JP2014049582A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2014049582A
JP2014049582A JP2012190840A JP2012190840A JP2014049582A JP 2014049582 A JP2014049582 A JP 2014049582A JP 2012190840 A JP2012190840 A JP 2012190840A JP 2012190840 A JP2012190840 A JP 2012190840A JP 2014049582 A JP2014049582 A JP 2014049582A
Authority
JP
Japan
Prior art keywords
external electrode
connection terminal
electrode connection
semiconductor device
circuit pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012190840A
Other languages
Japanese (ja)
Inventor
Minoru Egusa
稔 江草
Shinsuke Asada
晋助 浅田
Seiji Oka
誠次 岡
Kazuyoshi Shige
和良 重
Seigo Harada
正剛 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012190840A priority Critical patent/JP2014049582A/en
Publication of JP2014049582A publication Critical patent/JP2014049582A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive, highly reliable, and highly productive semiconductor device capable of achieving high heat dissipation.SOLUTION: A semiconductor device comprises: a circuit pattern 15 fixed to a metallic base plate 17 via an insulating layer 16; a semiconductor element bonded to the circuit pattern 15; a plurality of cylindrical sockets 11, one end of each of the cylindrical sockets being bonded to the circuit pattern 15; a sealing body for sealing the circuit pattern 15, the plurality of cylindrical sockets 11, and the semiconductor element; and an external electrode connection terminal 21 in which an attaching portion 29 to an external electrode is linked to a body portion 27 provided with a plurality of insertion portions 26 inserted into the cylindrical socket 11. The attaching portion 29 and the body portion 27 are produced by bending a flat plate.

Description

この発明は半導体装置に関し、特に、半導体素子をモールド樹脂などの封止材料で封止した半導体装置に関するものである。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which a semiconductor element is sealed with a sealing material such as a mold resin.

電力用半導体装置を封止するのにモールド樹脂、ポッティング樹脂などが使われている。封止された電力用半導体装置においては、外部電極の取り出し方法が課題になる。例えば、特許文献1に関わる発明は、セラミックス基板の表面に外部電極取り出し部である銅円筒(円筒ソケット)をはんだ付けしている。その後、セラミックス基板を、エポキシ樹脂を用いてトランスファモールドすることで電力用半導体装置が形成される。出力端子は金属製の外部電極を用いて半導体装置の上面から取り出される。   Mold resin, potting resin, and the like are used to seal power semiconductor devices. In the sealed power semiconductor device, a method of taking out the external electrode becomes a problem. For example, the invention relating to Patent Document 1 solders a copper cylinder (cylindrical socket) as an external electrode lead-out portion to the surface of a ceramic substrate. Then, the semiconductor substrate for electric power is formed by carrying out transfer molding of the ceramic substrate using an epoxy resin. The output terminal is taken out from the upper surface of the semiconductor device using a metal external electrode.

電力用半導体装置では、通電電流が大きいため瞬時発熱が大きい。温度上昇を抑えるために、熱容量を考慮して、銅円筒を複数個使用する。しかしながら銅円筒にははんだ付け時に位置ずれが生じるため、複数の銅円筒のピッチ間隔は微妙に異なっている。外部電極接続用端子にはこの銅円筒の位置ずれを吸収できることが望まれる。   In power semiconductor devices, instantaneous heat generation is large due to a large energization current. In order to suppress the temperature rise, a plurality of copper cylinders are used in consideration of the heat capacity. However, because the copper cylinder is displaced during soldering, the pitch intervals of the plurality of copper cylinders are slightly different. It is desired that the external electrode connection terminal can absorb the displacement of the copper cylinder.

特開2007-184315号公報JP 2007-184315 A

この発明は、上記のような課題を解決するためになされたものであり、高放熱化を実現することに加えて、安価で信頼性が高く、生産性の良い半導体装置を得ることを目的としている。   The present invention has been made to solve the above-described problems. In addition to realizing high heat dissipation, an object of the present invention is to obtain a semiconductor device that is inexpensive, highly reliable, and highly productive. Yes.

本願にかかわる半導体装置は、金属製のベース板に絶縁層を介して固定された回路パターンと、回路パターンに接合された半導体素子と、回路パターンに一端が接合された複数の円筒ソケットと、回路パターンと複数の円筒ソケットと半導体素子を封止する封止体と、円筒ソケットに挿入される挿入部が複数個設けられている胴体部に外部電極への取付部が連結されている外部電極接続用端子とを備えている。取付部と胴体部は平板を折り曲げてなるものである。   A semiconductor device according to the present application includes a circuit pattern fixed to a metal base plate via an insulating layer, a semiconductor element bonded to the circuit pattern, a plurality of cylindrical sockets bonded at one end to the circuit pattern, and a circuit An external electrode connection in which a mounting portion to an external electrode is connected to a body portion provided with a plurality of insertion portions to be inserted into the cylindrical socket, a sealing body for sealing a pattern, a plurality of cylindrical sockets and semiconductor elements Terminal. The attachment portion and the body portion are formed by bending a flat plate.

円筒ソケットの位置ずれが大きくなっても、挿入部は正常な接触を得ることができるため、信頼性が高い。また、瞬時発熱に対して、外部端子が十分な熱容量を持つことで、温度上昇を抑えることができる。   Even if the displacement of the cylindrical socket becomes large, the insertion portion can obtain a normal contact, so that the reliability is high. In addition, an increase in temperature can be suppressed because the external terminal has a sufficient heat capacity against instantaneous heat generation.

半導体装置の全体構成を示す正面断面図である。It is front sectional drawing which shows the whole structure of a semiconductor device. 円筒ソケットと外部電極接続用端子の関係を示す断面図である。It is sectional drawing which shows the relationship between a cylindrical socket and the terminal for external electrode connection. 実施の形態1に関わる外部電極接続用端子の側面図である。2 is a side view of an external electrode connection terminal according to Embodiment 1. FIG. 半導体装置を示す上面図である。It is a top view which shows a semiconductor device. 実施の形態2に関わる外部電極接続用端子の正面図である。6 is a front view of an external electrode connection terminal according to Embodiment 2. FIG. 実施の形態3に関わる外部電極接続用端子の正面図である。6 is a front view of an external electrode connection terminal according to Embodiment 3. FIG. 実施の形態4に関わる外部電極接続用端子の正面図である。6 is a front view of an external electrode connection terminal according to Embodiment 4. FIG. 実施の形態5に関わる外部電極接続用端子の斜視図である。FIG. 10 is a perspective view of an external electrode connection terminal according to the fifth embodiment. 実施の形態5に関わる外部電極接続用端子の正面図である。10 is a front view of an external electrode connection terminal according to Embodiment 5. FIG. 実施の形態5に関わる外部電極接続用端子の側面図である。FIG. 10 is a side view of an external electrode connection terminal according to the fifth embodiment. 実施の形態6に関わる外部電極接続用端子の正面図である。FIG. 10 is a front view of an external electrode connection terminal according to a sixth embodiment. 実施の形態6に関わる外部電極接続用端子の挿入部を表す断面図である。FIG. 10 is a cross-sectional view illustrating an insertion portion of an external electrode connection terminal according to a sixth embodiment. 実施の形態7に関わる外部電極接続用端子の正面図である。FIG. 20 is a front view of an external electrode connection terminal according to the seventh embodiment. 実施の形態7に関わる外部電極接続用端子の挿入部を表す断面図である。FIG. 10 is a cross-sectional view illustrating an insertion portion of an external electrode connection terminal according to a seventh embodiment.

以下に本発明にかかる半導体装置の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の既述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。   Embodiments of a semiconductor device according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably.

実施の形態1.
図1は半導体装置の全体構成を示す断面図である。回路基板19は、銅製のベース板17と、高熱伝導樹脂を使用した絶縁層16と、回路パターン15から構成されている。ベース板17はモールド樹脂18から片面が露出している。回路パターン15の上には、円筒ソケット11とIGBT(Insulated Gate Bipolar Transistor)12とFWDi(Free-Wheeling Diode)13がはんだ14で接合されている。円筒ソケット11には、外部電極接続用端子21が圧入されている。銅系の材料からなる外部電極接続用端子21には取付穴22が設けられている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the overall configuration of the semiconductor device. The circuit board 19 includes a copper base plate 17, an insulating layer 16 using a high thermal conductive resin, and a circuit pattern 15. One side of the base plate 17 is exposed from the mold resin 18. On the circuit pattern 15, a cylindrical socket 11, an IGBT (Insulated Gate Bipolar Transistor) 12, and an FWDi (Free-Wheeling Diode) 13 are joined by solder 14. An external electrode connection terminal 21 is press-fitted into the cylindrical socket 11. The external electrode connection terminal 21 made of a copper-based material is provided with a mounting hole 22.

半導体装置1ではIGBT12、FWDi13などの電力用半導体素子がモールド樹脂18で封止されている。封止材料にはモールド樹脂のほかに、ポッティング樹脂、ゲルなども使用される。電力用半導体素子は、珪素(Si)によって形成したものの他、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成したものも好適に使用することができる。ワイドバンドギャップ半導体としては、例えば、炭化珪素(SiC)、窒化ガリウム系材料またはダイヤモンドがある。ワイドバンドギャップ半導体を用いた場合、許容電流密度が高く、電力損失も低いため、電力用半導体素子を用いた装置の小型化が可能となる。   In the semiconductor device 1, power semiconductor elements such as IGBT 12 and FWDi 13 are sealed with a mold resin 18. In addition to mold resin, potting resin, gel, etc. are used as the sealing material. As the power semiconductor element, in addition to those formed of silicon (Si), those formed of a wide band gap semiconductor having a band gap larger than that of silicon can be suitably used. Examples of the wide band gap semiconductor include silicon carbide (SiC), a gallium nitride material, and diamond. When a wide bandgap semiconductor is used, the allowable current density is high and the power loss is low, so that a device using the power semiconductor element can be downsized.

円筒ソケット11は、銅以外の金属あるいは他の導電性材料を適用することができる。半導体装置1の全体はモールド樹脂18にてトランスファモールドされており、外部との絶縁が保たれている。モールド樹脂18が線膨張係数の異なる回路基板19とIGBT12とFWDi13の表面を強固に接着し固定するため、使用時の温度上昇による熱疲労を抑えることができる。モールド樹脂で封止された電力半導体装置は、ゲルタイプの電力用半導体装置と比較して、信頼性が高い。   The cylindrical socket 11 can be made of a metal other than copper or another conductive material. The entirety of the semiconductor device 1 is transfer-molded with a mold resin 18, and insulation from the outside is maintained. Since the mold resin 18 firmly adheres and fixes the surfaces of the circuit board 19, IGBT 12 and FWDi 13 having different linear expansion coefficients, thermal fatigue due to temperature rise during use can be suppressed. The power semiconductor device sealed with the mold resin has higher reliability than the gel type power semiconductor device.

図2は、半導体装置を図1と垂直な方向から見た断面図で、円筒ソケット11に外部電極接続用端子21が挿入されている状態を示している。図3は外部電極接続用端子の構成を示す側面図である。外部電極接続用端子21は、挿入部26と胴体部27と取付部29から構成されている。取付部29と複数の挿入部26は胴体部27で連結されている。挿入部26は、開口部28が形成されており、ニードルアイ形状を有している。ニードルアイ形状は一般的にプレスフィットと呼ばれている。胴体部27には2個の挿入部26が間隔を隔てて設けられている。取付部29は胴体部27から90度折れ曲がっている。外部電極接続用端子21の挿入部26が円筒ソケット11に挿入される。挿入部26を有する外部電極接続用端子21を用いて半導体装置の上面から外部電極に取り付けるため、出力の取出しが容易である。外部電極接続用端子21の挿入部26が円筒ソケット11の内側に圧入されると、挿入部26の弾性変形により、円筒ソケット11の内壁に反発力が働き、導通が確保される。   FIG. 2 is a cross-sectional view of the semiconductor device viewed from a direction perpendicular to FIG. 1 and shows a state in which the external electrode connection terminal 21 is inserted into the cylindrical socket 11. FIG. 3 is a side view showing the configuration of the external electrode connection terminal. The external electrode connection terminal 21 includes an insertion portion 26, a body portion 27, and an attachment portion 29. The attachment portion 29 and the plurality of insertion portions 26 are connected by a body portion 27. The insertion portion 26 is formed with an opening 28 and has a needle eye shape. The needle eye shape is generally called a press fit. Two insertion parts 26 are provided in the body part 27 at intervals. The attachment portion 29 is bent 90 degrees from the body portion 27. The insertion portion 26 of the external electrode connection terminal 21 is inserted into the cylindrical socket 11. Since the external electrode connection terminal 21 having the insertion portion 26 is used to attach to the external electrode from the upper surface of the semiconductor device, the output can be easily taken out. When the insertion portion 26 of the external electrode connection terminal 21 is press-fitted inside the cylindrical socket 11, due to the elastic deformation of the insertion portion 26, a repulsive force acts on the inner wall of the cylindrical socket 11 to ensure conduction.

図4は半導体装置1を示す上面図である。図には4個の外部電極接続用端子21と、4枚の外部電極30と、8個の円筒ソケット11が示されている。外部電極接続用端子21は雌ネジが加工された外部電極30と連結されている。外部電極接続用端子21の取付穴22は外部電極接続用端子21の取付部29に形成されている。取付穴22は、外部電極30と接続するために形成されている。外部電極30と外部電極接続用端子21の固定にはネジ31が用いられる。銅製の外部電極接続用端子21には、Ni下地めっきとSn表面めっきが施されている。これは、外部電極接続用端子21の表面酸化を抑止し、酸化膜による接触抵抗の増加を抑制するためである。   FIG. 4 is a top view showing the semiconductor device 1. In the figure, four external electrode connection terminals 21, four external electrodes 30, and eight cylindrical sockets 11 are shown. The external electrode connection terminal 21 is connected to an external electrode 30 in which a female screw is processed. The attachment hole 22 of the external electrode connection terminal 21 is formed in the attachment portion 29 of the external electrode connection terminal 21. The attachment hole 22 is formed to connect to the external electrode 30. A screw 31 is used to fix the external electrode 30 and the external electrode connection terminal 21. The copper external electrode connection terminal 21 is subjected to Ni base plating and Sn surface plating. This is for suppressing the surface oxidation of the external electrode connection terminal 21 and suppressing an increase in contact resistance due to the oxide film.

回路基板19の回路パターン15と円筒ソケット11は前述したとおりはんだにより接合されている。はんだ付けの際、粘性を持ったはんだペーストを用いる場合のプロセスを説明する。回路パターン15の所定の位置にはんだペーストを印刷し、印刷したはんだペーストの上には部材(IGBT、FWDi、円筒ソケット)を搭載する。回路基板19はリフロー炉に投入され、はんだの融点以上まで加熱される。はんだは溶融し回路パターンおよび部材の所定箇所にはんだが濡れる。その後冷却され、はんだ付けによる部材と回路パターンとの接合が完了する。   The circuit pattern 15 of the circuit board 19 and the cylindrical socket 11 are joined by solder as described above. A process in the case of using a solder paste having viscosity at the time of soldering will be described. A solder paste is printed at a predetermined position of the circuit pattern 15, and a member (IGBT, FWDi, cylindrical socket) is mounted on the printed solder paste. The circuit board 19 is put into a reflow furnace and heated to the melting point of the solder or higher. The solder melts and wets the circuit pattern and predetermined portions of the member. Thereafter, cooling is performed, and joining of the member and the circuit pattern by soldering is completed.

このはんだ付けプロセスにおいて、円筒ソケットに位置ずれが生じる。まず、円筒ソケットにはんだが濡れる際に起こる。はんだが回路パターンと円筒ソケットに濡れる際に表面張力が円筒ソケット11に働き、円筒ソケット11に位置ずれを発生させる。更に、リフロー炉でのサンプルの搬送中に、振動によって円筒ソケットは位置ずれを起こす。この2つの因子により、円筒ソケットは初期の搭載位置から、大きい場合には数百μmほど位置がずれる。外部電極接続用端子21は、挿入部26の弾性変形により円筒ソケット11の内壁に反発力が働くため、数百μmほどの位置ずれがあっても、導通を確保する。   In this soldering process, the cylindrical socket is displaced. First, it occurs when the solder gets wet into the cylindrical socket. When the solder gets wet with the circuit pattern and the cylindrical socket, the surface tension acts on the cylindrical socket 11, and the cylindrical socket 11 is displaced. Furthermore, during the transfer of the sample in the reflow furnace, the cylindrical socket is displaced due to vibration. Due to these two factors, the cylindrical socket is displaced from the initial mounting position by a few hundred μm when it is large. Since the external electrode connection terminal 21 has a repulsive force acting on the inner wall of the cylindrical socket 11 due to the elastic deformation of the insertion portion 26, the external electrode connection terminal 21 ensures electrical continuity even if there is a positional shift of several hundred μm.

半導体装置の他の接続方法と比較してみる。例えば、円筒ソケットの代わりに、ネジ穴を形成したソケットを使用して、ネジにて固定する方法を考えてみる。ネジ穴を形成するための加工は煩雑でありコスト高になる。本願発明では挿入部を用いることで、外部電極接続用端子21を挿入するだけで、円筒ソケット11の内壁の酸化膜を除去し、低接触抵抗となる理想的な接続を得ることができる。外部電極接続用端子21は、例えば順送プレスによって、平板を打ち抜いて加工されているため、挿入部26と胴体部27と取付部29は同じ厚さを有する。順送プレスは1つの金型の中を材料の一部をつないだ状態で加工を進めるもので、抜き、曲げ、成型、絞り、鍛造、などを含む工程を1つの金型で行う。   Compare with other connection methods for semiconductor devices. For example, consider a method of using a socket in which a screw hole is formed instead of a cylindrical socket and fixing with a screw. The processing for forming the screw holes is complicated and expensive. In the present invention, by using the insertion portion, the oxide film on the inner wall of the cylindrical socket 11 can be removed and an ideal connection with low contact resistance can be obtained simply by inserting the external electrode connection terminal 21. Since the external electrode connection terminal 21 is processed by punching a flat plate by, for example, a progressive press, the insertion portion 26, the body portion 27, and the attachment portion 29 have the same thickness. Progressive press is a process in which a part of the material is connected in a single mold, and processes including punching, bending, molding, drawing, forging, and the like are performed with a single mold.

本発明は、SiCモジュールなどの高温動作する電力用半導体装置において、特に顕著な効果がある。電極接続部は高温になるため、電極接続部にははんだ接続信頼性が要求される。また、モジュールの小型化によって電極端子に流す電流が大電流となっており、同様にはんだ接続信頼性が要求される。はんだ付であることが一般的であった電極接続を本発明による外部電極接続用端子を採用することで、はんだの融点よりも高い温度において半導体を動作させることが可能となる。さらに、本発明による挿入部は、はんだ付と比べて、電極の接続面積が小さい。挿入部と円筒ソケットとの熱抵抗が大きくなるため、半導体から外部基板への熱伝導を抑えることができる。すなわち、半導体の熱が基板側に伝わりにくくなる。半導体の温度が高温になっても、基板の温度上昇が抑制され、基板の信頼性が高くなる。   The present invention has a particularly remarkable effect in a power semiconductor device such as a SiC module that operates at a high temperature. Since the electrode connection portion is at a high temperature, solder connection reliability is required for the electrode connection portion. Further, due to the downsizing of the module, the current flowing through the electrode terminal is a large current, and similarly, solder connection reliability is required. By adopting the external electrode connection terminal according to the present invention for the electrode connection that is generally soldered, the semiconductor can be operated at a temperature higher than the melting point of the solder. Furthermore, the insertion portion according to the present invention has a smaller electrode connection area than soldering. Since the thermal resistance between the insertion portion and the cylindrical socket is increased, heat conduction from the semiconductor to the external substrate can be suppressed. That is, the heat of the semiconductor is not easily transmitted to the substrate side. Even when the temperature of the semiconductor becomes high, the temperature rise of the substrate is suppressed, and the reliability of the substrate is increased.

実施の形態2.
次に、図5を用いて、実施の形態2に関わる外部電極接続用端子21の構造を詳細に説明する。なお、半導体装置1の構造は実施の形態1で説明したものと概ね同様であるため省略する。胴体部27には、挿入側端面27aと、側方側端面27bと、折り曲げ側端面27cが存在する。スリット23は胴体部27の中間部に形成されている。外部電極接続用端子21の挿入部26を円筒ソケット11へ圧入する際、円筒ソケットの位置ずれが大きいために挿入部26が塑性変形すると、所定の反発力が得られなくなる。しかしながら、外部電極接続用端子21にスリット23を形成することにより、外部電極接続用端子21の2つの挿入部26と連続した胴体部27はスリット23を介して、単独に変形することができる。
Embodiment 2. FIG.
Next, the structure of the external electrode connection terminal 21 according to the second embodiment will be described in detail with reference to FIG. Note that the structure of the semiconductor device 1 is omitted since it is substantially the same as that described in the first embodiment. The body portion 27 has an insertion side end surface 27a, a side side end surface 27b, and a bending side end surface 27c. The slit 23 is formed in the middle part of the body part 27. When the insertion portion 26 of the external electrode connection terminal 21 is press-fitted into the cylindrical socket 11, if the insertion portion 26 is plastically deformed due to a large displacement of the cylindrical socket, a predetermined repulsive force cannot be obtained. However, by forming the slit 23 in the external electrode connection terminal 21, the body portion 27 continuous with the two insertion portions 26 of the external electrode connection terminal 21 can be independently deformed through the slit 23.

実施の形態2に関わる外部電極接続用端子によれば、胴体部27は挿入部26の圧入時に位置ずれした円筒ソケット11に倣うように変形するため、挿入部26の塑性変形を防止できる。円筒ソケット11の内壁からの反発力として所定のものが得られるため、挿入部26と円筒ソケット11との接触抵抗は十分に低くなる。半導体装置の使用時には、通電による接触部の発熱は十分に小さくなり、半導体装置の温度上昇をあらかじめ設計した温度以下に抑えることが可能となる。   According to the external electrode connection terminal according to the second embodiment, the body portion 27 is deformed so as to follow the cylindrical socket 11 that is displaced when the insertion portion 26 is press-fitted, so that plastic deformation of the insertion portion 26 can be prevented. Since a predetermined repulsive force from the inner wall of the cylindrical socket 11 is obtained, the contact resistance between the insertion portion 26 and the cylindrical socket 11 is sufficiently low. When the semiconductor device is used, the heat generation at the contact portion due to energization is sufficiently small, and it is possible to suppress the temperature rise of the semiconductor device below a predesigned temperature.

電力用半導体素子、回路パターンおよびその他の部材の発熱を効果的に放熱するためには、熱容量が必要である。本発明による半導体装置は150A以上の極めて大きな電流を通電するため、外部電極接続用端子においても十分な熱容量が必要である。挿入部と円筒ソケットの接触部で発生する熱は、回路パターン側および外部電極接続用端子の胴体部側に放熱される。スリットが形成されている箇所は放熱にはほとんど寄与しない箇所であるため、温度上昇はスリットを形成しない場合と比較して、ほとんど変化が無い。   In order to effectively dissipate heat generated by the power semiconductor elements, circuit patterns, and other members, heat capacity is required. Since the semiconductor device according to the present invention supplies a very large current of 150 A or more, a sufficient heat capacity is required even for the external electrode connection terminal. Heat generated at the contact portion between the insertion portion and the cylindrical socket is radiated to the circuit pattern side and the body portion side of the external electrode connection terminal. Since the portion where the slit is formed is a portion which hardly contributes to heat dissipation, the temperature rise hardly changes compared to the case where the slit is not formed.

実施の形態3.
図6に実施の形態3に係る外部電極接続用端子21を示す。スリット23は胴体部23の挿入側端面を起点23aとして折り曲げ側に向かっている。スリット23の根元(終点)に窪み(穿孔)24を設けることで、2つの円筒ソケットが互いに内側に位置ずれした場合に、窪み24が変形箇所となり、胴体部27の変形を容易にする。なお、外部電極接続用端子の材料は銅系の材料でも特に電気抵抗率が無酸素銅に近いものが良い。また挿入部26が適切な反発力を働くためには高い剛性を持つバネ性の高い材料であることが好ましい。これらの特性を満たす材料としてMZC1(三菱伸銅株式会社製)が存在する。スリットの起点23aは挿入部26と挿入部26の間に配置されている。
Embodiment 3 FIG.
FIG. 6 shows an external electrode connection terminal 21 according to the third embodiment. The slit 23 is directed toward the bent side with the insertion side end face of the body portion 23 as a starting point 23a. By providing a recess (perforation) 24 at the base (end point) of the slit 23, when the two cylindrical sockets are displaced inward from each other, the recess 24 becomes a deformed portion and facilitates deformation of the body portion 27. The material for the external electrode connection terminal is preferably a copper-based material having an electrical resistivity close to that of oxygen-free copper. Moreover, in order for the insertion part 26 to work an appropriate repulsive force, it is preferable that it is a highly springy material with high rigidity. MZC1 (manufactured by Mitsubishi Shindoh Co., Ltd.) exists as a material that satisfies these characteristics. The slit starting point 23 a is disposed between the insertion portion 26 and the insertion portion 26.

実施の形態4.
図7に実施の形態4に係る外部電極接続用端子21を示す。外部電極接続用端子21の側方側端面27bが半円状に切り取られている。胴体部27の外側にも窪み25を設けることで、円筒ソケットが互いに外側に位置ずれした場合でも胴体部27の変形が容易になる。図7では窪み25は胴体部27の両側に2箇所設けられている。
Embodiment 4 FIG.
FIG. 7 shows an external electrode connection terminal 21 according to the fourth embodiment. A side end face 27b of the external electrode connection terminal 21 is cut out in a semicircular shape. By providing the recess 25 on the outer side of the body part 27, the body part 27 can be easily deformed even when the cylindrical sockets are displaced from each other. In FIG. 7, two recesses 25 are provided on both sides of the body portion 27.

実施の形態5.
図8から図10は実施の形態5に係る外部電極接続用端子21を示す。実施の形態5では外部電極接続用端子に形成されたスリット23が取付部29まで設けられていることを特徴とする。さらに、200A以上の大電流に対応するため、1つの外部電極接続用端子から3個の挿入部26を取り出すことを想定している。実施の形態5によれば、円筒ソケットの位置ずれが大きくなっても外部電極接続用端子は容易に変形することができる。さらに、本構造は、外部からの負荷に強い構造となる。すなわち、外部電極接続用端子21と外部電極をネジ固定する際に、外部電極接続用端子にはねじりの力が負荷される。胴体部を超えて取付部まで伸びているスリット23の効果で、外部電極接続用端子が回転方向の力を受けても、胴体部27の変形が容易になる。挿入部26には回転方向の力は直接負荷されずに、正常な接触状態を維持できる。
Embodiment 5 FIG.
8 to 10 show the external electrode connection terminal 21 according to the fifth embodiment. The fifth embodiment is characterized in that the slit 23 formed in the external electrode connection terminal is provided up to the attachment portion 29. Further, in order to cope with a large current of 200 A or more, it is assumed that three insertion portions 26 are taken out from one external electrode connection terminal. According to the fifth embodiment, the external electrode connection terminal can be easily deformed even when the displacement of the cylindrical socket is increased. Furthermore, this structure is a structure that is resistant to external loads. That is, when the external electrode connection terminal 21 and the external electrode are fixed with screws, a torsional force is applied to the external electrode connection terminal. Due to the effect of the slit 23 extending beyond the body part to the attachment part, the body part 27 can be easily deformed even if the external electrode connection terminal receives a force in the rotational direction. A force in the rotational direction is not directly applied to the insertion portion 26, and a normal contact state can be maintained.

上記と同様の効果は、通電時のパワーサイクル負荷や温度サイクル負荷においても発揮される。即ち、外部電極接続用端子には温度変化による部材間の線膨張ミスマッチによる繰り返し負荷が生じる。本実施の形態によれば、胴体部が変形し、挿入部には繰り返し負荷が生じない構造であるため、長期に渡って高い信頼性を得ることができる。本実施の形態では、1つの外部電極接続用端子に3つの挿入部を設けた例を説明したが、4つ以上の挿入部を形成する場合でも同様の効果を発揮する。   The same effect as described above is also exhibited in a power cycle load and a temperature cycle load during energization. That is, the external electrode connection terminal is subjected to repeated load due to linear expansion mismatch between members due to temperature change. According to the present embodiment, since the body portion is deformed and a load is not repeatedly generated in the insertion portion, high reliability can be obtained over a long period of time. In the present embodiment, an example in which three insertion portions are provided in one external electrode connection terminal has been described, but the same effect is exhibited even when four or more insertion portions are formed.

実施の形態6.
図11は実施の形態6に係る外部電極接続用端子21を示す正面図である。図12は実施の形態6に係る外部電極接続用端子21の挿入部を示すA−A断面図である(図11参照)。挿入部26は、長手方向に伸びる複数の筋または溝が表面に加工されていて、挿入部26の断面形状は星型を呈している。上記と同様の位置ずれ抑制効果を発揮する。
Embodiment 6 FIG.
FIG. 11 is a front view showing the external electrode connection terminal 21 according to the sixth embodiment. 12 is a cross-sectional view taken along the line AA showing the insertion portion of the external electrode connection terminal 21 according to Embodiment 6 (see FIG. 11). The insertion portion 26 has a plurality of streaks or grooves extending in the longitudinal direction processed on the surface, and the cross-sectional shape of the insertion portion 26 has a star shape. The same effect of suppressing displacement as described above is exhibited.

実施の形態7.
図13は実施の形態6に係る外部電極接続用端子21を示す正面図である。図14は実施の形態7に係る外部電極接続用端子21の挿入部を示すB−B断面図である(図13参照)。挿入部26の断面形状は割りピン型(或いはC形状)を呈している。上記と同様の位置ずれ抑制効果を発揮する。挿入部26は、平板を短手方向に湾曲させて作成する。
Embodiment 7 FIG.
FIG. 13 is a front view showing the external electrode connection terminal 21 according to the sixth embodiment. FIG. 14 is a cross-sectional view taken along the line BB showing the insertion portion of the external electrode connection terminal 21 according to the seventh embodiment (see FIG. 13). The cross-sectional shape of the insertion portion 26 has a split pin type (or C shape). The same effect of suppressing displacement as described above is exhibited. The insertion unit 26 is created by bending a flat plate in the short direction.

半導体素子にSiCを用いた場合、半導体装置1はその特徴を生かすべくSiの時と比較してより高温で動作させることになる。SiCデバイスを搭載する半導体装置においては、半導体装置としてより高い信頼性が求められるため、高信頼の半導体装置を実現するという本発明のメリットはより効果的なものとなる。   When SiC is used for the semiconductor element, the semiconductor device 1 is operated at a higher temperature than in the case of Si in order to take advantage of the characteristics. In a semiconductor device on which an SiC device is mounted, since higher reliability is required as a semiconductor device, the merit of the present invention for realizing a highly reliable semiconductor device becomes more effective.

なお、本発明は、その発明の範囲内において、実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1 半導体装置、11 円筒ソケット、12 IGBT、13 FWDi、14 はんだ、15回路パターン、16 絶縁層、17 ベース板、18 モールド樹脂、19 回路基板、21 外部電極接続用端子、22 取付穴、23 スリット、24 窪み、25 窪み、26 挿入部、27 胴体部、28 開口部、29 取付部   DESCRIPTION OF SYMBOLS 1 Semiconductor device, 11 Cylindrical socket, 12 IGBT, 13 FWDi, 14 Solder, 15 Circuit pattern, 16 Insulation layer, 17 Base board, 18 Mold resin, 19 Circuit board, 21 External electrode connection terminal, 22 Mounting hole, 23 Slit , 24 depression, 25 depression, 26 insertion part, 27 body part, 28 opening part, 29 attachment part

Claims (10)

金属製のベース板に絶縁層を介して固定された回路パターンと、
前記回路パターンに接合された半導体素子と、
前記回路パターンに一端が接合された複数の円筒ソケットと、
前記回路パターンと前記複数の円筒ソケットと前記半導体素子を封止する封止体と、
前記円筒ソケットに挿入される挿入部が複数個設けられている胴体部に外部電極への取付部が連結されている外部電極接続用端子とを備えている半導体装置。
A circuit pattern fixed via an insulating layer to a metal base plate;
A semiconductor element bonded to the circuit pattern;
A plurality of cylindrical sockets joined at one end to the circuit pattern;
A sealing body for sealing the circuit pattern, the plurality of cylindrical sockets, and the semiconductor element;
A semiconductor device comprising: a body portion provided with a plurality of insertion portions to be inserted into the cylindrical socket; and an external electrode connection terminal connected to an attachment portion to an external electrode.
前記外部電極接続用端子の取付部と胴体部は、平板を折り曲げてなることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the attachment portion and the body portion of the external electrode connection terminal are formed by bending a flat plate. 前記外部電極接続用端子は、前記胴体部の挿入側端面を起点として折り曲げ側端面に向かうスリットが設けられていて、前記スリットの起点は挿入部と挿入部の間に配置されていること特徴とする請求項2に記載の半導体装置。   The external electrode connection terminal is provided with a slit from the insertion side end face of the body part toward the bending side end face, and the starting point of the slit is disposed between the insertion part and the insertion part. The semiconductor device according to claim 2. 前記外部電極接続用端子は、前記スリットが前記胴体部に収まっていることを特徴とする請求項3に記載の半導体装置。   The semiconductor device according to claim 3, wherein the external electrode connection terminal has the slit accommodated in the body portion. 前記外部電極接続用端子は、前記スリットの終点が前記スリットの幅よりも大きく穿孔されていることを特徴とする請求項3に記載の半導体装置。   4. The semiconductor device according to claim 3, wherein the external electrode connection terminal has an end point of the slit larger than a width of the slit. 前記外部電極接続用端子は、前記胴体部の側方側端面が半円状に切り取られていることを特徴とする請求項3に記載の半導体装置。   4. The semiconductor device according to claim 3, wherein the external electrode connection terminal has a side end face of the body portion cut out in a semicircular shape. 5. 前記外部電極接続用端子は、前記スリットが前記胴体部を超えて前記取付部まで伸びていることを特徴とする請求項3に記載の半導体装置。   The semiconductor device according to claim 3, wherein the external electrode connection terminal has the slit extending beyond the body portion to the attachment portion. 前記外部電極接続用端子の挿入部は、ニードルアイ形状を有していることを特徴とする請求項1ないし7のうちいずれか1項に記載の半導体装置。   8. The semiconductor device according to claim 1, wherein the insertion portion of the external electrode connection terminal has a needle eye shape. 前記外部電極接続用端子の挿入部は、長手方向に伸びる複数の筋が表面に加工されていることを特徴とする請求項1ないし7のうちいずれか1項に記載の半導体装置。   8. The semiconductor device according to claim 1, wherein a plurality of stripes extending in a longitudinal direction are processed on a surface of the insertion portion of the external electrode connection terminal. 9. 前記外部電極接続用端子の挿入部は、断面がC形状を有することを特徴とする請求項1ないし7のうちいずれか1項に記載の半導体装置。   8. The semiconductor device according to claim 1, wherein the insertion portion of the external electrode connection terminal has a C-shaped cross section. 9.
JP2012190840A 2012-08-31 2012-08-31 Semiconductor device Pending JP2014049582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012190840A JP2014049582A (en) 2012-08-31 2012-08-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012190840A JP2014049582A (en) 2012-08-31 2012-08-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2014049582A true JP2014049582A (en) 2014-03-17

Family

ID=50608955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012190840A Pending JP2014049582A (en) 2012-08-31 2012-08-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2014049582A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185920A1 (en) * 2015-05-21 2016-11-24 三菱電機株式会社 Semiconductor device for power
JP2019009183A (en) * 2017-06-21 2019-01-17 三菱電機株式会社 Semiconductor device
US11037848B2 (en) 2017-12-19 2021-06-15 Fuji Electric Co., Ltd. Semiconductor module and semiconductor module manufacturing method
EP3989274A1 (en) * 2020-10-23 2022-04-27 SwissSEM Technologies AG Power module
US11437302B2 (en) 2020-06-23 2022-09-06 Fuji Electric Co., Ltd. Semiconductor module and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137583U (en) * 1974-04-29 1975-11-12
JP2000251977A (en) * 1999-02-26 2000-09-14 Fujitsu Ltd Power supply terminal
JP2004199974A (en) * 2002-12-18 2004-07-15 Auto Network Gijutsu Kenkyusho:Kk Press fit connector and manufacturing method thereof
WO2008090734A1 (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corporation Semiconductor device for power
JP2009043730A (en) * 2003-02-07 2009-02-26 Fujitsu Ltd Power source feed terminal, electronic part with conductor member, and structure equipped with the power source feed terminal
JP2010027814A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Power semiconductor device
JP2011258347A (en) * 2010-06-07 2011-12-22 Nidec Copal Electronics Corp Substrate loading component
JP2012151019A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Semiconductor device for power, printed wiring board and their connection mechanisms

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137583U (en) * 1974-04-29 1975-11-12
JP2000251977A (en) * 1999-02-26 2000-09-14 Fujitsu Ltd Power supply terminal
JP2004199974A (en) * 2002-12-18 2004-07-15 Auto Network Gijutsu Kenkyusho:Kk Press fit connector and manufacturing method thereof
JP2009043730A (en) * 2003-02-07 2009-02-26 Fujitsu Ltd Power source feed terminal, electronic part with conductor member, and structure equipped with the power source feed terminal
WO2008090734A1 (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corporation Semiconductor device for power
JP2010027814A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Power semiconductor device
JP2011258347A (en) * 2010-06-07 2011-12-22 Nidec Copal Electronics Corp Substrate loading component
JP2012151019A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Semiconductor device for power, printed wiring board and their connection mechanisms

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185920A1 (en) * 2015-05-21 2016-11-24 三菱電機株式会社 Semiconductor device for power
CN107210279A (en) * 2015-05-21 2017-09-26 三菱电机株式会社 power semiconductor device
JPWO2016185920A1 (en) * 2015-05-21 2017-09-28 三菱電機株式会社 Power semiconductor device
CN107210279B (en) * 2015-05-21 2019-07-19 三菱电机株式会社 Power semiconductor device
JP2019009183A (en) * 2017-06-21 2019-01-17 三菱電機株式会社 Semiconductor device
US11037848B2 (en) 2017-12-19 2021-06-15 Fuji Electric Co., Ltd. Semiconductor module and semiconductor module manufacturing method
US11437302B2 (en) 2020-06-23 2022-09-06 Fuji Electric Co., Ltd. Semiconductor module and method for manufacturing the same
EP3989274A1 (en) * 2020-10-23 2022-04-27 SwissSEM Technologies AG Power module

Similar Documents

Publication Publication Date Title
JP6345300B2 (en) Power semiconductor device, power semiconductor device embedded device, and manufacturing method of power semiconductor device embedded device
JP5599328B2 (en) Connection mechanism between power semiconductor device and printed wiring board
JP2015070107A (en) Semiconductor device and manufacturing method of the same
JP5011562B2 (en) Semiconductor device and manufacturing method thereof
JP7293936B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2014049582A (en) Semiconductor device
JP2017092185A (en) Semiconductor device and method of manufacturing the same
JP2019153752A (en) Semiconductor device
WO2013039154A1 (en) Contact terminal
JP2017208508A (en) Circuit structure
JP5589950B2 (en) Electronic equipment
JP5189616B2 (en) Semiconductor device
CN107078126B (en) Semiconductor module and conductive member for semiconductor module
JP5856864B2 (en) Connection terminal and connection terminal unit
JP5793295B2 (en) Semiconductor device
US11295997B2 (en) Semiconductor device manufacturing method and semiconductor device
WO2021241304A1 (en) Mounting structure for semiconductor module
WO2013179404A1 (en) Electronic device
JP2015149363A (en) semiconductor module
JP2012238749A (en) Semiconductor device
JP2022012428A (en) Circuit structure
JP2019079935A (en) Power semiconductor device
WO2022202638A1 (en) Circuit device
JP5564367B2 (en) Semiconductor device and lead frame
JP6060053B2 (en) Power semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105