JP2014062618A - Lubricating structure of bearing device - Google Patents

Lubricating structure of bearing device Download PDF

Info

Publication number
JP2014062618A
JP2014062618A JP2012209137A JP2012209137A JP2014062618A JP 2014062618 A JP2014062618 A JP 2014062618A JP 2012209137 A JP2012209137 A JP 2012209137A JP 2012209137 A JP2012209137 A JP 2012209137A JP 2014062618 A JP2014062618 A JP 2014062618A
Authority
JP
Japan
Prior art keywords
inner ring
ring spacer
oil
nozzle
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012209137A
Other languages
Japanese (ja)
Other versions
JP6234017B2 (en
Inventor
Masatsugu Mori
正継 森
Mamoru Mizutani
守 水谷
Yuji Onda
裕士 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012209137A priority Critical patent/JP6234017B2/en
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to EP19180598.5A priority patent/EP3567267B1/en
Priority to KR1020157010570A priority patent/KR102208885B1/en
Priority to PCT/JP2013/075223 priority patent/WO2014046153A1/en
Priority to EP13839999.3A priority patent/EP2910806B1/en
Priority to US14/430,464 priority patent/US9541137B2/en
Priority to CN201380048975.5A priority patent/CN104662316B/en
Publication of JP2014062618A publication Critical patent/JP2014062618A/en
Priority to US15/342,279 priority patent/US10280980B2/en
Application granted granted Critical
Publication of JP6234017B2 publication Critical patent/JP6234017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Turning (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lubricating structure of a bearing device capable of excellently lubricating rolling bearings, and efficiently cooling inner rings and an inner ring spacer of the rolling bearings, and a main shaft fitted to their inner peripheries.SOLUTION: In a bearing device, an outer ring spacer 4 and an inner ring spacer are respectively disposed between outer rings and between inner rings 3 of a plurality of rolling bearings arranged in the axial direction, the outer rings and the outer ring spacer 4 are disposed in a housing, and the inner rings 3 and the inner ring spacer are fitted to a main shaft. A nozzle 12 is disposed on the outer ring spacer 4 for spraying a mixture of air and oil, or a lubrication fluid composed of only the oil, to outer peripheral faces of the inner rings 3 or the inner ring spacer to supply the same to the rolling bearings. The nozzle 12 is inclined forward in the rotating direction of the main shaft at their discharge port side.

Description

この発明は、軸受装置の潤滑構造に関し、例えば、工作機械の主軸および主軸に組み込まれる軸受装置の潤滑構造に関する。   The present invention relates to a lubrication structure for a bearing device, for example, a main shaft of a machine tool and a lubrication structure for a bearing device incorporated in the main shaft.

工作機械の主軸装置では、加工精度を確保するのと加工能率を向上させる必要性から、主軸の支持に使用される軸受には低温度上昇と高速化の相反する技術が求められている。このことから、最近では軸受の冷却方法、潤滑方法等で種々新しい技術が紹介されている。   In the spindle device of a machine tool, due to the necessity of ensuring machining accuracy and improving machining efficiency, the bearings used for supporting the spindle are required to have conflicting technologies of low temperature rise and high speed. For this reason, various new technologies have recently been introduced, such as bearing cooling methods and lubrication methods.

軸受の冷却方法に関しては、例えば特許文献1に、軸受間の空隙に冷風を、軸の回転方向に対し軸側の回転面を基準として−45°〜+45°の角度範囲で噴出させて軸を冷却し、間接的に軸受内輪の温度上昇を抑制する技術が開示されている。内輪を冷却すると、冷風により発生熱を放出する作用と、内輪温度の低下により軸受予圧を低減させる作用とがあり、これら作用により相乗的な軸受温度の抑制効果が期待できる。   Regarding the cooling method of the bearing, for example, in Patent Document 1, cold air is blown into the gap between the bearings, and the shaft is ejected in an angle range of −45 ° to + 45 ° with respect to the rotation surface on the shaft side with respect to the rotation direction of the shaft. A technique for cooling and indirectly suppressing the temperature rise of the inner ring of the bearing is disclosed. When the inner ring is cooled, there are an action of releasing generated heat by the cold air and an action of reducing the bearing preload by lowering the inner ring temperature, and a synergistic effect of suppressing the bearing temperature can be expected by these actions.

また、軸受の潤滑方法に関しては、例えば特許文献2に、高速運転に適したエアオイル潤滑方法の技術が開示されている。この技術は、軸受内輪の外径面に軌道面に続く斜面部を設け、この斜面部にすきまを持って沿うリング状のノズル部材を設けている。ノズル部材には内輪斜面部にエアオイルを吐出するノズルが設けられており、ノズルより吐出されたエアオイル中の油を確実に斜面部に付着させることができる。付着した油は、回転により遠心力と付着力により、付着流れとなって油を確実に軸受内に導入される。それにより、軸受の高速化と共に、従来の給油方法と比べて低騒音化が可能となっている。   As for a bearing lubrication method, for example, Patent Document 2 discloses a technique of an air-oil lubrication method suitable for high-speed operation. In this technique, an inclined surface portion that follows the raceway surface is provided on the outer diameter surface of the bearing inner ring, and a ring-shaped nozzle member is provided along the inclined surface portion with a gap. The nozzle member is provided with a nozzle that discharges air oil to the inclined surface of the inner ring, and the oil in the air oil discharged from the nozzle can be reliably attached to the inclined surface. The adhering oil becomes an adhering flow by rotation and centrifugal force and adhering force, and the oil is surely introduced into the bearing. As a result, the speed of the bearing can be increased and the noise can be reduced as compared with the conventional oil supply method.

上記エアオイル潤滑方法の技術を、複数の転がり軸受が軸方向に並ぶ軸受装置に適用すると、例えば図19、図20のようになる。すなわち、図19に示すように、この軸受装置は、軸方向に並ぶ2つの転がり軸受1,1を備え、各転がり軸受1,1の外輪2,2間および内輪3,3間に、外輪間座4および内輪間座5がそれぞれ介在されている。この例では、転がり軸受1はアンギュラ玉軸受である。2つの転がり軸受1,は、外輪間座4と内輪間座5の幅寸法差により初期予圧を設定して使用される。   When the technique of the air-oil lubrication method is applied to a bearing device in which a plurality of rolling bearings are arranged in the axial direction, for example, as shown in FIGS. That is, as shown in FIG. 19, this bearing device includes two rolling bearings 1, 1 aligned in the axial direction, and between the outer rings 2, 2 and between the inner rings 3, 3 of each rolling bearing 1, 1. A seat 4 and an inner ring spacer 5 are interposed. In this example, the rolling bearing 1 is an angular ball bearing. The two rolling bearings 1 are used with an initial preload set according to the width dimension difference between the outer ring spacer 4 and the inner ring spacer 5.

図20に示すように、外輪間座4は、外輪間座本体10と一対のノズル部材11,11とで構成され、各ノズル部材11に、転がり軸受1にエアオイルを供給するノズル12が設けられている。ノズル12の吐出口12aは内輪3の肩面(斜面部)3bとすきまδを介して対向している。内輪3の肩面3bには、ノズル12の吐出口12aと対向する軸方向位置に円周方向に並ぶ複数の環状凹み20が形成されている。   As shown in FIG. 20, the outer ring spacer 4 is composed of an outer ring spacer body 10 and a pair of nozzle members 11, 11. Each nozzle member 11 is provided with a nozzle 12 that supplies air oil to the rolling bearing 1. ing. The discharge port 12a of the nozzle 12 faces the shoulder surface (slope portion) 3b of the inner ring 3 with a clearance δ. On the shoulder surface 3 b of the inner ring 3, a plurality of annular recesses 20 are formed in the circumferential direction at axial positions facing the discharge ports 12 a of the nozzles 12.

軸受潤滑用のエアオイルは、外部のエアオイル供給装置45より、供給口40、供給孔47、外輪間座4内の導入経路13を介して、ノズル12より吐出される。吐出されたエアオイル中の油は、内輪3の環状凹み20で内輪3に吹き付けられ、内輪3に付着する。付着した油は、付着力と内輪3の回転による遠心力により、肩面3bを付着流れとなって軌道面3aの側へ導かれて、転がり軸受1の潤滑に供される。   Air oil for lubrication of the bearing is discharged from the nozzle 12 from the external air oil supply device 45 through the supply port 40, the supply hole 47, and the introduction path 13 in the outer ring spacer 4. The oil in the discharged air oil is sprayed to the inner ring 3 through the annular recess 20 of the inner ring 3 and adheres to the inner ring 3. The adhering oil is guided to the raceway surface 3 a side by the adhering force and the centrifugal force generated by the rotation of the inner ring 3, and is guided to the raceway surface 3 a side to be used for lubrication of the rolling bearing 1.

特開2000−161375号公報JP 2000-161375 A 特許第4261083号Japanese Patent No. 4261083

軸受の高速化には、運転中の軸受温度の抑制と共に、潤滑油の確実な供給が必須条件となる。特許文献1の軸受温度抑制技術は、圧縮空気を利用した軸受の冷却であるため、比較的安価に装置の構築が可能である反面、多量の空気を消費する問題がある。また、特許文献2の潤滑方法は、潤滑に関しては良好な結果が得られるが、更なる高速化の要求に応えるために冷却効果をより一層高めることが求められる。   In order to increase the speed of the bearing, a reliable supply of lubricating oil is essential as well as the suppression of the bearing temperature during operation. Since the bearing temperature suppression technology of Patent Document 1 is cooling of a bearing using compressed air, it is possible to construct a device at a relatively low cost, but there is a problem that a large amount of air is consumed. Moreover, although the lubrication method of patent document 2 can obtain a favorable result regarding lubrication, it is required to further enhance the cooling effect in order to meet the demand for higher speed.

この発明の目的は、転がり軸受を良好に潤滑することができ、かつ転がり軸受の内輪、内輪間座、およびこれらの内周に嵌合する主軸を効率良く冷却できる軸受装置の潤滑構造を提供することである。   An object of the present invention is to provide a lubrication structure for a bearing device that can satisfactorily lubricate a rolling bearing and that can efficiently cool the inner ring of the rolling bearing, the inner ring spacer, and the main shaft fitted to the inner periphery thereof. That is.

この発明の軸受装置の潤滑構造は、軸方向に並ぶ複数の転がり軸受の外輪間および内輪間に外輪間座および内輪間座をそれぞれ介在させ、前記外輪および外輪間座がハウジングに設置され、前記内輪および内輪間座が主軸に嵌合される軸受装置において、前記外輪間座に、前記内輪または前記内輪間座の外周面に対してエアと油の混合物または油のみからなる潤滑用流体を吹き付けて前記転がり軸受に供給するノズルを、このノズルの吐出口側を前記主軸の回転方向の前方へ傾斜させて設けたことを特徴とする。   The lubricating structure of the bearing device according to the present invention includes an outer ring spacer and an inner ring spacer interposed between outer rings and inner rings of a plurality of rolling bearings arranged in the axial direction, and the outer ring and the outer ring spacer are installed in a housing. In the bearing device in which the inner ring and the inner ring spacer are fitted to the main shaft, the outer ring spacer is sprayed with a lubricating fluid consisting of air and oil or a mixture of oil only on the outer ring of the inner ring or the inner ring spacer. The nozzle to be supplied to the rolling bearing is characterized in that the discharge port side of the nozzle is inclined forward in the rotational direction of the main shaft.

この構成によると、外輪間座に設けられたノズルより内輪または内輪間座の外周面に潤滑用流体を吹き付けて、転がり軸受に潤滑用流体を供給する。潤滑用流体中の油が転がり軸受に安定して与えられ、転がり軸受を良好に潤滑することができる。
また、潤滑と同時に、潤滑用流体を内輪または内輪間座の外周面に吹き付けることにより、内輪または内輪間座を冷却する。ノズルは吐出口側を主軸の回転方向の前方へ傾斜させてあるため、潤滑用流体が内輪または内輪間座の外周面に沿う旋回流となって主軸の回転方向に安定して流れる。それにより、内輪または内輪間座の表面の熱を奪って、効果的に冷却することが期待できる。内輪または内輪間座が冷却されることにより、これらの内周に嵌合する主軸が冷却される。
According to this configuration, the lubricating fluid is sprayed to the outer ring of the inner ring or the inner ring spacer from the nozzle provided in the outer ring spacer, and the lubricating fluid is supplied to the rolling bearing. Oil in the lubricating fluid is stably applied to the rolling bearing, and the rolling bearing can be lubricated well.
Simultaneously with the lubrication, the inner ring or the inner ring spacer is cooled by spraying a lubricating fluid onto the outer peripheral surface of the inner ring or the inner ring spacer. Since the nozzle has the discharge port side inclined forward in the direction of rotation of the main shaft, the lubricating fluid becomes a swirl flow along the outer peripheral surface of the inner ring or the inner ring spacer and flows stably in the direction of rotation of the main shaft. Thereby, it can be expected that the surface of the inner ring or inner ring spacer is deprived of heat and effectively cooled. By cooling the inner ring or the inner ring spacer, the main shaft fitted to the inner periphery is cooled.

この発明の軸受装置の潤滑構造において、前記ノズルの前記吐出口を、前記内輪の外周面における軌道面に対して前記内輪間座側に続く肩面にすきまを持って対向させると良い。また、前記肩面は、前記軌道面から離れるほど外径が大きくなる傾斜面とするのが良い。
ノズルの吐出口を内輪の肩面にすきまを持って対向させると、ノズルの吐出口から吐出された潤滑用流体が内輪の肩面に吹き付けられる。肩面に吹き付けられた潤滑用流体のうちの油が、肩面に沿って軌道面に導かれることで、内輪の軌道面を良好に潤滑することができる。肩面が傾斜面であると、肩面に付着した油に対して内輪の回転に伴う遠心力が作用し、外径側である内輪の軌道面に向けて油が円滑に導かれる。
また、潤滑用流体を内輪の肩面に直接吹き付けることにより、内輪を冷却する効果が高い。
In the lubricating structure of the bearing device according to the present invention, the discharge port of the nozzle may be opposed to the raceway surface on the outer peripheral surface of the inner ring with a clearance on the shoulder surface continuing to the inner ring spacer side. The shoulder surface may be an inclined surface whose outer diameter increases as the distance from the raceway surface increases.
When the discharge port of the nozzle is opposed to the shoulder surface of the inner ring with a gap, the lubricating fluid discharged from the discharge port of the nozzle is sprayed onto the shoulder surface of the inner ring. The oil of the lubricating fluid sprayed on the shoulder surface is guided to the raceway surface along the shoulder surface, so that the raceway surface of the inner ring can be lubricated well. When the shoulder surface is an inclined surface, the centrifugal force accompanying the rotation of the inner ring acts on the oil adhering to the shoulder surface, and the oil is smoothly guided toward the raceway surface of the inner ring on the outer diameter side.
Moreover, the effect of cooling the inner ring is high by spraying the lubricating fluid directly onto the shoulder surface of the inner ring.

この発明の軸受装置の潤滑構造において、前記ノズルは、前記潤滑用流体を前記内輪間座の外周面に向けて吐出するように設けられ、前記内輪間座の外周面を、前記ノズルから吐出された前記潤滑用流体を両側の前記転がり軸受へ導く形状としても良い。
この場合、ノズルの吐出口から吐出された潤滑用流体が内輪間座の外周面に吹き付けられる。内輪間座の外周面に吹き付けられた潤滑用流体は、内輪間座の外周面に沿って両側の転がり軸受に良好に導かれ、転がり軸受の潤滑に供される。また、潤滑用流体を内輪間座の外周面に直接吹き付けることにより、内輪間座を冷却する効果が高い。
In the lubricating structure of the bearing device according to the present invention, the nozzle is provided so as to discharge the lubricating fluid toward the outer peripheral surface of the inner ring spacer, and the outer peripheral surface of the inner ring spacer is discharged from the nozzle. Alternatively, the lubricating fluid may be guided to the rolling bearings on both sides.
In this case, the lubricating fluid discharged from the discharge port of the nozzle is sprayed on the outer peripheral surface of the inner ring spacer. The lubricating fluid sprayed on the outer peripheral surface of the inner ring spacer is well guided to the rolling bearings on both sides along the outer peripheral surface of the inner ring spacer, and is used for lubrication of the rolling bearing. Moreover, the effect of cooling the inner ring spacer is high by spraying the lubricating fluid directly on the outer peripheral surface of the inner ring spacer.

前記内輪間座の外周面を、前記ノズルから吐出された前記潤滑用流体が吹き付けられる箇所の外径が最も小さく、前記箇所から前記転がり軸受に近づくほど外径が大きくなる傾斜面とし、前記内輪間座の外周面における軸方向外側端の外径を、前記転がり軸受の内輪における前記内輪間座側端の外径と比べて同じかまたは大きくすると良い。
内輪間座の外周面を上記形状の傾斜面とすると、ノズルから吐出された潤滑用流体のうちの内輪間座の外周面に付着した油を、内輪間座の回転に伴う遠心力により内輪間座の外周面に沿って転がり軸受側へ円滑に導くことができる。
The outer circumferential surface of the inner ring spacer is an inclined surface where the outer diameter of the portion to which the lubricating fluid discharged from the nozzle is sprayed is the smallest, and the outer diameter becomes larger toward the rolling bearing from the portion, and the inner ring The outer diameter of the outer end in the axial direction on the outer peripheral surface of the spacer may be the same or larger than the outer diameter of the inner ring spacer side end of the inner ring of the rolling bearing.
If the outer peripheral surface of the inner ring spacer is an inclined surface having the above shape, the oil adhering to the outer peripheral surface of the inner ring spacer out of the lubricating fluid discharged from the nozzles is caused by the centrifugal force accompanying the rotation of the inner ring spacer between the inner rings. It can be smoothly guided to the rolling bearing side along the outer peripheral surface of the seat.

また、前記内輪間座の外周面に、前記ノズルから吐出された前記潤滑用流体が吹き付けられる箇所に位置する円周溝と、一端が前記円周溝に繋がり前記主軸の回転方向に円周位相がずれるほど前記転がり軸受に近づく螺旋溝とを設けても良い。
この場合は、ノズルから吐出された潤滑用流体のうちの油が内輪間座の円周溝に溜まり、その油が、内輪間座の回転に伴い螺旋溝に沿って転がり軸受側へ円滑に送られる。
In addition, a circumferential groove located at a location where the lubricating fluid discharged from the nozzle is sprayed on the outer peripheral surface of the inner ring spacer, and one end connected to the circumferential groove and a circumferential phase in the rotational direction of the main shaft You may provide the spiral groove which approaches the said rolling bearing so that it shifts | deviates.
In this case, oil in the lubricating fluid discharged from the nozzle accumulates in the circumferential groove of the inner ring spacer, and the oil is smoothly fed to the rolling bearing side along the spiral groove as the inner ring spacer rotates. It is done.

前記潤滑用流体は、エアにより液状の油を搬送するエアオイルであっても良く、またはエアにより霧状の油を搬送するオイルミストであっても良い。   The lubricating fluid may be air oil that transports liquid oil by air, or may be oil mist that transports mist-like oil by air.

この発明の軸受装置の潤滑構造は、工作機械の主軸の支持に好適に用いることができる。その場合、転がり軸受を良好に潤滑することができ、かつ転がり軸受の内輪、内輪間座、およびこれらの内周に嵌合する主軸を効率良く冷却できるので、高速な領域での運転が可能となる。   The lubrication structure for a bearing device according to the present invention can be suitably used for supporting a main shaft of a machine tool. In that case, the rolling bearing can be lubricated well, and the inner ring of the rolling bearing, the inner ring spacer, and the main shaft fitted to the inner periphery of the rolling bearing can be efficiently cooled, enabling operation in a high speed region. Become.

この発明の軸受装置の潤滑構造は、軸方向に並ぶ複数の転がり軸受の外輪間および内輪間に外輪間座および内輪間座をそれぞれ介在させ、前記外輪および外輪間座がハウジングに設置され、前記内輪および内輪間座が主軸に嵌合される軸受装置において、前記外輪間座に、前記内輪または前記内輪間座の外周面に対してエアと油の混合物または油のみからなる潤滑用流体を吹き付けて前記転がり軸受に供給するノズルを、このノズルの吐出口側を前記主軸の回転方向の前方へ傾斜させて設けたため、転がり軸受を良好に潤滑することができ、かつ転がり軸受の内輪、内輪間座、およびこれらの内周に嵌合する主軸を効率良く冷却できる。   The lubricating structure of the bearing device according to the present invention includes an outer ring spacer and an inner ring spacer interposed between outer rings and inner rings of a plurality of rolling bearings arranged in the axial direction, and the outer ring and the outer ring spacer are installed in a housing. In the bearing device in which the inner ring and the inner ring spacer are fitted to the main shaft, the outer ring spacer is sprayed with a lubricating fluid consisting of air and oil or a mixture of oil only on the outer ring of the inner ring or the inner ring spacer. The nozzle to be supplied to the rolling bearing is provided with the discharge port side of the nozzle inclined forward in the rotational direction of the main shaft, so that the rolling bearing can be lubricated well and between the inner ring and the inner ring of the rolling bearing. The seats and the main shafts fitted to the inner peripheries can be efficiently cooled.

この発明の第1の実施形態に係る潤滑構造を備えた軸受装置が組み込まれた主軸装置の断面図である。1 is a cross-sectional view of a spindle device in which a bearing device having a lubrication structure according to a first embodiment of the present invention is incorporated. 図1の一部を抽出して拡大した図である。It is the figure which extracted and expanded a part of FIG. 図1のIII−III断面の一部を抽出して表した図である。It is the figure which extracted and represented a part of III-III cross section of FIG. 図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3. 図2に表わされる部分の変形例を示す図である。FIG. 3 is a diagram showing a modification of the part shown in FIG. 2. 図2に表わされる部分の他の変形例を示す図である。It is a figure which shows the other modification of the part represented by FIG. 図6に示す変形例の油排出部の断面図である。It is sectional drawing of the oil discharge part of the modification shown in FIG. この発明の第2の実施形態に係る潤滑構造を備えた軸受装置が組み込まれた主軸装置の断面図である。It is sectional drawing of the main axis | shaft apparatus incorporating the bearing apparatus provided with the lubrication structure which concerns on 2nd Embodiment of this invention. 同軸受装置の断面図である。It is sectional drawing of the bearing apparatus. 図9のX−X断面図である。It is XX sectional drawing of FIG. 図10の部分拡大図である。It is the elements on larger scale of FIG. 図9に示す軸受装置の変形例の断面図である。It is sectional drawing of the modification of the bearing apparatus shown in FIG. 図12の部分拡大図である。It is the elements on larger scale of FIG. 図9に示す軸受装置の他の変形例の断面図である。It is sectional drawing of the other modification of the bearing apparatus shown in FIG. 図14の部分拡大図である。It is the elements on larger scale of FIG. 図9に示す軸受装置のさらに他の変形例の断面図である。FIG. 10 is a cross-sectional view of still another modification of the bearing device shown in FIG. 9. 図16の部分拡大図である。It is the elements on larger scale of FIG. 参考例として軸受装置の図9におけるX−X断面に相当する断面図である。FIG. 10 is a cross-sectional view corresponding to the XX cross section in FIG. 9 of the bearing device as a reference example. 提案例である潤滑構造を備えた軸受装置の断面図である。It is sectional drawing of the bearing apparatus provided with the lubrication structure which is a proposal example. 図19の一部を抽出して拡大した図である。It is the figure which extracted and expanded a part of FIG.

この発明の第1の実施形態に係る軸受装置の潤滑構造を図1ないし図4と共に説明する。
図1に示すように、この軸受装置は、軸方向に並ぶ2つの転がり軸受1,1を備え、各転がり軸受1,1の外輪2,2間および内輪3,3間に、外輪間座4および内輪間座5がそれぞれ介在されている。転がり軸受1はアンギュラ玉軸受であり、内外輪3,2の軌道面3a,2a間に複数の転動体8が介在されている。各転動体8は、保持器9により円周等配に保持される。2つの転がり軸受1,1は互いに背面組合せで配置されており、外輪間座4と内輪間座5の幅寸法差により、各転がり軸受1,1の初期予圧を設定して使用される。
A lubricating structure of a bearing device according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, this bearing device includes two rolling bearings 1, 1 aligned in the axial direction, and an outer ring spacer 4 between outer rings 2, 2 and between inner rings 3, 3 of each rolling bearing 1, 1. And the inner ring spacer 5 is interposed. The rolling bearing 1 is an angular ball bearing, and a plurality of rolling elements 8 are interposed between the raceway surfaces 3 a and 2 a of the inner and outer rings 3 and 2. The rolling elements 8 are held by the cage 9 at an equal circumference. The two rolling bearings 1 and 1 are arranged in combination with each other on the back surface, and are used by setting the initial preload of each rolling bearing 1 and 1 depending on the width dimension difference between the outer ring spacer 4 and the inner ring spacer 5.

図1は軸受装置を工作機械の主軸の支持に用いた状態を示す。転がり軸受1,1の外輪2,2および外輪間座4がハウジング6の内周面に嵌合し、転がり軸受1,1の内輪3,3および内輪間座5が主軸7の外周面に嵌合している。外輪2,2および外輪間座4は、例えばハウジング6に対してすきま嵌めとされ、ハウジング6の段部6aと端面蓋40とにより軸方向の位置決めがされる。また、内輪3,3および内輪間座5は、例えば主軸7に対して締まり嵌めとされ、両側の位置決め間座41,42により軸方向の位置決めがされる。なお、図の左側の位置決め間座42は、主軸7に螺着させたナット43により固定されている。   FIG. 1 shows a state in which the bearing device is used to support the spindle of a machine tool. The outer rings 2 and 2 and the outer ring spacer 4 of the rolling bearings 1 and 1 are fitted to the inner peripheral surface of the housing 6, and the inner rings 3 and 3 and the inner ring spacer 5 of the rolling bearings 1 and 1 are fitted to the outer peripheral surface of the main shaft 7. Match. The outer rings 2, 2 and the outer ring spacer 4 are, for example, a clearance fit with respect to the housing 6, and are positioned in the axial direction by the step portion 6 a of the housing 6 and the end cover 40. The inner rings 3 and 3 and the inner ring spacer 5 are, for example, an interference fit with respect to the main shaft 7 and are positioned in the axial direction by the positioning spacers 41 and 42 on both sides. Note that the positioning spacer 42 on the left side of the figure is fixed by a nut 43 screwed onto the main shaft 7.

図2に示すように、外輪間座4は、断面略T字形状の外輪間座本体10と、この外輪間座本体10におけるT字の縦部分に相当する部位の両側に配置された一対のリンク状のノズル部材11,11とで構成される。各ノズル部材11は、転がり軸受1に潤滑用流体であるエアオイルを供給するノズル12を有する。ノズル12は、ノズル部材11における軸受内に突出する突出部11aに設けられている。ノズル12の吐出口12aは前記突出部11aの内周面に開口しており、この内周面は、内輪3の軌道面3aに続く傾斜面からなる肩面3bとすきまδaを介して対向している。このすきまδaの大きさは、例えばノズル12の口径の1/2以下とされている。これは、騒音の問題を考慮した場合に、ノズル12から吐出されたエアオイルの圧力が急激に降下しないようにするためである。   As shown in FIG. 2, the outer ring spacer 4 includes a pair of outer ring spacer main bodies 10 having a substantially T-shaped cross section and a pair of portions disposed on both sides of a portion corresponding to a vertical portion of the T shape in the outer ring spacer main body 10. It is composed of link-like nozzle members 11 and 11. Each nozzle member 11 has a nozzle 12 that supplies air oil, which is a lubricating fluid, to the rolling bearing 1. The nozzle 12 is provided in a protruding portion 11 a that protrudes into the bearing in the nozzle member 11. The discharge port 12a of the nozzle 12 is open to the inner peripheral surface of the protruding portion 11a, and this inner peripheral surface is opposed to the shoulder surface 3b, which is an inclined surface following the raceway surface 3a of the inner ring 3, with a clearance δa. ing. The size of the clearance δa is, for example, ½ or less of the diameter of the nozzle 12. This is to prevent the pressure of the air oil discharged from the nozzle 12 from dropping suddenly when considering the problem of noise.

内輪3の肩面3bの傾斜角度αは、肩面3bに吹き付けられたエアオイルの油が肩面3b上で付着流れとなって軌道面3aに導入できる角度とされる。具体的には、主軸7の回転速度の指標となるdmn値(dm:転動体8のピッチ円径mm、n:最高回転速度min−1)に比例し、下記の式1(「エアオイル潤滑における供給油量の微小化」NTN TECHICAL REVIEW No72(2004)15 から引用)により概略値を求めることができる。
α°=0.06×dmn値/10000・・・式1
The inclination angle α of the shoulder surface 3b of the inner ring 3 is an angle at which air oil sprayed onto the shoulder surface 3b can be introduced into the raceway surface 3a as an adhering flow on the shoulder surface 3b. Specifically, it is proportional to the dmn value (dm: pitch circle diameter mm of the rolling element 8, n: maximum rotational speed min −1 ), which is an index of the rotational speed of the main shaft 7, and the following formula 1 (“in air-oil lubrication” Approximate values can be obtained by “miniaturization of the amount of oil supplied” (quoted from NTN technical review No. 72 (2004) 15).
α ° = 0.06 × dmn value / 10000 Equation 1

図3に示すように、上記ノズル12は、円周方向に等配で複数個(この例では3個)設けられている。各ノズル12は、直線状であって、吐出口12a側を主軸7の回転方向L1の前方へ傾斜させてある。つまり、各ノズル12は、外輪間座4の軸心に垂直な断面における任意の半径方向の直線L2から、この直線L2と直交する方向にオフセットした位置にある。そのオフセット量OSは、例えばノズル12位置での内輪3の外径寸法Dに対し、0.4D〜0.5Dの範囲とする。なお、ノズル12は、円周方向に1個だけ設けてもよい。   As shown in FIG. 3, a plurality of nozzles 12 (three in this example) are provided at equal intervals in the circumferential direction. Each nozzle 12 is linear, and the discharge port 12a side is inclined forward in the rotational direction L1 of the main shaft 7. That is, each nozzle 12 is at a position offset from an arbitrary radial straight line L2 in a cross section perpendicular to the axis of the outer ring spacer 4 in a direction perpendicular to the straight line L2. The offset amount OS is, for example, in the range of 0.4D to 0.5D with respect to the outer diameter D of the inner ring 3 at the nozzle 12 position. Only one nozzle 12 may be provided in the circumferential direction.

図2において、外輪間座本体10およびノズル部材11には、ノズル12にエアオイルを導入する導入経路13が設けられている。この導入経路13は、外輪間座本体10の外周面に形成された環状溝からなる外部導入口14と、この外部導入口14から内径側へ延びる複数(ノズル12と同数)の径方向孔15と、この径方向孔15の孔底部から軸方向に延びる軸方向孔16とからなり、軸方向孔16の先端がノズル12の吐出口12aと反対側端と連通している。上記軸方向孔16は、外輪間座本体10に形成された部分16aとノズル部材11に形成された部分16bとを有し、両部分16a,16bの接続部となるノズル部材11の側面には両部分16a,16bよりも大径の座繰り孔部16cが設けられている。なお、ノズル12が円周方向に1個だけである場合、前記外部導入口14は座繰り孔であってもよい。   In FIG. 2, the outer ring spacer main body 10 and the nozzle member 11 are provided with an introduction path 13 for introducing air oil into the nozzle 12. The introduction path 13 includes an external introduction port 14 formed of an annular groove formed on the outer peripheral surface of the outer ring spacer body 10, and a plurality (the same number as the nozzles 12) radial holes 15 extending from the external introduction port 14 toward the inner diameter side. And the axial hole 16 extending in the axial direction from the bottom of the radial hole 15, and the tip of the axial hole 16 communicates with the end opposite to the discharge port 12 a of the nozzle 12. The axial hole 16 has a portion 16a formed in the outer ring spacer body 10 and a portion 16b formed in the nozzle member 11, and is provided on the side surface of the nozzle member 11 serving as a connecting portion between both the portions 16a and 16b. Countersink hole 16c having a diameter larger than that of both portions 16a and 16b is provided. When only one nozzle 12 is provided in the circumferential direction, the external introduction port 14 may be a countersink hole.

図1に示すように、外輪間座本体10におけるノズル部材11の外径端よりも軸方向に張り出した部分に、エアオイルの排気口となる切欠き16が設けられている。外輪間座4に隣接して転がり軸受1の外輪2が配置されることで、切欠き16が、転がり軸受1の軸受空間と軸受装置の外部とを連通する開口形状となる。   As shown in FIG. 1, a notch 16 serving as an air oil exhaust port is provided at a portion of the outer ring spacer body 10 that protrudes in the axial direction from the outer diameter end of the nozzle member 11. By arranging the outer ring 2 of the rolling bearing 1 adjacent to the outer ring spacer 4, the notch 16 has an opening shape that communicates the bearing space of the rolling bearing 1 and the outside of the bearing device.

主軸装置の外部にエアオイル供給装置45が設けられており、このエアオイル供給装置45から送り出されるエアオイルが、端面蓋40の供給口46およびハウジング6内の供給孔47を通って、外輪間座4の前記外部導入口14に供給される。また、ハウジング6には排気孔48が設けられている。この排気孔48は、接続孔49を介して外輪間座本体10の前記切欠き16と連通している。   An air oil supply device 45 is provided outside the spindle device, and the air oil delivered from the air oil supply device 45 passes through the supply port 46 of the end surface cover 40 and the supply hole 47 in the housing 6, so that the outer ring spacer 4 It is supplied to the external introduction port 14. The housing 6 is provided with an exhaust hole 48. The exhaust hole 48 communicates with the notch 16 of the outer ring spacer body 10 through the connection hole 49.

この構成の軸受装置は、エアオイル供給装置45より供給されるエアオイルが、外輪間座4の導入経路13を通ってノズル12から吐出される。前記すきまδaの大きさをノズル12の口径の1/2以下としたことにより、ノズル12から吐出されたエアオイルの圧力が急激に降下することがなく、騒音の発生を抑えることができる。吐出されたエアオイルは内輪3の肩面3bに吹き付けられ、エアオイルの油が肩面3bに付着する。この油は、内輪3の回転に伴う遠心力により、傾斜面である肩面3bに沿って大径側の軌道面3aの側へ円滑に導かれる。肩面3bの傾斜角度αを前記式1で表わされる角度としたことにより、油の良好な付着流れが得られる。このように、エアオイルの油が転がり軸受1に安定して供給されるので、転がり軸受1を常に良好に潤滑することができる。   In the bearing device having this configuration, the air oil supplied from the air oil supply device 45 is discharged from the nozzle 12 through the introduction path 13 of the outer ring spacer 4. By setting the size of the clearance δa to be ½ or less of the diameter of the nozzle 12, the pressure of the air oil discharged from the nozzle 12 does not drop rapidly, and the generation of noise can be suppressed. The discharged air oil is sprayed onto the shoulder surface 3b of the inner ring 3, and the oil of the air oil adheres to the shoulder surface 3b. This oil is smoothly guided along the inclined surface of the shoulder surface 3b to the large-diameter track surface 3a side by the centrifugal force accompanying the rotation of the inner ring 3. By setting the inclination angle α of the shoulder surface 3b to the angle represented by the formula 1, a good oil adhesion flow can be obtained. Thus, since the oil of air oil is stably supplied to the rolling bearing 1, the rolling bearing 1 can always be lubricated satisfactorily.

また、潤滑と同時に、エアオイルが内輪3に吹き付けられることにより、内輪3が冷却される。ノズル12は吐出口12a側を主軸7の回転方向の前方へ傾斜させてあるため、エアオイルが内輪3の外周面に沿う旋回流となって主軸7の回転方向に安定して流れる。それにより、内輪3の表面の熱を奪って、効果的に冷却することが期待できる。ノズル12のオフセット量OSを内輪3の外径寸法Dの0.4〜0.5倍とすることにより、冷却効果が最も良好となることが、試験により確かめられている。内輪3が冷却されることにより、内輪3の内周に嵌合する主軸7も冷却される。   Simultaneously with lubrication, air oil is blown onto the inner ring 3 to cool the inner ring 3. Since the nozzle 12 has the discharge port 12a side inclined forward in the rotation direction of the main shaft 7, the air oil flows in a rotational flow along the outer peripheral surface of the inner ring 3 and flows stably in the rotation direction of the main shaft 7. Thereby, it can be expected that the surface of the inner ring 3 is deprived of heat and effectively cooled. It has been confirmed by tests that the cooling effect is the best when the offset amount OS of the nozzle 12 is 0.4 to 0.5 times the outer diameter D of the inner ring 3. By cooling the inner ring 3, the main shaft 7 fitted to the inner periphery of the inner ring 3 is also cooled.

図5に示すように、内輪3の肩面3bにおけるエアオイルが吹き付けられる軸方向位置に、環状凹み20を設けてもよい。環状凹み20が設けられていると、ノズル12から吐出されたエアオイルの吐出流速が増し、肩面3bに沿う油の付着流れが良好に行われる。   As shown in FIG. 5, an annular recess 20 may be provided at an axial position on the shoulder surface 3 b of the inner ring 3 where air oil is sprayed. When the annular recess 20 is provided, the discharge speed of the air oil discharged from the nozzle 12 increases, and the oil adherent flow along the shoulder surface 3b is favorably performed.

図6に示すように、ノズル部材11の内周面における軸方向端に、他よりも内径が小さい凸条21を設けてもよい。この凸条21と内輪3の肩面3bのすきまδbは、(すきまδbの寸法)×(すきまδbのノズル12位置での円周方向長さ)がノズル12の総孔径面積の10倍程度となるようにする。ノズル12の総孔径面積とは、1個のノズル12の孔径面積にノズル12の個数を乗じた面積のことである。このようにすきまδbを決めることにより、凸条21が、ノズル12から吐出されるエアオイルの噴射音が転がり軸受1側へ漏れ出るのを防ぐ遮音壁として機能し、低騒音化が図れる。   As shown in FIG. 6, a ridge 21 having an inner diameter smaller than the other may be provided at the axial end of the inner peripheral surface of the nozzle member 11. The clearance δb between the ridge 21 and the shoulder surface 3b of the inner ring 3 is (size of the clearance δb) × (circumferential length of the clearance δb at the nozzle 12 position) about 10 times the total hole diameter area of the nozzle 12. To be. The total hole diameter area of the nozzles 12 is an area obtained by multiplying the hole diameter area of one nozzle 12 by the number of nozzles 12. By determining the clearance δb in this way, the ridges 21 function as a sound insulation wall that prevents the injection sound of the air oil discharged from the nozzle 12 from leaking to the rolling bearing 1 side, and noise can be reduced.

潤滑用流体は、エアにより霧状の油を搬送するオイルミストであってもよい。また、潤滑用流体が油のみからなる油潤滑としてもよい。油潤滑は、エアオイル潤滑およびオイルミスト潤滑よりも内輪3の冷却効果が期待できる。油潤滑の場合も、第1の実施形態またはその変形例(図5、図6)と同じ構成とすることができる。   The lubricating fluid may be an oil mist that conveys mist-like oil by air. Further, the lubricating fluid may be oil lubrication composed only of oil. Oil lubrication can be expected to have a cooling effect on the inner ring 3 more than air oil lubrication and oil mist lubrication. Also in the case of oil lubrication, it can be set as the same structure as 1st Embodiment or its modification (FIG. 5, FIG. 6).

油潤滑では、エアの噴射音が発生しないので、図6の構成における遮音壁としての凸条21は不要である。ただし、図6と同様の凸条21を設けて、この凸条21を転がり軸受1内に流入する油の量を抑制するために機能させることは有効である。すきまδbの寸法を調整することで潤滑油量の制御ができ、内輪3を冷却しながら内輪3の肩面3bでの付着流れを利用した少量油潤滑が可能となる。油潤滑での内輪3の肩面3bの角度αも、エアオイル潤滑で用いた前記式1で同様に求められる。また、ノズル12の回転方向L1に対する角度は、0°または転がり軸受1内への流入油量が過多にならないように、エアオイル潤滑の場合と逆に内輪3の軌道面3aと逆方向に僅かに傾けてもよい。   In oil lubrication, since no air injection sound is generated, the ridges 21 as the sound insulation walls in the configuration of FIG. 6 are unnecessary. However, it is effective to provide the same ridges 21 as in FIG. 6 and to function the ridges 21 in order to suppress the amount of oil flowing into the rolling bearing 1. The amount of lubricating oil can be controlled by adjusting the dimension of the clearance δb, and a small amount of oil lubrication using the flow of adhesion on the shoulder surface 3b of the inner ring 3 can be performed while the inner ring 3 is cooled. The angle α of the shoulder surface 3b of the inner ring 3 in oil lubrication can be obtained in the same manner by the above-described formula 1 used in air-oil lubrication. In addition, the angle of the nozzle 12 with respect to the rotation direction L1 is slightly 0 ° or slightly opposite to the raceway surface 3a of the inner ring 3 so that the amount of oil flowing into the rolling bearing 1 does not become excessive. You may tilt.

油潤滑でノズル部材11に前記凸条21を設ける場合、ノズル12から吐出される油のうち、凸条21と内輪3の肩面3bのすきまδbから排出される油の量は制限されるので、残りの油の排出について考慮する必要がある。図7は、油の排出について工夫した油排出部の一例を示す。この例では、外輪間座本体10の内周面をノズル部材11の内周面よりも外径側に後退させて、外輪間座本体10と内輪間座5との間に油溜り部22を設けると共に、外輪間座本体10と接するノズル部材11の内側面および外周面に、油溜り部22およびノズル部材11の軸方向外側と連通する排油溝23,24をそれぞれ設けてある。排油ポンプ(図示せず)等で吸引することにより、油溜り部22の油が、排油溝23,24および前記切欠き16を通って軸受装置の外部に排出される。   When the ridge 21 is provided on the nozzle member 11 by oil lubrication, the amount of oil discharged from the gap δb between the ridge 21 and the shoulder surface 3b of the inner ring 3 is limited among the oil discharged from the nozzle 12. The remaining oil discharge needs to be considered. FIG. 7 shows an example of an oil discharge unit devised for oil discharge. In this example, the inner peripheral surface of the outer ring spacer main body 10 is retracted to the outer diameter side from the inner peripheral surface of the nozzle member 11, and the oil reservoir 22 is provided between the outer ring spacer main body 10 and the inner ring spacer 5. In addition, oil drain grooves 23 and 24 that communicate with the axially outer side of the oil reservoir 22 and the nozzle member 11 are provided on the inner surface and the outer peripheral surface of the nozzle member 11 that are in contact with the outer ring spacer body 10. By sucking with an oil discharge pump (not shown) or the like, the oil in the oil reservoir 22 is discharged to the outside of the bearing device through the oil discharge grooves 23 and 24 and the notch 16.

図8ないし図12は、この発明の第2の実施形態に係る軸受装置の潤滑構造を示す。図8に示すように、この軸受装置も、第1の実施形態と同様に、軸方向に並ぶ2つの転がり軸受1,1と、外輪間座4と、内輪間座5とでなり、工作機械の主軸7の支持に用いられている。第1の実施形態と同じ構成である箇所は同じ符号を付して示し、説明は省略する。   8 to 12 show a lubricating structure of a bearing device according to the second embodiment of the present invention. As shown in FIG. 8, this bearing device is also composed of two rolling bearings 1 and 1 arranged in the axial direction, an outer ring spacer 4 and an inner ring spacer 5 as in the first embodiment. It is used for supporting the main shaft 7. Parts having the same configuration as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.

第2の実施形態が第1の実施形態と異なる点は、図9に示すように、外輪間座4が一つの部材で構成され、この外輪間座4の軸方向中央部に、転がり軸受1にエアオイルを供給するノズル12が設けられていることである。ノズル12の吐出口12aは、外輪間座4の内周面に開口している。外輪間座4の内周面は、内輪間座5の外周面にすきまδcを介して対向している。   As shown in FIG. 9, the second embodiment is different from the first embodiment in that the outer ring spacer 4 is composed of a single member, and the rolling bearing 1 is disposed at the axial center of the outer ring spacer 4. Nozzle 12 for supplying air oil to is provided. The discharge port 12 a of the nozzle 12 opens on the inner peripheral surface of the outer ring spacer 4. The inner peripheral surface of the outer ring spacer 4 faces the outer peripheral surface of the inner ring spacer 5 with a gap δc.

図10およびその部分拡大図である図11に示すように、上記ノズル12は、円周方向に等配で複数個(この例では3個)設けられている。各ノズル12は、直線状であって、吐出口12a側を主軸7の回転方向L1の前方へ傾斜させてある。つまり、各ノズル12は、外輪間座4の軸心に垂直な断面における任意の半径方向の直線L2から、この直線L2と直交する方向にオフセット(オフセット量OS)した位置にある。なお、ノズル12は、円周方向に1個だけ設けてもよい。   As shown in FIG. 10 and FIG. 11 which is a partially enlarged view thereof, a plurality (three in this example) of nozzles 12 are provided in the circumferential direction. Each nozzle 12 is linear, and the discharge port 12a side is inclined forward in the rotational direction L1 of the main shaft 7. That is, each nozzle 12 is at a position offset (offset amount OS) from an arbitrary radial straight line L2 in a cross section perpendicular to the axis of the outer ring spacer 4 in a direction perpendicular to the straight line L2. Only one nozzle 12 may be provided in the circumferential direction.

図9において、外輪間座4には、ノズル12にエアオイルを導入する導入経路13が設けられている。この導入経路13は、外輪間座4の外周面に形成された環状溝からなる外部導入口14と、この外部導入口14と各ノズル12とを連通するノズル12と同数の連通孔30とからなる。なお、ノズル12が円周方向に1個だけである場合、前記外部導入口14は座繰り孔であってよい。
この第2の実施形態の外輪間座4には、第1の実施形態の外輪間座4に設けられているエアオイルの排気用の切欠き16(図1)が設けられていない。
In FIG. 9, the outer ring spacer 4 is provided with an introduction path 13 for introducing air oil into the nozzle 12. The introduction path 13 includes an external introduction port 14 formed of an annular groove formed on the outer peripheral surface of the outer ring spacer 4 and the same number of communication holes 30 as the nozzles 12 communicating the external introduction port 14 and each nozzle 12. Become. When only one nozzle 12 is provided in the circumferential direction, the external introduction port 14 may be a countersink hole.
The outer ring spacer 4 of the second embodiment is not provided with the air oil exhaust notch 16 (FIG. 1) provided in the outer ring spacer 4 of the first embodiment.

この構成の軸受装置は、エアオイル供給装置45より供給されるエアオイルが、外輪間座4の導入経路13を通ってノズル12から吐出される。図9に矢印で示すように、吐出されたエアオイルは、内輪間座5の外周面に対して吹き付けられ、外輪間座4と内輪間座5の間のすきまδcを通って両側の転がり軸受1に向かって流れ、さらに転がり軸受1を通過して軸受外に排出される。エアオイルが転がり軸受1を通過する際に、エアオイル中の油が転がり軸受1の各部に付着して潤滑に供される。   In the bearing device having this configuration, the air oil supplied from the air oil supply device 45 is discharged from the nozzle 12 through the introduction path 13 of the outer ring spacer 4. As shown by the arrows in FIG. 9, the discharged air oil is blown against the outer peripheral surface of the inner ring spacer 5, passes through the clearance δc between the outer ring spacer 4 and the inner ring spacer 5, and the rolling bearings 1 on both sides. , Further passes through the rolling bearing 1 and is discharged out of the bearing. When the air oil passes through the rolling bearing 1, the oil in the air oil adheres to each part of the rolling bearing 1 and is used for lubrication.

また、潤滑と同時に、エアオイルが内輪間座5に吹き付けられることにより、内輪間座5が冷却される。ノズル12は吐出口12a側を主軸7の回転方向の前方へ傾斜させてあるため、エアオイルが内輪間座5の外周面に沿う旋回流となって主軸7の回転方向に安定して流れる。それにより、内輪間座5の表面の熱を奪って、効果的に冷却することが期待できる。内輪間座5が冷却されることにより、内輪間座5に接する内輪3およびの主軸7も冷却される。   Simultaneously with the lubrication, air oil is sprayed onto the inner ring spacer 5 to cool the inner ring spacer 5. Since the nozzle 12 has the discharge port 12a side inclined forward in the rotation direction of the main shaft 7, the air oil flows as a swirl flow along the outer peripheral surface of the inner ring spacer 5 and stably flows in the rotation direction of the main shaft 7. Thereby, it can be expected that the surface of the inner ring spacer 5 is deprived of heat and effectively cooled. By cooling the inner ring spacer 5, the inner ring 3 and the main shaft 7 in contact with the inner ring spacer 5 are also cooled.

図12、図13は第2の実施形態の変形例を示す。この軸受装置は、内輪間座5の外周面を、ノズル12から吐出されたエアオイルが吹き付けられる箇所Aの外径が最も小さく、前記箇所Aから転がり軸受1に近づくほど外径が大きくなる断面形状がV字形の傾斜面とし、内輪間座5の外周面における軸方向外側端B,Bの外径を、転がり軸受1の内輪3における内輪間座側端Cの外径と比べて同じか、または大きくした。これにより、図13に示すように、ノズル12から吐出されたエアオイルのうちの内輪間座5の外周面に付着した油25を、内輪間座5の回転に伴う遠心力により内輪間座5の外周面に沿って転がり軸受1側へ円滑に導くことができる。   12 and 13 show a modification of the second embodiment. This bearing device has a cross-sectional shape in which the outer diameter of the outer peripheral surface of the inner ring spacer 5 is the smallest at the location A where the air oil discharged from the nozzle 12 is sprayed, and the outer diameter increases from the location A toward the rolling bearing 1. Is a V-shaped inclined surface, and the outer diameter of the axial outer ends B, B on the outer peripheral surface of the inner ring spacer 5 is the same as the outer diameter of the inner ring spacer side end C of the inner ring 3 of the rolling bearing 1; Or enlarged. As a result, as shown in FIG. 13, the oil 25 adhered to the outer peripheral surface of the inner ring spacer 5 out of the air oil discharged from the nozzle 12 is removed from the inner ring spacer 5 by the centrifugal force accompanying the rotation of the inner ring spacer 5. It can be smoothly guided to the rolling bearing 1 side along the outer peripheral surface.

また、図14、図15に示すように、外輪間座4の内周面を、内輪間座5の外周面と平行となる断面形状山形に形成してもよい。この場合、外輪間座4と内輪間座5のすきまが軸方向の全域にわたって狭くなる。そうすることで、エアオイルのうちのエアが、速い流速のまま転がり軸受1に向かって流れる。そのエアの流れに導かれて、内輪間座5の外周面に付着した油が転がり軸受1に向かって円滑に流れる。   Further, as shown in FIGS. 14 and 15, the inner peripheral surface of the outer ring spacer 4 may be formed in a cross-sectional mountain shape parallel to the outer peripheral surface of the inner ring spacer 5. In this case, the clearance between the outer ring spacer 4 and the inner ring spacer 5 becomes narrow over the entire area in the axial direction. By doing so, air of the air oil flows toward the rolling bearing 1 with a high flow rate. The oil that is guided by the air flow and adheres to the outer peripheral surface of the inner ring spacer 5 flows smoothly toward the rolling bearing 1.

図16、図17は異なる変形例を示す。この軸受装置は、内輪間座5の外周面に、ノズル12から吐出されたエアオイルが吹き付けられる箇所に位置する円周溝26と、一端が円周溝26に繋がり主軸7の回転方向L1に円周位相がずれるほど転がり軸受1に近づく螺旋溝27,27とを設けた。この場合は、ノズル12から吐出されたエアオイルのうちの油25が内輪間座5の円周溝26に溜まり、その油25が、内輪間座26の回転に伴い螺旋溝27に沿って転がり軸受1側へ円滑に送られる。つまり、ねじポンプの効果を利用して油25を送る。   16 and 17 show different modifications. In this bearing device, a circumferential groove 26 located at a location where air oil discharged from the nozzle 12 is sprayed on the outer peripheral surface of the inner ring spacer 5 and one end connected to the circumferential groove 26 and circular in the rotational direction L1 of the main shaft 7. Spiral grooves 27 and 27 approaching the rolling bearing 1 as the circumferential phase is shifted are provided. In this case, the oil 25 of the air oil discharged from the nozzle 12 accumulates in the circumferential groove 26 of the inner ring spacer 5, and the oil 25 rolls along the spiral groove 27 as the inner ring spacer 26 rotates. Smoothly sent to 1 side. That is, the oil 25 is sent using the effect of the screw pump.

この発明の範囲からは外れるが、エアオイル等の潤滑用流体を外輪間座4に設けたノズル12から内輪間座5の外周面に吹き付けて、転がり軸受1の潤滑と軸受装置と主軸7の冷却を行う場合、図18のように、ノズル12の吐出口12aが主軸7の回転方向L1の前方へ傾斜されていなくても、傾斜させたものと比べて冷却効果が劣るものの、それなりの冷却効果は得ることができる。   Although not included in the scope of the present invention, lubricating fluid such as air oil is sprayed from the nozzle 12 provided on the outer ring spacer 4 to the outer peripheral surface of the inner ring spacer 5 to lubricate the rolling bearing 1 and cool the bearing device and the main shaft 7. 18, even if the discharge port 12a of the nozzle 12 is not inclined forward in the rotation direction L1 of the main shaft 7 as shown in FIG. 18, although the cooling effect is inferior to that of the inclined one, the cooling effect is moderate. Can get.

この発明の軸受装置の冷却構造は、各実施形態で説明したように軸受装置および主軸7の冷却効果が高いので、主軸装置を高速な領域で運転させることが可能となる。このため、この軸受装置を、工作機械の主軸の支持に好適に用いることができる。   Since the cooling structure of the bearing device of the present invention has a high cooling effect on the bearing device and the main shaft 7 as described in each embodiment, the main shaft device can be operated in a high-speed region. For this reason, this bearing apparatus can be used suitably for support of the spindle of a machine tool.

1…転がり軸受
2…外輪
2a…軌道面
3…内輪
3a…軌道面
3b…肩面
4…外輪間座
5…内輪間座
6…ハウジング
7…主軸
12…ノズル
12a…吐出口
25…油
26…円周溝
27…螺旋溝
L1…回転方向
δa…すきま
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Outer ring 2a ... Raceway surface 3 ... Inner ring 3a ... Raceway surface 3b ... Shoulder surface 4 ... Outer ring spacer 5 ... Inner ring spacer 6 ... Housing 7 ... Main shaft 12 ... Nozzle 12a ... Discharge port 25 ... Oil 26 ... Circumferential groove 27 ... spiral groove L1 ... rotational direction δa ... clearance

Claims (8)

軸方向に並ぶ複数の転がり軸受の外輪間および内輪間に外輪間座および内輪間座をそれぞれ介在させ、前記外輪および外輪間座がハウジングに設置され、前記内輪および内輪間座が主軸に嵌合される軸受装置において、
前記外輪間座に、前記内輪または前記内輪間座の外周面に対してエアと油の混合物または油のみからなる潤滑用流体を吹き付けて前記転がり軸受に供給するノズルを、このノズルの吐出口側を前記主軸の回転方向の前方へ傾斜させて設けたことを特徴とする軸受装置の潤滑構造。
An outer ring spacer and an inner ring spacer are interposed between outer rings and inner rings of a plurality of rolling bearings arranged in the axial direction, respectively. The outer ring and outer ring spacer are installed in a housing, and the inner ring and inner ring spacer are fitted to the main shaft. Bearing device,
A nozzle that blows a lubricating fluid consisting of air and oil or a mixture of only oil onto the outer ring spacer and an outer peripheral surface of the inner ring or the inner ring spacer and supplies it to the rolling bearing is provided on the discharge port side of the nozzle. And a lubricating structure for a bearing device, wherein the main shaft is tilted forward in the rotational direction.
請求項1に記載の軸受装置の潤滑構造において、前記ノズルの前記吐出口を、前記内輪の外周面における軌道面に対して前記内輪間座側に続く肩面にすきまを持って対向させた軸受装置の潤滑構造。   2. The bearing structure according to claim 1, wherein the discharge port of the nozzle is opposed to a raceway surface on an outer peripheral surface of the inner ring with a clearance on a shoulder surface continuing to the inner ring spacer side. 3. Lubrication structure of the device. 請求項2に記載の軸受装置の潤滑構造において、前記肩面は、前記軌道面から離れるほど外径が大きくなる傾斜面である軸受装置の潤滑構造。   3. The lubrication structure for a bearing device according to claim 2, wherein the shoulder surface is an inclined surface whose outer diameter increases as the distance from the raceway surface increases. 請求項1に記載の軸受装置の潤滑構造において、前記ノズルは、前記潤滑用流体を前記内輪間座の外周面に向けて吐出するように設けられ、前記内輪間座の外周面を、前記ノズルから吐出された前記潤滑用流体を両側の前記転がり軸受へ導く形状とした軸受装置の潤滑構造。   2. The lubricating structure for a bearing device according to claim 1, wherein the nozzle is provided so as to discharge the lubricating fluid toward an outer peripheral surface of the inner ring spacer, and the outer peripheral surface of the inner ring spacer is disposed on the nozzle. A lubrication structure of a bearing device having a shape that guides the lubricating fluid discharged from the cylinder to the rolling bearings on both sides. 請求項4に記載の軸受装置の潤滑構造において、前記内輪間座の外周面は、前記ノズルから吐出された前記潤滑用流体が吹き付けられる箇所の外径が最も小さく、前記箇所から前記転がり軸受に近づくほど外径が大きくなる傾斜面であり、前記内輪間座の外周面における軸方向外側端の外径は、前記転がり軸受の内輪における前記内輪間座側端の外径と比べて同じかまたは大きい軸受装置の潤滑構造。   5. The lubricating structure of the bearing device according to claim 4, wherein the outer peripheral surface of the inner ring spacer has the smallest outer diameter of a portion to which the lubricating fluid discharged from the nozzle is sprayed, and the portion is moved from the portion to the rolling bearing. The outer diameter of the inner ring spacer is the same as the outer diameter of the inner ring spacer side end of the inner ring of the rolling bearing. Large bearing device lubrication structure. 請求項4に記載の軸受装置の潤滑構造において、前記内輪間座の外周面に、前記ノズルから吐出された前記潤滑用流体が吹き付けられる箇所に位置する円周溝と、一端が前記円周溝に繋がり前記主軸の回転方向に円周位相がずれるほど前記転がり軸受に近づく螺旋溝とを設けた軸受装置の冷却構造。   5. The lubricating structure of the bearing device according to claim 4, wherein a circumferential groove located at a position where the lubricating fluid discharged from the nozzle is sprayed on an outer circumferential surface of the inner ring spacer, and one end of the circumferential groove A cooling structure for a bearing device provided with a spiral groove that approaches the rolling bearing as the circumferential phase shifts in the rotation direction of the main shaft. 請求項1ないし請求項6のいずれか1項に記載の軸受装置の潤滑構造において、前記潤滑用流体は、エアにより液状の油を搬送するエアオイル、またはエアにより霧状の油を搬送するオイルミストである軸受装置の潤滑構造。   7. The lubricating structure for a bearing device according to claim 1, wherein the lubricating fluid is air oil that conveys liquid oil by air, or oil mist that conveys mist-like oil by air. The lubricating structure of the bearing device. 工作機械の主軸の支持に用いられる請求項1ないし請求項7のいずれか1項に記載の軸受装置の潤滑構造。   The lubricating structure for a bearing device according to any one of claims 1 to 7, which is used for supporting a main shaft of a machine tool.
JP2012209137A 2012-09-24 2012-09-24 Lubrication structure of bearing device Active JP6234017B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012209137A JP6234017B2 (en) 2012-09-24 2012-09-24 Lubrication structure of bearing device
KR1020157010570A KR102208885B1 (en) 2012-09-24 2013-09-19 Cooling structure for bearing device
PCT/JP2013/075223 WO2014046153A1 (en) 2012-09-24 2013-09-19 Cooling structure for bearing device
EP13839999.3A EP2910806B1 (en) 2012-09-24 2013-09-19 Bearing device with a cooling structure
EP19180598.5A EP3567267B1 (en) 2012-09-24 2013-09-19 Bearing device with a cooling structure
US14/430,464 US9541137B2 (en) 2012-09-24 2013-09-19 Cooling structure for bearing device
CN201380048975.5A CN104662316B (en) 2012-09-24 2013-09-19 The cooling structure of bearing arrangement
US15/342,279 US10280980B2 (en) 2012-09-24 2016-11-03 Cooling structure for bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209137A JP6234017B2 (en) 2012-09-24 2012-09-24 Lubrication structure of bearing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017142625A Division JP6434094B2 (en) 2017-07-24 2017-07-24 Lubrication structure of bearing device

Publications (2)

Publication Number Publication Date
JP2014062618A true JP2014062618A (en) 2014-04-10
JP6234017B2 JP6234017B2 (en) 2017-11-22

Family

ID=50618023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209137A Active JP6234017B2 (en) 2012-09-24 2012-09-24 Lubrication structure of bearing device

Country Status (1)

Country Link
JP (1) JP6234017B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151283A (en) * 2015-02-16 2016-08-22 株式会社ジェイテクト Rolling bearing device
WO2016148009A1 (en) * 2015-03-17 2016-09-22 Ntn株式会社 Bearing device and machine device
CN108050097A (en) * 2017-12-28 2018-05-18 四川省自贡工业泵有限责任公司 Vertical long pump for liquid salts carries oil lubrication device
US10001170B2 (en) 2014-11-13 2018-06-19 Ntn Corporation Rolling bearing
US10072710B2 (en) 2014-11-06 2018-09-11 Ntn Corporation Cooling structure for bearing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299784A (en) * 1997-04-30 1998-11-10 Nippon Seiko Kk Lubricating device for rolling bearing device
JP2002054643A (en) * 2000-05-31 2002-02-20 Ntn Corp Air oil lubricating structure of rolling bearing
JP2006125485A (en) * 2004-10-28 2006-05-18 Ntn Corp Rolling bearing lubricating device
JP2007024252A (en) * 2005-07-20 2007-02-01 Ntn Corp Lubricating device of rolling bearing
JP2007092886A (en) * 2005-09-29 2007-04-12 Jtekt Corp Rolling bearing device
JP2007303528A (en) * 2006-05-10 2007-11-22 Jtekt Corp Rolling bearing
JP2009162341A (en) * 2008-01-09 2009-07-23 Ntn Corp Rolling bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299784A (en) * 1997-04-30 1998-11-10 Nippon Seiko Kk Lubricating device for rolling bearing device
JP2002054643A (en) * 2000-05-31 2002-02-20 Ntn Corp Air oil lubricating structure of rolling bearing
JP2006125485A (en) * 2004-10-28 2006-05-18 Ntn Corp Rolling bearing lubricating device
JP2007024252A (en) * 2005-07-20 2007-02-01 Ntn Corp Lubricating device of rolling bearing
JP2007092886A (en) * 2005-09-29 2007-04-12 Jtekt Corp Rolling bearing device
JP2007303528A (en) * 2006-05-10 2007-11-22 Jtekt Corp Rolling bearing
JP2009162341A (en) * 2008-01-09 2009-07-23 Ntn Corp Rolling bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10072710B2 (en) 2014-11-06 2018-09-11 Ntn Corporation Cooling structure for bearing device
US10001170B2 (en) 2014-11-13 2018-06-19 Ntn Corporation Rolling bearing
JP2016151283A (en) * 2015-02-16 2016-08-22 株式会社ジェイテクト Rolling bearing device
WO2016148009A1 (en) * 2015-03-17 2016-09-22 Ntn株式会社 Bearing device and machine device
JP2016173151A (en) * 2015-03-17 2016-09-29 Ntn株式会社 Bearing device and machine device
CN108050097A (en) * 2017-12-28 2018-05-18 四川省自贡工业泵有限责任公司 Vertical long pump for liquid salts carries oil lubrication device

Also Published As

Publication number Publication date
JP6234017B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
WO2014046153A1 (en) Cooling structure for bearing device
JP6234017B2 (en) Lubrication structure of bearing device
JP2006118526A (en) Lubrication device of rolling bearing
JP2012072851A (en) Lubricating device for rolling bearing
JP2014062616A (en) Cooling structure of bearing device
JP2008075882A (en) Bearing device
JP2016089975A (en) Cooling structure of bearing device
JP5045411B2 (en) Rolling bearing
JP2008291970A (en) Rolling bearing device
TWI691656B (en) Spindle device for ball bearing and machine tool
KR102448407B1 (en) Cooling structure of bearing device
JP2006125485A (en) Rolling bearing lubricating device
JP2009092147A (en) Lubricating device of rolling bearing
JP5316249B2 (en) Rolling bearing device and rolling bearing used therefor
JP2009138896A (en) Rolling bearing and its lubrication method
JP6434094B2 (en) Lubrication structure of bearing device
JP2014025525A (en) Oil air lubrication type rolling bearing device
TWI760065B (en) Angular Contact Ball Bearing and Spindle Device for Machine Tool
JP2008082497A (en) Lubricating device of roll bearing
JP5045409B2 (en) Rolling bearing
JP2008082495A (en) Lubricating device of rolling bearing
JP4045291B2 (en) Rolling bearing device
JP2003278771A (en) Rolling bearing device
JP5353432B2 (en) Rolling bearing device
JP2008082500A (en) Lubricating device of rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161206

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171024

R150 Certificate of patent or registration of utility model

Ref document number: 6234017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250