is inclined forward in the rotational direction D1 of the inner ring spacer 105. That is, each nozzle hole 115 is at a position offset from an arbitrary radial straight line L in a cross section perpendicular to the axis of the outer ring spacer 104 in a direction perpendicular to the straight line L. By offsetting the nozzle hole 115, the compressed air A acts as a swirling flow in the rotation direction D1 of the inner ring spacer 105, thereby improving the cooling effect. In FIGS. 12 and 13, the outer ring spacer 104 is displayed in a cross section passing through the center line of the nozzle hole 115.
 外輪間座本体111の外周面に、軸受外部から各ノズル孔115に圧縮エアAを導入する導入溝116が形成されている。導入溝116は、外輪間座104の外周面における軸方向中間部に設けられ、各ノズル孔115に連通する円弧状に形成されている。導入溝116は、外輪間座本体111の外周面における円周方向の大部分を示す角度範囲にわたって設けられている。外輪間座本体111の外周面における導入溝116が形成されない円周方向位置に、後述のエアオイル供給経路(図示せず)が設けられる。図12のように、ハウジング106に圧縮エア導入経路145が設けられ、圧縮エア導入経路145に導入溝116が連通している。ハウジング106の外部に、圧縮エア導入孔145に圧縮エアAを供給するエア供給装置(図示せず)が設けられている。 An introduction groove 116 for introducing the compressed air A into each nozzle hole 115 from the outside of the bearing is formed on the outer peripheral surface of the outer ring spacer main body 111. The introduction groove 116 is provided in an intermediate portion in the axial direction on the outer peripheral surface of the outer ring spacer 104, and is formed in an arc shape communicating with each nozzle hole 115. The introduction groove 116 is provided over an angular range indicating most of the outer circumferential surface of the outer ring spacer main body 111 in the circumferential direction. An air oil supply path (not shown), which will be described later, is provided at a circumferential position where the introduction groove 116 is not formed on the outer peripheral surface of the outer ring spacer main body 111. As shown in FIG. 12, the housing 106 is provided with a compressed air introduction path 145, and the introduction groove 116 communicates with the compressed air introduction path 145. An air supply device (not shown) that supplies the compressed air A to the compressed air introduction hole 145 is provided outside the housing 106.
 潤滑構造について説明する。
 図12に示す外輪間座104の前記潤滑用ノズル112,112は、転がり軸受101の軸受内部にエアオイルを供給する。各潤滑用ノズル112は、軸受内部に突出する先端部130を有している。先端部130は、内輪103の外周面と環状隙間δbを介して対向する。環状隙間δbは、エアオイル通過用の通路を構成する。換言すれば、潤滑用ノズル112の先端部130は、内輪103の外周面に被さるように軸受内部に進入して配置されている。潤滑用ノズル112の先端部130は、保持器109の内周面よりも半径方向の内方に配置されている。
The lubrication structure will be described.
The lubrication nozzles 112, 112 of the outer ring spacer 104 shown in FIG. 12 supply air oil to the inside of the rolling bearing 101. Each of the lubricating nozzles 112 has a tip portion 130 that protrudes into the bearing. The tip portion 130 faces the outer peripheral surface of the inner ring 103 via an annular gap δb. The annular gap δb constitutes a passage for air oil passage. In other words, the tip portion 130 of the lubricating nozzle 112 is disposed so as to enter the bearing so as to cover the outer peripheral surface of the inner ring 103. The tip portion 130 of the lubricating nozzle 112 is disposed radially inward from the inner peripheral surface of the cage 109.
 図13に示すように、潤滑用ノズル112に、環状隙間δbにエアオイルを供給するエアオイル供給孔131が設けられている。エアオイル供給孔131は、軸受側に向かって内径側に傾斜し、その出口が先端部130の内面に開口している。エアオイル供給孔131に、ハウジング106および外輪間座本体111に設けられたエアオイル供給経路(図示せず)を介してエアオイルが供給される。内輪103の外周面におけるエアオイル供給孔131に対向する箇所に、環状凹み部103aが設けられている。 As shown in FIG. 13, the lubrication nozzle 112 is provided with an air oil supply hole 131 for supplying air oil to the annular gap δb. The air oil supply hole 131 is inclined toward the inner diameter side toward the bearing side, and an outlet thereof opens to the inner surface of the tip portion 130. Air oil is supplied to the air oil supply hole 131 through an air oil supply path (not shown) provided in the housing 106 and the outer ring spacer main body 111. An annular recess 103 a is provided at a location facing the air oil supply hole 131 on the outer peripheral surface of the inner ring 103.
 潤滑用ノズル112から吐出されたエアオイルの油が環状凹み部103aに溜り、内輪103の回転に伴う遠心力により、内輪103の傾斜した外周面に沿って軸受中心側に導かれる。 The oil of the air oil discharged from the lubricating nozzle 112 is accumulated in the annular recess 103a and is guided to the bearing center side along the inclined outer peripheral surface of the inner ring 103 by the centrifugal force accompanying the rotation of the inner ring 103.
 排気構造について説明する。
 外輪間座本体111の軸方向端に、排気口117が設けられている。排気口117は、例えば、図14の展開図に示すような矩形の切り欠き形状である。外輪間座本体111に隣接して転がり軸受101の外輪102が配置されることで、排気口117は、軸受装置Jの内部と外部とを連通する開口を構成する。排気口117の数は、ノズル孔115と同じ(この例では3個)である。ノズル孔115と同様に、各排気口117は円周方向に等間隔で設けられている。さらに、排気口117は、ノズル孔115と同様に、内輪間座105の回転方向D1の前方に傾斜している。
The exhaust structure will be described.
An exhaust port 117 is provided at the axial end of the outer ring spacer main body 111. The exhaust port 117 has, for example, a rectangular cutout shape as shown in the development view of FIG. By arranging the outer ring 102 of the rolling bearing 101 adjacent to the outer ring spacer main body 111, the exhaust port 117 constitutes an opening that communicates the inside and the outside of the bearing device J. The number of the exhaust ports 117 is the same as that of the nozzle holes 115 (three in this example). Similar to the nozzle holes 115, the exhaust ports 117 are provided at equal intervals in the circumferential direction. Further, similarly to the nozzle hole 115, the exhaust port 117 is inclined forward in the rotational direction D <b> 1 of the inner ring spacer 105.
 図13では、ノズル孔115と排気口117が同一断面に示されているが、実際には、図15に示すように、ノズル孔115と排気口117の位置は円周方向にずれている。ノズル孔115および排気口117の円周方向の位置関係は、つぎのとおりである。 In FIG. 13, the nozzle hole 115 and the exhaust port 117 are shown in the same cross section, but actually, as shown in FIG. 15, the positions of the nozzle hole 115 and the exhaust port 117 are shifted in the circumferential direction. The positional relationship in the circumferential direction between the nozzle hole 115 and the exhaust port 117 is as follows.
 任意の一つのノズル孔115の出口115aからこのノズル孔115に対して内輪間座105の回転方向D1の一つ前側に位置する排気口117までの円周方向距離を距離Mとする。任意の一つの排気口117からこの排気口117に対して内輪間座105の回転方向D1の一つ前側に位置するノズル孔115の出口115aまでの円周方向距離を距離Nとする。この場合、距離Mが距離Nよりも長くなっている。ここで、ノズル孔115の位置は出口115aの中心の円周方向位置であり、排気口117の位置は排気口117の内径端の円周方向中央位置である。このようにノズル孔115および排気口117を配置することにより、圧縮エアAを軸受装置Jの内部に長時間滞留させることができる。 The distance M in the circumferential direction from the outlet 115a of any one nozzle hole 115 to the exhaust port 117 located on the front side in the rotational direction D1 of the inner ring spacer 105 with respect to the nozzle hole 115 is defined as a distance M. A distance N in the circumferential direction from any one exhaust port 117 to the outlet 115a of the nozzle hole 115 positioned in front of the exhaust port 117 in the rotation direction D1 of the inner ring spacer 105 is defined as a distance N. In this case, the distance M is longer than the distance N. Here, the position of the nozzle hole 115 is the circumferential position at the center of the outlet 115 a, and the position of the exhaust port 117 is the central position in the circumferential direction of the inner diameter end of the exhaust port 117. By arranging the nozzle hole 115 and the exhaust port 117 in this manner, the compressed air A can be retained in the bearing device J for a long time.
 図12に示すように、ハウジング106に、冷却用の圧縮エアおよび潤滑用のエアオイルを軸受装置Jから排気する排気経路146が設けられている。排気経路146は、排気口117に連通する径方向排気孔148と、径方向排気孔148に連通する軸方向排気孔149とを有する。 As shown in FIG. 12, the housing 106 is provided with an exhaust passage 146 for exhausting the compressed air for cooling and the air oil for lubrication from the bearing device J. The exhaust path 146 includes a radial exhaust hole 148 that communicates with the exhaust port 117, and an axial exhaust hole 149 that communicates with the radial exhaust hole 148.
 第1応用例の軸受装置の冷却構造の作用について説明する。
 外輪間座104に設けられたノズル孔115から、冷却用の圧縮エアAが内輪間座105の外周面に向けて吹き付けられる。このとき、圧縮エアAが狭いノズル孔115から広い空間114に吐出されることで、圧縮エアAが断熱膨張する。ノズル孔115内における圧縮エアの体積をV1、温度をT1とし、空間114での圧縮エアの体積をV2、温度をT2とする。この場合、気体の状態方程式、熱力学の第1法則より、V1<V2、T1>T2となる。すなわち、空間114では、圧縮エアAの温度が下がると共に、体積が増加する。体積が増加することで、圧縮エアAの流速が増大する。このように、低温で高速の圧縮エアAが内輪間座105に吹き付けられることで、内輪間座105を効率よく冷却できる。
The effect | action of the cooling structure of the bearing apparatus of a 1st application example is demonstrated.
Cooling compressed air A is blown toward the outer peripheral surface of the inner ring spacer 105 from the nozzle hole 115 provided in the outer ring spacer 104. At this time, the compressed air A is adiabatically expanded by being discharged from the narrow nozzle hole 115 to the wide space 114. The volume of compressed air in the nozzle hole 115 is V1, the temperature is T1, the volume of compressed air in the space 114 is V2, and the temperature is T2. In this case, from the gas equation of state and the first law of thermodynamics, V1 <V2 and T1> T2. That is, in the space 114, the temperature increases as the temperature of the compressed air A decreases. As the volume increases, the flow rate of the compressed air A increases. Thus, the inner ring spacer 105 can be efficiently cooled by blowing the high-speed compressed air A at a low temperature onto the inner ring spacer 105.
 圧縮エアAは、隙間δaおよび隙間δbから外部に導出される。詳細には、圧縮エアAは、内輪間座105の外周面および内輪103の外周面に沿って軸方向の外側へ流れる。この間も、圧縮エアAにより内輪間座105および内輪103が冷却される。ノズル孔115が内輪間座105の回転方向D1の前方へ傾斜しているので、圧縮エアAは、内輪間座105の外周面および内輪103の外周面に沿って旋回しながら軸方向に流れる。旋回しながら軸方向に流れると、軸方向にまっすぐ流れる場合と比べて、圧縮エアAが内輪間座105の外周面および内輪103の外周面と接している時間が長くなる。 Compressed air A is led out from the gap δa and the gap δb. Specifically, the compressed air A flows outward in the axial direction along the outer peripheral surface of the inner ring spacer 105 and the outer peripheral surface of the inner ring 103. Also during this time, the inner ring spacer 105 and the inner ring 103 are cooled by the compressed air A. Since the nozzle hole 115 is inclined forward in the rotational direction D 1 of the inner ring spacer 105, the compressed air A flows in the axial direction while turning along the outer peripheral surface of the inner ring spacer 105 and the outer peripheral surface of the inner ring 103. When flowing in the axial direction while turning, the time during which the compressed air A is in contact with the outer peripheral surface of the inner ring spacer 105 and the outer peripheral surface of the inner ring 103 becomes longer than when the air flows straight in the axial direction.
 さらに、上述のように、円周方向の距離Mが距離Nよりも大きくなるようにノズル孔115および排気口117が配置されているので、圧縮エアAが軸受装置Jの内部に長時間滞留する。これらのことから、内輪間座105および内輪103をより一層効率よく冷却することができる。 Furthermore, since the nozzle hole 115 and the exhaust port 117 are arranged so that the circumferential distance M is larger than the distance N as described above, the compressed air A stays in the bearing device J for a long time. . As a result, the inner ring spacer 105 and the inner ring 103 can be cooled more efficiently.
 内輪間座105の外周面および内輪103の外周面を通過した圧縮エアAは、外輪間座104の軸方向端面の排気口117および転がり軸受101の内部を通って外部に排出される。排気口117は、ノズル孔115と同様に、内輪間座105の回転方向D1の前方へ傾斜しているので、旋回流となっている圧縮エアAが排気口117から円滑に排出される。それにより、転がり軸受101の内部を通る圧縮エアAの量を減らすことができる。その結果、圧縮エアAが転がり軸受101の内部を多く流れることによる弊害を排除または軽減することができる。 Compressed air A that has passed through the outer peripheral surface of the inner ring spacer 105 and the outer peripheral surface of the inner ring 103 is discharged to the outside through the exhaust port 117 on the axial end surface of the outer ring spacer 104 and the inside of the rolling bearing 101. Similarly to the nozzle hole 115, the exhaust port 117 is inclined forward in the rotational direction D <b> 1 of the inner ring spacer 105, so that the compressed air A that is a swirling flow is smoothly discharged from the exhaust port 117. Thereby, the amount of compressed air A passing through the inside of the rolling bearing 101 can be reduced. As a result, it is possible to eliminate or reduce adverse effects caused by a large amount of the compressed air A flowing inside the rolling bearing 101.
 この第1応用例のように、転がり軸受101をエアオイル潤滑する場合、エアオイルの円滑な給排気が阻害されることを防止できる。また、第1応用例のように、潤滑用ノズル112の先端部130が軸受内部に進入している場合、圧縮エアAが回転中の転動体108に衝突することによる騒音を低減できる。 As in the first application example, when the rolling bearing 101 is air-oil lubricated, it is possible to prevent obstructing the smooth supply and exhaust of air oil. Further, as in the first application example, when the tip portion 130 of the lubricating nozzle 112 enters the bearing, noise due to the compressed air A colliding with the rotating rolling element 108 can be reduced.
 ノズル孔115および排気口117は同数であり、ノズル孔115および排気口117がそれぞれ円周方向に等間隔で設けられているので、ノズル孔115から吐出される圧縮エアAにより、内輪間座105および内輪103を円周方向に均等に冷却することができる。また、内輪間座105の外周面および内輪103の外周面を通過した圧縮エアAが、各排気口117から均等に排出される。このため、圧縮エアAの排出が、より一層円滑になる。 Since the nozzle holes 115 and the exhaust ports 117 are the same number, and the nozzle holes 115 and the exhaust ports 117 are provided at equal intervals in the circumferential direction, the inner ring spacer 105 is compressed by the compressed air A discharged from the nozzle holes 115. And the inner ring | wheel 103 can be cooled equally in the circumferential direction. Further, the compressed air A that has passed through the outer peripheral surface of the inner ring spacer 105 and the outer peripheral surface of the inner ring 103 is discharged uniformly from the exhaust ports 117. For this reason, the discharge of the compressed air A becomes even smoother.
[第2応用例]
 図16、図17はこの発明の第2応用例を示す。第2応用例の軸受装置Jも転がり軸受101をエアオイル潤滑する。ただし、第2応用例は、外輪間座104が外輪間座本体111と別部材のリング状の潤滑用ノズル112とからなる第1応用例とは異なり、図16に示すように、外輪間座104が一体型である。この一体型の外輪間座104に、圧縮エアAを吐出するノズル孔115とエアオイル供給孔131とが設けられている。
[Second application example]
16 and 17 show a second application example of the present invention. The bearing device J of the second application example also lubricates the rolling bearing 101 with air oil. However, the second application example is different from the first application example in which the outer ring spacer 104 includes the outer ring spacer main body 111 and a ring-shaped lubricating nozzle 112 which is a separate member, as shown in FIG. 104 is an integral type. The integral outer ring spacer 104 is provided with a nozzle hole 115 for discharging compressed air A and an air oil supply hole 131.
 第2応用例の軸受装置Jでは、ノズル孔115の出口115aが開口する外輪間座104の内周面に、第1応用例の外輪間座104のような凹み部113(図13)が形成されていない。これに代えて、内輪間座105に、貫通孔120が円周方向に等間隔で複数(この例では10個)設けられている。各貫通孔120は、内輪間座105の軸方向中間部に設けられている。貫通孔120は、例えば、丸孔形状である。各貫通孔120も、内径側に向かって内輪間座105の回転方向D1の前方に傾斜している。貫通孔120を設けることで、ノズル孔115から吐出された圧縮エアAの一部が、主軸107の外周面に衝突するようになっている。 In the bearing device J of the second application example, a recess 113 (FIG. 13) like the outer ring spacer 104 of the first application example is formed on the inner peripheral surface of the outer ring spacer 104 where the outlet 115a of the nozzle hole 115 opens. It has not been. Instead, the inner ring spacer 105 is provided with a plurality of through holes 120 (10 in this example) at equal intervals in the circumferential direction. Each through-hole 120 is provided in the axially intermediate portion of the inner ring spacer 105. The through hole 120 has, for example, a round hole shape. Each through-hole 120 is also inclined forward in the rotational direction D1 of the inner ring spacer 105 toward the inner diameter side. By providing the through hole 120, a part of the compressed air A discharged from the nozzle hole 115 collides with the outer peripheral surface of the main shaft 107.
 エアオイル供給孔131は、外輪間座104の側面部に開口し、転がり軸受101の軸受内部に面している。第1応用例とは異なり、外輪間座104におけるエアオイル供給孔131が設けられている部分が軸受内部に突出していない。エアオイル供給孔131は、エアオイルが内輪103の軌道面と転動体8との境界付近に当たるように設けられている。詳細には、エアオイル供給孔131の軸心AXが、転がり軸受101に向かって内径側に傾斜している。エアオイルは、ハウジングに設けられたエアオイル供給経路(図示せず)から外輪間座104に設けられた径方向孔121(図17)を介して、エアオイル供給孔131に供給される。 The air oil supply hole 131 opens in the side surface portion of the outer ring spacer 104 and faces the inside of the rolling bearing 101. Unlike the first application example, the portion provided with the air oil supply hole 131 in the outer ring spacer 104 does not protrude into the bearing. The air oil supply hole 131 is provided so that the air oil hits the vicinity of the boundary between the raceway surface of the inner ring 103 and the rolling element 8. Specifically, the axis AX of the air oil supply hole 131 is inclined toward the inner diameter side toward the rolling bearing 101. The air oil is supplied to the air oil supply hole 131 through a radial hole 121 (FIG. 17) provided in the outer ring spacer 104 from an air oil supply path (not shown) provided in the housing.
 第1応用例と同様に、外輪間座104の軸方向端面に、排気口117が設けられている。排気口117の形状は、第1応用例と同じである。排気口117の数は、ノズル孔115と同じ(この例では3個)である。図17に示すように、ノズル孔115および排気口117は、円周方向に等間隔で設けられている。また、ノズル孔115および排気口117は、内輪間座105の回転方向D1の前方に傾斜している。ノズル孔115および排気口117の円周方向の位置関係は、第1応用例と同じである。 As in the first application example, an exhaust port 117 is provided on the end surface of the outer ring spacer 104 in the axial direction. The shape of the exhaust port 117 is the same as that of the first application example. The number of the exhaust ports 117 is the same as that of the nozzle holes 115 (three in this example). As shown in FIG. 17, the nozzle holes 115 and the exhaust ports 117 are provided at equal intervals in the circumferential direction. The nozzle hole 115 and the exhaust port 117 are inclined forward in the rotation direction D1 of the inner ring spacer 105. The positional relationship in the circumferential direction between the nozzle hole 115 and the exhaust port 117 is the same as that in the first application example.
 第2応用例の軸受装置の冷却構造の場合、ノズル孔115から冷却用の圧縮エアAが内輪間座105の外周面に吹き付けられて内輪間座105が冷却されると共に、圧縮エアAの一部が内輪間座105の貫通孔120を通過して主軸107に当たることで主軸107が直接冷却される。その後、圧縮エアAは、内輪間座105の外周面に沿って軸方向の外側へ流れる。ノズル孔115が内輪間座105の回転方向D1の前方に傾斜しているので、圧縮エアAは内輪間座105の外周面に沿って旋回しながら軸方向に流れる。この間にも、内輪間座105は、圧縮エアAにより冷却される。 In the cooling structure of the bearing device according to the second application example, the compressed air A for cooling is blown from the nozzle hole 115 to the outer peripheral surface of the inner ring spacer 105 to cool the inner ring spacer 105, and As the part passes through the through hole 120 of the inner ring spacer 105 and hits the main shaft 107, the main shaft 107 is directly cooled. Thereafter, the compressed air A flows along the outer peripheral surface of the inner ring spacer 105 to the outside in the axial direction. Since the nozzle hole 115 is inclined forward in the rotational direction D1 of the inner ring spacer 105, the compressed air A flows in the axial direction while turning along the outer peripheral surface of the inner ring spacer 105. Also during this time, the inner ring spacer 105 is cooled by the compressed air A.
 内輪間座105を冷却した後の圧縮エアAは、外輪間座104の排気口117および転がり軸受101の内部を通って外部に排出される。排気口117も内輪間座105の回転方向D1の前方に傾斜しているので、旋回流となっている圧縮エアAが排気口117から円滑に排出される。それにより、転がり軸受101の内部を通る圧縮エアAの量を減らすことができる。その結果、圧縮エアAが転がり軸受1の内部を多く流れることによる弊害を排除または軽減することができる。 Compressed air A after cooling the inner ring spacer 105 is discharged to the outside through the exhaust port 117 of the outer ring spacer 104 and the inside of the rolling bearing 101. Since the exhaust port 117 is also inclined forward in the rotational direction D1 of the inner ring spacer 105, the compressed air A that is a swirling flow is smoothly discharged from the exhaust port 117. Thereby, the amount of compressed air A passing through the inside of the rolling bearing 101 can be reduced. As a result, it is possible to eliminate or reduce adverse effects caused by a large amount of the compressed air A flowing inside the rolling bearing 1.
 この第2応用例のように、転がり軸受101をエアオイル潤滑する場合、エアオイルの円滑な給排気が阻害されることを防止できる。また、第2応用例のように、外輪間座104の一部が軸受内部に突出していない場合、回転によって転がり軸受101の軸端付近に生じるエアカーテン状の空気流の膜に圧縮エアAが衝突することで生じる騒音を低減することができる。 As in the second application example, when the rolling bearing 101 is air-oil lubricated, it is possible to prevent obstructing the smooth supply and exhaust of air oil. Further, as in the second application example, when a part of the outer ring spacer 104 does not protrude into the bearing, the compressed air A is applied to the air curtain-like air flow film generated near the shaft end of the rolling bearing 101 by rotation. Noise generated by the collision can be reduced.
 上記第1および第2応用例は、転がり軸受1をエアオイル潤滑する例を説明したが、この発明は転がり軸受をグリース潤滑する形式にも適用できる。 In the first and second application examples described above, the example in which the rolling bearing 1 is air-oil lubricated has been described. However, the present invention can also be applied to a type in which the rolling bearing is grease lubricated.
[第3応用例]
 図18~19は第3応用例を示す。図18はグリース潤滑である軸受装置の断面図、図19はその部分拡大図である。第3応用例の軸受装置Jも、第1および第2応用例のエアオイル潤滑の軸受装置と同様に、軸方向に並ぶ複数の転がり軸受101,101を備えている。転がり軸受101,101の外輪102,102の間に外輪間座104が介在され、内輪103,103の間に内輪間座105が介在されている。第3応用例の転がり軸受101は、アンギュラ玉軸受である。外輪102の軌道面と内輪103の軌道面との間に、複数の転動体108が介在されている。これら転動体108は、保持器109により円周方向に等間隔で保持されている。さらに、グリース潤滑である第3応用例の軸受装置Jは、外輪102の軸方向両端に、外輪102と内輪103との間の軸受内部空間S1を密封するシール部材151,152が取り付けられている。
[Third application example]
18 to 19 show a third application example. FIG. 18 is a sectional view of a bearing device that is grease lubricated, and FIG. 19 is a partially enlarged view thereof. The bearing device J of the third application example also includes a plurality of rolling bearings 101, 101 arranged in the axial direction, like the air-oil lubricated bearing devices of the first and second application examples. An outer ring spacer 104 is interposed between the outer rings 102 and 102 of the rolling bearings 101 and 101, and an inner ring spacer 105 is interposed between the inner rings 103 and 103. The rolling bearing 101 of the third application example is an angular ball bearing. A plurality of rolling elements 108 are interposed between the raceway surface of the outer ring 102 and the raceway surface of the inner ring 103. These rolling elements 108 are held at equal intervals in the circumferential direction by a cage 109. Further, in the bearing device J of the third application example that is grease lubrication, seal members 151 and 152 that seal the bearing internal space S1 between the outer ring 102 and the inner ring 103 are attached to both ends of the outer ring 102 in the axial direction. .
 外輪間座104は、その断面形状が略T字状である。詳細には、外輪間座104は、T字の縦線部分である内径側突出部104aと、T字の横線部分である円筒部104bとを有している。内側突出部104aの内周面と内輪間座105の外周面とが、径方向隙間δ1を介して対向している。外輪間座104に、内輪間座105の外周面に向けて冷却用の圧縮エアAを吐出するノズル孔115が設けられている。ノズル孔115の出口115aは、内径側突出部104aの内周面に開口している。ノズル孔115の数は、例えば、3個である。各ノズル孔115は円周方向に等間隔に配置されている。また、図示されていないが、第1および第2応用例と同様に、各ノズル孔115は、内輪間座105の回転方向D1の前方に傾斜している。 The outer ring spacer 104 has a substantially T-shaped cross section. Specifically, the outer ring spacer 104 includes an inner diameter side protruding portion 104a that is a T-shaped vertical line portion and a cylindrical portion 104b that is a T-shaped horizontal line portion. The inner peripheral surface of the inner protrusion 104a and the outer peripheral surface of the inner ring spacer 105 are opposed to each other with a radial clearance δ1. The outer ring spacer 104 is provided with a nozzle hole 115 for discharging the compressed air A for cooling toward the outer peripheral surface of the inner ring spacer 105. The outlet 115a of the nozzle hole 115 is open to the inner peripheral surface of the inner diameter side protruding portion 104a. The number of nozzle holes 115 is three, for example. The nozzle holes 115 are arranged at equal intervals in the circumferential direction. Although not shown, each nozzle hole 115 is inclined forward in the rotational direction D1 of the inner ring spacer 105 as in the first and second application examples.
 外輪間座104の外周面に導入溝116が形成されている。導入溝116は、軸受装置Jの外部からの圧縮エアAを各ノズル孔115に導入する。また、外輪間座104の軸方向端面に、ノズル孔115から吐出された圧縮エアAの排出口117が設けられている。排出口117は、第1および第2応用例と同様の切欠き形状である。各排出口117は、ノズル孔115と同様に、内輪間座105の回転方向D1の前方に傾斜している。 An introduction groove 116 is formed on the outer peripheral surface of the outer ring spacer 104. The introduction groove 116 introduces the compressed air A from the outside of the bearing device J into each nozzle hole 115. Further, a discharge port 117 for compressed air A discharged from the nozzle hole 115 is provided on the end surface in the axial direction of the outer ring spacer 104. The discharge port 117 has the same notch shape as the first and second application examples. Each discharge port 117 is inclined forward in the rotation direction D <b> 1 of the inner ring spacer 105, similarly to the nozzle hole 115.
 内輪間座105は、軸方向両端部に外径側に張り出す障害壁153を有する。第3応用例の障害壁153は、軸方向の転がり軸受101に向かって外径側への張り出し量が徐々に大きくなるテーパ形状である。なお、第3応用例の内輪間座105は、外輪間座104を組立可能にするため、すなわち外輪間座104の内周と障害壁153との干渉を防ぐために、軸方向に分割された2つの内輪間座分割体からなる。 The inner ring spacer 105 has obstacle walls 153 projecting outward at both ends in the axial direction. The obstacle wall 153 of the third application example has a tapered shape in which the amount of protrusion toward the outer diameter side gradually increases toward the rolling bearing 101 in the axial direction. The inner ring spacer 105 of the third application example is divided in the axial direction in order to allow the outer ring spacer 104 to be assembled, that is, to prevent interference between the inner periphery of the outer ring spacer 104 and the obstacle wall 153. It consists of two inner ring spacers.
 図19に示すように、障害壁153の外径端は、外輪間座104の内周面と僅かな径方向隙間δ3を介して対向している。また、障害壁153の端面は、軸方向内側のシール部材151と僅かな軸方向隙間δ4を介して対向している。これにより、シール部材151と障害壁153とでラビリンスシール効果を持つラビリンスシール部55が形成されている。このラビリンスシール部55を介して、軸受内部空間S1と間座空間S2とが連通している。 As shown in FIG. 19, the outer diameter end of the obstacle wall 153 faces the inner peripheral surface of the outer ring spacer 104 with a slight radial gap δ3. Further, the end face of the obstacle wall 153 faces the axially inner seal member 151 via a slight axial gap δ4. Thereby, the labyrinth seal portion 55 having a labyrinth seal effect is formed by the seal member 151 and the obstacle wall 153. The bearing internal space S1 and the spacer space S2 communicate with each other through the labyrinth seal portion 55.
 第3応用例の軸受装置Jは、運転時に、冷却用の圧縮エアAが、軸受装置Jの外部に設けた圧縮エア供給装置から送られ、外輪間座104のノズル孔115から内輪間座105の外周面に向けて供給される。この圧縮エアAは、内輪間座105に衝突した後、内輪間座105の外周面に沿って軸方向両側へ流れる。圧縮エアAは、さらに内輪間座105の障害壁153のテーパ状外径面に沿って外径側へ導かれ、外輪間座104の排気口117から排出される。 In the bearing device J of the third application example, during operation, compressed air A for cooling is sent from a compressed air supply device provided outside the bearing device J, and the inner ring spacer 105 from the nozzle hole 115 of the outer ring spacer 104. It is supplied toward the outer peripheral surface of the. The compressed air A collides with the inner ring spacer 105 and then flows to both axial sides along the outer peripheral surface of the inner ring spacer 105. The compressed air A is further guided to the outer diameter side along the tapered outer diameter surface of the obstacle wall 153 of the inner ring spacer 105, and is discharged from the exhaust port 117 of the outer ring spacer 104.
 障害壁153により圧縮エアAを外径側へ導くことに加えて、ノズル孔115と同様に排気口117が内輪間座105の回転方向D1の前方に傾斜しているので、間座空間S2での圧縮エアAの流れ、ならびに間座空間S2からの圧縮エアAの排出がスムーズになる。圧縮エアAが間座空間S2を通過する間に、軸受装置Jおよびこの軸受装置Jに支持された主軸107の熱を奪う。それにより、軸受装置Jおよび主軸107が効率よく冷却される。 In addition to guiding the compressed air A to the outer diameter side by the obstacle wall 153, the exhaust port 117 is inclined forward in the rotational direction D1 of the inner ring spacer 105 in the same manner as the nozzle hole 115. The flow of the compressed air A and the discharge of the compressed air A from the spacer space S2 become smooth. While the compressed air A passes through the spacer space S2, the bearing device J and the main shaft 107 supported by the bearing device J are deprived of heat. Thereby, the bearing device J and the main shaft 107 are efficiently cooled.
 内輪間座105の軸方向両端に障害壁153が設けられているので、圧縮エアAが軸受内部空間S1へ流入することが阻止される。特に、第3応用例では、軸受内部空間S1と間座空間S2との間にラビリンスシール部55が設けられているので、圧縮エアAの軸受内部空間S1への流入がより効果的に阻止される。さらに、間座空間S2において圧縮エアAがスムーズに流れるので、間座空間S2の内圧が軸受内部空間S1の内圧よりも低くなっており、圧縮エアAが軸受内部空間S1に流入し難い。これらのことから、圧縮エアAが軸受内部空間S1に流入することを抑えることができ、軸受内部空間S1に封入されたグリースが圧縮エアAで排除されることが防がれる。そのため、良好な潤滑状態を維持することができる。 Since the obstacle walls 153 are provided at both axial ends of the inner ring spacer 105, the compressed air A is prevented from flowing into the bearing internal space S1. In particular, in the third application example, since the labyrinth seal portion 55 is provided between the bearing inner space S1 and the spacer space S2, the inflow of the compressed air A into the bearing inner space S1 is more effectively prevented. The Furthermore, since the compressed air A flows smoothly in the spacer space S2, the internal pressure of the spacer space S2 is lower than the internal pressure of the bearing internal space S1, and the compressed air A hardly flows into the bearing internal space S1. From these things, it can suppress that compressed air A flows in into bearing internal space S1, and it is prevented that the grease enclosed with bearing internal space S1 is excluded by compressed air A. Therefore, a good lubrication state can be maintained.
 以上の第1~3応用例では、内輪回転タイプの転がり軸受101を説明したが、外輪回転タイプの転がり軸受にも、この発明を適用することができる。その場合、内輪103の内周に嵌合する軸(図示せず)が固定部材を構成し、外輪2の外周に嵌合するローラ(図示せず)が回転部材を構成する。 In the above first to third application examples, the inner ring rotation type rolling bearing 101 has been described, but the present invention can also be applied to an outer ring rotation type rolling bearing. In that case, a shaft (not shown) fitted to the inner circumference of the inner ring 103 constitutes a fixing member, and a roller (not shown) fitted to the outer circumference of the outer ring 2 constitutes a rotating member.
 図12~図19に示したこの発明の応用例は、以下の態様1~態様10を含む。 The application examples of the present invention shown in FIGS. 12 to 19 include the following modes 1 to 10.
[態様1]
 この発明の態様1に係る軸受装置の冷却構造は、転がり軸受の内外に対向する固定側軌道輪および回転側軌道輪に隣り合って固定側間座および回転側間座がそれぞれ設けられ、前記固定側軌道輪および前記固定側間座が固定部材および回転部材のうちの固定部材に設置され、前記回転側軌道輪および前記回転側間座が前記固定部材および前記回転部材のうちの回転部材に設置された軸受装置の冷却構造であって、
 前記固定側間座に、前記回転側間座における前記固定側間座と対向する周面に向けて圧縮エアを吐出するノズル孔が設けられ、
 前記ノズル孔の出口は、固定側間座における前記回転側間座と対向する周面に開口し、
 前記固定側間座の軸方向端面に、前記ノズル孔から吐出された圧縮エアの排気口が設けられ、
 前記ノズル孔が前記回転側間座の回転方向の前方に傾斜していると共に、前記排気口が前記回転側間座の回転方向の前方に傾斜している。
[Aspect 1]
In the cooling structure for a bearing device according to aspect 1 of the present invention, a fixed side spacer and a rotary side spacer are respectively provided adjacent to a fixed side raceway and a rotary side raceway facing the inside and outside of the rolling bearing, The side race ring and the fixed side spacer are installed on a fixed member of the fixed member and the rotary member, and the rotary side race ring and the rotary side spacer are installed on the rotary member of the fixed member and the rotary member. A cooling structure for a bearing device,
The fixed side spacer is provided with a nozzle hole for discharging compressed air toward a circumferential surface facing the fixed side spacer in the rotating side spacer,
The outlet of the nozzle hole opens in a circumferential surface facing the rotating side spacer in the fixed side spacer,
An exhaust port for compressed air discharged from the nozzle hole is provided on the axial end face of the fixed spacer,
The nozzle hole is inclined forward in the rotation direction of the rotation side spacer, and the exhaust port is inclined forward in the rotation direction of the rotation side spacer.
 この態様1によると、固定側間座のノズル孔から冷却用の圧縮エアが回転側間座の周面に向けて吐出される。ノズル孔は回転側間座の回転方向の前方に傾斜しているので、ノズル孔から吐出された圧縮エアは、回転側間座の周面に沿って旋回しながら軸方向に流れ、この間に回転側間座が冷却される。圧縮エアが旋回するので、軸方向にまっすぐ流れる場合と比べて、圧縮エアが回転側間座の周面と接している時間が長い。したがって、回転側間座を効率良く冷却することができる。 According to this aspect 1, compressed air for cooling is discharged from the nozzle hole of the fixed side spacer toward the peripheral surface of the rotary side spacer. Since the nozzle hole is inclined forward in the rotation direction of the rotary spacer, the compressed air discharged from the nozzle hole flows in the axial direction while turning along the peripheral surface of the rotary spacer, and rotates during this period. The side spacer is cooled. Since the compressed air swirls, the time during which the compressed air is in contact with the peripheral surface of the rotating spacer is longer than when the compressed air flows straight in the axial direction. Therefore, the rotating side spacer can be efficiently cooled.
 回転側間座の周面を通過した圧縮エアは、固定側間座の軸方向端面に設けられた排気口や、転がり軸受の内部を通って外部に排出される。排気口も回転側間座の回転方向の前方に傾斜しているので、旋回流となっている圧縮エアが排気口から円滑に排出される。それにより、転がり軸受の内部を通る圧縮エアの量を減らすことができる。その結果、圧縮エアが転がり軸受の内部を多く流れることによる弊害を排除また軽減することができる。 Compressed air that has passed through the circumferential surface of the rotating spacer is discharged to the outside through an exhaust port provided on the axial end surface of the fixed spacer and the inside of the rolling bearing. Since the exhaust port is also inclined forward in the rotational direction of the rotating side spacer, the compressed air that is a swirling flow is smoothly discharged from the exhaust port. Thereby, the amount of compressed air passing through the inside of the rolling bearing can be reduced. As a result, it is possible to eliminate or reduce adverse effects caused by a large amount of compressed air flowing inside the rolling bearing.
 具体的には、転がり軸受をエアオイル潤滑やオイルミスト潤滑する場合、エアオイルの円滑な給排気が阻害されることを防止できる。そのうえ、転がり軸受の軸端付近に生じるエアカーテン状の空気流の膜や回転中の転動体に圧縮エアが衝突することによる騒音を抑制することができる。また、転がり軸受をグリース潤滑する場合、圧縮エアが軸受内部のグリースを排出してしまうのを防止できる。 Specifically, when the rolling bearing is lubricated with air oil or oil mist, it is possible to prevent obstructing the smooth supply and exhaust of air oil. In addition, it is possible to suppress noise caused by collision of compressed air with a film of an air curtain-like air flow generated near the shaft end of the rolling bearing or a rotating rolling element. In addition, when the rolling bearing is lubricated with grease, it is possible to prevent compressed air from discharging grease inside the bearing.
[態様2]
 態様1において、前記ノズル孔および前記排気口は複数設けられ、両者の数は同じであり、前記ノズル孔および前記排気口が円周方向に等間隔で設けられていてもよい。この場合、ノズル孔から吐出される圧縮エアにより、回転側間座を円周方向に均等に冷却することができる。また、回転側間座の周面を通過した圧縮エアが、各排気口から均等に排出される。このため、圧縮エアの排出が円滑に行われる。
[Aspect 2]
In the aspect 1, the nozzle hole and the exhaust port may be provided in a plurality, the number of both may be the same, and the nozzle hole and the exhaust port may be provided at equal intervals in the circumferential direction. In this case, the rotation side spacer can be evenly cooled in the circumferential direction by the compressed air discharged from the nozzle hole. In addition, the compressed air that has passed through the peripheral surface of the rotary spacer is evenly discharged from each exhaust port. For this reason, discharge of compressed air is performed smoothly.
[態様3]
 態様2において、任意の一つの前記ノズル孔の前記出口からこのノズル孔に対して前記回転側間座の回転方向の一つ前側に位置する前記排気口までの円周方向の距離が、任意の一つの前記排気口からこの排気口に対して前記回転側間座の回転方向の一つ前側に位置する前記ノズル孔の前記出口までの円周方向の距離よりも長くてもよい。このようなノズル孔と排気口の位置関係であると、圧縮エアが回転側間座の周面に接している時間が長くなり、冷却効果が高い。
[Aspect 3]
In the aspect 2, the circumferential distance from the outlet of any one of the nozzle holes to the exhaust port positioned in front of the nozzle hole in the rotation direction of the rotary spacer is arbitrary. It may be longer than the circumferential distance from one exhaust port to the outlet of the nozzle hole located on the front side in the rotation direction of the rotary spacer with respect to the exhaust port. With such a positional relationship between the nozzle hole and the exhaust port, the time during which the compressed air is in contact with the peripheral surface of the rotating spacer is long, and the cooling effect is high.
[態様4]
 態様1において、前記転がり軸受が、前記固定側軌道輪と前記回転側軌道輪との間の軸受内部に封入されたグリースにより潤滑される場合、前記回転側間座における前記固定側軌道輪に隣接する軸方向端部に、前記固定側間座の側に張り出して前記ノズル孔から吐出された圧縮エアが前記軸受内部へ流入することを阻止する障害壁が設けられていてもよい。障害壁が設けられていると、圧縮エアが転がり軸受の軸受内部へ流入することが阻止される。このため、軸受内部に封入されたグリースが圧縮エアで排除されることが防がれ、良好な潤滑状態を維持することができる。
[Aspect 4]
In aspect 1, when the rolling bearing is lubricated by grease sealed inside the bearing between the fixed side raceway and the rotation side raceway, the rolling bearing is adjacent to the fixed side raceway in the rotary side spacer. An obstacle wall that protrudes toward the fixed spacer and prevents compressed air discharged from the nozzle hole from flowing into the bearing may be provided at the axial end. When the obstacle wall is provided, the compressed air is prevented from flowing into the bearing of the rolling bearing. For this reason, the grease sealed in the bearing is prevented from being removed by the compressed air, and a good lubricating state can be maintained.
1…転がり軸受
2…外輪
3…内輪
4…外輪間座
5…内輪間座
6…ハウジング
7…主軸
10…供給口
15…障害壁
16,17…微小な隙間
20…排気口
21…軸方向隙間
23…テーパ形状部
30…軸受空間
30,31…シール材
A…圧縮エア
J…軸受装置
LS…第1ラビリンスシール
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Outer ring 3 ... Inner ring 4 ... Outer ring spacer 5 ... Inner ring spacer 6 ... Housing 7 ... Main shaft 10 ... Supply port 15 ... Obstacle wall 16, 17 ... Minute clearance 20 ... Exhaust port 21 ... Axial clearance DESCRIPTION OF SYMBOLS 23 ... Tapered part 30 ... Bearing space 30, 31 ... Seal material A ... Compressed air J ... Bearing apparatus LS ... 1st labyrinth seal

Claims (7)

  1.  軸方向に並ぶ複数の転がり軸受の外輪間および内輪間に外輪間座および内輪間座がそれぞれ介在され、前記外輪および前記外輪間座がハウジングに設置され、前記内輪および前記内輪間座が主軸に嵌合され、前記転がり軸受が前記外輪と前記内輪との間の軸受空間に封入されたグリースにより潤滑される軸受装置の冷却構造であって、
     前記外輪間座の内周面に、前記内輪間座の外周面に向けて冷却用の圧縮エアを供給する供給口が設けられ、
     前記外輪間座の軸方向端面に、前記供給口から供給された圧縮エアの排気口が設けられ、
     前記内輪間座の軸方向両端部に、外径側に張り出して前記供給口から供給された圧縮エアが前記軸受空間へ流入することを阻止する障害壁が設けられ、
     前記障害壁の一部が前記外輪間座と微小な隙間を介して対向し、前記供給口から前記排気口への圧縮エアの円滑な流れを阻害する第1ラビリンスシールを構成している軸受装置の冷却構造。
    An outer ring spacer and an inner ring spacer are respectively interposed between outer rings and inner rings of a plurality of rolling bearings arranged in the axial direction, the outer ring and the outer ring spacer are installed in a housing, and the inner ring and the inner ring spacer are arranged on a main shaft. A cooling structure of a bearing device that is fitted and lubricated by grease sealed in a bearing space between the outer ring and the inner ring,
    A supply port for supplying compressed air for cooling toward the outer peripheral surface of the inner ring spacer is provided on the inner peripheral surface of the outer ring spacer,
    An exhaust port for compressed air supplied from the supply port is provided on the axial end surface of the outer ring spacer,
    At both ends in the axial direction of the inner ring spacer, there are provided obstacle walls that prevent the compressed air supplied from the supply port from flowing out to the outer diameter side from flowing into the bearing space.
    A bearing device constituting a first labyrinth seal in which a part of the obstacle wall faces the outer ring spacer via a minute gap and obstructs a smooth flow of compressed air from the supply port to the exhaust port. Cooling structure.
  2.  請求項1に記載の軸受装置の冷却構造において、前記障害壁は、複数の部分が前記外輪間座と微小な隙間を介して対向することで、前記第1ラビリンスシールを構成している軸受装置の冷却構造。 2. The bearing device cooling structure according to claim 1, wherein a plurality of portions of the obstacle wall are opposed to the outer ring spacer with a minute gap therebetween to constitute the first labyrinth seal. Cooling structure.
  3.  請求項1または請求項2に記載の軸受装置の冷却構造において、前記転がり軸受は、前記外輪の軸方向端に前記軸受空間を密封するシール材を有し、
     前記障害壁の端面は、前記シール材と軸方向に対向して配置され、
     前記シール材と前記障害壁とで、前記圧縮エアが前記軸受空間に流入するのを阻害する第2ラビリンスシールを構成している軸受装置の冷却構造。
    The cooling structure for a bearing device according to claim 1 or 2, wherein the rolling bearing has a seal material that seals the bearing space at an axial end of the outer ring,
    The end face of the obstacle wall is arranged to face the seal material in the axial direction,
    The bearing structure cooling structure which comprises the 2nd labyrinth seal which inhibits that the said compressed air flows in into the said bearing space with the said sealing material and the said obstruction wall.
  4.  請求項1ないし請求項3のいずれか1項に記載の軸受装置の冷却構造において、前記隙間は前記排気口よりも軸方向の内側に位置し、
     前記外輪間座の内周面における前記隙間と前記排気口との間の軸方向部分が、前記排気口に向かって内径寸法が徐々に大きくなっている軸受装置の冷却構造。
    4. The cooling structure for a bearing device according to claim 1, wherein the gap is positioned on an inner side in an axial direction than the exhaust port,
    A cooling structure for a bearing device in which an axial portion between the gap and the exhaust port on the inner peripheral surface of the outer ring spacer has an inner diameter that gradually increases toward the exhaust port.
  5.  請求項1ないし請求項4のいずれか1項に記載の軸受装置の冷却構造において、前記供給口が前記内輪の回転方向の前方へ傾斜させて設けられていると共に、前記排気口が前記外輪間座の回転方向の前方へ傾斜させて設けられている軸受装置の冷却構造。 5. The cooling structure for a bearing device according to claim 1, wherein the supply port is provided to be inclined forward in the rotational direction of the inner ring, and the exhaust port is provided between the outer rings. A cooling structure for a bearing device provided to be inclined forward in the rotational direction of the seat.
  6.  請求項5に記載の軸受装置の冷却構造において、前記供給口および前記排気口は複数で同数設けられ、
     前記ノズル孔および前記排気口が円周方向に等間隔で設けられている軸受装置の冷却構造。
    The cooling structure for a bearing device according to claim 5, wherein a plurality of the supply ports and the exhaust ports are provided in the same number,
    A cooling structure for a bearing device in which the nozzle hole and the exhaust port are provided at equal intervals in the circumferential direction.
  7.  請求項6に記載の軸受装置の冷却構造において、任意の前記供給口からこの供給口に対して前記内輪間座の回転方向の前側に位置する前記排気口までの円周方向の距離が、この排気口から前記内輪間座の回転方向の一つ前側に位置する前記供給口までの円周方向の距離よりも長い軸受装置の冷却構造。
     
    The cooling structure for a bearing device according to claim 6, wherein a circumferential distance from an arbitrary supply port to the exhaust port located on the front side in the rotation direction of the inner ring spacer with respect to the supply port is A cooling structure for a bearing device that is longer than a distance in a circumferential direction from an exhaust port to the supply port located on the front side in the rotation direction of the inner ring spacer.
PCT/JP2018/011809 2017-03-29 2018-03-23 Cooling structure for bearing device WO2018181033A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017065183 2017-03-29
JP2017-065183 2017-03-29
JP2017-197619 2017-10-11
JP2017-197620 2017-10-11
JP2017197620A JP6983029B2 (en) 2017-10-11 2017-10-11 Bearing device cooling structure
JP2017197619A JP7011439B2 (en) 2017-03-29 2017-10-11 Bearing device cooling structure

Publications (1)

Publication Number Publication Date
WO2018181033A1 true WO2018181033A1 (en) 2018-10-04

Family

ID=63677527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011809 WO2018181033A1 (en) 2017-03-29 2018-03-23 Cooling structure for bearing device

Country Status (1)

Country Link
WO (1) WO2018181033A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047380Y2 (en) * 1986-01-14 1992-02-27
JP2000291674A (en) * 1999-04-07 2000-10-20 Isuzu Motors Ltd Bearing cooling device
JP2014062616A (en) * 2012-09-24 2014-04-10 Ntn Corp Cooling structure of bearing device
JP2016037987A (en) * 2014-08-06 2016-03-22 Ntn株式会社 Bearing device for turbocharger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047380Y2 (en) * 1986-01-14 1992-02-27
JP2000291674A (en) * 1999-04-07 2000-10-20 Isuzu Motors Ltd Bearing cooling device
JP2014062616A (en) * 2012-09-24 2014-04-10 Ntn Corp Cooling structure of bearing device
JP2016037987A (en) * 2014-08-06 2016-03-22 Ntn株式会社 Bearing device for turbocharger

Similar Documents

Publication Publication Date Title
JP6050072B2 (en) Cooling structure of bearing device
WO2012053366A1 (en) Roller bearing
JP6144024B2 (en) Cooling structure of bearing device
JP6206616B2 (en) Spindle device and machine tool
JP6013112B2 (en) Cooling structure of bearing device
WO2018034245A1 (en) Bearing device, and spindle device for machine tool
TW201807329A (en) Ball bearing, ball bearing device, and machine tool
JP5675263B2 (en) Rolling bearing
KR102448407B1 (en) Cooling structure of bearing device
JP6385089B2 (en) Cooling structure of bearing device
WO2018181033A1 (en) Cooling structure for bearing device
JP2009138896A (en) Rolling bearing and its lubrication method
JP2011106493A (en) Rolling bearing device
JP2010156383A (en) Rolling bearing device
JP6983029B2 (en) Bearing device cooling structure
JP6609003B2 (en) Cooling structure of bearing device
WO2019073911A1 (en) Cooling structure for bearing device
WO2019188621A1 (en) Cooling structure for bearing device
JP7011439B2 (en) Bearing device cooling structure
JP2010090981A (en) Lubricating structure of angular contact ball bearing
WO2018181524A1 (en) Retainer for rolling bearing and rolling bearing with outer ring oil supply hole
WO2018181032A1 (en) Cooling structure for bearing device
EP3851692B1 (en) Bearing device cooling structure, and main spindle device of machine tool
JP2018066384A (en) Cooling structure of bearing device
JP2008082500A (en) Lubricating device of rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775482

Country of ref document: EP

Kind code of ref document: A1