JP2014035253A - Deterioration test method of vulcanized rubber composition containing antioxidant - Google Patents

Deterioration test method of vulcanized rubber composition containing antioxidant Download PDF

Info

Publication number
JP2014035253A
JP2014035253A JP2012176337A JP2012176337A JP2014035253A JP 2014035253 A JP2014035253 A JP 2014035253A JP 2012176337 A JP2012176337 A JP 2012176337A JP 2012176337 A JP2012176337 A JP 2012176337A JP 2014035253 A JP2014035253 A JP 2014035253A
Authority
JP
Japan
Prior art keywords
rubber composition
vulcanized rubber
aging agent
surfactant
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012176337A
Other languages
Japanese (ja)
Other versions
JP5937457B2 (en
Inventor
Fusae Kaneko
房恵 金子
Yukinobu Kawamura
幸伸 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2012176337A priority Critical patent/JP5937457B2/en
Publication of JP2014035253A publication Critical patent/JP2014035253A/en
Application granted granted Critical
Publication of JP5937457B2 publication Critical patent/JP5937457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration test method capable of achieving the decrease in an antioxidant in rubber containing the antioxidant in a short period of time.SOLUTION: In a deterioration test method of a vulcanized rubber composition containing an antioxidant, a test is conducted while the antioxidant in the vulcanized rubber composition is decreased by using a surfactant aqueous solution.

Description

本発明は、老化防止剤を含有する加硫ゴム組成物の劣化試験方法に関する。 The present invention relates to a deterioration test method for a vulcanized rubber composition containing an antioxidant.

ゴム製品は使用環境の影響を受けて劣化してしまう。そのため、一般的に、ゴム製品には、劣化を低減することを目的として老化防止剤が配合されている。そして、ゴム製品を開発する際には、ゴム製品の劣化特性を評価するために、様々な劣化試験(促進劣化試験)が行われている。 Rubber products are deteriorated by the influence of the usage environment. Therefore, in general, an anti-aging agent is blended in a rubber product for the purpose of reducing deterioration. When developing rubber products, various deterioration tests (accelerated deterioration tests) are performed in order to evaluate the deterioration characteristics of the rubber products.

劣化試験としては、一般的に、熱老化試験機で劣化させる促進老化試験(JIS−K6257)、オゾン劣化試験(JIS−K6259)、耐候性試験(JIS−K6266)、湿熱及び乾熱の複合試験(特許文献1)などが行われている。これらの劣化試験では、主としてゴム材料自体の耐熱性、耐オゾン性、耐候性等を調査するものであるが、促進評価を行うため、試験条件が、実際に市場において使用される場合よりも厳しく設定されており、実際の市場における評価との相関があまり高くないことが知られている。 As a deterioration test, generally, an accelerated aging test (JIS-K6257), an ozone deterioration test (JIS-K6259), a weather resistance test (JIS-K6266), a combined test of wet heat and dry heat, which is deteriorated by a heat aging tester. (Patent document 1) etc. are performed. These deterioration tests mainly investigate the heat resistance, ozone resistance, weather resistance, etc. of the rubber material itself. However, the test conditions are stricter than those actually used in the market in order to perform accelerated evaluation. It is known that the correlation with actual market evaluation is not so high.

一方、特にタイヤに使用されるゴムにおいては、市場においてゴム肌にひび割れ(クラック)が生じる現象がクレームの対象となっている。しかし、上述の試験では、この現象の発生について充分評価できていなかった。 On the other hand, particularly in rubber used for tires, a phenomenon in which cracks (cracks) occur in the rubber skin in the market is the object of claims. However, in the above test, the occurrence of this phenomenon has not been sufficiently evaluated.

そこで、本発明者らが鋭意検討した結果、ひび割れが発生したタイヤにおいては、ゴムに配合されていた老化防止剤が消費尽くされてほとんどゴム中に残留しておらず、ひび割れが発生していないタイヤではゴム中に老化防止剤が残留していることが明らかになってきた。実際に、上述の試験で促進劣化させた試料においても、ゴムに含まれる老化防止剤はほとんど消費されておらず、この点が問題となり、実際の市場における評価との相関があまり高くないものと考えられる。このように、実際の市場における評価との相関性を向上させるためには、劣化試験において、老化防止剤を含有するゴムにおける老化防止剤の減少を再現することが必要であると考えられる。 Therefore, as a result of intensive studies by the present inventors, in the tire in which cracking occurred, the anti-aging agent blended in the rubber was consumed and hardly remained in the rubber, and no cracking occurred. It has become clear that anti-aging agents remain in rubber in tires. In fact, even in the samples accelerated and deteriorated in the above test, the anti-aging agent contained in the rubber is hardly consumed, and this is a problem, and the correlation with the evaluation in the actual market is not so high. Conceivable. Thus, in order to improve the correlation with the evaluation in the actual market, it is considered necessary to reproduce the decrease in the anti-aging agent in the rubber containing the anti-aging agent in the deterioration test.

特開2005−98754号公報JP 2005-98754 A

本発明は、上記課題を解決し、老化防止剤を含有するゴムにおける老化防止剤の減少を短期間で再現可能な劣化試験方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a deterioration test method capable of reproducing the decrease of the anti-aging agent in the rubber containing the anti-aging agent in a short period of time.

本発明は、加硫ゴム組成物中の老化防止剤を減少させながら試験を行うことを特徴とする老化防止剤を含有する加硫ゴム組成物の劣化試験方法に関する。 The present invention relates to a deterioration test method for a vulcanized rubber composition containing an anti-aging agent, wherein the test is performed while reducing the anti-aging agent in the vulcanized rubber composition.

界面活性剤水溶液を使用して、上記加硫ゴム組成物中の老化防止剤を減少させることが好ましく、上記加硫ゴム組成物を上記界面活性剤水溶液で間欠的に洗浄、又は上記加硫ゴム組成物を上記界面活性剤水溶液中に連続的に浸漬することにより老化防止剤を減少させることがより好ましい。 It is preferable to reduce the anti-aging agent in the vulcanized rubber composition by using a surfactant aqueous solution, and the vulcanized rubber composition is intermittently washed with the surfactant aqueous solution or the vulcanized rubber. More preferably, the antioxidant is reduced by continuously immersing the composition in the surfactant aqueous solution.

上記界面活性剤が陰イオン性界面活性剤であることが好ましい。また、試験温度が40〜100℃であることが好ましい。 The surfactant is preferably an anionic surfactant. Moreover, it is preferable that test temperature is 40-100 degreeC.

本発明によれば、加硫ゴム組成物中の老化防止剤を減少させながら試験を行うことを特徴とする老化防止剤を含有する加硫ゴム組成物の劣化試験方法であるので、老化防止剤を含有するゴムにおける老化防止剤の減少を短期間で再現可能な劣化試験方法を提供できる。 According to the present invention, since it is a deterioration test method for a vulcanized rubber composition containing an anti-aging agent, the test is performed while reducing the anti-aging agent in the vulcanized rubber composition. It is possible to provide a deterioration test method capable of reproducing the decrease of the anti-aging agent in the rubber containing the rubber in a short period of time.

本発明の老化防止剤を含有する加硫ゴム組成物の劣化試験方法は、加硫ゴム組成物中の老化防止剤を減少させながら試験を行うことを特徴とする。 The deterioration test method for a vulcanized rubber composition containing the anti-aging agent of the present invention is characterized in that the test is conducted while reducing the anti-aging agent in the vulcanized rubber composition.

老化防止剤は、オイルやワックスと共に加硫ゴムの内部から加硫ゴムの表面へ析出すると考えられる。この老化防止剤、オイル、ワックスのゴム表面への析出は、ゴム部材の内外に生じるこれらの物質の濃度差によるものと考えられている。そして、実際にタイヤが使用される際には、平衡に至るまで老化防止剤がタイヤ表面に移行してタイヤ表面を被覆することで、様々な老化因子からタイヤのゴム部材を守っているとされる。しかし、熱や紫外線、雨水、オゾンなどの様々な要因によって表面の老化防止剤が消費され、表面における老化防止剤濃度が平衡値から減少した際に、そのゴム部材内部との濃度差に起因して老化防止剤の表面への移行が生じる。結果として、ゴム内部の老化防止剤の濃度は時間と共に徐々に減少していくものと考えられる。以上のような老化防止剤の濃度減少メカニズムに基づくと、ゴム部材内部から老化防止剤を除去する有効な手段は、表面に移行した老化防止剤(表面析出物)を効率的に取り除いて表面の老化防止剤の濃度をほぼ0にすることであると考えられる。また、劣化を低減することを目的として配合されているワックスについても同様であると考えられる。 It is considered that the anti-aging agent is deposited on the surface of the vulcanized rubber from the inside of the vulcanized rubber together with oil and wax. The precipitation of the anti-aging agent, oil, and wax on the rubber surface is considered to be due to the difference in concentration of these substances generated inside and outside the rubber member. And when a tire is actually used, it is said that the anti-aging agent moves to the tire surface and covers the tire surface until equilibrium is reached, thereby protecting the tire rubber member from various aging factors. The However, when the surface anti-aging agent is consumed due to various factors such as heat, ultraviolet rays, rain water, ozone, etc., and the anti-aging agent concentration on the surface decreases from the equilibrium value, it is due to the difference in concentration with the inside of the rubber member. As a result, migration of the anti-aging agent to the surface occurs. As a result, it is considered that the concentration of the antioxidant inside the rubber gradually decreases with time. Based on the anti-aging agent concentration reduction mechanism as described above, an effective means for removing the anti-aging agent from the inside of the rubber member is to effectively remove the anti-aging agent (surface precipitate) transferred to the surface and It is thought that the concentration of the antioxidant is almost zero. The same applies to waxes formulated for the purpose of reducing deterioration.

一般に老化防止剤やワックスの水への溶解度は低く、上記表面析出物の除去には有機溶剤を用いることが有効であると考えられる。しかし、ゴム部材に用いられる一般的なゴム材料は、有機溶剤に対して速やかに溶解もしくは膨潤することが知られている。一般的に、膨潤後に乾燥させたゴムは、膨潤時に生じた永久歪や可塑剤の流出により、膨潤前の物性と同等の物性を示すことはないとされている。したがって、一般的な有機溶剤は、上記表面析出物の効率的な除去には向かないと考えられる。 In general, the solubility of an antioxidant and wax in water is low, and it is considered effective to use an organic solvent to remove the surface precipitate. However, it is known that a general rubber material used for a rubber member dissolves or swells quickly in an organic solvent. In general, rubber dried after swelling is said not to exhibit physical properties equivalent to those before swelling due to permanent distortion generated during swelling or outflow of plasticizer. Therefore, it is considered that a general organic solvent is not suitable for the efficient removal of the surface precipitate.

従って、上記表面析出物の除去は、タイヤ用ゴム部材(加硫ゴム組成物)が溶解や膨潤することのない水系で行うことが好ましい。水系において油分(上記表面析出物)を除去する手法としては、特に限定されず、純粋に水のみを用いる手法として、高圧水による物理的除去、超臨界水による溶解除去等が挙げられ、水以外の物質を用いる手法として、界面活性剤との併用(界面活性剤を水に溶解させた界面活性剤水溶液)による除去等が挙げられる。なかでも、界面活性剤水溶液の使用が好ましい。 Therefore, it is preferable to remove the surface precipitate in an aqueous system in which the tire rubber member (vulcanized rubber composition) does not dissolve or swell. The method for removing oil (the surface deposits) in the aqueous system is not particularly limited. Examples of methods using pure water include physical removal with high-pressure water, dissolution removal with supercritical water, and the like. As a method using this substance, removal by a combination with a surfactant (surfactant aqueous solution in which a surfactant is dissolved in water) can be mentioned. Of these, the use of an aqueous surfactant solution is preferred.

本発明では、劣化試験中に、水系で(好ましくは、界面活性剤水溶液を使用して)、加硫ゴム組成物表面に存在する表面析出物の除去を行うことにより、加硫ゴム組成物が溶解や膨潤することなく、加硫ゴム組成物中の老化防止剤やワックスを短期間で減少させながら試験を行うことができる。 In the present invention, during the deterioration test, the vulcanized rubber composition is obtained by removing surface precipitates existing on the surface of the vulcanized rubber composition in an aqueous system (preferably using an aqueous surfactant solution). The test can be conducted while reducing the anti-aging agent and the wax in the vulcanized rubber composition in a short time without dissolving or swelling.

以上のように、本発明では、本来数年かかる市場におけるタイヤの劣化過程において重要な老化防止剤やワックスの減少を、その減少メカニズムを保持したまま短期間(数週間レベル)で再現することが可能となる。このため、これまで効果の確認に数年の歳月を必要としていた耐クラック性能の評価を大幅に短縮することができ、タイヤ用ゴム組成物の開発を促進できる。 As described above, according to the present invention, it is possible to reproduce the decrease in anti-aging agent and wax, which is important in the tire deterioration process in the market which originally takes several years, in a short period (several weeks level) while maintaining the mechanism of the decrease. It becomes possible. For this reason, it is possible to greatly shorten the evaluation of crack resistance, which has required several years for confirmation of the effect so far, and the development of a rubber composition for tires can be promoted.

上述のように、本発明の老化防止剤を含有する加硫ゴム組成物の劣化試験方法は、加硫ゴム組成物中の老化防止剤を減少させながら試験を行うことを特徴とする。 As described above, the deterioration test method for a vulcanized rubber composition containing the antiaging agent of the present invention is characterized in that the test is performed while reducing the antiaging agent in the vulcanized rubber composition.

本発明の劣化試験方法としては、水系で(好ましくは、界面活性剤水溶液を使用して)、上記表面析出物を除去することにより、加硫ゴム組成物中の老化防止剤を減少させながら試験を行うことができる方法であれば特に限定されないが、(I)劣化試験中に、間欠的に界面活性剤水溶液を用いて加硫ゴム組成物を洗浄する方法、(II)劣化試験中に、加硫ゴム組成物を界面活性剤水溶液中に連続的に浸漬する方法を好適に採用できる。 As the deterioration test method of the present invention, an aqueous system (preferably using an aqueous surfactant solution) is used while removing the surface precipitates to reduce the anti-aging agent in the vulcanized rubber composition. Is not particularly limited as long as it can be performed, (I) a method of intermittently washing the vulcanized rubber composition using an aqueous surfactant solution during the deterioration test, (II) during the deterioration test, A method of continuously immersing the vulcanized rubber composition in an aqueous surfactant solution can be suitably employed.

(I)の方法の具体例としては、例えば、加硫ゴム組成物を恒温槽内に静置しておき、間欠的に界面活性剤水溶液を用いて加硫ゴム組成物の表面を洗浄する方法等が挙げられる。また、(II)の方法の具体例としては、例えば、界面活性剤水溶液が入れられた容器に加硫ゴム組成物を漬けておき、当該容器を恒温槽内に静置しておく方法等が挙げられる。 As a specific example of the method (I), for example, the vulcanized rubber composition is allowed to stand in a thermostatic bath, and the surface of the vulcanized rubber composition is washed intermittently using an aqueous surfactant solution. Etc. In addition, as a specific example of the method (II), for example, a method in which the vulcanized rubber composition is immersed in a container in which a surfactant aqueous solution is placed, and the container is allowed to stand in a thermostatic bath. Can be mentioned.

(I)の方法は、劣化試験中に、不連続な洗浄操作により表面析出物を除去する方法であり、より市場においてタイヤが受ける状況に即した試験方法である点で優れているが、洗浄操作が不連続であるために、老化防止剤の減少を促進する効果(すなわち、試験期間を短縮する効果)は(II)の方法に比べて劣る。 The method (I) is a method for removing surface precipitates by a discontinuous cleaning operation during the deterioration test, and is superior in that it is a test method more suited to the situation that the tire receives in the market. Since the operation is discontinuous, the effect of promoting the decrease of the anti-aging agent (that is, the effect of shortening the test period) is inferior to the method of (II).

一方、(II)の方法は、劣化試験中に、試料内部より表面に移行してきた老化防止剤を連続的に除去する手法であり、充分な老化防止剤減少の促進効果(すなわち、試験期間を短縮する効果)が見込める一方、試料表面は常に界面活性剤水溶液にさらされており、必ずしも市場においてタイヤが受ける状況に即した試験であるとは言えない点で劣っている。 On the other hand, the method (II) is a technique for continuously removing the anti-aging agent that has migrated from the inside of the sample to the surface during the deterioration test, and has a sufficient effect of promoting the reduction of the anti-aging agent (that is, the test period is increased). While the effect of shortening can be expected, the surface of the sample is always exposed to an aqueous surfactant solution, which is inferior in that it cannot necessarily be said to be a test in accordance with the situation that a tire receives in the market.

(I)の方法における洗浄方法としては、劣化試験中に、試料(加硫ゴム組成物)表面を、界面活性剤水溶液を用いて間欠的に洗浄することで、表面析出物を除去できる方法であれば特に限定されず、例えば、劣化試験中、間欠的に、界面活性剤水溶液を含浸させた布等で試料表面を拭うことにより、表面析出物を除去すればよい。また、劣化試験中、間欠的に、試料表面に界面活性剤水溶液を噴霧した後、試料表面に付着した界面活性剤水溶液を布等で拭うことにより表面析出物を除去することとしてもよい。また、劣化試験中、間欠的に、加硫ゴム組成物を界面活性剤水溶液中に一定時間浸漬した後、試料表面に付着した界面活性剤水溶液を布等で拭うことにより表面析出物を除去することとしてもよい。 As a cleaning method in the method (I), a surface deposit can be removed by intermittently cleaning the surface of the sample (vulcanized rubber composition) with an aqueous surfactant solution during a deterioration test. For example, the surface deposit may be removed by wiping the sample surface with a cloth impregnated with an aqueous surfactant solution intermittently during the deterioration test. Further, during the deterioration test, after intermittently spraying the surfactant aqueous solution on the sample surface, the surface precipitate may be removed by wiping the surfactant aqueous solution attached to the sample surface with a cloth or the like. Also, intermittently during the deterioration test, the vulcanized rubber composition is immersed in a surfactant aqueous solution for a certain period of time, and then the surface precipitate is removed by wiping the surfactant aqueous solution adhering to the sample surface with a cloth or the like. It is good as well.

洗浄は、8〜16時間おきに行うことが好ましく、10〜14時間おきに行うことがより好ましい。また、劣化試験中、老化防止剤の移行を促進させるため、加硫ゴム組成物は、好ましくは40℃以上、より好ましくは一般的な熱劣化条件である70℃以上、更に好ましくは75℃以上の環境に置かれることが好ましい。また、加硫ゴム組成物は、劣化試験中、ゴム材料の熱による変性を防止するために100℃以下の環境に置かれることが好ましい。
試験温度を上記温度範囲内とすることにより、実際の市場における評価との相関性を維持しつつ、加硫ゴム組成物中における老化防止剤の減少をより短期間で再現することができる。なお、洗浄操作の際に、一時的に上記温度範囲内を外れることとなってもよい。この場合、洗浄を行った後、次の洗浄を行うまでの間、再び上記温度範囲内の環境に加硫ゴム組成物を置いておけばよい。
Washing is preferably performed every 8 to 16 hours, and more preferably every 10 to 14 hours. In order to promote the migration of the antioxidant during the deterioration test, the vulcanized rubber composition is preferably 40 ° C. or higher, more preferably 70 ° C. or higher, more preferably 75 ° C. or higher, which is a general heat deterioration condition. It is preferable to be placed in the environment. In addition, the vulcanized rubber composition is preferably placed in an environment of 100 ° C. or lower in order to prevent the rubber material from being modified by heat during the deterioration test.
By setting the test temperature within the above temperature range, it is possible to reproduce the decrease in the antioxidant in the vulcanized rubber composition in a shorter period of time while maintaining the correlation with the evaluation in the actual market. In the cleaning operation, the temperature may be temporarily out of the above temperature range. In this case, the vulcanized rubber composition may be placed in an environment within the above temperature range again after the cleaning until the next cleaning.

(II)の方法における浸漬方法としては、劣化試験中に、試料(加硫ゴム組成物)を界面活性剤水溶液中に連続的に浸漬することで、加硫ゴム組成物の表面に移行してきた老化防止剤を連続的に水溶液中に分散できる方法であれば特に限定されず、例えば、劣化試験中に、界面活性剤水溶液が入れられた容器に加硫ゴム組成物を連続的に漬けておけばよい。 As the immersion method in the method (II), during the deterioration test, the sample (vulcanized rubber composition) was continuously immersed in the surfactant aqueous solution, and thus the surface of the vulcanized rubber composition was transferred. The method is not particularly limited as long as the anti-aging agent can be continuously dispersed in the aqueous solution. For example, during the deterioration test, the vulcanized rubber composition can be continuously immersed in a container containing the surfactant aqueous solution. That's fine.

劣化試験中、加硫ゴム組成物は、老化防止剤の移行を促進でき、更に、界面活性剤により良好に老化防止剤を水溶液中に分散できるという理由から、好ましくは40℃以上、より好ましくは一般的な熱劣化条件である70℃以上、更に好ましくは75℃以上の環境に置かれることが好ましい。また、劣化試験中、加硫ゴム組成物は、ゴム材料の熱による変性を防止するために100℃以下の環境に置かれることが好ましい。 During the deterioration test, the vulcanized rubber composition is preferably 40 ° C. or more, more preferably, because it can promote the migration of the anti-aging agent, and can further disperse the anti-aging agent in the aqueous solution by the surfactant. It is preferable to be placed in an environment of 70 ° C or higher, more preferably 75 ° C or higher, which is a general thermal deterioration condition. Further, during the deterioration test, the vulcanized rubber composition is preferably placed in an environment of 100 ° C. or lower in order to prevent the rubber material from being modified by heat.

界面活性剤としては、特に限定されず、陰イオン性界面活性剤、陽イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤が使用可能である。 The surfactant is not particularly limited, and an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used.

陰イオン性界面活性剤としては、例えばカルボン酸系、スルホン酸系、硫酸エステル系、リン酸エステル系等の陰イオン性界面活性剤が挙げられる。陽イオン性界面活性剤としては、例えばアミン系、アンモニウム系、ピリジウム系等の陽イオン性界面活性剤が挙げられる。非イオン性界面活性剤としては、例えばポリオキシアルキレンエーテル系、ポリオキシアルキレンエステル系、多価アルコール脂肪酸エステル系、糖脂肪酸エステル系、アルキルポリグリコシド系等の非イオン性界面活性剤が挙げられる。両性界面活性剤としては、例えばアミノ酸型、ベタイン型、アミンオキサイド型等の両性界面活性剤が挙げられる。これらは単独で使用してもよく、組み合わせて使用してもよい。界面活性剤は、使用する老化防止剤に応じて、該老化防止剤を水溶液中に分散できるものを適宜選択すればよい。なかでも、陰イオン性界面活性剤が好ましく、スルホン酸系の陰イオン性界面活性剤がより好ましい。 Examples of the anionic surfactant include carboxylic acid-based, sulfonic acid-based, sulfate ester-based and phosphate ester-based anionic surfactants. Examples of the cationic surfactant include amine-based, ammonium-based and pyridium-based cationic surfactants. Examples of nonionic surfactants include nonionic surfactants such as polyoxyalkylene ethers, polyoxyalkylene esters, polyhydric alcohol fatty acid esters, sugar fatty acid esters, and alkyl polyglycosides. Examples of amphoteric surfactants include amphoteric surfactants such as amino acid type, betaine type, and amine oxide type. These may be used alone or in combination. What is necessary is just to select suitably surfactant which can disperse | distribute this anti-aging agent in aqueous solution according to the anti-aging agent to be used. Among these, an anionic surfactant is preferable, and a sulfonic acid anionic surfactant is more preferable.

界面活性剤水溶液において、界面活性剤の濃度は、特に限定されないが、効率的に表面析出物を除去できるという理由から、界面活性剤が十分に洗浄力を有する臨界ミセル濃度以上の濃度であることが好ましく、界面活性剤が十分に水溶液中に分散可能な限界の濃度である、水溶液が濁り始める曇点に対応する濃度未満であることが好ましい。 In the surfactant aqueous solution, the concentration of the surfactant is not particularly limited, but the surfactant should have a concentration equal to or higher than the critical micelle concentration with sufficient detergency because the surface precipitates can be efficiently removed. It is preferable that the concentration of the surfactant is less than the concentration corresponding to the cloud point at which the aqueous solution starts to become cloudy, which is the limit concentration at which the surfactant can be sufficiently dispersed in the aqueous solution.

なお、本明細書において、界面活性剤水溶液とは、界面活性剤が水に溶解している溶液を意味する。ここで、界面活性剤水溶液には、溶媒として、水以外にもメタノール、エタノール等のアルコール、アセトン等の水に混和する親水性溶媒が含まれていてもよいが、溶媒として水のみが使用されていることが好ましい。 In the present specification, the surfactant aqueous solution means a solution in which the surfactant is dissolved in water. Here, the surfactant aqueous solution may contain a hydrophilic solvent miscible with water, such as methanol and ethanol, and acetone, in addition to water, but only water is used as the solvent. It is preferable.

次に、本発明の劣化試験方法が適用される(本発明の劣化試験方法による評価の対象となる)加硫ゴム組成物について説明する。
本発明で使用可能な加硫ゴム組成物としては、老化防止剤を含有する加硫ゴム組成物であれば特に限定されない。
Next, the vulcanized rubber composition to which the deterioration test method of the present invention is applied (to be evaluated by the deterioration test method of the present invention) will be described.
The vulcanized rubber composition usable in the present invention is not particularly limited as long as it is a vulcanized rubber composition containing an antioxidant.

老化防止剤としては、耐熱性老化防止剤、耐候性老化防止剤等としてゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル−α−ナフチルアミン等)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4´−ビス(α,α´−ジメチルベンジル)ジフェニルアミン等)、フェニレンジアミン系(N−イソプロピル−N´−フェニル−p−フェニレンジアミン、N−(1,3−ジメチルブチル)−N´−フェニル−p−フェニレンジアミン、N,N´−ジ−2−ナフチル−p−フェニレンジアミン等)等のアミン系老化防止剤;2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物等のキノリン系老化防止剤;モノフェノール系(2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等)、ビス、トリス、ポリフェノール系(テトラキス−[メチレン−3−(3´,5´−ジ−t−ブチル−4´−ヒドロキシフェニル)プロピオネート]メタン等)等のフェノール系老化防止剤等が挙げられる。なかでも、アミン系老化防止剤(好ましくはフェニレンジアミン系)、キノリン系老化防止剤が好ましく、N−(1,3−ジメチルブチル)−N´−フェニル−p−フェニレンジアミン、2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物がより好ましい。 The anti-aging agent is not particularly limited as long as it is usually used in a rubber composition as a heat-resistant anti-aging agent, a weather-resistant anti-aging agent, etc., for example, naphthylamine type (phenyl-α-naphthylamine etc.), diphenylamine, etc. Systems (octylated diphenylamine, 4,4′-bis (α, α′-dimethylbenzyl) diphenylamine, etc.), phenylenediamine systems (N-isopropyl-N′-phenyl-p-phenylenediamine, N- (1,3- Dimethyl butyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.); 2,2,4-trimethyl-1,2, A quinoline-based anti-aging agent such as a polymer of dihydroquinoline; a monophenol-based (2,6-di-t-butyl-4-methylphenol, Phenol aging prevention such as tyrenated phenol), bis, tris, polyphenol (tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, etc.) Agents and the like. Of these, amine-based antioxidants (preferably phenylenediamine-based) and quinoline-based antioxidants are preferable, and N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, 2,2,4 -A polymer of trimethyl-1,2-dihydroquinoline is more preferred.

老化防止剤の含有量は、特に限定されないが、ゴム成分100質量部に対して、好ましくは0.1〜7質量部、より好ましくは0.5〜5質量部である。 Although content of an antioxidant is not specifically limited, Preferably it is 0.1-7 mass parts with respect to 100 mass parts of rubber components, More preferably, it is 0.5-5 mass parts.

加硫ゴム組成物に使用できるゴム成分としては、天然ゴム(NR)、ジエン系合成ゴム(イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、エチレンプロピレンジエンゴム(EPDM)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)など)が挙げられる。ゴム成分は、単独で用いてもよく、2種以上を併用してもよい。なかでも、NR、BRが好ましい。 Rubber components that can be used in the vulcanized rubber composition include natural rubber (NR), diene-based synthetic rubber (isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR). Chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), ethylene propylene diene rubber (EPDM), butyl rubber (IIR), halogenated butyl rubber (X-IIR) and the like. A rubber component may be used independently and may use 2 or more types together. Of these, NR and BR are preferable.

加硫ゴム組成物には、前記成分以外にも、ゴム組成物の製造に一般に使用される配合剤、例えば、補強用充填剤、シランカップリング剤、オイル、ステアリン酸、酸化亜鉛、ワックス、加硫剤、加硫促進剤などを適宜配合できる。 In addition to the above components, the vulcanized rubber composition includes compounding agents generally used in the production of rubber compositions such as reinforcing fillers, silane coupling agents, oil, stearic acid, zinc oxide, wax, A sulfurizing agent, a vulcanization accelerator, etc. can be mix | blended suitably.

ワックスとしては、特に限定されず、パラフィンワックス等の石油系ワックス、カルナバワックス、ホホバワックス、米糠ワックス、蜜蝋、キャンデリラワックス等の天然系ワックス(天然由来のワックス)等が挙げられる。上述のように、ワックスについても老化防止剤と同様の挙動を示すため、老化防止剤とともにワックスを配合した加硫ゴム組成物に対して、本発明の劣化試験方法を適用した場合、老化防止剤だけではなくワックスについても短期間で減少させながら劣化試験を行うことが可能である。 The wax is not particularly limited, and examples thereof include petroleum wax such as paraffin wax, carnauba wax, jojoba wax, natural wax such as rice bran wax, beeswax, and candelilla wax (naturally derived wax). As described above, since the wax exhibits the same behavior as the anti-aging agent, when the deterioration test method of the present invention is applied to the vulcanized rubber composition containing the anti-aging agent and the wax, the anti-aging agent is used. In addition to wax, it is possible to perform a deterioration test while reducing the wax in a short period of time.

ワックスの含有量は、特に限定されないが、ゴム成分100質量部に対して、好ましくは0.5〜6質量部、より好ましくは1〜4質量部である。 Although content of wax is not specifically limited, Preferably it is 0.5-6 mass parts with respect to 100 mass parts of rubber components, More preferably, it is 1-4 mass parts.

補強用充填剤として、シリカ、カーボンブラック、炭酸カルシウム、水酸化アルミニウム、クレー、マイカ等を使用してもよい。補強用充填剤の合計含有量は、特に限定されないが、ゴム成分100質量部に対して、好ましくは10〜150質量部、より好ましくは30〜90質量部である。 Silica, carbon black, calcium carbonate, aluminum hydroxide, clay, mica and the like may be used as the reinforcing filler. Although the total content of the reinforcing filler is not particularly limited, it is preferably 10 to 150 parts by mass, more preferably 30 to 90 parts by mass with respect to 100 parts by mass of the rubber component.

加硫ゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、前記各成分をオープンロール、バンバリーミキサー、密閉式混練機などのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。 As a method for producing a vulcanized rubber composition, a known method can be used. For example, the above components are kneaded using a rubber kneader such as an open roll, a Banbury mixer, a closed kneader, and then vulcanized. It can manufacture by the method to do.

加硫ゴム組成物としては、老化防止剤の枯渇によりクラックの発生が問題となりやすいという理由から、タイヤに使用されるタイヤ用ゴム組成物であることが好ましい。 The vulcanized rubber composition is preferably a tire rubber composition used for a tire because cracks are likely to be a problem due to depletion of the anti-aging agent.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下に、製造例1で用いた各種薬品について説明する。
天然ゴム(NR):TSR20
ブタジエンゴム:宇部興産(株)製のBR150B
カーボンブラック:キャボットジャパン(株)製のショウブラックN351(NSA:71m/g)
オイル:(株)ジャパンエナジー製のプロセスX−140
フェニレンジアミン系老化防止剤:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N´−フェニル−p−フェニレンジアミン)(老化防止剤6C)
キノリン系老化防止剤:ノクラック224(2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物)(老化防止剤RD)
ワックス:日本精蝋(株)製のオゾエース0355
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
ステアリン酸:日油(株)製の椿
粉末硫黄:鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)
Hereinafter, various chemicals used in Production Example 1 will be described.
Natural rubber (NR): TSR20
Butadiene rubber: BR150B manufactured by Ube Industries, Ltd.
Carbon black: Show Black N351 (N 2 SA: 71 m 2 / g) manufactured by Cabot Japan
Oil: Process X-140 manufactured by Japan Energy Co., Ltd.
Phenylenediamine anti-aging agent: NOCRACK 6C (N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine) (anti-aging agent 6C) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Quinoline-based anti-aging agent: NOCRACK 224 (polymer of 2,2,4-trimethyl-1,2-dihydroquinoline) (anti-aging agent RD)
Wax: Ozoace 0355 manufactured by Nippon Seiwa Co., Ltd.
Zinc oxide: Silver candy R made by Toho Zinc Co., Ltd.
Stearic acid: Agate powder sulfur manufactured by NOF Corporation: 5% oil-treated powdered sulfur manufactured by Tsurumi Chemical Co., Ltd. (soluble sulfur containing 5% by mass of oil)
Vulcanization accelerator: Noxeller CZ (N-cyclohexyl-2-benzothiazylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.

(製造例1)(加硫ゴム組成物(試験片)の作製)
ゴム成分(天然ゴム50質量部、ブタジエンゴム50質量部)100質量部に対して、カーボンブラック60質量部、オイル5質量部、フェニレンジアミン系老化防止剤4質量部、キノリン系老化防止剤1質量部、ワックス2.5質量部、酸化亜鉛5質量部、及びステアリン酸3質量部を混練り配合し、混練物を得た。次に、この混練物に、粉末硫黄1.2質量部及び加硫促進剤0.35質量部を混練り配合し、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間プレス加硫して厚さ2mmの加硫ゴムシート(加硫ゴム組成物)を得た。得られた加硫ゴムシートから5cm角の正方形状に切り出したものを試験片とした。
(Production Example 1) (Preparation of vulcanized rubber composition (test piece))
60 parts by mass of carbon black, 5 parts by mass of oil, 4 parts by mass of phenylenediamine-based antioxidant, 1 part by mass of quinoline-based antioxidant for 100 parts by mass of rubber components (50 parts by mass of natural rubber and 50 parts by mass of butadiene rubber) Parts, 2.5 parts by weight of wax, 5 parts by weight of zinc oxide, and 3 parts by weight of stearic acid were kneaded and mixed to obtain a kneaded product. Next, 1.2 parts by mass of powdered sulfur and 0.35 parts by mass of a vulcanization accelerator were kneaded and blended with the kneaded product to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized at 170 ° C. for 20 minutes to obtain a vulcanized rubber sheet (vulcanized rubber composition) having a thickness of 2 mm. What was cut out from the obtained vulcanized rubber sheet into a square shape of 5 cm square was used as a test piece.

(製造例2)(界面活性剤水溶液の調製)
陰イオン性界面活性剤であるアルキルベンゼンスルホン酸を含有するライオン社製「ママレモン」50mLを水道水50mLに溶解させたものを界面活性剤水溶液として調製した。
(Production Example 2) (Preparation of aqueous surfactant solution)
A solution obtained by dissolving 50 mL of Lion Mama Lemon containing alkylbenzene sulfonic acid, which is an anionic surfactant, in 50 mL of tap water was prepared as an aqueous surfactant solution.

(実施例1)
試験温度である70℃に予め到達した加熱オーブン内に、試験片を直接置いた。そして、12時間おきに、製造例2で調製した界面活性剤水溶液を染み込ませた木綿布で、試験片の表面を丁寧に拭い取った。7日間試験を行い、計14回表面の洗浄を行った。
Example 1
The test piece was placed directly in a heating oven that had previously reached the test temperature of 70 ° C. And every 12 hours, the surface of the test piece was gently wiped with a cotton cloth soaked with the surfactant aqueous solution prepared in Production Example 2. The test was conducted for 7 days, and the surface was washed 14 times in total.

(実施例2)
試験温度を80℃に変更した点以外は、実施例1と同様に行った。
(Example 2)
The test was performed in the same manner as in Example 1 except that the test temperature was changed to 80 ° C.

(実施例3)
試験片を直径10cmの蓋付きステンレスシャーレ内に置き、製造例2で調製した界面活性剤水溶液50mLをステンレスシャーレ内に加えて、界面活性剤水溶液に試験片を浸漬させ、ステンレスシャーレの蓋を閉じた。その後、当該ステンレスシャーレを試験温度である70℃に予め到達した加熱オーブン内に置き、7日間静置した。
(Example 3)
Place the test piece in a stainless steel dish with a lid having a diameter of 10 cm, add 50 mL of the surfactant aqueous solution prepared in Production Example 2 to the stainless steel dish, immerse the test piece in the surfactant aqueous solution, and close the stainless steel dish lid. It was. Then, the stainless steel petri dish was placed in a heating oven that had reached the test temperature of 70 ° C. in advance, and left still for 7 days.

(実施例4)
試験温度を80℃に変更した点以外は、実施例3と同様に行った。
Example 4
The test was performed in the same manner as in Example 3 except that the test temperature was changed to 80 ° C.

(比較例1)
洗浄操作を行わない点以外は、実施例2と同様に行った(通常の熱劣化試験を行った)。
(Comparative Example 1)
The same procedure as in Example 2 was performed except that the cleaning operation was not performed (a normal thermal deterioration test was performed).

(残存老化防止剤濃度の計測)
上記試験後、効果を確認するために、以下の手法に基づき試験片内部の老化防止剤の濃度を計測した。
試験後の試験片より、1mm角の立方体形状に切り出したものを50mg準備し、アセトン(和光純薬工業社製特級)にて内部の老化防止剤等を抽出した。得られた抽出物を、ガスクロマトグラフィー装置(島津製作所社製)を用いて成分分析を行った。溶離剤として窒素ガス(島津製作所社製、純度99.9%)を用い、毎分50mL、50℃の条件で分離した後、概物質の溶出ピークの面積を用いて、概物質の重量分率を見積もった。
また、経過週数が判明している市場古品(中古タイヤ)の老化防止剤濃度を同一の手法を用いて分析し、経過週数に対して老化防止剤の減少量をプロットし、直線により近似した。この直線を基準として、測定した各例における老化防止剤の残存濃度に相当する経過週数を算出し、以下の式を用いて促進倍率を算出した。結果を表1に示す。なお、n.d.は未検出を示す。また、老化防止剤量は、試験片100質量%に対する量で示した。
促進倍率=(各例における老化防止剤の残存濃度に相当する経過週数)/(ラボ試験を行った週数(1週間))
(Measurement of residual anti-aging agent concentration)
After the test, in order to confirm the effect, the concentration of the anti-aging agent inside the test piece was measured based on the following method.
50 mg of a 1 mm square cube cut out from the test piece after the test was prepared, and the internal anti-aging agent and the like were extracted with acetone (special grade manufactured by Wako Pure Chemical Industries, Ltd.). The obtained extract was subjected to component analysis using a gas chromatography apparatus (manufactured by Shimadzu Corporation). Using nitrogen gas (manufactured by Shimadzu Corporation, purity 99.9%) as an eluent, after separation at 50 mL / min and 50 ° C., using the area of the elution peak of the approximate substance, the weight fraction of the approximate substance Estimated.
In addition, we analyze the concentration of anti-aging agents for market used products (used tires) whose elapsed weeks are known using the same method, plot the decrease in anti-aging agents against the elapsed weeks, and use a straight line Approximated. Using this straight line as a reference, the number of weeks elapsed corresponding to the residual concentration of the anti-aging agent in each measured case was calculated, and the acceleration factor was calculated using the following formula. The results are shown in Table 1. In addition, n. d. Indicates no detection. Moreover, the amount of anti-aging agent was shown by the quantity with respect to 100 mass% of test pieces.
Acceleration magnification = (number of weeks elapsed corresponding to residual concentration of anti-aging agent in each case) / (number of weeks of lab test (one week))

Figure 2014035253
Figure 2014035253

表1から、界面活性剤水溶液を使用して加硫ゴム組成物中の老化防止剤を減少させながら劣化試験を行った実施例では、老化防止剤を含有するゴムにおける老化防止剤の減少を短期間で再現できた。また、ワックスの減少についても同様に、短期間で再現できた。 From Table 1, in the examples in which the deterioration test was carried out while reducing the anti-aging agent in the vulcanized rubber composition using the surfactant aqueous solution, the decrease in the anti-aging agent in the rubber containing the anti-aging agent was shortened. I was able to reproduce between. Similarly, the reduction in wax could be reproduced in a short period of time.

また、表1より、本発明を採用した場合の老化防止剤を減少させる速度は、市場に流通しているタイヤにおける老化防止剤の減少速度の90倍以上の促進効果が得られ、今回検討した条件では最大182倍の促進効果が得られた。この促進倍率は、市場でクラックの発生が問題視され始める経過年数である3年(160週)を、1週間もかからずに再現できることを意味しており、十分な促進効果が認められた。 Moreover, from Table 1, the speed at which the anti-aging agent is reduced when the present invention is adopted has an effect of promoting 90 times or more the speed of the anti-aging agent decreasing in tires on the market. Under the conditions, the maximum 182 times of the promoting effect was obtained. This acceleration ratio means that it is possible to reproduce three years (160 weeks), which is the number of years that have begun to be regarded as a problem in the market, in less than a week, and a sufficient promotion effect has been recognized. .

Claims (5)

加硫ゴム組成物中の老化防止剤を減少させながら試験を行うことを特徴とする老化防止剤を含有する加硫ゴム組成物の劣化試験方法。 A deterioration test method for a vulcanized rubber composition containing an anti-aging agent, wherein the test is performed while reducing the anti-aging agent in the vulcanized rubber composition. 界面活性剤水溶液を使用して、前記加硫ゴム組成物中の老化防止剤を減少させる請求項1記載の老化防止剤を含有する加硫ゴム組成物の劣化試験方法。 The deterioration test method for a vulcanized rubber composition containing an anti-aging agent according to claim 1, wherein the anti-aging agent in the vulcanized rubber composition is reduced using an aqueous surfactant solution. 前記加硫ゴム組成物を前記界面活性剤水溶液で間欠的に洗浄、又は前記加硫ゴム組成物を前記界面活性剤水溶液中に連続的に浸漬することにより老化防止剤を減少させる請求項2記載の老化防止剤を含有する加硫ゴム組成物の劣化試験方法。 The anti-aging agent is decreased by intermittently washing the vulcanized rubber composition with the surfactant aqueous solution or continuously immersing the vulcanized rubber composition in the surfactant aqueous solution. Test method for deterioration of vulcanized rubber composition containing an anti-aging agent. 前記界面活性剤が陰イオン性界面活性剤である請求項2又は3記載の老化防止剤を含有する加硫ゴム組成物の劣化試験方法。 The deterioration test method for a vulcanized rubber composition containing an anti-aging agent according to claim 2 or 3, wherein the surfactant is an anionic surfactant. 試験温度が40〜100℃である請求項1〜4のいずれかに記載の老化防止剤を含有する加硫ゴム組成物の劣化試験方法。 The test temperature is 40 to 100 ° C. The deterioration test method for a vulcanized rubber composition containing the antioxidant according to any one of claims 1 to 4.
JP2012176337A 2012-08-08 2012-08-08 Degradation test method for vulcanized rubber composition containing anti-aging agent Active JP5937457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176337A JP5937457B2 (en) 2012-08-08 2012-08-08 Degradation test method for vulcanized rubber composition containing anti-aging agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176337A JP5937457B2 (en) 2012-08-08 2012-08-08 Degradation test method for vulcanized rubber composition containing anti-aging agent

Publications (2)

Publication Number Publication Date
JP2014035253A true JP2014035253A (en) 2014-02-24
JP5937457B2 JP5937457B2 (en) 2016-06-22

Family

ID=50284305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176337A Active JP5937457B2 (en) 2012-08-08 2012-08-08 Degradation test method for vulcanized rubber composition containing anti-aging agent

Country Status (1)

Country Link
JP (1) JP5937457B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136206A (en) * 2017-02-22 2018-08-30 住友ゴム工業株式会社 Crack evaluation method of tire surface
JP2020060390A (en) * 2018-10-05 2020-04-16 住友ゴム工業株式会社 Pneumatic tire test method
CN114324840A (en) * 2021-12-13 2022-04-12 天津六0九电缆有限公司 Test method for rapidly judging cable material frosting
JP7439643B2 (en) 2020-05-25 2024-02-28 住友ゴム工業株式会社 Tire wear method and tire testing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829815A (en) * 1988-05-13 1989-05-16 The Firestone Tire & Rubber Company Tire testing apparatus
JPH06329838A (en) * 1993-05-20 1994-11-29 Kao Corp Rubber composition
JP2005098754A (en) * 2003-09-22 2005-04-14 Sumitomo Rubber Ind Ltd Aging test method of automobile tire
JP2006349641A (en) * 2005-06-20 2006-12-28 Bridgestone Corp Deterioration testing method of tire component and deterioration testing device of tire component
US20090288749A1 (en) * 2006-04-04 2009-11-26 The Yokohama Rubber Co., Ltd. Pneumatic tire having light shielding layer on surface
JP2012127921A (en) * 2010-12-17 2012-07-05 Sumitomo Rubber Ind Ltd Tire deterioration promotion method
JP2012207983A (en) * 2011-03-29 2012-10-25 Sumitomo Rubber Ind Ltd Crack testing method for pneumatic tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829815A (en) * 1988-05-13 1989-05-16 The Firestone Tire & Rubber Company Tire testing apparatus
JPH06329838A (en) * 1993-05-20 1994-11-29 Kao Corp Rubber composition
JP2005098754A (en) * 2003-09-22 2005-04-14 Sumitomo Rubber Ind Ltd Aging test method of automobile tire
JP2006349641A (en) * 2005-06-20 2006-12-28 Bridgestone Corp Deterioration testing method of tire component and deterioration testing device of tire component
US20090288749A1 (en) * 2006-04-04 2009-11-26 The Yokohama Rubber Co., Ltd. Pneumatic tire having light shielding layer on surface
JP2012127921A (en) * 2010-12-17 2012-07-05 Sumitomo Rubber Ind Ltd Tire deterioration promotion method
JP2012207983A (en) * 2011-03-29 2012-10-25 Sumitomo Rubber Ind Ltd Crack testing method for pneumatic tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136206A (en) * 2017-02-22 2018-08-30 住友ゴム工業株式会社 Crack evaluation method of tire surface
JP2020060390A (en) * 2018-10-05 2020-04-16 住友ゴム工業株式会社 Pneumatic tire test method
JP7127467B2 (en) 2018-10-05 2022-08-30 住友ゴム工業株式会社 Test method for pneumatic tires
JP7439643B2 (en) 2020-05-25 2024-02-28 住友ゴム工業株式会社 Tire wear method and tire testing method
CN114324840A (en) * 2021-12-13 2022-04-12 天津六0九电缆有限公司 Test method for rapidly judging cable material frosting
CN114324840B (en) * 2021-12-13 2024-01-23 天津六0九电缆有限公司 Test method for rapidly judging cable material frosting

Also Published As

Publication number Publication date
JP5937457B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5937457B2 (en) Degradation test method for vulcanized rubber composition containing anti-aging agent
JP5456650B2 (en) Modified natural rubber, rubber composition for tire and pneumatic tire
JP5567454B2 (en) Modified natural rubber, rubber composition and pneumatic tire
JP2010144001A (en) Method for manufacturing natural rubber
CN109401090B (en) Rubber composition, vulcanized rubber, and preparation method and application thereof
EP2944672B1 (en) Rubber composition for anti-vibration rubber
JP2014210830A (en) Rubber composition for tire sidewall and pneumatic tire using the same
JP6852452B2 (en) Tire surface crack evaluation method
JP6288763B2 (en) Quantification method of anti-aging agent
JP2008297445A (en) Rubber composition for tire tread
JP6215547B2 (en) Rubber composition for tire and pneumatic tire using the same
JP2009286872A (en) Adhesive rubber composition
JP2009091427A (en) Rubber composition for tire
JP2016155976A (en) Tire bead filler rubber composition and pneumatic tire using the same
JP6880573B2 (en) Deterioration evaluation method for vulcanized rubber composition
JPH1192570A (en) Master batch of rubber chemicals, kneading method for rubber composition using it, and rubber composition obtained thereby
JP2015098505A (en) Nitrile rubber composition
CN109804012B (en) Pneumatic tire
JP2014199188A (en) Deterioration test method for vulcanized rubber composition containing age resistor, rubber composition and pneumatic tire
JP6121280B2 (en) Rubber composition and pneumatic tire
WO2022099883A1 (en) Low-protein natural rubber and method for preparation thereof
JP6135259B2 (en) Rubber composition and pneumatic tire using the same
JP2016113474A (en) Rubber composition and pneumatic tire using the same
JP2020055979A (en) Tire rubber composition and pneumatic tire
JP2006265391A (en) Splice cement for tire tread

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160512

R150 Certificate of patent or registration of utility model

Ref document number: 5937457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250