JP2014057951A - 触媒担持ハニカム - Google Patents

触媒担持ハニカム Download PDF

Info

Publication number
JP2014057951A
JP2014057951A JP2013168624A JP2013168624A JP2014057951A JP 2014057951 A JP2014057951 A JP 2014057951A JP 2013168624 A JP2013168624 A JP 2013168624A JP 2013168624 A JP2013168624 A JP 2013168624A JP 2014057951 A JP2014057951 A JP 2014057951A
Authority
JP
Japan
Prior art keywords
catalyst
honeycomb
cell group
cells
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013168624A
Other languages
English (en)
Inventor
Athanasios G Konstandopoulos
コンスタンドポウロス・アタナシオス・ジー
Kazushige Ono
一茂 大野
Tomokazu Oya
智一 大矢
Kazutake Oku
和丈 尾久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2013168624A priority Critical patent/JP2014057951A/ja
Publication of JP2014057951A publication Critical patent/JP2014057951A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)

Abstract

【課題】ススの連続燃焼特性が向上し、セル壁に経時的に蓄積するスス量を低く抑えることができる触媒担持ハニカムを提供する。
【解決手段】触媒担持ハニカムは、セル壁で隔てられた複数のセルが長手方向に沿って形成された柱状のハニカム構造体に、触媒粒子204が担持された触媒担持ハニカムであって、上記複数のセルは、上記セルの一方の端部で封止されてなる大容積セル群と、他方の端部で封止されてなる小容積セル群とからなり、上記長手方向に垂直な断面における上記大容積セル群の面積の総和が、上記小容積セル群の面積の総和よりも大きくなっており、上記触媒粒子204は、酸化物触媒からなる粒子であり、その平均粒径が0.05〜1μmであり、上記酸化物触媒が上記セル壁の表面にケーク状に担持されている触媒担持ハニカム。
【選択図】図1

Description

本発明は、触媒担持ハニカムに関する。
従来、ハニカム構造体のセル壁に触媒を担持し、排ガスと触媒とを接触させることにより、排ガスを浄化する触媒担持ハニカムが知られている。特許文献1に開示の触媒担持ハニカムでは、ハニカム構造体をスラリー状の触媒溶液に含浸した後、ハニカム構造体を加熱することによって、触媒を担持している。
国際公開WO2007/10643号公報
ところで、排ガス中のススの凝集粒子の平均粒径は一般的に0.1μm程度である。しかし、特許文献1に開示の触媒担持ハニカムでは、ハニカム構造体をスラリー状の触媒溶液に含浸している。そのため、図1(a)に示すように、担持された触媒粒子202の粒径がススの凝集粒子201よりも非常に大きくなりやすい。これによると、触媒粒子とススの凝集粒子との接触点203が少なく、酸化物触媒の活性酸素によるススの燃焼作用が充分に発揮できないという不具合があった。
このため、触媒担持ハニカムに捕集されたススは、高温の排ガスによる強制再生時以外では酸化されにくい。この結果、セル壁にススが蓄積しやすくなり、頻繁に強制再生をかかなければならず、燃費が悪化するという不具合もある。
本発明は、上記点に鑑み、触媒が担持される触媒担持ハニカムにおいて、セル壁に捕集されたススと触媒とを接触させやすくすることにより、酸化物触媒の活性酸素によるススの燃焼作用を高め、セル壁に経時的に蓄積するスス量を少なく抑えることを目的とする。
上記目的を達成するため、本発明の触媒担持ハニカムでは、セル壁で隔てられた複数のセルが長手方向に沿って形成され、上記複数のセルは、上記セルの一方の端部で封止されてなる大容積セル群と、他方の端部で封止されてなる小容積セル群とからなり、
上記長手方向に垂直な断面における上記大容積セル群の面積の総和が、上記小容積セル群の面積の総和よりも大きくなっている柱状のハニカム構造体に酸化物触媒粒子が担持されており、その平均粒径を0.05μm〜1μmとしている。
これにより、担持される酸化物触媒粒子の平均粒径を0.05μm〜1μmとし、ススの凝集粒子の平均径と同一程度としている。したがって、図1(b)に示すように、ススの凝集粒子と触媒粒子との接触点を多くすることができる。つまり、ススと触媒とを接触させやすくなり、酸化物触媒の活性酸素によるススの燃焼作用を高めることができる。
この作用によると、触媒担持ハニカムに流入したススを強制再生時以外にも、特許文献1の触媒担持ハニカムに比べて燃焼させやすくなる。
さらに、排ガス流入側のセル群を、流出側のセル群より大きくすることで、触媒担持ハニカムの単位体積あたりのススが蓄積されるセル壁の面積が大きくなり、より、ススと触媒とを接触させやすくすることができる。
このようにすることで、セル壁に経時的に蓄積するスス量を少なく抑えることができる。
特に、長手方向に垂直な断面において、大容積セル群のセルを八角形とし、小容積セル群のセルを四角形とすれば、触媒担持ハニカムの単位容積あたりのススが蓄積されるセル壁の面積を十分に大きくすることができる。
また、ハニカム構造体をセラミック焼結体により構成してもよい。さらに、炭化珪素焼結体により構成すれば、耐熱性に優れたハニカム構造体を構成できる。これにより、機械的特性に優れ、かつ、熱伝導率も高くすることができる。またさらに、ハニカム構造体はハニカムユニットが複数個結束して構成されていてもよい。
また、酸化物触媒をCeO、ZrO、FeO、Fe、CuO、CuO、Mn、MnO、KO、および組成式A1−nCO(ここで、AはLa、Nd、Sm、Eu、Gd又はY、Bはアルカリ金属又はアルカリ土類金属、CはMn、Co、Fe又はNiである)で表される複合酸化物からなる群から選ばれる少なくとも一つとすれば、活性酸素の受渡し性能に優れた触媒をハニカム構造体に担持させることができる。これにより、触媒担持ハニカムの特にススの燃焼作用を向上させることができる。
また、セル壁で隔てられた複数のセルが長手方向に沿って形成され、上記複数のセルは、上記セルの一方の端部で封止されてなる大容積セル群と、他方の端部で封止されてなる小容積セル群とからなり、
上記長手方向に垂直な断面における上記大容積セル群の面積の総和が、上記小容積セル群の面積の総和よりも大きくなっている柱状のハニカム構造体に、酸化物触媒の前駆体溶液を分散させた気体を流入させることにより、セル壁に酸化物触媒粒子を担持させた触媒担持ハニカムであれば、具体的に本発明の触媒担持ハニカムで述べた効果と同様の効果を奏することができる。
また、本発明の触媒担持ハニカムの製造方法は、セル壁で隔てられた複数のセルが長手方向に沿って形成され、上記複数のセルは、上記セルの一方の端部で封止されてなる大容積セル群と、他方の端部で封止されてなる小容積セル群とからなり、
上記長手方向に垂直な断面における上記大容積セル群の面積の総和が、上記小容積セル群の面積の総和よりも大きくなっているハニカム構造体を製造する工程と、触媒の前駆体溶液を気体中に分散させる工程と、分散させた触媒の前駆体溶液を含む気体を、ハニカム構造体へ流入させる工程と、ハニカム構造体を加熱して、触媒の前駆体を触媒粒子化する工程とを備える。上記の触媒担持ハニカムの製造方法によれば、具体的に本発明の触媒担持ハニカムで述べた効果を有する触媒担持ハニカムを製造することができる。
(a)は、従来の方法により担持された触媒とススを示し、(b)は、本願の触媒とススを示す。 本発明の第一の実施形態の触媒担持ハニカムの一例を模式的に示す斜視図である。 (a)は、図2に示す触媒担持ハニカムを構成するハニカムユニットの斜視図であり、(b)は、ハニカムユニットのA−A線断面図である。 (a)〜(d)は、本発明の触媒担持ハニカムを構成するハニカムユニットのセルの長手方向に垂直な方向の断面図である。 (a)〜(f)は、本発明の触媒担持ハニカムを構成するハニカムユニットのセルの長手方向に垂直な方向の断面図である。 本発明の一体型触媒担持ハニカムの例を示す図である。 従来の触媒担持ハニカムを構成するハニカムユニットのセルの長手方向に垂直な方向の断面図である。 スス酸化速度評価装置の図である。 触媒担持ハニカムの酸化したスス量の積算量の経時変化を示すグラフである。 触媒担持ハニカムの連続再生特性を表したグラフである。 実施例1の触媒担持ハニカムのセル壁の断面SEM像を示す図である。
以下、本発明の複数の実施形態を図面に基づいて説明する。
(第一実施形態)
本発明の第一実施形態に係るセラミック焼結体からなるハニカム構造体について、図を参照しながら説明する。
図2は、本発明の第一実施形態に係る触媒担持ハニカムの一例を模式的に示す斜視図であり、図3(a)は、図2に示した触媒担持ハニカムを構成するハニカムユニットの斜視図であり、(b)は、(a)に示したハニカムユニットのA−A線断面図である。
なお、図2に示した触媒担持ハニカムは、複数のハニカムユニットが結束してなるものであるが、本実施形態のハニカム構造体は、後述するように1つのハニカムユニットからなるものであってもよい。
ハニカム構造体45は、炭化珪素焼結体等からなるハニカムユニット50が、シール材層(接着材層)41を介して複数個組み合わされて円柱状のセラミックブロックを構成し、このセラミックブロックの周囲にシール材層(コート層)42が形成されている。そして、このハニカム構造体45に酸化物触媒粒子(図示せず)を担持させたものが、触媒担持ハニカム40である。
ハニカムユニット50には、図3(a)、(b)に示したように、長手方向に多数のセル51が並設され、セル51同士を隔てるセル壁(壁部)53がフィルタとして機能するようになっている。即ち、ハニカムユニット50に形成されたセル51は、図3(b)に示したように、排ガスの入口側又は出口側の端部のいずれかが封止材52により目封じされ、一のセル51に流入した排ガスは、必ずセル51を隔てるセル壁53を通過した後、他のセル51から流出するようになっている。
なお、セルの形状は大容積セル群のセルの長手方向に垂直な断面の形状を八角形、小容積セル群セルの長手方向に垂直な断面の形状をセルを四角形としている。
そして、ハニカムユニット50には、平均粒径が0.05μm〜1μmの酸化物触媒が担持されている。
その他、セルの形状としては、次のようなものをあげることができる。図4(a)〜(d)、及び、図5(a)〜(f)は、本実施形態に係る触媒担持ハニカム40を構成するハニカムユニット50の断面の一部を模式的に示した断面図である。
図4(a)では、開口比率がほぼ1.55、図4(b)では、ほぼ2.54、図4(c)では、ほぼ4.45、図4(d)では、ほぼ6.00である。また、図5(a)、(c)、(e)では、上記開口比率がすべて、ほぼ4.45であり、図5(b)、(d)、(f)では、上記開口比率がすべてほぼ6.00であり、図6では、開口比率はほぼ3.00である。
図4(a)〜(d)では全て、大容積セル54の断面の形状は八角形であり、小容積セル55の断面の形状は四角形(正方形)でそれぞれ交互に配列されており、小容積セル55の断面積を変化させ、大容積セル54の断面形状を少し変化させることにより、開口比率を任意に変動させることが容易にできる。同様に、図5(a)〜(f)、図6に示すハニカム構造体に関しても任意にその開口比率を変動させることができる。
なお、図5(a)〜(b)に示すハニカムユニットでは、大容積セル54の断面の形状は五角形であり、そのうちの3つの角がほぼ直角となっており、小容積セル55の断面の形状は四角形で、それぞれ大きな四角形の斜めに対向する部分を占めるように構成されている。図5(c)〜(d)に示すハニカムユニットでは、図4(a)〜(d)に示す断面の形状を変形したものであって、大容積セル54と小容積セル55とが共有する隔壁を小容積セル側にある曲率を持って広げた形状である。この曲率は任意のものであってよい。
ここでは、大容積セル54と小容積セル55とが共有する隔壁を構成する曲線が1/4円に相当するものを例示する。
図5(e)〜(f)に示すハニカムユニットでは、大容積セル54及び小容積セル55は四角形(長方形)からなり、図のように、2つの大容積セル54と2つの小容積セル55を組み合わせると、ほぼ正方形となるように構成されている。
本実施形態において、隣り合う大容積セル54の長手方向に垂直な断面の重心間距離と、隣り合う小容積セル55の長手方向に垂直な断面の重心間距離とは、等しいことが望ましい。
また、上記ハニカム構造体において、セル(大容積セル54及び小容積セル55)の長手方向に垂直な断面の形状は、多角形であることが望ましく、四角形及び八角形であることがより望ましい。
多角形にすることにより、大容積セル54及び小容積セル55を排ガスが通過する際にセルの形状による摩擦の大きい部分をなくし、セルを通過する際の摩擦に起因する圧力損失を低くすること、または、隔壁の厚みの不均一な部分、つまり、排ガスが局所的に通過しにくくなる部分をなくし、隔壁を通過する際の抵抗に起因する圧力損失を低くすること、このどちらかの効果を得ることができるからである。
また、多角形のなかでも、四角形以上の多角形が望ましく、その角の少なくとも1つが鈍角であることがより望ましい。上記のようにすることで、排ガス流入側を通過する際の摩擦及び排ガス流出側を通過する際の摩擦に起因する圧力損失を低くすることができるからである。
また、本実施形態では、長手方向に垂直な断面における上記一の大容積セル54が隣り合う大容積セル54と共有する壁部と、上記一の大容積セル54が隣り合う上記小容積セル55と共有する壁部との交わる角の少なくとも1つが鈍角であることが望ましい。
大容積セル54及び/又は小容積セル55の断面の角部の近傍は、例えば図5(c)、(d)に示すように曲線により構成されていることが望ましい。曲線にすることにより、角部での応力集中に起因するクラックの発生を防ぐことができるからである。
本実施形態において、大容積セル群と小容積セル群との断面の面積の比(大容積セル群/小容積セル群)は、1.01〜6.0であることが望ましい。
上記面積の比(大容積セル群/小容積セル群)が6.0を超えると、小容積セル群の容積が小さくなりすぎて、排ガス流出側を通過する際の摩擦及び隔壁を通過する際の抵抗に起因する圧力損失が増大し、初期の圧力損失が大きくなってしまう。上記面積の比(大容積セル群/小容積セル群)は、1.2〜5.0がより好ましい。さらに、上記面積の比(大容積セル群/小容積セル群)は、1.2〜3.0がより一層好ましい。
また、大容積セル54と小容積セル55との断面の面積の比(大容積セル/小容積セル)は、1.01〜6.0であることが望ましい。上記面積の比(大容積セル/小容積セル)を、開口比率ともいうこととする。
上記開口比率が6.0を超えると、小容積セル55の容積が小さくなりすぎて、排ガス流出側を通過する際の摩擦及び隔壁を通過する際の抵抗に起因する圧力損失が増大し、初期の圧力損失が大きくなってしまう。上記開口比率は、1.2〜5.0がより好ましい。さらに、上記開口比率は、1.2〜3.0がより一層好ましい。
ハニカム構造体45は、多孔質セラミックからなり、その材料としては、例えば、窒化アルミニウム、窒化珪素、窒化硼素等の窒化物セラミック、炭化珪素、炭化ジルコニウム等の炭化物セラミック、コージェライト、アルミナ、シリカ、チタン酸アルミニウム等の酸化物セラミック等が挙げられる。また、ハニカム構造体45は、シリコンと炭化珪素との複合体といった2種類以上の材料から形成されているものであってもよい。シリコンと炭化珪素との複合体を用いる場合には、シリコンを全体の5〜45重量%となるように添加することが望ましい。
上記多孔質セラミックの材料としては、炭化珪素質セラミックが望ましい。特に耐熱性に優れるため、再生処理時に溶損することがなく、さらに、機械的特性に優れ、かつ、熱伝導率も高いからである。なお、炭化珪素質セラミックとは、炭化珪素が60重量%以上のものをいうものとする。
ハニカム構造体45において、シール材層(接着材層)41は、ハニカムユニット50間に形成され、複数個のハニカムユニット50同士を結束する接着材としても機能するものであり、一方、シール材層(コート層)42は、セラミックブロックの外周面に形成され、ハニカム構造体45を内燃機関の排気通路に設置した際、セラミックブロックの外周面からセルを通過する排ガスが漏れ出すことを防止するための封止材、形状を整える補強材としても機能するものである。
なお、ハニカム構造体45において、接着材層41とコート層42とは、同じ材料からなるものであってもよく、異なる材料からなるものであってもよい。さらに、接着材層41及びコート層42が同じ材料からなるものである場合、その材料の配合比は同じであってもよく、異なっていてもよい。また、緻密質でも、多孔質でもよい。
接着材層41及びコート層42を構成する材料としては特に限定されず、例えば、無機バインダと有機バインダと無機繊維及び/又は無機粒子とからなるもの等が挙げられる。
上記無機バインダとしては、例えば、シリカゾル、アルミナゾル等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記無機バインダのなかでは、シリカゾルが望ましい。
上記有機バインダとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記有機バインダのなかでは、カルボキシメチルセルロースが望ましい。
上記無機繊維としては、例えば、シリカ−アルミナ、ムライト、アルミナ、シリカ等のセラミックファイバー等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記無機繊維のなかでは、シリカ−アルミナファイバーが望ましい。
上記無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には、炭化珪素、窒化珪素、窒化硼素等からなる無機粉末等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記無機粒子のなかでは、熱伝導性に優れる炭化珪素が望ましい。
次に、上記ハニカム構造体の製造方法について説明する。
まず、上述したようなセラミックを主成分とする原料ペーストを用いて押出成形を行い、四角柱形状のセラミック成形体を作製する。
上記セラミック粉末の粒径は特に限定されないが、後の焼成工程で作製されたハニカムユニットの大きさが、セラミック成形体の大きさよりも小さくなりにくいものが好ましく、例えば、0.3〜70μmの平均粒径を有する粉末100重量部と0.1〜1.0μmの平均粒径を有する粉末5〜65重量部とを組み合わせたものが好ましい。
上記原料ペーストには、バインダ及び分散媒液が配合されていてもよい。
上記バインダとしては特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。上記バインダの配合量は、通常、セラミック粉末100重量部に対して、1〜15重量部が望ましい。
上記分散媒液としては特に限定されず、例えば、ベンゼン等の有機溶媒、メタノール等のアルコール、水等が挙げられる。
これらセラミック粉末、バインダ及び分散媒液は、アトライター等で混合し、ニーダー等で充分に混練して、原料ペーストとした後、押出成形される。
また、上記原料ペーストには、必要に応じて成形助剤を添加してもよい。上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリビニルアルコール等が挙げられる。
さらに、上記原料ペーストには、所望の気孔率を考慮して、酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらのなかでは、アルミナバルーンが望ましい。
次に、上記セラミック成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させ、セラミック乾燥体とする。次いで、一のセル群の一方側の端部、及び、他のセル群の他方側の端部に、封止材となる封止材ペーストを所定量充填し、セルを目封じする。
上記封止材ペーストとしては特に限定されないが、例えば、ハニカム成形体を作製する原料ペーストと同様のペーストを用いることができる。
次に、上記封止材ペーストが充填されたセラミック乾燥体に対して、所定の条件で脱脂(例えば、200〜500℃)、焼成(例えば、1400〜2300℃)を行うことにより、多孔質セラミックからなり、その全体が一の焼結体から構成されたハニカムユニット50を製造することができる。上記セラミック乾燥体の脱脂及び焼成の条件等は、従来から多孔質セラミックからなるハニカムユニットを製造する際に用いられている条件を適用することができる。
次に、ハニカムユニット50の側面に、接着材層41となる接着剤ペーストを均一な厚さで塗布して接着剤ペースト層を形成し、この接着剤ペースト層の上に、順次他のハニカムユニット50を積層する工程を繰り返し、所定の大きさのハニカムユニット集合体を作製する。
なお、上記接着剤ペーストを構成する材料としては、既に説明しているのでここではその説明を省略する。
次に、このハニカムユニット集合体を加熱して接着剤ペースト層を乾燥、固化させて接着材層41とする。
次に、ダイヤモンドカッター等を用い、ハニカムユニット50が接着材層41を介して複数個接着されたハニカムユニット集合体に切削加工を施し、円柱形状のセラミックブロックを作製する。
そして、セラミックブロックの外周に上記シール材ペーストを用いてシール材層42を形成することで、ハニカムユニット50が接着材層41を介して複数個接着された円柱形状のセラミックブロックの外周部にシール材層42が設けられたハニカム構造体45を製造することができる。
その後、ハニカム構造体45に酸化物触媒粒子を担持させ、触媒担持ハニカム40を製造する。
まず、触媒の前駆体溶液を準備する。触媒の前駆体としては、後に縮合、熱分解、結晶化することで、CeO、ZrO、FeO、Fe、CuO、CuO、Mn、MnO、KO、および組成式A1−nCO(ここで、AはLa、Nd、Sm、Eu、Gd又はY、Bはアルカリ金属またはアルカリ土類金属、CはMn、Co、Fe又はNiである)で表される複合酸化物となるものが好ましい。これらは、一種のみでも二種以上を同時に用いてもよい。具体的には例えば、上記酸化物の金属元素を含む硝酸塩、炭酸塩、酢酸塩などであってよく、一般式 M(OR(RCOCHCOR(式中、Mは、Ce、Zr、Fe、Cu、Mn及びKからなる群から選択される1種であり、p及びqは、金属錯体が2〜8座配位となるように決定される整数を示し、p、qのいずれかは、0であってもよい。R、R及びRが2以上の場合、それぞれのR、R、Rは、同一であっても異なっていてもよい。R及びRは、炭素数1〜6のアルキル基を示し、Rは、炭素数1〜6のアルキル基及び/又は炭素数1〜16のアルコキシ基を示す)で表される金属錯体などを挙げることもできる。また、溶媒としては、水、有機溶媒、例えば、トルエン、アルコールなどを挙げることができる。
この溶液を、従来公知のスプレー法などにより気体中に分散させる。この時、分散させた液滴をある一定の大きさにすることで、後にハニカム構造体45に担持される酸化物触媒粒子の粒径を一定のサイズにすることができる。
次いで、上記前駆体溶液を分散させた気体をキャリアガスにのせて、ハニカム構造体45の片方の端面から流入させる。この時のキャリアガスの流入速度は、実際のエンジン排ガスと同等であることが好ましく、例えば、空間速度で、72000(1/h)程度であってよい。キャリアガスは、ハニカム構造体の片方の端面から流入し、セル壁を通過し、隣り合うセルから流出される(図3(b)中の矢印参照)。このとき、キャリアガスに分散混入している触媒の前駆体溶液は、ハニカム構造体45のセル壁53に付着する。
さらに、上記ハニカム構造体を300℃から800℃に加熱することで、セル壁53に付着された触媒の前駆体が縮合、熱分解、結晶化され酸化物触媒として、ハニカム構造体に担持される。
なお、ハニカム構造体45を加熱した状態で、上記キャリアガスを流入させることで、前駆体溶液の付着と、前駆体の縮合、熱分解、結晶化を同時に行い、ハニカム構造体に酸化物触媒を担持させることがより好ましい。ハニカム構造体45に触媒粒子として付着し、より均一に担持されやすいからである。
なお、ハニカム構造体45は、一つハニカムユニットからなる一体型のハニカム構造体であってよい。このような一体型のハニカム構造体の製造は、押出し成形により成形されるハニカム成形体の大きさが大きい、及び、形状が異なる以外は、上述のハニカムユニットの製造方法と同様に製造することができる。
一体型のハニカム構造体の主な構成材料としては、耐熱衝撃性に優れたコージェライトやチタン酸アルミニウムを用いることが望ましい。
なお、例えば図6は、本実施形態に係る一体型の触媒担持ハニカムの断面を模式的に示した断面図である。
図6に示すハニカム構造体60では、碁盤の目に当たる部分に四角形の小容積セル55が形成された構成となっており、大容積セル54は、四角の四隅が小さな四角形状に欠けた形状となっており、これらを隔てるセル壁(隔壁)53が形成されている。
(実施例1)
平均粒子径22μmの炭化珪素の粗粉末54.6重量%と、平均粒子径0.5μmの炭化珪素の微粉末23.4重量%と、有機バインダとしてのメチルセルロース4.3%重量と、潤滑剤(日本油脂社製 ユニルーブ)2.6重量%と、グリセリン1.2重量%と、水13.9重量%とを混合、混練して混合組成物を得た後、押し出し成形を行い、生成形体を作製した。なお、この時、生成形体のセル形状が図3のように大容積セル群のセルの長手方向に垂直な断面の形状が八角形となり、小容積セル群のセルの長手方向に垂直な断面の形状が四角形となるようなダイスを用いた。また、大容積セル群と小容積セル群の長手方向に垂直な断面の断面積の比、大容積セルと小容積セルの長手方向に垂直な断面の断面積の比は、ともに2.54となるようにした。
次に、マイクロ波乾燥機等を用いて、上記生成形体を乾燥させ、セラミック乾燥体とした後、上記生成形体と同様の組成の封止材ペーストを所定のセルに充填した。
次いで、再び乾燥機を用いて乾燥させた後、400℃で脱脂させ、常圧のアルゴン雰囲気下2200℃、3時間で焼成を行いことにより、気孔率が42%、平均気孔径が11μm、その大きさが34mm角×長さ150mm、セルの数が45.6個/cm(300cpsi)、セル壁の厚さが0.25mmの炭化珪素焼結体からなるハニカム構造体を製造した。
次に、得られたハニカム構造体に酸化物触媒を担持する。
まず、硝酸セリウムを水に溶解させて、CeOの前駆体溶液を準備した。その前駆体溶液を分散させた気体をキャリアガスにのせて、700℃に加熱された上記ハニカム構造体の端面から大容積セル群に流入させた。なおこのとき、キャリアガスを空間速度72000(1/h)とした。このようにして、炭化珪素焼結体からなるハニカム構造体に平均粒径が0.1μmのCeOを担持した触媒担持ハニカムを得た。なお、CeOは触媒担持ハニカム1Lあたり20gの割合で担持した。また、酸化物触媒の平均粒径はSEM写真を用いて測定した。
(比較例1)
実施例1と同様にして得た炭化珪素焼結体からなるハニカム構造体を、CeO10g、水40ml及びpH調整剤を適量含む割合で混合した溶液に、5分間浸漬し、その後、500℃で焼成処理を施して、CeOが担持された触媒担持ハニカムを得た。なお、この時のCeOの平均粒径は2μmであり、担持量は20g/Lであった。
(比較例2)
セルの断面形状を図7のように全て正方形とした以外は実施例1と同様にして触媒担持ハニカムを製造した。
(比較例3)
セルの断面形状を図7のように全て正方形とした以外は比較例1と同様にして触媒担持ハニカムを製造した。
(比較例4)
実施例1で得られたハニカム構造体を比較例4のサンプルとした。(触媒を担持していない。)
(比較例5)
比較例2で得られたハニカム構造体を比較例5のサンプルとした。(触媒を担持していない。)
(評価方法)
実施例1及び比較例1〜5で得られた触媒担持ハニカム及びサンプルに、それぞれMatter Engineering A.G.社製スス発生装置CAST2を用いて、平均粒径82μmのススを流速30L/minで2.0g/L捕集した。次にススが堆積した状態の触媒担持ハニカムを図8のスス酸化速度評価装置にセットし、窒素ガスのみを導入しながらサンプルの入り口から15mmの位置が560℃となるように流入ガス温度を調整し、10分間安定した状態を保ってから、バルブの切り替えにより、10%の酸素を空間速度72000(1/h)で導入してススを燃焼させた。この時のスス燃焼により生成した一酸化炭素および二酸化炭素の濃度をSHIMADZU製CO/CO分析計で測定し、理想気体と仮定して、酸化したスス重量に換算することで、スス酸化速度を求めた。その結果を、単位時間当たりの酸化スス量の積算量の経時変化として図9に示す。
(実施例2)
次いで、実施例1で得られたハニカム構造体(ハニカムユニット)を平均繊維長20μmのアルミナファイバ30重量%、平均粒径0.6μmの炭化珪素粒子21重量%、シリカゾル15重量%、カルボキシメチルセルロース5.6重量%及び水28.4重量%を含む耐熱性の接着材ペーストを用いて、多数接着させた。さらに、120℃で乾燥後、ダイヤモンドカッターを用いて切断することにより、接着材層の厚さ1mmの円柱状のセラミックブロックを作製した。次に、平均繊維長100μm、平均繊維径10μmのシリカ−アルミナファイバ23.3重量%、平均粒径0.3μmの炭化珪素粉末30.2重量%、シリカゾル7重量%、カルボキシメチルセルロース0.5重量%及び水39重量%を含むシール材ペースト(コート層ペースト)を用いて、セラミックブロックの外周部に厚さ0.2mmのシール材層を形成した。そして、120℃で乾燥して、Φ143.8mm×長さ150mmの円柱状のハニカム構造体を得た。
この後、実施例1と同様にして酸化物触媒を担持させた。なお、この時のCeOの平均粒径は0.1μmであり、担持量は20g/Lであった。
(比較例6)
実施例2で得られたハニカム構造体を比較例6のサンプルとした。(触媒を担持していない。)
(比較例7)
比較例2で得られたハニカム構造体(ハニカムユニット)を実施例2で用いた接着材ペースト及びシール材ペースト(コート層ペースト)を用いて、同様にΦ143.8mm×長さ150mmの円柱状のハニカム構造体を得た。
この後、実施例1と同様にして酸化物触媒を担持させた。なお、この時のCeOの平均粒径は0.1μmであり、担持量は20g/Lであった。
(比較例8)
比較例7で得られたハニカム構造体を比較例8のサンプルとした。(触媒を担持していない。)
(評価方法)
2Lコモンレールエンジンから排出される排ガスの経路中、エンジンのターボチャージャーから0.6m離れた位置に実施例2及び比較例6〜8で得られた触媒担持ハニカム及びサンプルを、あらかじめ初期の重量を測定した後、搭載した。エンジン暖気後、NEDCモードを30サイクル連続で運転し、30サイクル後のフィルタ(触媒担持ハニカム及びサンプル)の重量を再度測定して、その間に堆積したスス量を求めた。得られた結果を連続再生性の指標で図10に示す。この連続再生性の指標とは、1.0g/Lのススが触媒担持ハニカムに堆積するまでのサイクル数を定義したものである。
図9(実施例1及び比較例1〜5)の結果から、大容積セル群と小容積セル群を備え、セル壁に0.05〜1μmの酸化物触媒を担持することで、触媒とススとの接触点が増加し、ススの酸化速度を飛躍的に向上させることができると読み取れる。また、図10(実施例2及び比較例6〜8)の結果から、大容積セル群と小容積セル群を備え、セル壁に0.05〜1μmの酸化物触媒を担持することで、ススの連続再生性が向上し、セル壁に経時的に蓄積するスス量を少なく抑えることができると読み取れる。
図11は、SEMにより実施例1の触媒担持ハニカムのセル壁の断面を観察したものである。酸化物触媒がセル壁の表面にケーク状に担持されている様子が観察できる。
40…触媒担持ハニカム、45、60…ハニカム構造体、50…ハニカムユニット、
51…セル、53…セル壁、54…大容積セル、55…小容積セル。

Claims (9)

  1. セル壁で隔てられた複数のセルが長手方向に沿って形成された柱状のハニカム構造体に、触媒粒子が担持された触媒担持ハニカムであって、
    前記複数のセルは、前記セルの一方の端部で封止されてなる大容積セル群と、他方の端部で封止されてなる小容積セル群とからなり、
    前記長手方向に垂直な断面における前記大容積セル群の面積の総和が、前記小容積セル群の面積の総和よりも大きくなっており、
    前記触媒粒子は、酸化物触媒からなる粒子であり、その平均粒径が0.05μm〜1μmであり、
    前記酸化物触媒が前記セル壁の表面にケーク状に担持されていることを特徴とする触媒担持ハニカム。
  2. 前記触媒粒子は、触媒の前駆体溶液を気体中に分散させ、前記前駆体溶液を分散させた気体をハニカム構造体に流入させることにより担持されている請求項1に記載の触媒担持ハニカム。
  3. 前記長手方向に垂直な断面において、前記大容積セル群のセルは八角形であり、前記小容積セル群のセルは四角形である請求項1又は2に記載の触媒担持ハニカム。
  4. 前記ハニカム構造体が、セラミック焼結体からなる請求項1〜3のいずれか一項に記載の触媒担持ハニカム。
  5. 前記ハニカム構造体が、炭化珪素焼結体からなる請求項4に記載の触媒担持ハニカム。
  6. 前記ハニカム構造体は、ハニカムユニットが複数個結束されてなる請求項1〜5のいずれか一項に記載の触媒担持ハニカム。
  7. 前記酸化物触媒が、CeO、ZrO、FeO、Fe、CuO、CuO、Mn、MnO、KO、および組成式A1−nCO(ここで、AはLa、Nd、Sm、Eu、Gd又はY、Bはアルカリ金属又はアルカリ土類金属、CはMn、Co、Fe又はNiである)で表される複合酸化物からなる群から選ばれる少なくとも一つである請求項1〜6のいずれか一項に記載の触媒担持ハニカム。
  8. 前記触媒粒子は、前記前駆体溶液を分散させた気体を流入させた後のハニカム構造体を加熱するか、又は、ハニカム構造体を加熱した状態で前記前駆体溶液を分散させた気体を流入させることにより担持されている請求項1〜7のいずれか一項に記載の触媒担持ハニカム。
  9. セル壁で隔てられた複数のセルが長手方向に沿って形成され、前記複数のセルは、前記セルの一方の端部で封止されてなる大容積セル群と、他方の端部で封止されてなる小容積セル群とからなり、
    前記長手方向に垂直な断面における前記大容積セル群の面積の総和が、前記小容積セル群の面積の総和よりも大きくなっている柱状のハニカム構造体に、酸化物触媒の前駆体溶液を分散させた気体を流入させることにより、セル壁に酸化物触媒粒子を担持させ、
    前記酸化物触媒粒子が前記セル壁の表面にケーク状に担持されていることを特徴とする触媒担持ハニカム。
JP2013168624A 2007-04-17 2013-08-14 触媒担持ハニカム Pending JP2014057951A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013168624A JP2014057951A (ja) 2007-04-17 2013-08-14 触媒担持ハニカム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009510704 2007-04-17
JP2009510704 2007-04-17
JP2013168624A JP2014057951A (ja) 2007-04-17 2013-08-14 触媒担持ハニカム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008103647A Division JP5474311B2 (ja) 2007-04-17 2008-04-11 触媒担持ハニカムおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2014057951A true JP2014057951A (ja) 2014-04-03

Family

ID=40918563

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008103647A Active JP5474311B2 (ja) 2007-04-17 2008-04-11 触媒担持ハニカムおよびその製造方法
JP2013168624A Pending JP2014057951A (ja) 2007-04-17 2013-08-14 触媒担持ハニカム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008103647A Active JP5474311B2 (ja) 2007-04-17 2008-04-11 触媒担持ハニカムおよびその製造方法

Country Status (2)

Country Link
JP (2) JP5474311B2 (ja)
DE (1) DE602008004695D1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111287A1 (ja) * 2015-01-09 2016-07-14 株式会社デンソー 排ガスフィルタ
JP2017075595A (ja) * 2015-01-09 2017-04-20 株式会社デンソー 排ガスフィルタ
DE102017002875A1 (de) 2016-03-30 2017-10-05 Ngk Insulators, Ltd. Übergangsmetalloxid-enthaltende Cerdioxidteilchen
DE102017002809A1 (de) 2016-03-30 2017-10-05 Ngk Insulators, Ltd. Wabenstruktur
DE102017002807A1 (de) 2016-03-30 2017-10-05 Ngk Insulators, Ltd. Wabenstruktur
US10252248B2 (en) 2016-03-30 2019-04-09 Ngk Insulators, Ltd. Transition metal oxide-containing cerium dioxide particles
US11273404B2 (en) 2018-06-20 2022-03-15 Ngk Insulators, Ltd. Porous composite

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117964A1 (ja) 2010-03-23 2011-09-29 イビデン株式会社 ハニカム構造体
WO2011117963A1 (ja) * 2010-03-23 2011-09-29 イビデン株式会社 ハニカム構造体
EP2554234B1 (en) * 2010-03-31 2016-11-02 NGK Insulators, Ltd. Honeycomb filter
JP5713760B2 (ja) * 2011-03-31 2015-05-07 日本碍子株式会社 セラミックスフィルタ
CN107363741A (zh) * 2017-07-20 2017-11-21 江苏苏北砂轮厂有限公司 大气孔砂轮装窑方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187662A (ja) * 1996-01-11 1997-07-22 Matsushita Electric Ind Co Ltd 脱臭用触媒フィルターの製造方法及びその方法により作製された脱臭用触媒フィルターを用いた脱臭器
JP2005118747A (ja) * 2003-10-20 2005-05-12 Ibiden Co Ltd ハニカム構造体
JP2005125209A (ja) * 2003-10-22 2005-05-19 Ibiden Co Ltd ハニカム構造体
WO2005079165A2 (ja) * 2004-02-23 2005-09-01 Ibiden Co Ltd ハニカム構造体及び排気ガス浄化装置
JP2005296935A (ja) * 2004-03-17 2005-10-27 Toyota Central Res & Dev Lab Inc 排ガスフィルタおよびその製造方法、並びに、排ガス処理装置
WO2005120687A1 (en) * 2004-06-05 2005-12-22 Umicore Ag & Co. Kg Particle filter provided with a catalytic coating

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158877A (ja) * 1984-12-27 1986-07-18 小宮山 宏 セラミツクス多孔質膜の製造方法
JPH01307452A (ja) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd 排気ガス浄化触媒体
FR2698346B1 (fr) * 1992-11-25 1995-01-27 Rhone Poulenc Chimie Agrégat de cristallites d'oxyde cérique, procédé d'obtention et son utilisation pour réduire les résidus de combustion.
JPH10180117A (ja) * 1996-12-20 1998-07-07 Nippon Soken Inc 排気ガス浄化用触媒の製造方法
JP2000070709A (ja) * 1998-08-31 2000-03-07 Kosei Kk 二酸化チタン結晶配向膜を有する材料
JP4120215B2 (ja) * 2001-12-06 2008-07-16 松下電器産業株式会社 排ガス浄化材用触媒スラリーの調製方法
JP4420655B2 (ja) * 2003-11-25 2010-02-24 株式会社キャタラー パティキュレートフィルタ触媒及びその製造方法
WO2007010643A1 (ja) * 2005-07-21 2007-01-25 Ibiden Co., Ltd. ハニカム構造体及び排ガス浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187662A (ja) * 1996-01-11 1997-07-22 Matsushita Electric Ind Co Ltd 脱臭用触媒フィルターの製造方法及びその方法により作製された脱臭用触媒フィルターを用いた脱臭器
JP2005118747A (ja) * 2003-10-20 2005-05-12 Ibiden Co Ltd ハニカム構造体
JP2005125209A (ja) * 2003-10-22 2005-05-19 Ibiden Co Ltd ハニカム構造体
WO2005079165A2 (ja) * 2004-02-23 2005-09-01 Ibiden Co Ltd ハニカム構造体及び排気ガス浄化装置
JP2005296935A (ja) * 2004-03-17 2005-10-27 Toyota Central Res & Dev Lab Inc 排ガスフィルタおよびその製造方法、並びに、排ガス処理装置
WO2005120687A1 (en) * 2004-06-05 2005-12-22 Umicore Ag & Co. Kg Particle filter provided with a catalytic coating

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111287A1 (ja) * 2015-01-09 2016-07-14 株式会社デンソー 排ガスフィルタ
JP2017075595A (ja) * 2015-01-09 2017-04-20 株式会社デンソー 排ガスフィルタ
DE102017002875A1 (de) 2016-03-30 2017-10-05 Ngk Insulators, Ltd. Übergangsmetalloxid-enthaltende Cerdioxidteilchen
DE102017002809A1 (de) 2016-03-30 2017-10-05 Ngk Insulators, Ltd. Wabenstruktur
DE102017002807A1 (de) 2016-03-30 2017-10-05 Ngk Insulators, Ltd. Wabenstruktur
US9945279B2 (en) 2016-03-30 2018-04-17 Ngk Insulators, Ltd. Honeycomb structure
DE102017002875B4 (de) 2016-03-30 2018-11-29 Ngk Insulators, Ltd. Übergangsmetalloxid-enthaltende Cerdioxidteilchen
US10252248B2 (en) 2016-03-30 2019-04-09 Ngk Insulators, Ltd. Transition metal oxide-containing cerium dioxide particles
US10610830B2 (en) 2016-03-30 2020-04-07 Ngk Insulators, Ltd. Honeycomb structure
DE102017002809B4 (de) 2016-03-30 2023-01-05 Ngk Insulators, Ltd. Wabenstruktur
US11273404B2 (en) 2018-06-20 2022-03-15 Ngk Insulators, Ltd. Porous composite

Also Published As

Publication number Publication date
JP5474311B2 (ja) 2014-04-16
DE602008004695D1 (de) 2011-03-10
JP2009148742A (ja) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5474311B2 (ja) 触媒担持ハニカムおよびその製造方法
KR100962450B1 (ko) 촉매 담지 허니컴 및 그 제조 방법
JP5142532B2 (ja) ハニカム構造体
KR100680078B1 (ko) 벌집형 구조체
JP5142529B2 (ja) ハニカム構造体
JP5202693B2 (ja) フィルタ
US7556782B2 (en) Honeycomb structured body
US7341614B2 (en) Filter and filter assembly
KR100679190B1 (ko) 벌집형 구조체
JP5001009B2 (ja) セラミックハニカム構造体
KR100855167B1 (ko) 벌집형 구조체
KR100692355B1 (ko) 벌집형 구조체
US8721979B2 (en) Honeycomb structure and exhaust gas purifying apparatus
KR100882401B1 (ko) 벌집형 구조체
JPWO2006035823A1 (ja) ハニカム構造体
JPWO2007097056A1 (ja) ハニカム構造体および排ガス浄化装置
US20090247399A1 (en) Catalytic diesel particulate filter and manufacturing method thereof
JPWO2008126335A1 (ja) ハニカム構造体及びハニカム構造体の製造方法
JP5096978B2 (ja) ハニカム触媒体
JP2008212917A (ja) ハニカム構造体および排気ガス処理装置
JP4471621B2 (ja) ハニカム構造体
JP5184867B2 (ja) ハニカムフィルタ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804