JP2024043034A - bearing device - Google Patents

bearing device Download PDF

Info

Publication number
JP2024043034A
JP2024043034A JP2022148005A JP2022148005A JP2024043034A JP 2024043034 A JP2024043034 A JP 2024043034A JP 2022148005 A JP2022148005 A JP 2022148005A JP 2022148005 A JP2022148005 A JP 2022148005A JP 2024043034 A JP2024043034 A JP 2024043034A
Authority
JP
Japan
Prior art keywords
spacer
air
bearing
cylindrical roller
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022148005A
Other languages
Japanese (ja)
Inventor
峰夫 古山
Mineo Furuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2022148005A priority Critical patent/JP2024043034A/en
Publication of JP2024043034A publication Critical patent/JP2024043034A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

To provide a bearing device capable of effectively cooling a cylindrical roller bearing without interrupting the lubrication of an angular ball bearing on the cylindrical roller bearing side.SOLUTION: The bearing device includes a plurality of bearings consisting of cylindrical roller bearings 2 and combined angular ball bearings 3 arranged side by side in an axial direction, and a cooling mechanism 4 for cooling each of the bearings, and further includes air supply amount adjusting means 20 for adjusting a supply amount of compressed air flowing into one angular ball bearing 3A adjacent to the cylindrical roller bearing 2, out of the combined angular ball bearing 3. In the air supply amount adjusting means 20, a relation of I>II>III is established among an outer diameter position I of one end face 13a adjacent to an inward spacer 6, of an inner ring 13 of one angular ball bearing 3A, an outer diameter position II of one end face 12a adjacent to the inward spacer 6, of an inner ring 12 of the cylindrical roller bearing 2, and a radial position III of an inner peripheral face 5a of an air-cooling spacer 5.SELECTED DRAWING: Figure 4

Description

本発明は、軸受装置に関し、例えば、工作機械の主軸の支持、産業機械、その他高速回転で使用される円筒ころ軸受とアンギュラ玉軸受で構成する主軸装置における軸受の冷却構造に適用される技術に関する。 The present invention relates to a bearing device, and relates to a technology applied to a cooling structure for a bearing in a main spindle device composed of a cylindrical roller bearing and an angular contact ball bearing used for supporting the main spindle of a machine tool, industrial machinery, and other high-speed rotations. .

工作機械の中で、マシニングセンタの主軸をはじめ、高速運転される支持軸受では、アンギュラ玉軸受が広く使用される。前記主軸装置において、加工時の主軸先端からの外部荷重に対し、主軸変位を小さく抑えたい場合または高負荷加工に対応すべく、円筒ころ軸受を工具先端側に配置する場合がある。こうした主軸では軸受に常に新しい油を供給し、長期にわたり安定した潤滑状態を保つことのできるエアオイル潤滑やオルミスト潤滑に代表される油潤滑で使用される場合が多い。いずれの潤滑方法も、圧縮空気により、微量の潤滑油を軸受内部に供給し使用される。 Among machine tools, angular contact ball bearings are widely used as support bearings that operate at high speeds, including the main spindle of machining centers. In the spindle device, a cylindrical roller bearing may be disposed on the tool tip side in order to suppress the spindle displacement to a small level in response to an external load from the tip of the spindle during machining, or to cope with high-load machining. These main shafts are often used with oil lubrication, such as air-oil lubrication or ormist lubrication, which constantly supplies new oil to the bearings and maintains a stable lubrication state over a long period of time. Both lubrication methods use compressed air to supply a small amount of lubricating oil into the bearing.

主軸先端には、円筒ころ軸受、円筒ころ軸受にエアオイルを供給するエアオイルノズル付き間座、アキシアル荷重用アンギュラ玉軸受の順に配置され、通常内径寸法、外径寸法は同じものを使用する。
同サイズの軸受では、点接触のアンギュラ玉軸受に比べ、線接触の円筒ころ軸受が高速運転時に発熱しやすい。また、高速主軸の要求には、アンギュラ玉軸受はセラミックボールを用いた軸受とする場合が多いが、円筒ころ軸受のセラミックころは、高価であり実用上は軸受鋼のころが主流である。こうした点から、円筒ころ軸受の発熱が主軸の高速化の課題となる。
At the tip of the main shaft, a cylindrical roller bearing, a spacer with an air oil nozzle that supplies air oil to the cylindrical roller bearing, and an angular contact ball bearing for axial loads are arranged in this order, and the inner diameter and outer diameter are usually the same.
Among bearings of the same size, line contact cylindrical roller bearings generate more heat during high-speed operation than point contact angular contact ball bearings. Furthermore, in order to meet the demands of high-speed spindles, angular contact ball bearings often use ceramic balls, but ceramic rollers in cylindrical roller bearings are expensive, and in practice, bearing steel rollers are the mainstream. From this point of view, the heat generation of cylindrical roller bearings becomes an issue in increasing the speed of the main shaft.

また主軸では、ハウジング側の外輪側が放熱性に優れ、軸側とはめあう内輪側の温度が高くなり、この内輪と外輪の温度差により、組込時の予圧から運転時の予圧は更に高くなり、高速域の連続運転では、主軸の異常発熱を招く恐れがある。こうした内外輪温度差を抑えるため、アンギュラ玉軸受の背面合せの間に空冷間座を用いた軸受装置の冷却構造がある(特許文献1)。 In addition, in the main shaft, the outer ring side on the housing side has excellent heat dissipation, and the temperature of the inner ring side that fits into the shaft side becomes high. Due to this temperature difference between the inner ring and outer ring, the preload at the time of assembly becomes even higher during operation. , Continuous operation at high speeds may lead to abnormal heat generation of the main shaft. In order to suppress such a temperature difference between the inner and outer rings, there is a cooling structure for a bearing device that uses an air cooling spacer between back-to-back alignments of angular contact ball bearings (Patent Document 1).

図9に示す従来例の主軸は、円筒ころ軸受50とアキシアル荷重用アンギュラ玉軸受51の間に設けた外輪間座52から、円筒ころ軸受50へのエアオイルを供給する。また、アキシアル荷重用アンギュラ玉軸受51の背面合せの間座53からアンギュラ玉軸受51へのエアオイルを供給する。
エアオイル潤滑では油量0.01~0.03cc程度を1ショットとし、その給油間隔の調整により、軸受内部の油量を調整する。またこの潤滑油を軸受内部に搬送するため圧縮エアを20~40NL/分程度を供給する。
In the conventional main shaft shown in FIG. 9, air oil is supplied to the cylindrical roller bearing 50 from an outer ring spacer 52 provided between the cylindrical roller bearing 50 and the axial load angular contact ball bearing 51. Also, air oil is supplied to the angular ball bearing 51 from the spacer 53 of the axial load angular ball bearing 51 which is aligned back to back.
In air-oil lubrication, one shot is approximately 0.01 to 0.03cc of oil, and the amount of oil inside the bearing is adjusted by adjusting the oil supply interval. In addition, compressed air is supplied at a rate of about 20 to 40 NL/min to transport this lubricating oil inside the bearing.

特許文献1の技術では、例えば、軸受内径φ70mmであれば、隣接する外輪間座側から内輪間座側に圧縮エアを100~300NL/分供給することで、内輪間座側を冷却し、隣接する両側のアンギュラ玉軸受の内輪側を冷却する。それにより内外輪温度差を抑制し、運転時の予圧の上昇を抑制することで、高速運転を可能とし、初期からより高い予圧状態とすることができる。 In the technology of Patent Document 1, for example, if the inner diameter of the bearing is 70 mm, compressed air is supplied from the adjacent outer ring spacer side to the inner ring spacer side at 100 to 300 NL/min to cool the inner ring spacer side and Cool the inner rings of the angular contact ball bearings on both sides. This suppresses the temperature difference between the inner and outer wheels and suppresses the increase in preload during operation, thereby enabling high-speed operation and achieving a higher preload state from the beginning.

特許第6144024号公報Patent No. 6144024

円筒ころ軸受を冷却する場合、圧縮エアは、エアオイル潤滑で使用するエア量に対し、3~10倍と非常に多量の圧縮エアを供給する。この場合、円筒ころ軸受側のアンギュラ玉軸受側に圧縮エアが大量に流入すると、アンギュラ玉軸受背面合せ面に位置する間座から供給されたエアオイルが、円筒ころ軸受側に位置するアンギュラ玉軸受内部の通過を妨げ円滑な潤滑を阻害する。
円筒ころ軸受側のアンギュラ玉軸受のエアオイル潤滑を阻害することなく、効果的に円筒ころ軸受を冷却する必要がある。
When cooling cylindrical roller bearings, an extremely large amount of compressed air is supplied, 3 to 10 times the amount of air used for air-oil lubrication. In this case, when a large amount of compressed air flows into the angular contact ball bearing on the cylindrical roller bearing side, the air oil supplied from the spacer located on the back-to-back mating surface of the angular contact ball bearing flows into the angular contact ball bearing located on the cylindrical roller bearing side. This prevents smooth lubrication.
It is necessary to effectively cool the cylindrical roller bearing without interfering with the air-oil lubrication of the angular contact ball bearing on the cylindrical roller bearing side.

本発明の目的は、円筒ころ軸受側のアンギュラ玉軸受の潤滑を阻害することなく、効果的に円筒ころ軸受を冷却することができる軸受装置を提供することである。 An object of the present invention is to provide a bearing device that can effectively cool a cylindrical roller bearing without interfering with the lubrication of the angular contact ball bearing on the cylindrical roller bearing side.

本発明の軸受装置は、円筒ころ軸受および組合せアンギュラ玉軸受が軸方向に並ぶ複数の軸受と、これら軸受をそれぞれ冷却する冷却機構とを備えた軸受装置であって、
前記組合せアンギュラ玉軸受のうち、前記円筒ころ軸受に隣り合う一方のアンギュラ玉軸受に流入する圧縮エアの供給量を調整するエア供給量調整手段を備えた。
前記圧縮エアの供給量を調整するとは、一方のアンギュラ玉軸受に流入する圧縮エアの供給量を、円筒ころ軸受に供給する圧縮エアの供給量に対し相対的に調整することを意味する。
The bearing device of the present invention is a bearing device including a plurality of cylindrical roller bearings and a combination angular ball bearing arranged in the axial direction, and a cooling mechanism that cools each of these bearings, the bearing device comprising:
Of the combination angular contact ball bearings, an air supply amount adjusting means is provided for adjusting the amount of compressed air flowing into one angular contact ball bearing adjacent to the cylindrical roller bearing.
Adjusting the supply amount of compressed air means adjusting the supply amount of compressed air flowing into one angular ball bearing relative to the supply amount of compressed air supplied to the cylindrical roller bearing.

この構成によると、組合せアンギュラ玉軸受のうち、円筒ころ軸受に隣り合う一方のアンギュラ玉軸受に流入する圧縮エアの供給量を調整するエア供給量調整手段を備えた。このため、前記一方のアンギュラ玉軸受に流入する圧縮エアが過大になることを未然に防ぎ、例えば、組合せアンギュラ玉軸受間等から供給された潤滑油が、他方のアンギュラ玉軸受内部だけでなく、前記一方のアンギュラ玉軸受の内部を円滑に通過する。したがって、円筒ころ側のアンギュラ玉軸受の潤滑を阻害することなく、効果的に円筒ころ軸受を冷却することができる。 According to this configuration, the air supply amount adjusting means is provided to adjust the amount of compressed air supplied to one of the angular ball bearings adjacent to the cylindrical roller bearing among the combination angular ball bearings. This prevents the amount of compressed air flowing into one of the angular contact ball bearings from becoming too large. It passes smoothly through the inside of the one angular contact ball bearing. Therefore, the cylindrical roller bearing can be effectively cooled without interfering with the lubrication of the angular ball bearing on the cylindrical roller side.

前記円筒ころ軸受の内方部材と、前記一方のアンギュラ玉軸受の内方部材との間に内方間座を備え、前記冷却機構は、前記内方間座の径方向外方に位置し且つこの内方間座の外周面に向けて圧縮エアを吐出するノズルが設けられた空冷間座を有し、
前記エア供給量調整手段は、前記一方のアンギュラ玉軸受の内方部材における、前記内方間座に隣接する一端面の外径位置Iと、前記円筒ころ軸受の内方部材における、前記内方間座に隣接する一端面の外径位置IIと、前記空冷間座の内周面の径方向位置IIIとが、I>II>IIIの関係にあってもよい。
この外径位置Iと外径位置IIと径方向位置IIIとを、I>II>IIIの関係にしたため、空冷間座のノズルの吐出口から出た圧縮エアをより円筒ころ軸受側に促すことができる。
An inner spacer is provided between the inner member of the cylindrical roller bearing and the inner member of the one angular contact ball bearing, and the cooling mechanism is located radially outward of the inner spacer, and It has an air cooling spacer equipped with a nozzle that discharges compressed air toward the outer peripheral surface of the inner spacer,
The air supply amount adjusting means is configured to adjust an outer diameter position I of one end surface adjacent to the inner spacer in the inner member of the one angular contact ball bearing and the inner diameter position I of the inner member of the cylindrical roller bearing. The outer diameter position II of one end surface adjacent to the spacer and the radial position III of the inner peripheral surface of the air cooling spacer may have a relationship of I>II>III.
Since the outer diameter position I, the outer diameter position II, and the radial position III are in the relationship I>II>III, the compressed air coming out of the discharge port of the nozzle of the air cooling spacer can be urged toward the cylindrical roller bearing side. Can be done.

前記エア供給量調整手段は、前記空冷間座の内周面における、前記円筒ころ軸受側の内周面部分が、前記一方のアンギュラ玉軸受側の内周面部分よりも大径である段付きに構成されていてもよい。この場合、ノズルの吐出口から出た圧縮エアが上流側の段付きに遮られることで、圧縮エアをより確実に円筒ころ軸受側に促すことができる。 The air supply amount adjusting means has a stepped structure in which an inner circumferential surface portion of the air cooling spacer on the cylindrical roller bearing side has a larger diameter than an inner circumferential surface portion on the one angular contact ball bearing side. It may be configured as follows. In this case, the compressed air coming out of the discharge port of the nozzle is blocked by the upstream step, so that the compressed air can be more reliably urged toward the cylindrical roller bearing side.

前記円筒ころ軸受と前記空冷間座との間に、前記内方間座および円筒ころ軸受の冷却に供されたエアを排気する排気経路が設けられ、前記組合せアンギュラ玉軸受の冷却に供されたエアを排気する排気口と、前記排気経路とが、非連通状態に設けられていてもよい。このように前記排気口と前記排気経路とを連通することなく個別にすることで、各軸受の冷却に供されたエアを円滑に排気し、冷却効果を向上し得る。 An exhaust path is provided between the cylindrical roller bearing and the air-cooled spacer for exhausting air used for cooling the inner spacer and the cylindrical roller bearing, and is used for cooling the combination angular contact ball bearing. The exhaust port for exhausting air and the exhaust path may be provided in a non-communicating state. By arranging the exhaust port and the exhaust path separately without communicating with each other in this way, the air used for cooling each bearing can be smoothly exhausted and the cooling effect can be improved.

前記複数の軸受および前記空冷間座が設置されるハウジングを備え、前記空冷間座の軸方向両側の排気口にそれぞれ連通する排気孔が、前記ハウジングに形成され、これら排気孔におけるアンギュラ玉軸受側の排気孔が、円筒ころ軸受側の排気孔よりも大径に設けられていてもよい。この場合、各軸受の冷却に供されたエアをより円滑に排気し、冷却効果の向上をさらに図ることができる。 The system may include a housing in which the bearings and the air-cooled spacer are mounted, and exhaust holes that communicate with exhaust ports on both axial sides of the air-cooled spacer may be formed in the housing, with the exhaust hole on the angular ball bearing side being larger in diameter than the exhaust hole on the cylindrical roller bearing side. In this case, the air used to cool each bearing can be exhausted more smoothly, further improving the cooling effect.

前記組合せアンギュラ玉軸受の内方部材間に内方間座を備え、前記冷却機構は、前記内方間座の径方向外方に位置し且つこの内方間座の外周面に向けて圧縮エアを吐出するノズルが設けられた空冷間座を有し、
前記エア供給量調整手段は、前記円筒ころ軸受とアンギュラ玉軸受との間の空冷間座のエア供給量を、前記組合せアンギュラ玉軸受間の空冷間座のエア供給量以下としてもよい。このように空冷間座を追加することで冷却効果を向上させると共に、エア供給量自体を直接調整することで、円筒ころ側のアンギュラ玉軸受のエアオイル潤滑を阻害することなく、円筒ころ軸受をより効果的に冷却することが可能となり、軸受装置のさらなる高速化を図れる。
An inner spacer is provided between the inner members of the combination angular contact ball bearing, and the cooling mechanism is located radially outward of the inner spacer and directs compressed air toward the outer peripheral surface of the inner spacer. It has an air cooling spacer equipped with a nozzle that discharges
The air supply amount adjusting means may set the amount of air supplied to the air cooling spacer between the cylindrical roller bearing and the angular contact ball bearing to be equal to or less than the amount of air supplied to the air cooling spacer between the combined angular contact ball bearings. In this way, adding an air-cooled spacer improves the cooling effect, and by directly adjusting the air supply itself, the cylindrical roller bearing can be made even better without interfering with the air-oil lubrication of the angular contact ball bearing on the cylindrical roller side. It becomes possible to cool the bearing device effectively, and further increase the speed of the bearing device.

本発明の軸受装置は、円筒ころ軸受に隣り合う一方のアンギュラ玉軸受に流入する圧縮エアの供給量を調整するエア供給量調整手段を備えた。このため、一方のアンギュラ玉軸受に流入する圧縮エアが過大になることを未然に防ぎ、組合せアンギュラ玉軸受間等から供給された潤滑油が、圧縮エアに抗することなく一方のアンギュラ玉軸受の内部を円滑に通過する。したがって、円筒ころ側のアンギュラ玉軸受の潤滑を阻害することなく、効果的に円筒ころ軸受を冷却することができる。 The bearing device of the present invention includes an air supply amount adjusting means for adjusting the amount of compressed air flowing into one angular ball bearing adjacent to the cylindrical roller bearing. This prevents the compressed air flowing into one of the angular contact ball bearings from becoming too large, and allows the lubricating oil supplied from between the combined angular contact ball bearings to flow into the other angular contact ball bearing without resisting the compressed air. Pass through the interior smoothly. Therefore, the cylindrical roller bearing can be effectively cooled without interfering with the lubrication of the angular ball bearing on the cylindrical roller side.

本発明の第1の実施形態に係る軸受装置の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of a bearing device according to a first embodiment of the present invention. 図1のII-II線断面図である。2 is a sectional view taken along the line II-II in FIG. 1. FIG. 冷却エアの流れを説明する図である。It is a figure explaining the flow of cooling air. 同軸受装置のエア供給量調整手段を説明する図である。It is a figure explaining the air supply amount adjustment means of a bearing device. 同エア供給量調整手段をさらに説明する図である。It is a figure further explaining the same air supply amount adjustment means. 本発明の第2の実施形態に係る軸受装置の要部の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of main parts of a bearing device according to a second embodiment of the present invention. 本発明の第3の実施形態に係る軸受装置の要部の拡大断面図である。FIG. 7 is an enlarged sectional view of main parts of a bearing device according to a third embodiment of the present invention. 本発明の第4の実施形態に係る軸受装置の縦断面図である。FIG. 7 is a longitudinal cross-sectional view of a bearing device according to a fourth embodiment of the present invention. 図8AのVIIIB-VIIIB線断面図である。FIG. 8B is a sectional view taken along line VIIIB-VIIIB of FIG. 8A. 従来例の主軸装置の縦断面図である。FIG. 2 is a vertical cross-sectional view of a conventional spindle device.

[第1の実施形態]
本発明の実施形態に係る軸受装置を図1ないし図5と共に説明する。
実施形態に係る軸受装置は、例えば、工作機械の主軸装置等に適用される。但し、軸受装置は、工作機械の主軸装置のみに限定されるものではない。
図1に示すように、軸受装置1は、円筒ころ軸受2および組合せアンギュラ玉軸受3が軸方向に並ぶ複数の転がり軸受2,3と、これら転がり軸受2,3をそれぞれ冷却する冷却機構4とを備える。本明細書において、転がり軸受を単に軸受と言う場合がある。
[First embodiment]
A bearing device according to an embodiment of the present invention will be described with reference to FIGS.
The bearing device according to the embodiment is applied to, for example, a spindle device of a machine tool, etc. However, the application of the bearing device is not limited to only the spindle device of a machine tool.
1, the bearing device 1 includes a plurality of rolling bearings 2, 3, each of which includes a cylindrical roller bearing 2 and a duplex angular contact ball bearing 3, arranged in an axial direction, and a cooling mechanism 4 for cooling each of the rolling bearings 2, 3. In this specification, the rolling bearings may be simply referred to as bearings.

主軸14の前側から軸方向後側に向かって順次、円筒ころ軸受2、冷却機構4の空冷間座5および内方間座6、組合せアンギュラ玉軸受3における一方のアンギュラ玉軸受3A、外方間座7および内方間座8、他方のアンギュラ玉軸受3Bが配置される。各軸受の外方部材である外輪9,10、空冷間座5、外方間座7がハウジング11に設置され、各軸受の内方部材である内輪12,13、各内方間座6,8が、回転軸である主軸14に嵌合される。 From the front side of the main shaft 14 toward the rear side in the axial direction, the cylindrical roller bearing 2, the air cooling spacer 5 and the inner spacer 6 of the cooling mechanism 4, one angular ball bearing 3A in the combination angular ball bearing 3, and the outer spacer The seat 7, the inner spacer 8, and the other angular ball bearing 3B are arranged. Outer rings 9, 10, air-cooled spacers 5, and outer spacers 7, which are outer members of each bearing, are installed in the housing 11, inner rings 12, 13, which are inner members of each bearing, and each inner spacer 6, 8 is fitted onto the main shaft 14 which is a rotating shaft.

組合せアンギュラ玉軸受3として、2個のアンギュラ玉軸受3A,3Bが背面組合わせで設置され、内輪外径面および外輪内径面における接触角の反偏り側に、それぞれカウンタボアが設けられている。外輪10のカウンタボアは、外輪端面側から軌道面側に向かうに従って、小径となるように傾斜する傾斜面に形成されている。内外輪13,10の軌道面間に複数の転動体15が介在され、これら転動体15が保持器16により円周等配に保持される。保持器16は、外輪案内形式のリング形状から成る。軸受すきまは、例えば、空冷間座5、内方間座6の幅寸法差、および外方間座7、内方間座8の幅寸法差のいずれか一方または両方で調整される。各軸受は、高速運転に適したエアオイル潤滑により潤滑される。 As the combination angular contact ball bearing 3, two angular contact ball bearings 3A and 3B are installed in a back-to-back combination, and a counterbore is provided on the opposite side of the contact angle on the outer diameter surface of the inner ring and the inner diameter surface of the outer ring. The counterbore of the outer ring 10 is formed in an inclined surface whose diameter becomes smaller as it goes from the outer ring end face side toward the raceway surface side. A plurality of rolling elements 15 are interposed between the raceway surfaces of the inner and outer rings 13 and 10, and these rolling elements 15 are held by a retainer 16 at equal intervals around the circumference. The cage 16 has an outer ring-guided ring shape. The bearing clearance is adjusted, for example, by one or both of the width difference between the air cooling spacer 5 and the inner spacer 6, and the width difference between the outer spacer 7 and the inner spacer 8. Each bearing is lubricated with air-oil lubrication suitable for high-speed operation.

<冷却機構>
図2は、図1のII-II線断面図である。図1に示すように、冷却機構4は、ノズル17が設けられたリング状の空冷間座5を有する。この空冷間座5は、内方間座6の径方向外方に位置し且つ内方間座6の外周面に向けて圧縮エアをノズル17から吐出する。図2のように、ノズル17は複数個(この例では3個)円周等配に配設され、これらノズル17のエア吐出方向を、それぞれ主軸14の回転方向L1の前方へ傾斜させている。
<Cooling mechanism>
FIG. 2 is a sectional view taken along line II-II in FIG. As shown in FIG. 1, the cooling mechanism 4 has a ring-shaped air cooling spacer 5 in which a nozzle 17 is provided. The air cooling spacer 5 is located radially outward of the inner spacer 6 and discharges compressed air from a nozzle 17 toward the outer peripheral surface of the inner spacer 6. As shown in FIG. 2, a plurality of nozzles 17 (three in this example) are arranged at equal intervals around the circumference, and the air discharge direction of these nozzles 17 is inclined forward in the rotational direction L1 of the main shaft 14. .

各ノズル17は、それぞれ直線状であって、空冷間座5の軸心に垂直な断面における任意の半径方向の直線L2から、この直線L2と直交する方向にオフセットした位置にある。ノズル17をオフセットさせることで、吐出エアを主軸14の回転方向L1に旋回流として作用させて、冷却効果の向上を図れる。ノズル17のオフセット量は、試験またはシミュレーション等に基づいて適宜設定される。 Each nozzle 17 is linear, and is located at a position offset from an arbitrary radial straight line L2 in a cross section perpendicular to the axis of the air cooling spacer 5 in a direction perpendicular to this straight line L2. By offsetting the nozzle 17, the discharged air acts as a swirling flow in the rotational direction L1 of the main shaft 14, thereby improving the cooling effect. The offset amount of the nozzle 17 is appropriately set based on tests, simulations, or the like.

空冷間座5の外周面には、冷却エアである圧縮エアを導入する導入溝18が設けられている。図3に示すように、導入溝18は、空冷間座5の外周面における軸方向中間部に設けられ、且つ、図2のように各ノズル17に連通する円弧状に形成されている。導入溝18は、空冷間座5の外周面において、後述のエアオイル供給孔19が設けられる円周方向位置P1を除く円周方向の大部分を占める角度範囲α1にわたって設けられている。圧縮エアの導入経路は、軸受潤滑用のエアオイルとは独立経路で構成される。 An introduction groove 18 for introducing compressed air, which is cooling air, is provided on the outer peripheral surface of the air cooling spacer 5. As shown in FIG. 3, the introduction groove 18 is provided in the axially intermediate portion of the outer peripheral surface of the air cooling spacer 5, and is formed in an arcuate shape communicating with each nozzle 17 as shown in FIG. The introduction groove 18 is provided on the outer circumferential surface of the air-cooling spacer 5 over an angular range α1 that occupies most of the circumferential direction except for a circumferential position P1 where an air-oil supply hole 19, which will be described later, is provided. The compressed air introduction path is independent from the air oil for bearing lubrication.

図1に示すように、ハウジング11に冷却エア用供給孔19が設けられ、この冷却エア用供給孔19に導入溝18(図3)が連通するように構成されている。ハウジング11の外部には、冷却エア用供給孔19に圧縮エアを供給する図示外の供給装置が配管接続されている。 As shown in FIG. 1, the housing 11 is provided with a cooling air supply hole 19, and the cooling air supply hole 19 is configured to communicate with the introduction groove 18 (FIG. 3). A supply device (not shown) that supplies compressed air to the cooling air supply holes 19 is connected to the outside of the housing 11 through piping.

図3のように、冷却エアがアンギュラ玉軸受3Aに流入することで、アンギュラ玉軸受3Aのエアオイルがアンギュラ玉軸受3A内の通過を阻害するおそれがある。圧縮エアは円筒ころ軸受2側に排気するよう促す必要がある。
そこで軸受装置1は、組合せアンギュラ玉軸受3のうち、円筒ころ軸受2に隣り合う一方のアンギュラ玉軸受3Aに流入する圧縮エアの供給量を調整するエア供給量調整手段を備えている。圧縮エアの供給量は、単位時間当たりに供給される圧縮エアの容量をいう。
As shown in FIG. 3, when the cooling air flows into the angular contact ball bearing 3A, there is a possibility that the air oil of the angular contact ball bearing 3A may be obstructed from passing through the angular contact ball bearing 3A. It is necessary to encourage the compressed air to be exhausted to the cylindrical roller bearing 2 side.
Therefore, the bearing device 1 is equipped with an air supply amount adjusting means for adjusting the amount of compressed air flowing into one angular contact ball bearing 3A adjacent to the cylindrical roller bearing 2 among the combination angular contact ball bearings 3. The supply amount of compressed air refers to the volume of compressed air supplied per unit time.

<エア供給量調整手段について>
図4に示すように、エア供給量調整手段20は、一方のアンギュラ玉軸受3Aの内方部材13における、内方間座6に隣接する一端面13aの外径位置Iと、円筒ころ軸受2の内輪12における、内方間座6に隣接する一端面12aの外径位置IIと、空冷間座5の内周面5aの径方向位置IIIとが、I>II>IIIの関係にある。外径位置I、IIおよび径方向位置IIIの詳細寸法は、試験およびシミュレーションのいずれか一方または両方により定められる。前記関係により、一方のアンギュラ玉軸受3Aに流入する圧縮エアの供給量を、円筒ころ軸受2に流入する圧縮エアの供給量よりも低減するように調整する。したがって、アンギュラ玉軸受3A,3B(図1)の潤滑供給を妨げることなく、円筒ころ軸受2とアンギュラ玉軸受3A間の内方間座6を効果的に冷却し、間接的に円筒ころ軸受2の内輪12を冷却し得る。
<About air supply amount adjustment means>
As shown in FIG. 4, the air supply amount adjusting means 20 adjusts the outer diameter position I of one end surface 13a of the inner member 13 of one angular contact ball bearing 3A adjacent to the inner spacer 6 and the cylindrical roller bearing 2. In the inner ring 12, the outer diameter position II of one end surface 12a adjacent to the inner spacer 6 and the radial position III of the inner peripheral surface 5a of the air cooling spacer 5 have a relationship of I>II>III. The detailed dimensions of radial positions I, II and radial position III are determined by testing and/or simulation. Based on the above relationship, the amount of compressed air supplied to one of the angular ball bearings 3A is adjusted to be lower than the amount of compressed air supplied to the cylindrical roller bearing 2. Therefore, the inner spacer 6 between the cylindrical roller bearing 2 and the angular contact ball bearing 3A is effectively cooled without interfering with the lubrication supply to the angular contact ball bearings 3A, 3B (FIG. 1), and the inner spacer 6 between the cylindrical roller bearing 2 and the angular contact ball bearing 3A is indirectly cooled. can cool the inner ring 12 of.

図5に示すように、内方間座6の外径面と、空冷間座5のノズル位置における内径面5aとの間の半径すきまa3は、0.7mm以上で、且つノズル孔直径bの1/2以下の関係に設定されている。前記半径すきまa3をノズル孔直径bの1/2以下とすることで、ノズル17の吐出口の圧力を高くし、空気の急激な膨張を抑えることにより、噴射音を低減し得る。前記半径すきまa3が0.7mmより小さい場合、ノズル吐出口付近の排気面積が確保されず、冷却エア量が減少し冷却効果が低下する。 As shown in FIG. 5, the radial clearance a3 between the outer diameter surface of the inner spacer 6 and the inner diameter surface 5a of the air cooling spacer 5 at the nozzle position is 0.7 mm or more, and the nozzle hole diameter b The relationship is set to 1/2 or less. By setting the radial gap a3 to 1/2 or less of the nozzle hole diameter b, the pressure at the discharge port of the nozzle 17 is increased, and rapid expansion of air is suppressed, thereby reducing jet noise. If the radial clearance a3 is smaller than 0.7 mm, the exhaust area near the nozzle outlet is not secured, the amount of cooling air decreases, and the cooling effect deteriorates.

<潤滑構造>
図1に示すように、空冷間座5および外方間座7は、対応する軸受内にエアオイルを供給する潤滑用ノズル21を有する。空冷間座5においては、この空冷間座5の外周面から径方向内方に所定深さ形成されるエアオイル供給孔22が形成され、このエアオイル供給孔22の孔底付近部にて潤滑用ノズル21に連通する。この潤滑用ノズル21は、基端側から先端側に向けて軸方向に延び、且つ、円筒ころ軸受2の内輪外周面と保持器内周面との間にエアオイルが供給されるように形成されている。
<Lubrication structure>
1, the air cooling spacer 5 and the outer spacer 7 have lubrication nozzles 21 that supply air oil into the corresponding bearings. In the air cooling spacer 5, an air oil supply hole 22 is formed to a predetermined depth radially inward from the outer circumferential surface of the air cooling spacer 5, and communicates with the lubrication nozzle 21 near the bottom of the air oil supply hole 22. The lubrication nozzle 21 extends in the axial direction from the base end side to the tip end side, and is formed so that air oil is supplied between the outer circumferential surface of the inner ring of the cylindrical roller bearing 2 and the inner circumferential surface of the cage.

外方間座7においては、この外方間座7の外周面から径方向内方に所定深さ形成されるエアオイル供給孔22が形成され、このエアオイル供給孔22の孔底付近部にて軸方向両側にそれぞれ延びる潤滑用ノズル21に連通する。これら潤滑用ノズル21は、基端側から対象とするアンギュラ玉軸受側に向かうに従って内径側に至るように傾斜角度を有する貫通孔状に形成されている。また潤滑用ノズル21は、対象とするアンギュラ玉軸受3A,3Bの内輪外周面と、保持器内周面との間にエアオイルが供給されるように形成されている。 In the outer spacer 7, an air oil supply hole 22 is formed that is formed from the outer peripheral surface of the outer spacer 7 to a predetermined depth radially inward, and the air oil supply hole 22 communicates with a lubrication nozzle 21 that extends on both axial sides near the bottom of the hole. These lubrication nozzles 21 are formed as through holes with an inclination angle so that they reach the inner diameter side as they move from the base end side toward the target angular ball bearing side. In addition, the lubrication nozzles 21 are formed so that air oil is supplied between the outer peripheral surface of the inner ring of the target angular ball bearing 3A, 3B and the inner peripheral surface of the cage.

ハウジング11にエアオイル用の軸受箱供給孔23が設けられ、この軸受箱供給孔23に各エアオイル供給孔22が連通する。ハウジング11の外部には、軸受箱供給孔23にエアオイルを供給する図示外のエアオイル供給装置が配管接続されている。運転中、前記エアオイル供給装置から供給されたエアオイルは、順次、軸受箱供給孔23、各エアオイル供給孔22、潤滑用ノズル21から対象とする軸受に吐出される。 A bearing box supply hole 23 for air oil is provided in the housing 11, and each air oil supply hole 22 communicates with this bearing box supply hole 23. An air-oil supply device (not shown) that supplies air-oil to the bearing box supply hole 23 is connected to the outside of the housing 11 by piping. During operation, the air oil supplied from the air oil supply device is sequentially discharged from the bearing box supply hole 23, each air oil supply hole 22, and the lubrication nozzle 21 to the target bearing.

<排気構造>
軸受装置1には、冷却に供されたエアおよび潤滑に供されたエアオイルを排気するエアオイル排気路24が設けられている。エアオイル排気路24は、図5のように、空冷間座5の軸方向両側に形成される排気口25,26と、図1のように、外方間座7の軸方向両側に形成される排気口27,28と、ハウジング11に形成される排気孔29a,29bとを有する。
図5に示す空冷間座5の軸方向両側の排気口25,26のうち、円筒ころ軸受2と空冷間座5との間の排気口(排気経路)25は、内方間座6および円筒ころ軸受2の冷却に供されたエア、円筒ころ軸受2の潤滑に供されたエアオイルを排気する。また前記エアおよび前記エアオイルは、図1に示すハウジング11の前端に設けられた外輪押さえ30と内輪押さえ31との間のラビリンス部32からも排気される。
<Exhaust structure>
The bearing device 1 is provided with an air-oil exhaust passage 24 that exhausts air used for cooling and air oil used for lubrication. The air oil exhaust passage 24 includes exhaust ports 25 and 26 formed on both sides of the air cooling spacer 5 in the axial direction, as shown in FIG. It has exhaust ports 27 and 28 and exhaust holes 29a and 29b formed in the housing 11.
Among the exhaust ports 25 and 26 on both sides of the air cooling spacer 5 in the axial direction shown in FIG. The air used for cooling the roller bearing 2 and the air oil used for lubricating the cylindrical roller bearing 2 are exhausted. Further, the air and the air oil are also exhausted from a labyrinth portion 32 between an outer ring holder 30 and an inner ring holder 31 provided at the front end of the housing 11 shown in FIG.

図5の空冷間座5の軸方向両側の排気口25,26のうち空冷間座5と一方のアンギュラ玉軸受3Aとの間の排気口26と、図1の外方間座7の軸方向両側に形成される排気口27,28とは、組合わせアンギュラ玉軸受3の内輪13,13間に設けられた内方間座8、組合わせアンギュラ玉軸受3の冷却に供されたエア、および組合わせアンギュラ玉軸受3の潤滑に供されたエアオイルを排気する。 Among the exhaust ports 25 and 26 on both axial sides of the air-cooled spacer 5 in FIG. The exhaust ports 27 and 28 formed on both sides are the inner spacer 8 provided between the inner rings 13 and 13 of the combined angular contact ball bearing 3, the air used for cooling the combined angular contact ball bearing 3, and The air oil used to lubricate the combination angular contact ball bearing 3 is exhausted.

組合わせアンギュラ玉軸受3の冷却に供された排気口26,27,28と、円筒ころ軸受2と空冷間座5との間の排気口(排気経路)25とは、非連通状態つまり個別の排気出口となるように設けられている。具体的には、図5のように、ハウジング11に形成される排気孔29a,29bのうち、一方の排気孔29aが排気口(排気経路)25に連通され、他方の排気孔29bが組合わせアンギュラ玉軸受3A,3B(図1)の冷却に供された排気口26,27,28に連通されている。またハウジング11において、空冷間座5の軸方向両側の排気口25,26にそれぞれ連通する排気孔29a,29bのうちアンギュラ玉軸受3A側の排気孔29bが、円筒ころ軸受2側の排気孔29aよりも大径に設けられている。 The exhaust ports 26, 27, and 28 used for cooling the combination angular contact ball bearing 3 and the exhaust port (exhaust path) 25 between the cylindrical roller bearing 2 and the air cooling spacer 5 are in a non-communicating state, that is, in a separate state. It is provided to serve as an exhaust outlet. Specifically, as shown in FIG. 5, among the exhaust holes 29a and 29b formed in the housing 11, one exhaust hole 29a communicates with the exhaust port (exhaust path) 25, and the other exhaust hole 29b communicates with the exhaust hole 29b. It communicates with exhaust ports 26, 27, and 28 used for cooling the angular ball bearings 3A and 3B (FIG. 1). In addition, in the housing 11, among the exhaust holes 29a and 29b communicating with the exhaust ports 25 and 26 on both sides of the air cooling spacer 5 in the axial direction, the exhaust hole 29b on the angular ball bearing 3A side is the exhaust hole 29a on the cylindrical roller bearing 2 side. It is provided with a larger diameter than the

<作用効果>
以上説明した図1の軸受装置1によると、組合せアンギュラ玉軸受3のうち、円筒ころ軸受2に隣り合う一方のアンギュラ玉軸受3Aに流入する圧縮エアの供給量を調整するエア供給量調整手段20(図4)を備えた。具体的には、図4のように、エア供給量調整手段20は、一方のアンギュラ玉軸受3Aの内輪13における、内方間座6に隣接する一端面13aの外径位置Iと、円筒ころ軸受2の内輪12における、内方間座6に隣接する一端面12aの外径位置IIと、空冷間座5の内周面5aの径方向位置IIIとが、I>II>IIIの関係にある。
<Effect>
According to the bearing device 1 of FIG. 1 described above, the air supply amount adjustment means 20 adjusts the amount of compressed air supplied to the one angular contact ball bearing 3A adjacent to the cylindrical roller bearing 2 among the combination angular contact ball bearings 3. (Figure 4). Specifically, as shown in FIG. 4, the air supply amount adjusting means 20 adjusts the outer diameter position I of one end surface 13a adjacent to the inner spacer 6 of the inner ring 13 of one angular contact ball bearing 3A and the cylindrical roller. In the inner ring 12 of the bearing 2, the outer diameter position II of one end surface 12a adjacent to the inner spacer 6 and the radial position III of the inner peripheral surface 5a of the air cooling spacer 5 have a relationship of I>II>III. be.

このため、空冷間座5のノズル17の吐出口から出た圧縮エアは、円筒ころ軸受2側に対して円滑に促しつつ、一方のアンギュラ玉軸受3A側に対しては外径位置Iの一端面13aにやや阻まれ圧縮エア供給量が適切に低減される。よって、前記一方のアンギュラ玉軸受3Aに流入する圧縮エアが過大になることを未然に防ぎ、組合せアンギュラ玉軸受間から供給されたエアオイルが、他方のアンギュラ玉軸受内部だけでなく、前記一方のアンギュラ玉軸受3Aの内部を円滑に通過する。 Therefore, the compressed air coming out of the discharge port of the nozzle 17 of the air-cooled spacer 5 is smoothly urged toward the cylindrical roller bearing 2 side, while being directed toward the angular contact ball bearing 3A side at the outer diameter position I. It is somewhat obstructed by the end surface 13a, and the amount of compressed air supplied is appropriately reduced. Therefore, the compressed air flowing into the one angular contact ball bearing 3A is prevented from becoming excessive, and the air oil supplied from between the combination angular contact ball bearings is not only inside the other angular contact ball bearing, but also inside the one angular contact ball bearing 3A. It passes smoothly through the inside of the ball bearing 3A.

したがって、円筒ころ側のアンギュラ玉軸受3Aの潤滑を阻害することなく、効果的に円筒ころ軸受2を冷却することができる。これにより、高速域の連続運転での内外輪の温度差を抑制し、運転時予圧の上昇を抑制することで、高速運転することが可能となる。エアおよびエアオイルは、図1のように、ハウジング11の前端に設けられた外輪押さえ30と内輪押さえ31との間のラビリンス部32からも排気されるため、主軸14の内部に切削粉および切削液等が浸入することを防止し得る。 Therefore, the cylindrical roller bearing 2 can be effectively cooled without interfering with the lubrication of the angular ball bearing 3A on the cylindrical roller side. This makes it possible to operate at high speeds by suppressing the temperature difference between the inner and outer rings during continuous operation at high speeds and suppressing the increase in preload during operation. Air and air oil are also exhausted from the labyrinth part 32 between the outer ring holder 30 and the inner ring holder 31 provided at the front end of the housing 11, as shown in FIG. etc. can be prevented from entering.

組合わせアンギュラ玉軸受3の冷却に供された排気口26,27,28と、円筒ころ軸受2と空冷間座5との間の排気口(排気経路)25とは、個別の排気出口となるように設けられている。このように排気口26,27,28と排気経路25とを連通することなく個別にすることで、各軸受の冷却に供されたエアを円滑に排気し、冷却効果を向上し得る。ハウジング11において、空冷間座5の軸方向両側の排気口25,26にそれぞれ連通する排気孔29a,29bのうちアンギュラ玉軸受側の排気孔29bが、円筒ころ軸受側の排気孔29aよりも大径に設けられているため、各軸受の冷却に供されたエアをより円滑に排気し、冷却効果の向上をさらに図ることができる。 The exhaust ports 26, 27, 28 used for cooling the combined angular ball bearing 3 and the exhaust port (exhaust path) 25 between the cylindrical roller bearing 2 and the air-cooled spacer 5 are provided as separate exhaust outlets. By making the exhaust ports 26, 27, 28 and the exhaust path 25 separate and not connected to each other in this way, the air used for cooling each bearing can be smoothly exhausted, improving the cooling effect. In the housing 11, of the exhaust holes 29a, 29b that communicate with the exhaust ports 25, 26 on both axial sides of the air-cooled spacer 5, the exhaust hole 29b on the angular ball bearing side is provided with a larger diameter than the exhaust hole 29a on the cylindrical roller bearing side, so that the air used for cooling each bearing can be more smoothly exhausted, further improving the cooling effect.

<他の実施形態について>
以下の説明においては、各実施形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している実施形態と同様とする。同一の構成は同一の作用効果を奏する。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
<About other embodiments>
In the following description, parts corresponding to those previously described in each embodiment are given the same reference numerals, and redundant description will be omitted. When only a part of the configuration is described, other parts of the configuration are the same as those of the previously described embodiment unless otherwise specified. Identical configurations produce the same effects. It is not only possible to combine the parts specifically described in each embodiment, but also to partially combine the embodiments, as long as the combination does not cause any problems.

[第2の実施形態:図6(空冷間座、段付き)]
図6に示すように、エア供給量調整手段20は、空冷間座5の内周面5aにおける、円筒ころ軸受側の第1の内周面部分5aaが、一方のアンギュラ玉軸受側の第2の内周面部分5abよりも大径である段付きにしてもよい。この場合、ノズル17の吐出口から出た圧縮エアが上流側の段付きにやや遮られることで、圧縮エアをより確実に円筒ころ軸受側に促すことができる。
[Second embodiment: Figure 6 (air cooling spacer, stepped)]
As shown in FIG. 6, the air supply amount adjusting means 20 is arranged so that the first inner circumferential surface portion 5aa on the cylindrical roller bearing side of the inner circumferential surface 5a of the air cooling spacer 5 is the same as the second inner circumferential surface portion 5aa on the angular ball bearing side. It may be stepped with a diameter larger than that of the inner circumferential surface portion 5ab. In this case, the compressed air coming out of the discharge port of the nozzle 17 is somewhat blocked by the step on the upstream side, so that the compressed air can be more reliably urged toward the cylindrical roller bearing side.

この構成において、空冷間座5のノズル位置は第1の内周面部分5aaにある。また内方間座6の外径面と、空冷間座5の第1の内周面部分5aaとの間の半径すきまa3が、0.7mm以上で、且つノズル孔直径bの1/2以下の関係に設定される。また内方間座6の外径面と、空冷間座5の第2の内周面部分5abとは、運転時の温度上昇および遠心力による膨張で干渉してはならない。このことにより、内方間座6の外径面と、第2の内周面部分5abとの間の半径すきまa4は、実用上0.2mm以上としている。 In this configuration, the nozzle position of the air cooling spacer 5 is located at the first inner circumferential surface portion 5aa. Further, the radial clearance a3 between the outer diameter surface of the inner spacer 6 and the first inner circumferential surface portion 5aa of the air cooling spacer 5 is 0.7 mm or more and 1/2 or less of the nozzle hole diameter b. The relationship is set as follows. Further, the outer diameter surface of the inner spacer 6 and the second inner circumferential surface portion 5ab of the air cooling spacer 5 must not interfere with each other due to temperature rise and expansion due to centrifugal force during operation. As a result, the radial clearance a4 between the outer diameter surface of the inner spacer 6 and the second inner circumferential surface portion 5ab is practically set to 0.2 mm or more.

[第3の実施形態:図7(空冷間座、円周溝)]
図7に示すように、エア供給量調整手段20は、空冷間座5の内周面における幅方向中央部分に、円周溝33を設けた構成としてもよい。この構成の場合、空冷間座5における、円筒ころ軸受側の第1の内周面部分5aaが、一方のアンギュラ玉軸受側の第2の内周面部分5abよりも大径となるように設定されている。空冷間座5のノズル位置は前記幅方向中央部分にある。この場合、円周溝33を設けた分、前述の第2の実施形態よりも圧縮エアの供給量を増量し冷却効果をさらに高めることができる。
[Third embodiment: Fig. 7 (air cooling spacer, circumferential groove)]
As shown in FIG. 7, the air supply amount adjusting means 20 may have a configuration in which a circumferential groove 33 is provided in the widthwise center portion of the inner circumferential surface of the air cooling spacer 5. In this configuration, the first inner circumferential surface portion 5aa on the cylindrical roller bearing side of the air-cooled spacer 5 is set to have a larger diameter than the second inner circumferential surface portion 5ab on the one angular contact ball bearing side. has been done. The nozzle position of the air cooling spacer 5 is located at the central portion in the width direction. In this case, since the circumferential groove 33 is provided, the amount of compressed air supplied can be increased compared to the second embodiment described above, and the cooling effect can be further enhanced.

内方間座6の外径面と、空冷間座5の内周面における幅方向中央部分との間の半径すきまa3が、0.7mm以上で、且つノズル孔直径bの1/2以下の関係に設定される。また内方間座6の外径面と、空冷間座5のアンギュラ玉軸受側の第2の内周面部分5abとは、運転時の温度上昇および遠心力による膨張で干渉してはならない。このことにより、内方間座6の外径面と第2の内周面部分5abとの間の半径すきまa4は、実用上0.2mm以上としている。 The radial clearance a3 between the outer diameter surface of the inner spacer 6 and the widthwise center portion of the inner circumferential surface of the air cooling spacer 5 is 0.7 mm or more and 1/2 or less of the nozzle hole diameter b. Set to relationship. Further, the outer diameter surface of the inner spacer 6 and the second inner peripheral surface portion 5ab of the air-cooled spacer 5 on the angular contact ball bearing side must not interfere with each other due to temperature rise and expansion due to centrifugal force during operation. As a result, the radial clearance a4 between the outer diameter surface of the inner spacer 6 and the second inner circumferential surface portion 5ab is practically set to 0.2 mm or more.

さらに、内方間座6の外径面と、空冷間座5における、円筒ころ軸受側の第1の内周面部分5aaとの間の半径すきまa5は、前記半径すきまa4より大きくする。このため、空冷間座5の内周面における幅方向中央部分の径方向位置III>空冷間座5の第1の内周面部分5aaの径方向位置V>空冷間座5の第2の内周面部分5abの径方向位置IVとする。このような径方向位置とすることで、ノズル17の吐出口から出た圧縮エアを、円筒ころ軸受側、アンギュラ玉軸受側に適切に分配し得る。 Furthermore, the radial clearance a5 between the outer diameter surface of the inner spacer 6 and the first inner peripheral surface portion 5aa of the air-cooled spacer 5 on the cylindrical roller bearing side is made larger than the radial clearance a4. Therefore, the radial position III of the widthwise central portion of the inner circumferential surface of the air cooling spacer 5>the radial position V of the first inner circumferential surface portion 5aa of the air cooling spacer 5>the second inner circumference of the air cooling spacer 5 The radial position of the peripheral surface portion 5ab is assumed to be IV. With such a radial position, the compressed air discharged from the discharge port of the nozzle 17 can be appropriately distributed to the cylindrical roller bearing side and the angular ball bearing side.

また一方のアンギュラ玉軸受3Aの内輪13における、内方間座6に隣接する一端面の外径位置Iと、円筒ころ軸受2の内輪12における、内方間座6に隣接する一端面の外径位置IIと、前述の径方向位置III、V、IVとは、I>II>III>V>IVの関係にある。 Also, the outer diameter position I of one end surface of the inner ring 13 of one angular contact ball bearing 3A adjacent to the inner spacer 6 and the outer diameter position I of one end surface of the inner ring 12 of the cylindrical roller bearing 2 adjacent to the inner spacer 6. The radial position II and the aforementioned radial positions III, V, and IV have a relationship of I>II>III>V>IV.

[第4の実施形態:図8A,図8B(エア供給量)]
図8Bは図8AのVIIIB-VIIIB線断面図である。図8A,図8Bに示すように、冷却機構4は、前述の空冷間座(便宜上、「第1の空冷間座」と称す)5に加えて、組合せアンギュラ玉軸受間の内方間座8の径方向外方に位置し且つこの内方間座8の外周面に向けて圧縮エアを吐出するノズル17が設けられた第2の空冷間座5Aを有してもよい。
この場合、エア供給量調整手段20は、円筒ころ軸受2とアンギュラ玉軸受3Aとの間の第1の空冷間座5のエア供給量を、組合せアンギュラ玉軸受間の第2の空冷間座5Aのエア供給量以下とする。具体的な各エア供給量は、例えば、試験およびシミュレーションのいずれか一方または両方により定められる。前記エア供給量の調整は、例えば、圧縮エアを供給する図示外の供給装置またはこの供給装置に配管接続される流量制御弁等により行われる。
[Fourth embodiment: FIGS. 8A and 8B (air supply amount)]
FIG. 8B is a sectional view taken along the line VIIIB-VIIIB of FIG. 8A. As shown in FIGS. 8A and 8B, the cooling mechanism 4 includes, in addition to the air cooling spacer 5 described above (referred to as the "first air cooling spacer" for convenience), an inner spacer 8 between the combination angular contact ball bearings. The second air cooling spacer 5A may be provided with a nozzle 17 located radially outward of the inner spacer 8 and discharging compressed air toward the outer peripheral surface of the inner spacer 8.
In this case, the air supply amount adjusting means 20 adjusts the amount of air supplied to the first air cooling spacer 5 between the cylindrical roller bearing 2 and the angular contact ball bearing 3A to the amount of air supplied to the second air cooling spacer 5A between the combined angular contact ball bearings. The air supply amount shall be below. Each specific air supply amount is determined, for example, by testing and/or simulation. The air supply amount is adjusted, for example, by a supply device (not shown) that supplies compressed air or a flow control valve connected to the supply device via piping.

このように第2の空冷間座5Aを追加することで冷却効果を向上させると共に、エア供給量自体を直接調整することで、円筒ころ側のアンギュラ玉軸受3Aのエアオイル潤滑を阻害することなく、円筒ころ軸受2をより効果的に冷却することが可能となり、軸受装置1のさらなる高速化を図れる。 By adding the second air-cooled spacer 5A in this way, the cooling effect is improved, and by directly adjusting the air supply amount itself, the air-oil lubrication of the angular contact ball bearing 3A on the cylindrical roller side is not inhibited. It becomes possible to cool the cylindrical roller bearing 2 more effectively, and the speed of the bearing device 1 can be further increased.

軸受装置は、例えば、産業機械、ロボット、搬送機械等にも適用可能である。
各軸受の内方部材は、例えば、内輪と軸が一体のもの、および内輪内周面等にギヤが形成されたものを含む。各軸受の外方部材は、外輪とハウジングが一体のもの、および外輪外周面等にギヤが形成されたものを含む。前記一体とは、軌道輪と対象物とが複数の要素を結合したものではなく単一の材料から例えば鍛造、機械加工等により単独の物の一部または全体として成形されたことを意味する。
The bearing device can also be applied to, for example, industrial machines, robots, conveyance machines, and the like.
The inner member of each bearing includes, for example, one in which the inner ring and the shaft are integrated, and one in which a gear is formed on the inner peripheral surface of the inner ring. The outer member of each bearing includes one in which the outer ring and the housing are integrated, and one in which a gear is formed on the outer circumferential surface of the outer ring. The term "integral" means that the bearing ring and the object are not formed by combining a plurality of elements, but are formed from a single material as a part or whole of a single object, for example, by forging, machining, etc.

<参考提案例>
軸受装置における円筒ころ軸受に代えて、アンギュラ玉軸受、深溝玉軸受、円すいころ軸受、針状ころ軸受等の種々の転がり軸受を適用することも可能である。この場合の軸受装置は、以下のように記載される。
転がり軸受および組合せアンギュラ玉軸受が軸方向に並ぶ複数の軸受と、これら軸受をそれぞれ冷却する冷却機構とを備えた軸受装置であって、
前記組合せアンギュラ玉軸受のうち、前記転がり軸受に隣り合う一方のアンギュラ玉軸受に流入する圧縮エアの供給量を調整するエア供給量調整手段を備えた軸受装置。
<Reference proposal example>
Instead of the cylindrical roller bearing in the bearing device, it is also possible to apply various rolling bearings such as angular contact ball bearings, deep groove ball bearings, tapered roller bearings, and needle roller bearings. The bearing device in this case is described as follows.
A bearing device comprising a plurality of rolling bearings and a combination angular contact ball bearing arranged in the axial direction, and a cooling mechanism that cools each of these bearings,
A bearing device comprising an air supply amount adjusting means for adjusting the amount of compressed air flowing into one angular ball bearing adjacent to the rolling bearing among the combination angular ball bearings.

以上、本発明の実施形態を説明したが、今回開示された実施形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments of the present invention have been described above, the embodiments disclosed herein are illustrative in all respects and are not restrictive. The scope of the present invention is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.

1…軸受装置、2…円筒ころ軸受、3…組合せアンギュラ玉軸受、3A,3B…アンギュラ玉軸受、4…冷却機構、5,5A…空冷間座、5aa…第1の内周面部分、5ab…第2の内周面部分、6…内方間座、9,10…外輪(外方部材)、12,13…内輪(内方部材)、20…エア供給量調整手段、25,26,27,28…排気口、29a,29b…排気孔 1...bearing device, 2...cylindrical roller bearing, 3...combined angular contact ball bearing, 3A, 3B...angular contact ball bearing, 4...cooling mechanism, 5, 5A...air cooling spacer, 5aa...first inner peripheral surface portion, 5ab...second inner peripheral surface portion, 6...inner spacer, 9, 10...outer ring (outer member), 12, 13...inner ring (inner member), 20...air supply amount adjustment means, 25, 26, 27, 28...exhaust port, 29a, 29b...exhaust hole

Claims (6)

円筒ころ軸受および組合せアンギュラ玉軸受が軸方向に並ぶ複数の軸受と、これら軸受をそれぞれ冷却する冷却機構とを備えた軸受装置であって、
前記組合せアンギュラ玉軸受のうち、前記円筒ころ軸受に隣り合う一方のアンギュラ玉軸受に流入する圧縮エアの供給量を調整するエア供給量調整手段を備えた軸受装置。
A bearing device comprising a plurality of cylindrical roller bearings and a combination angular contact ball bearing arranged in the axial direction, and a cooling mechanism that cools each of these bearings,
A bearing device comprising an air supply amount adjusting means for adjusting the amount of compressed air flowing into one angular ball bearing adjacent to the cylindrical roller bearing among the combination angular ball bearings.
請求項1に記載の軸受装置において、前記円筒ころ軸受の内方部材と、前記一方のアンギュラ玉軸受の内方部材との間に内方間座を備え、前記冷却機構は、前記内方間座の径方向外方に位置し且つこの内方間座の外周面に向けて圧縮エアを吐出するノズルが設けられた空冷間座を有し、
前記エア供給量調整手段は、前記一方のアンギュラ玉軸受の内方部材における、前記内方間座に隣接する一端面の外径位置Iと、前記円筒ころ軸受の内方部材における、前記内方間座に隣接する一端面の外径位置IIと、前記空冷間座の内周面の径方向位置IIIとが、I>II>IIIの関係にある軸受装置。
The bearing device according to claim 1, further comprising an inner spacer between the inner member of the cylindrical roller bearing and the inner member of the one angular contact ball bearing, and the cooling mechanism It has an air cooling spacer that is located radially outward of the seat and is provided with a nozzle that discharges compressed air toward the outer peripheral surface of the inner spacer,
The air supply amount adjusting means is configured to adjust an outer diameter position I of one end surface adjacent to the inner spacer in the inner member of the one angular contact ball bearing and the inner diameter position I of the inner member of the cylindrical roller bearing. A bearing device in which an outer diameter position II of one end surface adjacent to a spacer and a radial position III of an inner peripheral surface of the air-cooled spacer have a relationship of I>II>III.
請求項2に記載の軸受装置において、前記エア供給量調整手段は、前記空冷間座の内周面における、前記円筒ころ軸受側の内周面部分が、前記一方のアンギュラ玉軸受側の内周面部分よりも大径である段付きに構成されている軸受装置。 3. The bearing device according to claim 2, wherein the air supply amount adjusting means is arranged such that an inner circumferential surface portion of the inner circumferential surface of the air cooling spacer on the side of the cylindrical roller bearing has an inner circumferential surface portion on the side of the one angular contact ball bearing. A bearing device with a stepped structure that has a larger diameter than the face part. 請求項2または請求項3に記載の軸受装置において、前記円筒ころ軸受と前記空冷間座との間に、前記内方間座および円筒ころ軸受の冷却に供されたエアを排気する排気経路が設けられ、前記組合せアンギュラ玉軸受の冷却に供されたエアを排気する排気口と、前記排気経路とが、非連通状態に設けられている軸受装置。 In the bearing device according to claim 2 or 3, an exhaust path is provided between the cylindrical roller bearing and the air cooling spacer for exhausting air used for cooling the inner spacer and the cylindrical roller bearing. A bearing device, wherein an exhaust port for exhausting air used for cooling the combination angular ball bearing and the exhaust path are provided in a non-communicating state. 請求項4に記載の軸受装置において、前記複数の軸受および前記空冷間座が設置されるハウジングを備え、前記空冷間座の軸方向両側の排気口にそれぞれ連通する排気孔が、前記ハウジングに形成され、これら排気孔におけるアンギュラ玉軸受側の排気孔が、円筒ころ軸受側の排気孔よりも大径に設けられている軸受装置。 5. The bearing device according to claim 4, further comprising a housing in which the plurality of bearings and the air cooling spacer are installed, and exhaust holes are formed in the housing that communicate with exhaust ports on both sides of the air cooling spacer in the axial direction. A bearing device in which the exhaust hole on the angular ball bearing side of these exhaust holes is provided with a larger diameter than the exhaust hole on the cylindrical roller bearing side. 請求項2ないし請求項5のいずれか1項に記載の軸受装置において、前記組合せアンギュラ玉軸受の内方部材間に内方間座を備え、前記冷却機構は、前記内方間座の径方向外方に位置し且つこの内方間座の外周面に向けて圧縮エアを吐出するノズルが設けられた空冷間座を有し、
前記エア供給量調整手段は、前記円筒ころ軸受とアンギュラ玉軸受との間の空冷間座のエア供給量を、前記組合せアンギュラ玉軸受間の空冷間座のエア供給量以下とする軸受装置。
The bearing device according to any one of claims 2 to 5, wherein an inner spacer is provided between the inner members of the combination angular contact ball bearing, and the cooling mechanism is arranged in a radial direction of the inner spacer. An air cooling spacer is provided with a nozzle located outwardly and discharging compressed air toward the outer peripheral surface of the inner spacer,
In the bearing device, the air supply amount adjusting means makes the amount of air supplied to the air cooling spacer between the cylindrical roller bearing and the angular contact ball bearing equal to or less than the amount of air supplied to the air cooling spacer between the combined angular contact ball bearings.
JP2022148005A 2022-09-16 2022-09-16 bearing device Pending JP2024043034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022148005A JP2024043034A (en) 2022-09-16 2022-09-16 bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022148005A JP2024043034A (en) 2022-09-16 2022-09-16 bearing device

Publications (1)

Publication Number Publication Date
JP2024043034A true JP2024043034A (en) 2024-03-29

Family

ID=90418148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022148005A Pending JP2024043034A (en) 2022-09-16 2022-09-16 bearing device

Country Status (1)

Country Link
JP (1) JP2024043034A (en)

Similar Documents

Publication Publication Date Title
KR102208885B1 (en) Cooling structure for bearing device
JP6144024B2 (en) Cooling structure of bearing device
JP6206616B2 (en) Spindle device and machine tool
JP6013112B2 (en) Cooling structure of bearing device
US20130202237A1 (en) Rolling bearing and rolling bearing assembly
JP6050072B2 (en) Cooling structure of bearing device
JP5675263B2 (en) Rolling bearing
JP5183059B2 (en) Multi-row rolling bearing device
JP6234017B2 (en) Lubrication structure of bearing device
JP2008002659A (en) High-speed rotation single row cylindrical roller bearing
KR102448407B1 (en) Cooling structure of bearing device
EP3851692B1 (en) Bearing device cooling structure, and main spindle device of machine tool
JP2024043034A (en) bearing device
JP6385089B2 (en) Cooling structure of bearing device
JP2009138896A (en) Rolling bearing and its lubrication method
JP2011106493A (en) Rolling bearing device
JP6609003B2 (en) Cooling structure of bearing device
JP2014062620A (en) Cooling structure for bearing device
JP5353432B2 (en) Rolling bearing device
JP7185546B2 (en) Cooling structure of bearing unit and spindle unit of machine tool
WO2019073911A1 (en) Cooling structure for bearing device
JP2018169040A (en) Cooling structure of bearing device
JP6434094B2 (en) Lubrication structure of bearing device
JP2008082500A (en) Lubricating device of rolling bearing
JP6983029B2 (en) Bearing device cooling structure