JP2012072851A - Lubricating device for rolling bearing - Google Patents

Lubricating device for rolling bearing Download PDF

Info

Publication number
JP2012072851A
JP2012072851A JP2010218710A JP2010218710A JP2012072851A JP 2012072851 A JP2012072851 A JP 2012072851A JP 2010218710 A JP2010218710 A JP 2010218710A JP 2010218710 A JP2010218710 A JP 2010218710A JP 2012072851 A JP2012072851 A JP 2012072851A
Authority
JP
Japan
Prior art keywords
rolling bearing
lubricating oil
inner ring
bearing
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010218710A
Other languages
Japanese (ja)
Inventor
Mariko Sekiya
麻理子 関屋
Hiroki Fujiwara
宏樹 藤原
Tomoya Sakaguchi
智也 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010218710A priority Critical patent/JP2012072851A/en
Publication of JP2012072851A publication Critical patent/JP2012072851A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/46Gap sizes or clearances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General buildup of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lubricating device for a rolling bearing capable of lubricating the rolling bearing with a small quantity of lubricating oil without using compressed air, and preventing the lowering of bearing torque.SOLUTION: An outer ring adjacent member 6 disposed adjacent to an outer ring 3 of the rolling bearing 1 is provided with a nozzle 7 inserted into a bearing space between an inner ring 2 and the outer ring 3 and facing a shoulder outer peripheral surface 2b of the inner ring 2 through a gap δ. A nozzle hole 7a for dropping the lubricating oil is formed at a surface of the nozzle 7 opposite to the shoulder outer peripheral surface 2b of the inner ring 2. A small quantity oil supply device 8 is provided to supply the lubricating oil from the outer ring adjacent member 6 to the nozzle hole 7. An air flow generating means such as a dynamic pressure groove 10 which generates an air flow from an end surface side to a rolling surface side of the rolling bearing 1 by the rotation of the inner ring 2 is provided in a space between a lubricating oil dropping surface 7b in which the nozzle hole 7a of the nozzle 7 is opened, and the shoulder outer peripheral surface 2b of the inner ring 2 facing the lubricating oil dropping surface.

Description

この発明は、例えばマシニングセンタ等の工作機械において、高速で回転する主軸を支持する転がり軸受の潤滑装置に関する。   The present invention relates to a rolling bearing lubrication device that supports a spindle that rotates at high speed in a machine tool such as a machining center.

一般的に、工作機械用主軸を支持する軸受の潤滑では、加工の精度を高めるため、軸受部の発熱による膨張をできるだけ抑えることが必要とされる。現在、工作機械用主軸の高速回転軸受の潤滑方式として、以下に列挙するものが広く知られている(例えば非特許文献1)。
(1) 噴霧潤滑(オイルミスト潤滑)
圧縮空気により油を霧状にして潤滑する方法。
(2) エアオイル潤滑
必要最小限の潤滑油を軸受ごとに最適間隔で計量し、圧縮空気で給油する方法。 この方法では、油の攪拌による発熱が小さく、エアによる冷却効果、油の消費量 が少ないなどの利点がある。
(3) ジェット潤滑
軸受の側面より潤滑油を高速で噴射させる潤滑方法であり、過酷な条件での信頼 性が高い。
Generally, in lubrication of a bearing that supports a spindle for a machine tool, it is necessary to suppress expansion due to heat generation of the bearing portion as much as possible in order to increase processing accuracy. Currently, the following methods are widely known as lubrication methods for high-speed rotary bearings of main spindles for machine tools (for example, Non-Patent Document 1).
(1) Spray lubrication (oil mist lubrication)
A method in which oil is atomized and lubricated with compressed air.
(2) Air-oil lubrication A method in which the minimum required amount of lubricating oil is measured at the optimum intervals for each bearing and is supplied with compressed air. This method has advantages such as less heat generated by oil agitation, air cooling effect, and less oil consumption.
(3) Jet lubrication This is a lubrication method in which lubricating oil is injected at a high speed from the side of the bearing, and is highly reliable under severe conditions.

上記(1),(2)の潤滑方法では、微量の潤滑油を継続的に供給することで、低トルク化し、発熱を防いでいる。一方、(3)の潤滑方法では、逆に、大量の油を噴射させることにより、軸受を冷却し、発熱を抑えている。   In the lubrication methods (1) and (2), a small amount of lubricating oil is continuously supplied to reduce torque and prevent heat generation. On the other hand, in the lubrication method (3), conversely, a large amount of oil is injected to cool the bearing and suppress heat generation.

そのほか、同じく微量の油を供給する潤滑技術として、マイクロポンプを使用した潤滑装置(特許文献1)や、圧電素子およびダイヤフラムを使用した潤滑装置(特許文献2)なども提案されている。   In addition, as a lubrication technique for supplying a minute amount of oil, a lubrication device using a micropump (Patent Document 1) and a lubrication device using a piezoelectric element and a diaphragm (Patent Document 2) have been proposed.

特開2004−108388号公報JP 2004-108388 A 特開2002−213687号公報JP 2002-213687 A

NTN転がり軸受総合カタログNo.2022/JA−77NTN rolling bearing general catalog No. 2022 / JA-77 曾田範宗,軸受の設計,p81Nobutamune Hamada, bearing design, p81

上記した(1)のオイルミスト潤滑や(2)のエアオイル潤滑では、圧縮空気を使用するためにコストがかかるという問題がある。また、(3)のジェット潤滑では、多量の油を使用するため、軸受トルク損失が大きく、高出力のモータが必要になってしまうという問題がある。   In the oil mist lubrication (1) and the air oil lubrication (2) described above, there is a problem that costs are required because compressed air is used. Further, in the jet lubrication of (3), since a large amount of oil is used, there is a problem that a bearing torque loss is large and a high output motor is required.

さらに、特許文献1に開示のマイクロポンプによる潤滑では、潤滑油を軸受外輪に噴きつけているが、高速回転時に潤滑油は遠心力によって外輪側に移動するので、内輪側で積極的に潤滑する必要があり、高速回転には向かない。また、特許文献2に開示の圧電素子を使用した潤滑では、潤滑油の噴出力が弱く、高速回転時には軸受の回転による空気抵抗によって潤滑油がはじかれ、軸受内部に潤滑油が浸透しないという問題がある。   Further, in the lubrication by the micro pump disclosed in Patent Document 1, the lubricating oil is sprayed onto the outer ring of the bearing. However, since the lubricating oil moves to the outer ring side by centrifugal force during high-speed rotation, it is actively lubricated on the inner ring side. It is necessary and not suitable for high-speed rotation. Further, in the lubrication using the piezoelectric element disclosed in Patent Document 2, the jet power of the lubricating oil is weak, the lubricating oil is repelled by the air resistance due to the rotation of the bearing at high speed rotation, and the lubricating oil does not penetrate into the bearing. There is.

この発明の目的は、圧縮空気を使用せず、軸受トルクの低下を招くことなく微量の潤滑油により潤滑することのできる転がり軸受の潤滑装置を提供することである。   An object of the present invention is to provide a rolling bearing lubrication device that can be lubricated with a small amount of lubricating oil without using compressed air and without causing a decrease in bearing torque.

この発明の転がり軸受の潤滑装置は、転がり軸受の外輪に隣接する外輪隣接部材に、内外輪間の軸受空間に挿入されて内輪の肩部外周面に隙間を介して対向するノズル部を設け、このノズル部の前記内輪の肩部外周面に対向する面に、潤滑油を滴下させるノズル孔を開口させ、前記外輪隣接部材から前記ノズル孔に潤滑油を供給する微量給油装置を設けた転がり軸受の潤滑装置において、前記ノズル部の前記ノズル孔が開口した面である潤滑油滴下面とこの面に対向する内輪の肩部外周面との間に、前記内輪の回転によって前記転がり軸受の端面側から転走面側への空気流を生じさせる空気流発生手段を設けたことを特徴とする。   In the rolling bearing lubrication device of the present invention, the outer ring adjacent member adjacent to the outer ring of the rolling bearing is provided with a nozzle portion that is inserted into the bearing space between the inner and outer rings and is opposed to the outer peripheral surface of the shoulder of the inner ring through a gap, A rolling bearing provided with a micro lubrication device that opens a nozzle hole for dropping lubricating oil on a surface of the nozzle portion facing the outer peripheral surface of the shoulder portion of the inner ring, and supplies the lubricating oil from the outer ring adjacent member to the nozzle hole. In this lubricating device, the end face side of the rolling bearing is caused by the rotation of the inner ring between the lubricating oil dropping surface, which is the surface where the nozzle hole of the nozzle portion is opened, and the outer peripheral surface of the shoulder portion of the inner ring facing the surface. An air flow generating means for generating an air flow from the side to the rolling surface side is provided.

この構成の転がり軸受の潤滑装置によると、空気流発生手段が生じさせる空気流に乗って、微量給油装置によって外輪隣接部材のノズル部のノズル孔に供給される潤滑油が、ノズル部の潤滑油滴下面とこの面に対向する内輪の肩部外周面との間に設けられた隙間より転がり軸受の内側へと供給され、転がり軸受の潤滑が行われる。このように、転がり軸受自身の回転により、空気流を発生させるため、エアーを使用する必要がない。したがって、圧縮空気を使用せず、軸受トルクの低下を招くことなく微量の潤滑油により転がり軸受を潤滑することができる。   According to the lubricating device of the rolling bearing of this configuration, the lubricating oil that is supplied to the nozzle hole of the nozzle portion of the outer ring adjacent member by the micro oil supply device riding on the air flow generated by the air flow generating means is the lubricating oil of the nozzle portion. The rolling bearing is lubricated by being supplied to the inside of the rolling bearing through a gap provided between the dripping surface and the outer peripheral surface of the shoulder portion of the inner ring facing this surface. Thus, since the air flow is generated by the rotation of the rolling bearing itself, it is not necessary to use air. Therefore, the rolling bearing can be lubricated with a small amount of lubricating oil without using compressed air and without causing a decrease in bearing torque.

この発明において、前記ノズル部は、前記内輪の肩部外周面の全周に連続して対面する鍔状であっても良い。ノズル部が鍔状であると、内輪の回転により、転走面側への空気流の発生を生じさせ易い。   In the present invention, the nozzle portion may have a bowl shape that continuously faces the entire circumference of the outer peripheral surface of the shoulder portion of the inner ring. If the nozzle portion is bowl-shaped, it is easy to cause an air flow to the rolling surface side due to the rotation of the inner ring.

前記空気流発生手段は、前記潤滑油滴下面および前記内輪の肩部外周面のいずれか一方の面、または両方の面に形成した動圧溝であっても良い。動圧溝を設けると、内輪の回転による前記潤滑油滴下面と肩部外周面との相対回転で、軸受端面側から転走面側への空気流が良好に発生する。   The air flow generating means may be a dynamic pressure groove formed on one or both of the lubricating oil dropping surface and the outer peripheral surface of the shoulder of the inner ring. When the dynamic pressure groove is provided, air flow from the bearing end surface side to the rolling surface side is favorably generated by the relative rotation between the lubricating oil dropping surface and the shoulder outer peripheral surface due to the rotation of the inner ring.

前記動圧溝は、円周方向に複数並び、軸方向に対して傾斜して形成された溝であるのが良い。このような傾斜溝とすると、回転により動圧が効果的に発生する。
動圧溝の深さは、前記ノズル部と前記内輪の肩部外周面との間の隙間と同程度であるのが望ましい。この程度の溝深さとすると、軸受端面側から転走面側への空気流が、より一層良好に生じる。
The dynamic pressure grooves may be a plurality of grooves arranged in the circumferential direction and inclined with respect to the axial direction. With such an inclined groove, dynamic pressure is effectively generated by rotation.
The depth of the dynamic pressure groove is preferably about the same as the gap between the nozzle portion and the outer peripheral surface of the shoulder portion of the inner ring. With such a groove depth, an air flow from the bearing end surface side to the rolling surface side is further improved.

前記外輪隣接部材は、外輪間座であるのが良い。前記外輪隣接部材は、必ずしも外輪間座に限らないが、外輪間座であると、軸受を設置したハウジングへの外輪隣接部材の設置が容易となる。   The outer ring adjacent member may be an outer ring spacer. The outer ring adjacent member is not necessarily limited to the outer ring spacer, but if the outer ring adjacent member is the outer ring spacer, the outer ring adjacent member can be easily installed in the housing in which the bearing is installed.

この発明において、前記ノズル部と前記内輪の肩部外周面との間の隙間は、軸受使用温度において、軸受内輪直径の1/100〜1/1000の範囲であることが望ましい。この範囲のすきまであることが、空気流の発生や潤滑油の供給の面で効率的となる。   In this invention, it is desirable that the gap between the nozzle portion and the outer peripheral surface of the shoulder portion of the inner ring is in a range of 1/100 to 1/1000 of the bearing inner ring diameter at the bearing operating temperature. The clearance up to this range is efficient in terms of air flow generation and lubricating oil supply.

この発明において、前記ノズル部と対向する前記内輪の肩部外周面を転走面側に向けて大径となるテーパ面としても良い。この構成の場合、肩部外周面における軸受外側と軸受内側とで周速差が生じ、その周速差による圧力差で空気流発生手段による空気流を引き込む効果が増すことになる。   In this invention, it is good also as a taper surface which becomes large diameter toward the rolling surface side at the shoulder part outer peripheral surface of the said inner ring facing the said nozzle part. In the case of this configuration, a circumferential speed difference occurs between the bearing outer side and the bearing inner side on the shoulder outer peripheral surface, and the effect of drawing the air flow by the air flow generating means is increased by the pressure difference due to the circumferential speed difference.

この発明において、前記潤滑油滴下面における前記ノズル孔の開口部で、前記ノズル部と前記内輪の肩部外周面との間の隙間を最も小さくしても良い。この構成の場合、ベンチュリ効果が生じ、隙間における軸受内側への空気流の流速が増すので、潤滑油滴下面におけるノズル孔の開口から潤滑油が離れ、空気流に乗って軸受内側へ噴射され易くなる。
例えば、前記ノズル部の前記潤滑油滴下面における先端部に、全周にわたる環状突部を設け、この環状突部に前記ノズル孔が開口させることで、ノズル部と内輪の肩部外周面との間の隙間を最も小さくする。
In this invention, you may make the clearance gap between the said nozzle part and the outer peripheral surface of the shoulder part of the said inner ring the smallest in the opening part of the said nozzle hole in the said lubricating oil dripping surface. In this configuration, the venturi effect occurs, and the flow velocity of the air flow into the bearing inside the gap increases, so that the lubricating oil is easily separated from the nozzle hole opening on the lubricating oil dropping surface and is injected into the bearing along the air flow. Become.
For example, an annular protrusion over the entire circumference is provided at the tip of the lubricating oil dropping surface of the nozzle part, and the nozzle hole is opened in the annular protrusion, so that the nozzle part and the outer peripheral surface of the shoulder part of the inner ring Make the gap between them the smallest.

この発明において、前記潤滑油滴下面における前記ノズル孔の開口部に撥油性のコーティングを施しても良い。撥油性のコーティングを施すと、潤滑油滴下面におけるノズル孔の開口から潤滑油が離れ易くなる。   In the present invention, an oil-repellent coating may be applied to the opening of the nozzle hole on the lubricating oil dropping surface. When the oil-repellent coating is applied, the lubricating oil is easily separated from the opening of the nozzle hole on the lubricating oil dropping surface.

この発明において、前記微量給油装置は、前記外輪隣接部材内に設けられた油室の壁面を構成するダイヤフラムを圧電素子で振動させて潤滑油を供給するものであっても良い。この構成の場合、圧電素子の駆動を制御することで、供給する潤滑油の量を電子的にコントロールすることができ、軸受の回転数に応じた潤滑油量の制御が容易である。そのため、油が無駄にならず、エネルギー損失を最小限に抑えることができる。   In the present invention, the micro-oil supply device may supply lubricating oil by vibrating a diaphragm constituting a wall surface of an oil chamber provided in the outer ring adjacent member with a piezoelectric element. In this configuration, by controlling the driving of the piezoelectric element, it is possible to electronically control the amount of lubricating oil to be supplied, and it is easy to control the amount of lubricating oil according to the number of rotations of the bearing. Therefore, oil is not wasted and energy loss can be minimized.

この発明において、前記微量給油装置は、前記外輪隣接部材に対する外部に設けた潤滑油貯留タンクから前記外輪隣接部材へ潤滑油を圧送するものであっても良い。   In the present invention, the minute amount oil supply device may pump the lubricating oil from a lubricating oil storage tank provided outside the outer ring adjacent member to the outer ring adjacent member.

この発明において、前記ノズル部の先端を、転がり軸受の保持器の前記外輪隣接部材に対向する端面よりも軸受中心側に位置させるのが望ましい。このように、ノズル部の先端を、保持器の端面よりも軸受中心側に配置することにより、はじかれた潤滑油が少なくとも保持器に接触し、軸受内部に潤滑油が溜まることを期待できる。   In this invention, it is desirable that the tip of the nozzle portion be positioned closer to the bearing center than the end face of the rolling bearing retainer facing the outer ring adjacent member. Thus, by disposing the tip of the nozzle portion closer to the bearing center than the end face of the cage, it can be expected that the repelled lubricating oil will contact at least the cage and the lubricating oil will accumulate inside the bearing.

この発明において、転がり軸受の保持器の内径面に溝を設けても良い。保持器内径面に溝を設けると、潤滑油が保持器のポケット側へ流入し易くなる。   In this invention, you may provide a groove | channel in the internal diameter surface of the holder | retainer of a rolling bearing. Providing a groove on the inner diameter surface of the cage makes it easier for lubricating oil to flow into the pocket side of the cage.

この発明において、転がり軸受の保持器の端部側内径寸法を、ポケットのある軸方向部分の内径寸法よりも小さくするのが望ましい。この構成の場合、保持器からの潤滑油の流出を防ぐことができる。   In this invention, it is desirable to make the inner diameter dimension of the end portion side of the cage of the rolling bearing smaller than the inner diameter dimension of the axial portion having the pocket. In the case of this configuration, the outflow of lubricating oil from the cage can be prevented.

この発明において、前記転がり軸受がアンギュラ玉軸受であり、内輪の正面側の肩部外周面を転走面側が大径となるテーパ面とし、このテーパ面に前記ノズル部を対向させても良い。アンギュラ玉軸受の場合、一般的に内輪の正面側はテーパ面とされるため、このテーパ面を、テーパで生じる周速差による空気流発生の効率化に利用できる。なお、上記の内輪の正面側は、内輪に対して正面,背面を言う場合の正面側であり、軸受に対して言う場合、外輪を基準とするため、軸受の背面側となる。   In the present invention, the rolling bearing may be an angular ball bearing, and the outer peripheral surface of the shoulder portion on the front side of the inner ring may be a tapered surface having a large diameter on the rolling surface side, and the nozzle portion may be opposed to the tapered surface. In the case of an angular ball bearing, since the front side of the inner ring is generally a tapered surface, this tapered surface can be used to increase the efficiency of air flow generation due to the peripheral speed difference caused by the taper. Note that the front side of the inner ring is the front side when referring to the front and the back with respect to the inner ring, and when referring to the bearing, the outer ring is used as a reference, and thus is the back side of the bearing.

この発明の転がり軸受は、この発明の転がり軸受の潤滑装置によって潤滑されることを特徴とする。この場合の転がり軸受は例えばアンギュラ玉軸受である。
この発明の転がり軸受の潤滑装置で潤滑されることにより、圧縮空気を使用せず、軸受トルクの低下を招くことなく微量の潤滑油により潤滑が可能となる。
The rolling bearing of the present invention is characterized in that it is lubricated by the rolling bearing lubrication device of the present invention. The rolling bearing in this case is, for example, an angular ball bearing.
Lubrication with the rolling bearing lubrication device of the present invention enables lubrication with a small amount of lubricating oil without using compressed air and without causing a decrease in bearing torque.

この発明のスピンドル装置は、工作機械の主軸を支持するスピンドル装置であって、この発明の転がり軸受の潤滑装置を用いて前記主軸を支持することを特徴とする。
この構成によると、前記発明の転がり軸受の潤滑装置、および転がり軸受を用いて主軸を支持するので、圧縮空気を使用せず、軸受トルクの低下を招くことなく微量の潤滑油により転がり軸受を潤滑することができ、主軸の駆動トルクを小さくでき、高速化および温度上昇低減が可能となる。
The spindle device of the present invention is a spindle device that supports a main shaft of a machine tool, and is characterized in that the main shaft is supported using the rolling bearing lubrication device of the present invention.
According to this configuration, since the main shaft is supported by the rolling bearing lubrication device and the rolling bearing of the invention, the rolling bearing is lubricated by a small amount of lubricating oil without using compressed air and causing a decrease in bearing torque. Thus, the driving torque of the main shaft can be reduced, and the speed can be increased and the temperature rise can be reduced.

この発明の転がり軸受の潤滑装置は、転がり軸受の外輪に隣接する外輪隣接部材に、内外輪間の軸受空間に挿入されて内輪の肩部外周面に隙間を介して対向するノズル部を設け、このノズル部の前記内輪の肩部外周面に対向する面に、潤滑油を滴下させるノズル孔を開口させ、前記外輪隣接部材から前記ノズル孔に潤滑油を供給する微量給油装置を設けた転がり軸受の潤滑装置において、前記ノズル部の前記ノズル孔が開口した面である潤滑油滴下面とこの面に対向する内輪の肩部外周面との間に、前記内輪の回転によって前記転がり軸受の端面側から転走面側への空気流を生じさせる空気流発生手段を設けたため、圧縮空気を使用せず、軸受トルクの低下を招くことなく微量の潤滑油により転がり軸受を潤滑することができる。
この発明の転がり軸受は、この発明の転がり軸受の潤滑装置によって潤滑されるため、圧縮空気を使用せず、軸受トルクの低下を招くことなく微量の潤滑油により潤滑が可能となる。
この発明のスピンドル装置は、工作機械の主軸を支持するスピンドル装置であって、前記発明の転がり軸受の潤滑装置、および転がり軸受を用いて前記主軸を支持するため、圧縮空気を使用せず、軸受トルクの低下を招くことなく微量の潤滑油により転がり軸受を潤滑することができ、主軸の駆動トルクを小さくでき、高速化および温度上昇低減が可能となる。
In the rolling bearing lubrication device of the present invention, the outer ring adjacent member adjacent to the outer ring of the rolling bearing is provided with a nozzle portion that is inserted into the bearing space between the inner and outer rings and is opposed to the outer peripheral surface of the shoulder of the inner ring through a gap, A rolling bearing provided with a micro lubrication device that opens a nozzle hole for dropping lubricating oil on a surface of the nozzle portion facing the outer peripheral surface of the shoulder portion of the inner ring, and supplies the lubricating oil from the outer ring adjacent member to the nozzle hole. In this lubricating device, the end face side of the rolling bearing is caused by the rotation of the inner ring between the lubricating oil dropping surface, which is the surface where the nozzle hole of the nozzle portion is opened, and the outer peripheral surface of the shoulder portion of the inner ring facing the surface. Therefore, the rolling bearing can be lubricated with a small amount of lubricating oil without using compressed air and without causing a decrease in bearing torque.
Since the rolling bearing of the present invention is lubricated by the rolling bearing lubrication device of the present invention, it can be lubricated with a small amount of lubricating oil without using compressed air and without causing a decrease in bearing torque.
The spindle device according to the present invention is a spindle device that supports a main shaft of a machine tool, and the bearing device supports the main shaft by using the rolling bearing lubrication device and the rolling bearing according to the present invention. The rolling bearing can be lubricated with a small amount of lubricating oil without lowering the torque, the driving torque of the main shaft can be reduced, and the speed can be increased and the temperature rise can be reduced.

(A)はこの発明の一実施形態にかかる転がり軸受の潤滑装置の断面図、(B)は(A)における転がり軸受の内輪の部分平面図である。(A) is sectional drawing of the lubricating device of the rolling bearing concerning one Embodiment of this invention, (B) is a fragmentary top view of the inner ring | wheel of the rolling bearing in (A). この発明の一実施形態にかかる転がり軸受の潤滑装置の断面図である。It is sectional drawing of the lubricating device of the rolling bearing concerning one Embodiment of this invention. 圧電素子を用いた微量給油装置の一例の断面図である。It is sectional drawing of an example of the trace amount oil supply apparatus using a piezoelectric element. 図1の潤滑装置を備えたスピンドル装置の構成図である。It is a block diagram of the spindle apparatus provided with the lubricating device of FIG.

この発明の第1の実施形態を図1と共に説明する。図1(A)はこの実施形態の転がり軸受の潤滑装置の断面図を示す。この転がり軸受の潤滑装置は、外輪隣接部材6のノズル部7から微量の潤滑油を滴下させ、その潤滑油を、転がり軸受1の端面側から転走面2a側へ空気流によって導入することで、転がり軸受1の潤滑を行うものである。転がり軸受1は、例えば工作機械の主軸を支持するものである。
転がり軸受1はアンギュラ玉軸受からなり、内輪2と外輪3の転走面2a,3a間に複数の転動体4を介在させたものである。転動体4はボールからなり、保持器5で保持されている。
A first embodiment of the present invention will be described with reference to FIG. FIG. 1A shows a cross-sectional view of a rolling bearing lubrication device of this embodiment. In this rolling bearing lubrication device, a small amount of lubricating oil is dropped from the nozzle portion 7 of the adjacent member 6 of the outer ring, and the lubricating oil is introduced from the end surface side of the rolling bearing 1 to the rolling surface 2a side by airflow. The rolling bearing 1 is lubricated. The rolling bearing 1 supports, for example, a main shaft of a machine tool.
The rolling bearing 1 is formed of an angular ball bearing, and a plurality of rolling elements 4 are interposed between the rolling surfaces 2 a and 3 a of the inner ring 2 and the outer ring 3. The rolling element 4 is formed of a ball and is held by a cage 5.

外輪隣接部材6は、転がり軸受1の外輪3に隣接して配置した外輪間座からなる。この外輪隣接部材6に、転がり軸受1の内外輪2,3間の軸受空間に挿入されて内輪2の肩部外周面2bに隙間δを介して対向するノズル部7を設ける。このノズル部7は、内輪2の肩部外周面2bの全周に連続して対面する鍔状である。このノズル部7の内輪2の肩部外周面2bに対向する面に、潤滑油を滴下させるノズル孔7aを開口させる。外輪隣接部材6の内部に設けた空間である内空部6aには、この外輪隣接部材6から前記ノズル孔7aに微量の潤滑油を供給する微量給油装置8を設け、内空部6aの開放端側を蓋部材9で閉鎖している。   The outer ring adjacent member 6 includes an outer ring spacer disposed adjacent to the outer ring 3 of the rolling bearing 1. The outer ring adjacent member 6 is provided with a nozzle portion 7 which is inserted into the bearing space between the inner and outer rings 2 and 3 of the rolling bearing 1 and faces the outer peripheral surface 2b of the inner ring 2 via a gap δ. The nozzle portion 7 has a bowl shape that continuously faces the entire circumference of the shoulder portion outer peripheral surface 2 b of the inner ring 2. A nozzle hole 7a for dropping the lubricating oil is formed on the surface of the nozzle portion 7 that faces the outer peripheral surface 2b of the shoulder portion of the inner ring 2. The inner space 6a, which is a space provided inside the outer ring adjacent member 6, is provided with a small amount of oil supply device 8 for supplying a small amount of lubricating oil from the outer ring adjacent member 6 to the nozzle hole 7a, thereby opening the inner space 6a. The end side is closed with a lid member 9.

微量給油装置8は、例えば図3に示すように、潤滑油のプールとなる油室31の壁面を構成するダイヤフラム32を、圧電素子33で振動させて潤滑油を供給するものである。すなわち、ダイアフラム32に接触させた圧電素子33に所定の電圧を負荷させてダイアフラム32を押すことによって、ノズル孔7aへと潤滑油を押し出す。この場合、圧電素子33にかける電圧を調整することで、ダイアフラム32にかかる圧力をコントロールし、潤滑油の供給量を調整することが可能である。なお、油室31の入口部には逆止弁(図示せず)を設けておくのが良い。   For example, as shown in FIG. 3, the micro-oil supply device 8 supplies a lubricating oil by vibrating a diaphragm 32 that constitutes a wall surface of an oil chamber 31 serving as a lubricating oil pool by a piezoelectric element 33. That is, by applying a predetermined voltage to the piezoelectric element 33 brought into contact with the diaphragm 32 and pushing the diaphragm 32, the lubricating oil is pushed out to the nozzle hole 7a. In this case, by adjusting the voltage applied to the piezoelectric element 33, it is possible to control the pressure applied to the diaphragm 32 and adjust the supply amount of the lubricating oil. Note that a check valve (not shown) may be provided at the inlet of the oil chamber 31.

微量給油装置8へは、潤滑油を溜めた外部の潤滑油貯留タンク11から、空気圧やばねの力で油導入路12を経て潤滑油を圧送している。この場合、微量給油装置8は、上記した圧電素子によるものに限らず、ニードルバルブによる絞り流路等となる油量制御機構であっても良い。油導入路12は、前記外輪隣接部材6および転がり軸受1の外輪3が取付けられるハウジング13に設けられた導入路部12aと外輪隣接部材6に設けられた導入路部12bとでなる。   Lubricating oil is pumped to the minute amount oil supply device 8 from an external lubricating oil storage tank 11 in which lubricating oil is stored through an oil introduction path 12 by air pressure or spring force. In this case, the minute amount oil supply device 8 is not limited to the one using the above-described piezoelectric element, but may be an oil amount control mechanism that serves as a throttle passage or the like using a needle valve. The oil introduction path 12 includes an introduction path portion 12 a provided in the housing 13 to which the outer ring adjacent member 6 and the outer ring 3 of the rolling bearing 1 are attached, and an introduction path portion 12 b provided in the outer ring adjacent member 6.

転がり軸受1の前記ノズル部7が対向する内輪2の肩部外周面2bには、図1(B)に内輪2を部分平面図で示すように、内輪3の端面側から転走面2aへと延びる複数条の動圧溝10(ハッチングを施して示す)が、互いに平行に全周にわたって形成されている。各動圧溝10は、軸方向に対して傾斜した溝である。この動圧溝10は、ノズル部7におけるノズル孔7aが開口した面である潤滑油滴下面7bと、この面に対向する内輪2の肩部外周面2bとの間に、内輪2の回転によって転がり軸受1の端面側から転走面2a側への空気流を生じさせる空気流発生手段となるものである。この動圧溝10の深さは、前記ノズル部7と内輪2の肩部外周面2bとの隙間δと同程度とされる。この動圧溝10は、ノズル部7の前記潤滑油滴下面7bに形成しても良いし、内輪2の肩部外周面2bと潤滑油滴下面7bの両面に形成しても良い。   On the outer peripheral surface 2b of the shoulder portion of the inner ring 2 facing the nozzle portion 7 of the rolling bearing 1, as shown in the partial plan view of the inner ring 2 in FIG. 1 (B), from the end surface side of the inner ring 3 to the rolling surface 2a. A plurality of dynamic pressure grooves 10 (shown with hatching) extending in parallel with each other are formed in parallel with each other over the entire circumference. Each dynamic pressure groove 10 is a groove inclined with respect to the axial direction. The dynamic pressure groove 10 is formed by the rotation of the inner ring 2 between the lubricating oil dropping surface 7b, which is the surface of the nozzle unit 7 where the nozzle hole 7a is opened, and the shoulder outer peripheral surface 2b of the inner ring 2 facing this surface. This is air flow generating means for generating an air flow from the end face side of the rolling bearing 1 to the rolling face 2a side. The depth of the dynamic pressure groove 10 is approximately the same as the gap δ between the nozzle portion 7 and the outer peripheral surface 2b of the shoulder portion of the inner ring 2. The dynamic pressure groove 10 may be formed on the lubricating oil dropping surface 7b of the nozzle portion 7, or may be formed on both the shoulder outer peripheral surface 2b of the inner ring 2 and the lubricating oil dropping surface 7b.

前記ノズル部7と内輪2の肩部外周面2bとの隙間δや、前記動圧溝10の深さの選定は、動圧軸受の設計の場合と同様に、以下のように行われる。
一般に、動圧効果を最大とするためには、前記隙間δ、および動圧溝10の溝深さを、共に内輪2の直径の1/100〜1/1000程度にすることが望ましいとされている(非特許文献2)。軸受の膨張を考慮し、最も良く使用される回転数の軸受温度において、前記隙間δが上記の値となるように設計する。ただし、軸受の温度上昇による膨張を考慮しても、内輪2の肩部外周面2bとノズル部7とが接触しないような隙間δでなければならない。例えば、転がり軸受1の内輪2の直径が80mm、温度上昇が30℃程度の場合、常温で最低200〜300μmの直径隙間が必要となる。
Selection of the gap δ between the nozzle portion 7 and the outer peripheral surface 2b of the shoulder portion of the inner ring 2 and the depth of the dynamic pressure groove 10 are performed as follows, as in the case of the design of the dynamic pressure bearing.
Generally, in order to maximize the dynamic pressure effect, it is desirable that both the gap δ and the groove depth of the dynamic pressure groove 10 be about 1/100 to 1/1000 of the diameter of the inner ring 2. (Non-Patent Document 2). Considering the expansion of the bearing, the clearance δ is designed to have the above value at the most frequently used bearing temperature. However, even if the expansion due to the temperature rise of the bearing is taken into consideration, the clearance δ must be such that the outer peripheral surface 2b of the inner ring 2 and the nozzle portion 7 do not contact each other. For example, when the diameter of the inner ring 2 of the rolling bearing 1 is 80 mm and the temperature rise is about 30 ° C., a diameter gap of 200 to 300 μm is required at room temperature.

前記ノズル部7と対向する内輪2の肩部外周面2bは、転走面2a側に向けて大径となるテーパ面としている。これにより、肩部外周面2bにおける軸受外側と軸受内側とで周速差が生じ、その周速差による圧力差で空気流発生手段である前記動圧溝10の空気流を引き込む効果が増すことになる。   The outer peripheral surface 2b of the shoulder portion of the inner ring 2 facing the nozzle portion 7 is a tapered surface having a large diameter toward the rolling surface 2a. As a result, a circumferential speed difference occurs between the bearing outer side and the bearing inner side on the shoulder outer peripheral surface 2b, and the effect of drawing the air flow in the dynamic pressure groove 10 as the air flow generating means by the pressure difference due to the circumferential speed difference is increased. become.

また、前記ノズル部7の潤滑油滴下面7bにおけるノズル孔7aの開口部では、ノズル部7と内輪2の肩部外周面2bとの間の隙間δが最も小さくなるようにしている。具体的には、ノズル部7の潤滑油滴下面における先端部7bに、全周にわたる環状突部7cを設け、この環状突部7cにノズル孔7aを開口させることで、ノズル部7と内輪2の肩部外周面2bとの間の隙間を、ノズル開口部で最も小さくしている。これにより、ベンチュリ効果が生じ、隙間δにおける軸受内側への空気流の流速が増すので、潤滑油滴下面7bにおけるノズル孔7aの開口から潤滑油が離れ、空気流に乗って軸受内側へ噴射され易くなる。
なお、環状突部7cをなくし、図2のように、ノズル部7の潤滑油滴下面7bを一様なテーパ面としても良い。
In addition, the gap δ between the nozzle portion 7 and the outer peripheral surface 2b of the shoulder portion of the inner ring 2 is minimized at the opening portion of the nozzle hole 7a in the lubricating oil dropping surface 7b of the nozzle portion 7. Specifically, an annular protrusion 7c is provided on the tip 7b of the lubricating oil dropping surface of the nozzle 7 over the entire circumference, and a nozzle hole 7a is opened in the annular protrusion 7c, so that the nozzle 7 and the inner ring 2 are opened. The gap between the outer peripheral surface 2b of the shoulder portion is the smallest at the nozzle opening. As a result, a venturi effect is generated, and the flow velocity of the air flow toward the bearing inner side in the gap δ increases, so that the lubricating oil is separated from the opening of the nozzle hole 7a in the lubricating oil dropping surface 7b and is injected into the bearing along the air flow. It becomes easy.
The annular protrusion 7c may be eliminated, and the lubricating oil dropping surface 7b of the nozzle portion 7 may be a uniform tapered surface as shown in FIG.

前記ノズル部7の潤滑油滴下面7bにおけるノズル孔7aの開口部には、例えばPTFE(ポリテトラフルオロエチレン)系の撥油性コーティングを施し、潤滑油滴下面7bにおけるノズル孔7aの開口から潤滑油が離れ易くしている。   For example, PTFE (polytetrafluoroethylene) -based oil-repellent coating is applied to the opening of the nozzle hole 7a in the lubricating oil dropping surface 7b of the nozzle part 7, and the lubricating oil is supplied from the opening of the nozzle hole 7a in the lubricating oil dropping surface 7b. Is easy to leave.

前記ノズル部7の先端は、転がり軸受1の保持器5の外輪隣接部材6に対向する端面よりも軸受中心側に位置させてある。このように、ノズル部7の先端を、保持器5の端面よりも軸受中心側に配置することにより、はじかれた潤滑油が少なくとも保持器5に接触し、軸受内部に潤滑油が溜まることを期待できる。   The tip of the nozzle portion 7 is located closer to the bearing center than the end face of the roller bearing 1 facing the outer ring adjacent member 6 of the cage 5. In this way, by disposing the tip of the nozzle portion 7 closer to the bearing center than the end face of the cage 5, the repelled lubricating oil comes into contact with at least the cage 5 and the lubricating oil accumulates inside the bearing. I can expect.

保持器5の内径面には溝5aを設け、潤滑油が保持器5のポケット5b側へ流入し易いようにしている。さらに、保持器5の端部側内径寸法は、ポケット5b側内径寸法よりも小さくして、保持器5からの潤滑油の流出を防ぐようにしている。本図では溝を矩形としたが、例えばテーパ状の形状で中心側に拡径する形状でもよい。   A groove 5 a is provided on the inner diameter surface of the cage 5 so that the lubricating oil easily flows into the pocket 5 b side of the cage 5. Further, the inner diameter dimension of the end portion side of the cage 5 is made smaller than the inner diameter dimension of the pocket 5b side to prevent the lubricating oil from flowing out from the cage 5. In this figure, the groove is rectangular, but it may be, for example, a tapered shape that expands toward the center.

上記構成の転がり軸受の潤滑装置によると、転がり軸受1の内輪2の肩部外周面2bの空気流発生手段動圧溝10が生じさせる空気流に乗って、微量給油装置8によって外輪隣接部材6のノズル部7のノズル孔7aに供給される潤滑油が、ノズル部7の潤滑油滴下面7bとこの面に対向する内輪2の肩部外周面2bとの間に設けられた隙間δより転がり軸受1の内側へと供給され、転がり軸受1の潤滑が行われる。このように、転がり軸受1自身の回転により、空気流を発生させるため、エアーを使用する必要がない。したがって、圧縮空気を使用せず、軸受トルクの低下を招くことなく微量の潤滑油により転がり軸受1を潤滑することができる。   According to the rolling bearing lubrication device having the above-described configuration, the outer ring adjacent member 6 is mounted on the air flow generated by the air flow generating means dynamic pressure groove 10 on the outer peripheral surface 2b of the inner ring 2 of the rolling bearing 1 by the micro oil supply device 8. The lubricating oil supplied to the nozzle hole 7a of the nozzle portion 7 rolls from a gap δ provided between the lubricating oil dropping surface 7b of the nozzle portion 7 and the shoulder outer peripheral surface 2b of the inner ring 2 facing this surface. It is supplied to the inside of the bearing 1 and the rolling bearing 1 is lubricated. Thus, since the air flow is generated by the rotation of the rolling bearing 1 itself, it is not necessary to use air. Therefore, the rolling bearing 1 can be lubricated with a small amount of lubricating oil without using compressed air and without causing a decrease in bearing torque.

この実施形態では、特に低トルク、低発熱を要求される工作機械の主軸向けのアンギュラ玉軸受を潤滑対象の転がり軸受1と想定して例示したが、円筒ころ軸受や円すいころ軸受など、その他の転がり軸受にも同様に適用することができる。   In this embodiment, the angular ball bearing for the main spindle of a machine tool that requires particularly low torque and low heat generation has been exemplified as the rolling bearing 1 to be lubricated. The same can be applied to a rolling bearing.

図4は上記転がり軸受の潤滑装置を備えたスピンドル装置の一例を示す。このスピンドル装置は、工作機械に設けられたものであり、主軸15の一端にワークまたは工具のチャックが取付けられる。主軸15は、軸方向に離れた複数の転がり軸受1によって支持されており、これらの転がり軸受1の潤滑に図1の潤滑装置が採用されている。各転がり軸受1の内輪2は主軸15の外径面に嵌合し、外輪3はハウジング13の内径面に嵌合している。これら内外輪2,3は、内輪押さえ25および外輪押さえ26により、ハウジング13内に固定されている。ハウジング13は、内周ハウジング13Aと外周ハウジング13Bの二重構造とされ、内外のハウジング13A,13B間に冷却油流路16が形成されている。内周ハウジング13Aには、図1における油導入路12の導入路部12aが設けられている。また、ハウジング13には、内径面における転がり軸受1の設置部付近に潤滑油排出用溝22が設けられ、この潤滑油排出用溝22から外部に開放される潤滑油排出用流路23が設けられる。外部には、前記油導入路12に連通する潤滑油貯留タンク11が設けられ、油導入路12を経て図1の微量給油装置8に潤滑油が圧送される。   FIG. 4 shows an example of a spindle device provided with the rolling bearing lubrication device. This spindle device is provided in a machine tool, and a work or tool chuck is attached to one end of a main shaft 15. The main shaft 15 is supported by a plurality of rolling bearings 1 separated in the axial direction, and the lubricating device shown in FIG. The inner ring 2 of each rolling bearing 1 is fitted to the outer diameter surface of the main shaft 15, and the outer ring 3 is fitted to the inner diameter surface of the housing 13. These inner and outer rings 2 and 3 are fixed in the housing 13 by an inner ring presser 25 and an outer ring presser 26. The housing 13 has a double structure of an inner peripheral housing 13A and an outer peripheral housing 13B, and a cooling oil passage 16 is formed between the inner and outer housings 13A and 13B. The inner peripheral housing 13A is provided with an introduction path portion 12a of the oil introduction path 12 in FIG. Further, the housing 13 is provided with a lubricating oil discharge groove 22 in the vicinity of the installation portion of the rolling bearing 1 on the inner diameter surface, and a lubricating oil discharge channel 23 opened to the outside from the lubricating oil discharge groove 22 is provided. It is done. A lubricating oil storage tank 11 communicating with the oil introduction path 12 is provided outside, and the lubricating oil is pressure-fed through the oil introduction path 12 to the minute amount oil supply device 8 of FIG.

このように構成されたスピンドル装置では、上記した転がり軸受の潤滑装置を組み込んでいるので、圧縮空気を使用せず、軸受トルクの低下を招くことなく微量の潤滑油により転がり軸受1を潤滑することができ、主軸15の駆動トルクを小さくでき、高速化および温度上昇低減が可能となる。   In the spindle device configured as described above, since the rolling bearing lubrication device described above is incorporated, the rolling bearing 1 is lubricated with a small amount of lubricating oil without using compressed air and causing a decrease in bearing torque. The driving torque of the main shaft 15 can be reduced, and the speed can be increased and the temperature rise can be reduced.

1…転がり軸受
2…内輪
2a…内輪転走面
2b…肩部外周面
3…外輪
3a…外輪転走面
4…転動体
5…保持器
5a…溝
6…外輪隣接部材
6a…内空部
7…ノズル部
7a…ノズル孔
7b…潤滑油滴下面
7c…環状突部
8…微量給油装置
9…蓋部材
10…動圧溝(空気流発生手段)
δ…隙間
11…潤滑油貯留タンク
12…油導入路
12a…ハウジング側油導入路部
12b…外輪隣接部材側油導入路部
13…ハウジング
13A…内周ハウジング
13B…外周ハウジング
15…主軸
16…冷却油流路
22…潤滑油排出用溝
23…潤滑油排出用流路
25…内輪押さえ
26…外輪押さえ
31…油室
32…ダイヤフラム
33…圧電素子
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Inner ring 2a ... Inner ring rolling surface 2b ... Shoulder outer peripheral surface 3 ... Outer ring 3a ... Outer ring rolling surface 4 ... Rolling element 5 ... Cage 5a ... Groove 6 ... Outer ring adjacent member 6a ... Inner space 7 ... Nozzle part 7a ... Nozzle hole 7b ... Lubricating oil dropping surface 7c ... Annular protrusion 8 ... Trace oil supply device 9 ... Lid member 10 ... Dynamic pressure groove (air flow generating means)
δ ... Clearance 11 ... Lubricating oil storage tank 12 ... Oil introduction path 12a ... Housing side oil introduction path 12b ... Outer ring adjacent member side oil introduction path 13 ... Housing 13A ... Inner peripheral housing 13B ... Outer peripheral housing 15 ... Main shaft 16 ... Cooling Oil flow path 22 ... Lubricating oil discharge groove 23 ... Lubricating oil discharge flow path 25 ... Inner ring retainer 26 ... Outer ring retainer 31 ... Oil chamber 32 ... Diaphragm 33 ... Piezoelectric element

Claims (20)

転がり軸受の外輪に隣接する外輪隣接部材に、内外輪間の軸受空間に挿入されて内輪の肩部外周面に隙間を介して対向するノズル部を設け、このノズル部の前記内輪の肩部外周面に対向する面に、潤滑油を滴下させるノズル孔を開口させ、前記外輪隣接部材から前記ノズル孔に潤滑油を供給する微量給油装置を設けた転がり軸受の潤滑装置において、
前記ノズル部の前記ノズル孔が開口した面である潤滑油滴下面とこの面に対向する内輪の肩部外周面との間に、前記内輪の回転によって前記転がり軸受の端面側から転走面側への空気流を生じさせる空気流発生手段を設けたことを特徴とする転がり軸受の潤滑装置。
The outer ring adjacent member adjacent to the outer ring of the rolling bearing is provided with a nozzle portion that is inserted into the bearing space between the inner and outer rings and faces the outer peripheral surface of the inner ring through a gap, and the outer periphery of the shoulder portion of the inner ring of the nozzle portion In a lubricating device for a rolling bearing provided with a minute amount oil supply device that opens a nozzle hole for dropping lubricating oil on a surface facing the surface and supplies lubricating oil to the nozzle hole from the outer ring adjacent member,
A rolling surface side from an end surface side of the rolling bearing by rotation of the inner ring between a lubricating oil dropping surface which is a surface where the nozzle hole of the nozzle portion is opened and a shoulder outer peripheral surface of the inner ring facing the surface. An air flow generating means for generating an air flow to the roller bearing is provided.
請求項1において、前記ノズル部は、前記内輪の肩部外周面の全周に連続して対面する鍔状である転がり軸受の潤滑装置。   2. The lubricating device for a rolling bearing according to claim 1, wherein the nozzle portion has a bowl-like shape that continuously faces the entire circumference of the outer peripheral surface of the shoulder portion of the inner ring. 請求項2において、前記空気流発生手段が、前記ノズル部の前記潤滑油滴下面および前記内輪の肩部外周面のいずれか一方の面、または両方の面に形成した動圧溝である転がり軸受の潤滑装置。   3. The rolling bearing according to claim 2, wherein the air flow generating means is a dynamic pressure groove formed on one or both of the lubricating oil dropping surface of the nozzle portion and the outer peripheral surface of the shoulder portion of the inner ring. Lubrication equipment. 請求項3において、前記動圧溝は、円周方向に複数並び、軸方向に対して傾斜して形成された溝である転がり軸受の潤滑装置。   4. The rolling bearing lubrication device according to claim 3, wherein a plurality of the dynamic pressure grooves are arranged in the circumferential direction and are inclined with respect to the axial direction. 請求項3または請求項4において、前記動圧溝の深さが、前記ノズル部と前記内輪の肩部外周面との間の隙間と同程度である転がり軸受の潤滑装置。   The rolling bearing lubrication device according to claim 3 or 4, wherein a depth of the dynamic pressure groove is substantially the same as a gap between the nozzle portion and an outer peripheral surface of a shoulder portion of the inner ring. 請求項3ないし請求項5のいずれか1項において、前記外輪隣接部材が外輪間座である転がり軸受の潤滑装置。   The rolling bearing lubrication device according to any one of claims 3 to 5, wherein the outer ring adjacent member is an outer ring spacer. 請求項3ないし請求項6のいずれか1項において、前記ノズル部と前記内輪の肩部外周面との間の隙間が、軸受使用温度において、軸受内輪直径の1/100〜1/1000の範囲である転がり軸受の潤滑装置。   7. The gap between the nozzle portion and the outer peripheral surface of the shoulder portion of the inner ring according to claim 3, wherein the gap between the outer peripheral surface of the inner ring and the inner ring has a range of 1/100 to 1/1000 of the bearing inner ring diameter at the bearing operating temperature. Is a rolling bearing lubrication device. 請求項3ないし請求項7のいずれか1項において、前記ノズル部と対向する前記内輪の肩部外周面を転走面側に向けて大径となるテーパ面とした転がり軸受の潤滑装置。   The rolling bearing lubrication device according to any one of claims 3 to 7, wherein an outer peripheral surface of a shoulder portion of the inner ring facing the nozzle portion is a tapered surface having a large diameter toward the rolling surface side. 請求項3ないし請求項8のいずれか1項において、前記ノズル部の前記潤滑油滴下面における前記ノズル孔が開口する部位で、前記ノズル部と前記内輪の肩部外周面との間の隙間を最も小さくした転がり軸受の潤滑装置。   9. The gap between the nozzle portion and the outer peripheral surface of the shoulder portion of the inner ring at a portion where the nozzle hole is opened in the lubricating oil dropping surface of the nozzle portion according to claim 3. The smallest rolling bearing lubrication system. 請求項9において、前記ノズル部の前記潤滑油滴下面における先端部に、全周にわたる環状突部を設け、この環状突部に前記ノズル孔を開口させた転がり軸受の潤滑装置。     10. The lubricating device for a rolling bearing according to claim 9, wherein an annular protrusion is provided at the tip of the nozzle portion on the surface of the lubricating oil dropping surface, and the nozzle hole is opened in the annular protrusion. 請求項3ないし請求項10のいずれか1項において、前記潤滑油滴下面における前記ノズル孔の開口部に撥油性のコーティングを施した転がり軸受の潤滑装置。   The rolling bearing lubrication device according to any one of claims 3 to 10, wherein an oil-repellent coating is applied to an opening of the nozzle hole on the lubricating oil dropping surface. 請求項3ないし請求項11のいずれか1項において、前記微量給油装置は、前記外輪隣接部材内に設けられた油室の壁面を構成するダイヤフラムを圧電素子で振動させて潤滑油を供給するものである転がり軸受の潤滑装置。   12. The micro oil supply device according to claim 3, wherein the micro oil supply device supplies lubricating oil by vibrating a diaphragm constituting a wall surface of an oil chamber provided in the outer ring adjacent member with a piezoelectric element. Is a rolling bearing lubrication device. 請求項3ないし請求項10のいずれか1項において、前記微量給油装置は、前記外輪隣接部材に対する外部に設けた潤滑油貯留タンクから前記外輪隣接部材へ潤滑油を圧送するものとした転がり軸受の潤滑装置。   The rolling bearing according to any one of claims 3 to 10, wherein the micro oil supply device is configured to pump the lubricating oil from a lubricating oil storage tank provided outside the outer ring adjacent member to the outer ring adjacent member. Lubrication device. 請求項1ないし請求項13のいずれか1項において、前記ノズル部の先端を、転がり軸受の保持器の前記外輪隣接部材に対向する端面よりも軸受中心側に位置させた転がり軸受の潤滑装置。   14. The rolling bearing lubrication device according to claim 1, wherein a tip of the nozzle portion is positioned closer to a bearing center side than an end face of the rolling bearing retainer facing the outer ring adjacent member. 請求項3ないし請求項12のいずれか1項において、転がり軸受の保持器の内径面に溝を設けた転がり軸受の潤滑装置。   The rolling bearing lubrication device according to any one of claims 3 to 12, wherein a groove is provided in an inner diameter surface of a cage of the rolling bearing. 請求項3ないし請求項15のいずれか1項において、転がり軸受の保持器の端部側内径寸法を、ポケットのある軸方向部分の内径寸法よりも小さくした転がり軸受の潤滑装置。   The rolling bearing lubrication device according to any one of claims 3 to 15, wherein the inner diameter dimension of the end portion side of the cage of the rolling bearing is smaller than the inner diameter dimension of the axial portion having the pocket. 請求項3ないし請求項16のいずれか1項において、前記転がり軸受がアンギュラ玉軸受であり、内輪の正面側の肩部外周面を転走面側が大径となるテーパ面とし、このテーパ面に前記ノズル部が対向する転がり軸受の潤滑装置。   The rolling bearing according to any one of claims 3 to 16, wherein the rolling bearing is an angular ball bearing, and the shoulder outer peripheral surface on the front side of the inner ring is a tapered surface having a large diameter on the rolling surface side. A lubricating device for a rolling bearing facing the nozzle portion. 請求項1ないし請求項17のいずれか1項に記載の転がり軸受の潤滑装置によって潤滑されることを特徴とする転がり軸受。   A rolling bearing characterized by being lubricated by the rolling bearing lubrication device according to any one of claims 1 to 17. 請求項18において、転がり軸受がアンギュラ玉軸受である転がり軸受。   The rolling bearing according to claim 18, wherein the rolling bearing is an angular ball bearing. 工作機械の主軸を支持するスピンドル装置であって、請求項3ないし請求項17のいずれか1項に記載の転がり軸受の潤滑装置が設けられた転がり軸受を用いて前記主軸を支持することを特徴とするスピンドル装置。   A spindle device for supporting a main shaft of a machine tool, wherein the main shaft is supported using a rolling bearing provided with the rolling bearing lubrication device according to any one of claims 3 to 17. Spindle device.
JP2010218710A 2010-09-29 2010-09-29 Lubricating device for rolling bearing Pending JP2012072851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218710A JP2012072851A (en) 2010-09-29 2010-09-29 Lubricating device for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218710A JP2012072851A (en) 2010-09-29 2010-09-29 Lubricating device for rolling bearing

Publications (1)

Publication Number Publication Date
JP2012072851A true JP2012072851A (en) 2012-04-12

Family

ID=46169232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218710A Pending JP2012072851A (en) 2010-09-29 2010-09-29 Lubricating device for rolling bearing

Country Status (1)

Country Link
JP (1) JP2012072851A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2700834A1 (en) * 2012-08-21 2014-02-26 Jtekt Corporation Rolling bearing with dynamic pressure generating grooves formed in a raceway of a bearing ring
CN104452118A (en) * 2014-12-19 2015-03-25 拓卡奔马机电科技有限公司 Rear towing wheel device capable of adding lubricating oil on cocking machine
CN104499195A (en) * 2014-12-19 2015-04-08 拓卡奔马机电科技有限公司 Embodiment machine rear draw wheel device allowing lubrication oil to feed
CN104776115A (en) * 2015-04-30 2015-07-15 德清德曼汽车零部件有限公司 Double-row tapered roller bearing
CN104806640A (en) * 2015-04-30 2015-07-29 德清德曼汽车零部件有限公司 Outer ring of tapered roller bearing
CN105003543A (en) * 2014-04-15 2015-10-28 株式会社捷太格特 Rolling bearing device
JP2015206400A (en) * 2014-04-18 2015-11-19 株式会社ジェイテクト rolling bearing device
JP2015206399A (en) * 2014-04-18 2015-11-19 株式会社ジェイテクト rolling bearing device
CN106122282A (en) * 2016-08-29 2016-11-16 无锡三立轴承股份有限公司 The lubrication mounting structure of bearing
JP2017002943A (en) * 2015-06-05 2017-01-05 株式会社ジェイテクト Rolling bearing device
CN107366681A (en) * 2016-05-11 2017-11-21 株式会社捷太格特 Rolling bearing system
DE102016222412A1 (en) * 2016-11-15 2018-05-17 Schaeffler Technologies AG & Co. KG Schmiermittelzuführbauteil
EP3273076A4 (en) * 2015-03-17 2019-01-02 NTN Corporation Bearing device and machine device
CN114412736A (en) * 2022-01-27 2022-04-29 北京三力新能科技有限公司 Bearing lubricating grease feeding device and wind generating set
JP2022547217A (en) * 2019-10-02 2022-11-10 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Epiram mechanical part manufacturing method
CN115681338A (en) * 2022-10-31 2023-02-03 哈尔滨浩星科技有限公司 Active lubrication ball bearing device actuated by piezoelectric drive

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2700834A1 (en) * 2012-08-21 2014-02-26 Jtekt Corporation Rolling bearing with dynamic pressure generating grooves formed in a raceway of a bearing ring
CN103629244A (en) * 2012-08-21 2014-03-12 株式会社捷太格特 Rolling bearing
US8770847B2 (en) 2012-08-21 2014-07-08 Jtekt Corporation Rolling bearing
CN103629244B (en) * 2012-08-21 2017-08-25 株式会社捷太格特 Rolling bearing
CN105003543B (en) * 2014-04-15 2019-03-15 株式会社捷太格特 Rolling bearing system
CN105003543A (en) * 2014-04-15 2015-10-28 株式会社捷太格特 Rolling bearing device
US9933016B2 (en) 2014-04-15 2018-04-03 Jtekt Corporation Rolling bearing device
JP2015206400A (en) * 2014-04-18 2015-11-19 株式会社ジェイテクト rolling bearing device
JP2015206399A (en) * 2014-04-18 2015-11-19 株式会社ジェイテクト rolling bearing device
CN104452118A (en) * 2014-12-19 2015-03-25 拓卡奔马机电科技有限公司 Rear towing wheel device capable of adding lubricating oil on cocking machine
CN104499195A (en) * 2014-12-19 2015-04-08 拓卡奔马机电科技有限公司 Embodiment machine rear draw wheel device allowing lubrication oil to feed
EP3273076A4 (en) * 2015-03-17 2019-01-02 NTN Corporation Bearing device and machine device
CN104806640B (en) * 2015-04-30 2017-05-24 德清德曼汽车零部件有限公司 Outer ring of tapered roller bearing
CN104806640A (en) * 2015-04-30 2015-07-29 德清德曼汽车零部件有限公司 Outer ring of tapered roller bearing
CN104776115B (en) * 2015-04-30 2017-05-31 浙江金泰实业发展有限公司 Double-row conical bearing
CN104776115A (en) * 2015-04-30 2015-07-15 德清德曼汽车零部件有限公司 Double-row tapered roller bearing
JP2017002943A (en) * 2015-06-05 2017-01-05 株式会社ジェイテクト Rolling bearing device
CN107366681A (en) * 2016-05-11 2017-11-21 株式会社捷太格特 Rolling bearing system
CN107366681B (en) * 2016-05-11 2021-03-09 株式会社捷太格特 Rolling bearing device
CN106122282A (en) * 2016-08-29 2016-11-16 无锡三立轴承股份有限公司 The lubrication mounting structure of bearing
WO2018091025A1 (en) * 2016-11-15 2018-05-24 Schaeffler Technologies AG & Co. KG Lubricant feed component
DE102016222412A1 (en) * 2016-11-15 2018-05-17 Schaeffler Technologies AG & Co. KG Schmiermittelzuführbauteil
JP2022547217A (en) * 2019-10-02 2022-11-10 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Epiram mechanical part manufacturing method
JP7365497B2 (en) 2019-10-02 2023-10-19 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Epiram mechanical parts manufacturing method
CN114412736A (en) * 2022-01-27 2022-04-29 北京三力新能科技有限公司 Bearing lubricating grease feeding device and wind generating set
CN115681338A (en) * 2022-10-31 2023-02-03 哈尔滨浩星科技有限公司 Active lubrication ball bearing device actuated by piezoelectric drive

Similar Documents

Publication Publication Date Title
JP2012072851A (en) Lubricating device for rolling bearing
JP2007024256A (en) Lubricating device of rolling bearing
JP5137719B2 (en) Rolling bearing device
JP2008240938A (en) Lubrication device for rolling bearing
JP4256391B2 (en) Rolling bearing
JP2008291970A (en) Rolling bearing device
KR20190028780A (en) Ball bearings, spindle devices and machine tools
US10221892B2 (en) Rolling bearing apparatus
JP2007024252A (en) Lubricating device of rolling bearing
JP4732301B2 (en) Rolling bearing
JP6234017B2 (en) Lubrication structure of bearing device
JP4692385B2 (en) Rolling bearing device
JP2007292117A (en) Rolling bearing
JP5018334B2 (en) Rolling bearing device
JP2007024258A (en) Lubricating device of rolling bearing
JP2006226427A (en) Rolling bearing
JP2005090713A (en) Bearing device
CN105889338A (en) Rolling bearing apparatus
JP2011058520A (en) Rolling bearing device
JP5045409B2 (en) Rolling bearing
JP4527622B2 (en) Rolling bearing lubrication system
JP2004225807A (en) Lubricating device for rolling bearing
JP2008082497A (en) Lubricating device of roll bearing
JP4045291B2 (en) Rolling bearing device
JP2008082495A (en) Lubricating device of rolling bearing