JP2014031741A - レーザ点火装置 - Google Patents

レーザ点火装置 Download PDF

Info

Publication number
JP2014031741A
JP2014031741A JP2012171881A JP2012171881A JP2014031741A JP 2014031741 A JP2014031741 A JP 2014031741A JP 2012171881 A JP2012171881 A JP 2012171881A JP 2012171881 A JP2012171881 A JP 2012171881A JP 2014031741 A JP2014031741 A JP 2014031741A
Authority
JP
Japan
Prior art keywords
excitation light
light source
laser
energization time
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012171881A
Other languages
English (en)
Other versions
JP5978053B2 (ja
Inventor
Shingo Morishima
信悟 森島
Akimitsu Sugiura
明光 杉浦
Yuya Abe
祐也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2012171881A priority Critical patent/JP5978053B2/ja
Publication of JP2014031741A publication Critical patent/JP2014031741A/ja
Application granted granted Critical
Publication of JP5978053B2 publication Critical patent/JP5978053B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】搭載スペースに制限がありレーザ媒質の冷却が不十分と成り易い過酷な使用環境となる内燃機関の点火に用いられるレーザ点火装置において、内燃機関の運転状況に応じて励起光の導入回数を調整することで、レーザ媒質の温度上昇を回避して安定した着火を実現可能なレーザ点火装置を提供する。
【解決手段】内燃機関の運転状況を検出する運転状況検出手段41と、その検出結果に応じて励起光源30への通電を制御する励起光源駆動制御装置40とを具備し、励起光源駆動制御装置40が、運転状況検出結果に基づいて、作動回転数NEが低いほど励起光源30への通電時間TLDを長くし、作動回転数NEが高いほど励起光源30への通電時間TLDを短くする。
【選択図】図1

Description

本発明は、内燃機関の点火に用いられるレーザ点火装置に関する。特に、高過給、高圧縮の自動車用エンジン、シリンダボア径の大きいエンジン、天然ガスを用いた発電用エンジン等の難着火性エンジンの点火に好適なものである。
近年、高過給エンジン、高圧縮エンジン、シリンダ内径の大きな天然ガスエンジン等、難着火性の内燃機関の点火に、フラッシュランプ、半導体レーザ等の励起光源から波振した励起光をQスイッチ式のレーザ媒質を含むレーザ共振器に照射し、短いパルス幅でエネルギを集中させて放出するパルス光として発振させ、さらにパルス光を集光レンズなどの光学素子を用いて、混合気中に集光して、エネルギ密度の高い火炎核を発生させることにより、内燃機関の点火を行うレーザ点火装置について種々提案されている。
例えば、特許文献1には、レーザ光を発生するレーザ発振器とその励起光源部とを分離し、レーザ発振器を内燃機関に配設し、励起光源部を内燃機関から離れた車体部に配設して冷却可能とすると共に、励起光源部からの光をフレキシブルな光ファイバにてレーザ発振器に伝送するようにしたレーザ点火装置が開示され、励起光源の発光タイミングを回転信号等に基づいて所定の目標値に調整することが記載されている。
具体的な調整方法は必ずしも明らかではないが、特許文献2には、レーザ光源とポンピング光源とを有する点火装置において、ポンピング光源から、受動Qスイッチを備えたレーザ活性固体へ供給するポンピング光の放射強度及び/又はポンピング持続時間及び/又はポンピング光の波長を調整することによってパルス光が生成される点火時点を所定の目標値に調整する点火装置の作動方法が開示されている。
ところが、特許文献1、2にあるような従来のレーザ点火装置では、内燃機関に搭載されたレーザ発振器は空冷によって冷却されるのみであるため、冷却が不十分となり、レーザ発振器を構成するレーザ媒質にポンピング光源から励起光が導入され共振、増幅される過程でレーザ媒質の温度が徐々に上昇して屈折率の変化を招き、いわゆる熱レンズ効果、又は、熱歪効果とよばれる現象が発生することがある。
レーザ媒質の屈折率が変化すると、発振されたレーザ光が混合気中の所定の位置に集光せず、着火できなくなったり、レーザ媒質の温度上昇により発振時期に遅れが発生し、所望の点火時期に点火を行うことが困難となったり、レーザ媒質の温度が一定以上高くなるとパルス光の発振が起こらなくなったりするなど安定した点火を実現することが困難となる虞があった。
また、始動の際には、正確な回転数を把握することが困難である上に、混合気の撹拌が不十分であるため、より確実な点火を実現するためには、励起光源から複数回の励起光の導入を行って、複数回のパルス光光を発振することによって、着火確率を高くする必要がある。
その一方で、高速回転時においては、励起光源からの励起光の導入回数が多すぎると、次の点火時期までに、レーザ媒質の充分な冷却が行われず、レーザ媒質の熱レンズ効果の影響が累積的に大きくなり、やがて失火に至る虞があることが判明した。
そこで、本発明は、かかる実情に鑑みなされたもので、搭載スペースに制限がありレーザ媒質の冷却が不十分と成り易い過酷な使用環境となる内燃機関の点火に用いられるレーザ点火装置において、内燃機関の運転状況に応じて励起光の導入回数を調整することで、レーザ媒質の温度上昇を回避して安定した着火を実現可能なレーザ点火装置を提供することを目的とする。
請求項1の発明(1)では、内燃機関(5)に設けられ、励起光源(30)から励起光調整光学素子(100)を介して導入した励起光(LSRPMP)をQスイッチ(111)を設けたレーザ媒質(110)を含むレーザ共振器(11)に照射し、短いパルス幅でエネルギを集中させて放出するパルス光(LSRPLS)として発振し、該パルス光のビーム径を一旦、パルス光拡張光学素子(120)によって拡張した後、パルス光集光光学素子(130)を用いて、上記内燃機関(5)の燃焼室(52)内に導入した混合気内の所定位置における集光点(FP)に集光して、エネルギ密度の高いプラズマ火炎核を発生させて、上記内燃機関の点火を行うレーザ点火装置であって、上記内燃機関(5)の運転状況を検出する運転状況検出手段(41)と、その検出結果に応じて上記励起光源への通電を制御する励起光源駆動制御装置(40)とを具備し、該励起光源駆動制御装置(40)が、上記運転状況検出結果に基づいて、作動回転数(NE)が低いほど上記励起光源(30)への通電時間(TLD)を長くし、作動回転数(NE)が高いほど上記励起光源(30)への通電時間(TLD)を短くすることを特徴とする。
請求項2の発明(1)は、上記内燃機関(5)の始動直後の作動回転数(NE)を把握できない状態、又は、所定の回転数(NE1)以下である場合においては、上記励起光源駆動制御装置(40)が、始動モード(M1)と判定し、予め設定した規定の通電時間(TLD1)だけ上記励起光源(30)への通電を行う。
請求項3の発明(1)では、上記内燃機関(5)の作動回転数(NE)が所定の回転数の範囲内(NE1〜NE2)である場合においては、上記励起光源駆動制御装置(40)が、低・中速モード(M2)と判定し、上記規定の通電時間(TLD1)よりも短い、低・中速モード用通電時間(TLD2)だけ、上記励起光源(30)への通電を行う。
請求項4の発明(1)では、上記内燃機関(5)の作動回転数(NE)が所定の回転数(NE2)以上である場合においては、上記励起光源駆動制御装置(40)が、高速モード(M3)と判定し、上記低・中速モード用通電時間(TLD2)よりも短い、高速モード用通電時間(TLD3)だけ、上記励起光源(30)への通電を行う。
請求項5の発明(1)では、上記励起光源(30)への通電時間(TLD)を、上記作動回転数に応じて段階的に変化させる。
請求項6の発明(1)では、上記励起光源(30)への通電時間(TLD)を、上記作動回転数に応じて連続的に変化させる。
請求項7の発明(1)では、上記運転状況検出手段(41)が、クランク角検出センサ、作動回転数検出センサ、エンジン水温検出センサ、アクセル開度検出センサのいずれか、又は、これらの組み合わせである。
請求項8の発明(1)では、上記運転状況検出手段(41)としてエンジン水温検出センサを具備し、該エンジン水温検出センサの検出結果に基づいて、エンジン水温が高いほど上記通電時間(TLD)を短く補正し、エンジン水温が低いほど上記通電時間(TLD)を長く補正する。
本発明によれば、上記内燃機関(5)の運転状況に応じて上記励起光(LSRPMP)の導入回数を調整することで、レーザ媒質(110)の過剰な温度上昇を回避して、上記レーザ媒質(110)内の熱歪効果の影響が抑制され、搭載スペースに制限がありレーザ媒質(110)の冷却が不十分と成り易い過酷な使用環境となる上記内燃機関(5)の全回転数領域において安定した着火を実現できる。
本発明の実施形態における点火装置の概要を示す構成図。 本発明の点火装置に適用される第1の駆動制御方法を示す特性図。 図2Aの制御方法によって得られるパルス光を示す特性図。 本発明の点火装置に適用される第2の駆動制御方法を示す特性図。 図3Aの制御方法によって得られるパルス光を示す特性図。 始動モードにおける燃焼行程、点火信号、レーザ媒質温度、レーザダイオード駆動時間、励起光、パルス光の関係を示す模式図。 低・中速モードにおける燃焼行程、点火信号、レーザ媒質温度、レーザダイオード駆動時間、励起光、パルス光の関係を示す模式図。 高速モードにおける燃焼行程、点火信号、レーザ媒質温度、レーザダイオード駆動時間、励起光、パルス光の関係を示す模式図。 比較例として示す本発明を適用しなかった場合の高速モードにおける燃焼行程、点火信号、レーザ媒質温度、レーザダイオード駆動時間、励起光、パルス光の関係を示す模式図。 本発明に用いられる励起光源を駆動する駆動周波数、及び、駆動時間と、レーザ共振器の発振パルス数との関係を示す特性図。 本発明の適用される内燃機関の回転数と発振パル数との関係を示す特性図。
図1を参照して、本発明の実施形態におけるレーザ点火装置1について説明する。
レーザ点火装置1は、内燃機関5に設けられた共振・集光部を構成するレーザ点火プラグ(以下、レーザプラグと称する。)10と、光ファイバ20を介してレーザプラグ10と接続される励起光源(以下、レーザダイオード、LDと称する。)30と、LD30を駆動制御する励起光源駆動制御装置(以下、ECUと称する。)40と、内燃機関の運転状況を検出する運転状況検出手段(以下、SEN41と称する。)41と、によって構成されている。
レーザプラグ10は、略筒状に形成したハウジング15の内側に、励起光調整光学素子(以下、励起光レンズと称する。)100、レーザ共振器11、パルス光拡張光学素子(以下、拡張レンズと称する。)120、パルス光集光光学素子(以下、集光レンズと称す。)130、保護用光学窓(以下、保護ガラスと称する。)140を所定位置に配設して構成されている。
本発明のレーザ点火装置1は、SEN41によって検出された内燃機関5の運転状況に応じてECU40によって、後述の制御方法にしたがってレーザ共振器11の温度上昇を回避するようにLD30への通電条件が決定される。
励起光レンズ100には、光学ガラス、耐熱ガラス、石英ガラス、サファイヤガラス等の公知の光学素子材料が用いられ、入射面が先端側に向かって凹面状に窪み、出射面が先端側に向かって凸面状に膨らんで、それぞれが異なる曲率半径を有する非球面レンズを構成して一体的に形成されている。
励起光レンズ100に入射面と出射面のそれぞれには、励起光LSRPMPの反射を抑制すべく、フッ化マグネシウム等の公知のARコーティングが施されている。
レーザ共振器11は、レーザ媒質110と、その一方の端面に励起光LSRPMPの反射を抑制するARコーティングが施され、波長の短い励起光LSRPMP(例えば、波長λIN=808nm)を透過し、波長の長い反射光(例えば、波長λOUT=1064nm)を全反射する全反射鏡111と、他方の端面に配設され、レーザ媒質110内の光が所定のQ値以下の場合には全反射し、Q値を超えた場合には透過する受動Qスイッチを構成する部分反射鏡112とが一体に形成されて構成されている。
レーザ媒質110には、例えば、YAG単結晶にNdをドーピングしたNd:YAG等、公知のレーザ媒質が用いられている。
また、受動Qスイッチ112には、YAG単結晶にCr4+をドーピングしたCr:YAG等公知の受動Qスイッチが用いられている。
共振器11は、共振器11内に導入された励起光LSRPMPを共振、増幅させ、エネルギ密度の高いパルス光LSRPLSとして出射する。
共振器11から放出されるパルス光LSPPLSは、例えば、M=1.2〜1.4の集光性が高く、約φ1.2mmのビーム径を有する平行光となっている。
なお、共振器11は、上記構成に限定するものではなく、レーザ媒質110として、公知のNd:YVO、Nd:GVO、Nd:GGG、Nd:SUAP、Yb:YAG、YB;LUAG、受動Qスイッチ112には、Cr:GGG、V:YAG、Co:スピネル等を適宜採用できる。
拡張レンズ120には 光学ガラス、耐熱ガラス、石英ガラス、サファイヤガラス等の公知の光学素子材料が用いられている。
拡張レンズ120の入射面と出射面のそれぞれには、パルス光LSRPLPの反射を抑制するARコーティングが施されている。
また、拡張レンズ120は、入射面と出射面とが異なる曲率半径を有する一体の非球面レンズとなっている。
集光レンズ130には、光学ガラス、耐熱ガラス、石英ガラス、サファイヤガラス等の公知の光学素子材料が用いられている。
集光レンズ130の入射面と出射面のそれぞれには、パルス光LSRPLPの反射を抑制するARコーティングが施されている。
また、集光レンズ130は、入射面と出射面とが異なる曲率半径を有する一体の非球面レンズとなっている。
保護ガラス140は、燃焼室51内を臨み、燃焼室51内の熱、圧力、燃料、煤等による汚染等から集光レンズ130を保護している。
保護ガラス140には、光学ガラス、耐熱ガラス、石英ガラス、サファイヤガラス等の公知の光学素子材料が用いられている。
保護ガラス140の入射面には、集光レンズ130から出射されたパルス光LSRPLSの反射を抑制するARコーティングが施されている。
励起光レンズ100、共振器11、拡張レンズ120、集光レンズ130、保護ガラス140は、略筒状のハウジング15によって同軸上に一体的に保持されている。
ハウジング15には、SUS等の耐熱性金属が用いられている。
各素子100、11、120、130、140とハウジング15との間には、金属製の弾性部材が適宜介装され、寸法差を吸収しつつ、それぞれの光軸が一致し、かつ、それぞれ、焦点距離が一定となるように収容されている。
なお、本実施形態において、ハウジング15は、第1のハウジング150と第2のハウジング151とを組み合わせた二重筒構造となっており、バネ部材161及び環状支持部材152を介して、励起光レンズ100と、共振器11とを軸方向基端側に向かって弾性的に押圧した状態で第2のハウジング151内の所定位置に固定し、拡張レンズ120を先端側に向かって弾性的に押圧した状態で第1のハウジング150と第2のハウジング151との間の所定位置に固定している。
このような構造とすることによって、共振器11の熱膨張、収縮による寸法変化を弾性的に吸収しつつ、共振器11から平行光として出射されるパルス光LSRPLSを、規定の位置に固定された拡張レンズ120に入光させることができる。
さらに、拡張レンズ120は、第1のハウジング150がシリンダヘッド50にネジ締め固定されたネジ部153及びネジ締めのための六角部154よりも基端側に配設することによりネジ締めトルクの影響を受けない位置に配設されている。
また、集光レンズ130、保護ガラス140は、第1のハウジングのネジ部153よりも先端側で弾性部材を介して熱加締めにより固定されている。
このような構成とすることで、シリンダヘッド50に強固に固定され寸法変化の少ないネジ部153の両端に拡張レンズ120と集光レンズ130とを配設してこの間の距離を一定に保ち、集光点FPが一定の位置となるように精度良くパルス光LSRPLSを集光させることができる。
本発明においては、後述する通電制御方法によって共振器11への励起光LSRPLSの入光量を運転条件に応じて調整することにより共振器11の温度上昇を抑制するものであるが、共振器11の外周を覆うように、冷却水路161を区画した略筒状の冷却ジャケット160が設けて、さらなる安定化を図っても良い。
冷却水路161と第1、第2のハウジング151、152とは、弾性シール部材152によって水密性が保持された状態で、冷却水路161内には、冷却水又は冷却油等の冷却媒体が循環し、共振部11の温度上昇を抑制することができる。
光ファイバ20には、例えば、NA<0.09(NAは、Numerical Aperture、開口数)、コア径600μmの公知の光ファイバを用いることができる。
光ファイバ20は、ハウジング15の基端側で、励起光出光部21の先端と励起光レンズ100との距離が一定となる位置に固定されている。
LD30は、励起半導体レーザ等の公知の励起光源を具備し、ECU40から発振された点火信号に従って供給されたエネルギを高周波の励起光LSRPMPに変換し、光ファイバ20を経由して励起光レンズ100に励起光LSRPMPを入射する。
SEN41は、クランク角検出センサ、作動回転数検出センサ、エンジン水温検出センサ、アクセル開度検出センサのいずれか、又は、これらの組み合わせを適宜選択できる。
SEN41は、クランク角CA、作動回転数NE、エンジン水温TW、アクセル開度SLT等の運転状況を示すデータを採取し、ECU40に伝達する。
始動モードM1、低・中速モードM2、高速モードM3のいずれの運転状況であるかを判断できれば、SEN41からの信号はクランク角CA、作動回転数NE、エンジン水温TW、アクセル開度SLT等のいずれかに基づくものでも良い。
またこれらのSEN41の複数を組み合わせて使用することにより、運転状況をより一層正確に把握し、後述のLD通電時間TLDの補正に利用することもできる。
ECU40では、運転条件入力行程S1において、運転状況検出手段41によって検出された運転状況を示す情報が入力され、モード判定行程S2において、始動モードM1、低・中速モードM2、高速モードM3のいずれであるかが判定される。具体的な判定方法並びに通電制御方法については、図2A、図3Aを参照して後述する。
通電条件決定行程S3では、モード判定行程S2の判定結果に基づいてLD30への通電条件が決定される。
点火信号発生行程S4では、通電条件決定行程S3で決定された通電条件に従ってLD30に点火信号IGtが発信される。
なお、具体的な通電制御においては、例えば、MOSFET、IGBT等のスイッチング素子やコイル等を設けて、点火信号IGtに従ってスイッチング素子を所定のタイミングで開閉する。
スイッチング素子の開閉応答は、4μs以下であり、スイッチング素子の開閉によってコイルに溜まったエネルギを放出するようにしてモード判定結果に応じて任意のタイミングでLD30への通電を行うことができる。
また、LD30への通電を連続的に行う場合、スイッチング素子のオンオフを連続的に行い、コイルのインダクタンスにより、連続通電状態とすることもできる。
LD30は、ECU40から発信された点火信号IGtに基づいて所定の時期に所定の時間だけ通電駆動され、励起光LSRPMPを発振する。
LD30から光ファイバ20を介してレーザ点火プラグ10に導入された励起光LSRPMPは、励起光レンズ100を介して、一定のビーム径を有する平行光に調整されて、共振器11に照射される。
共振器11に入射された励起光LSRPMPは、レーザ媒質110内で共振・増幅され、短いパルス幅でエネルギを集中させて放出するパルス光LSRPLSとして発振される。
パルス光LSRPLSは、一旦、拡張レンズ120によってビーム径が拡張された後、集光レンズ130を用いて、内燃機関5の燃焼室51内に導入した混合気内の所定位置における集光点FPに集光され、エネルギ密度が高められる。
集光点FPにおいて、エネルギ密度の高いプラズマ火炎核が発生し、内燃機関5の点火が行われる。
本実施形態に示した内燃機関5は、少なくとも、筒状の図略のシリンダと、その上面を覆うシリンダヘッド50と、シリンダの内側で昇降可能に保持されたピストン51の頂面とで、燃焼室52を区画し、シリンダヘッド50に設けた吸気筒501と、これを開閉する吸気バルブ502と、シリンダヘッド50に設けた排気筒510と、これを開閉する排気バルブ511とを含んで構成されたいわゆるレシプロエンジンである。
なお、本発明において、内燃機関5を特に限定するものではなく、本発明のレーザ点火装置1は、気体燃料エンジンや、高過給気エンジン等の難着火性エンジンの種々の燃料系の内燃機関の点火装置として優れた着火安定性を示すものである。
図2A、図2Bを参照して、本発明の要部であるECU40で行われる第1の実施形態における通電制御方法について説明する。
始動直後においては、作動回転数NEが特定できない等、SEN41で検出される運転状況検出結果を示す情報が安定せずモード判定できないこともあり、このような場合や、作動回転数NEが所定の回転数NE1(例えば500rpm)以下の場合には、始動モードM1であると判定する。
本実施形態においては、図2Aに示すように、始動モードM1においては、予め設定した始動モード用通電時間TLD1(例えば、800μs)によってLD20への通電を行う。
始動モードM1において規定の始動モード用通電時間TLD1だけLD20への通電がなされると、その間、励起光LSRPMPが共振器11に供給される。
その結果、図2Bに示すように、始動モードM1においては、一回の点火に対して、規定の回数(例えば、5回)だけ共振器11からパルス光LSRPLSが発振される。
規定の発振回数は、適用する内燃機関の始動時に着火可能となる回数に応じて適宜選択されるが、励起光LSRPMPの入光時間が長くなればそれだけレーザ媒質110の温度が上昇するため、発振間隔が変動しない上限温度までの発振回数を上限とする。
始動モードM1においては、燃焼室52内の温度も低く、混合気の撹拌も不十分であるため着火し難い状況であるが、複数回のパルス光LSRPLSを集光することで着火確率を上げ確実な点火を実現できる。
次いで、始動後において所定の回転数NE1以上(例えば、500rpm)の低速モードから作動回転数NE2(例えば、2000rpm)以下の中速モードにおいては、安定して回転数NEを計測することが可能でSEN41からの情報により、低・中速モードM2と判定される。
低・中速モードM2と判定された場合には、図2Aに示すように、低・中速モード用通電時間TLD2として、始動モード用通電時間TLD1よりも短いLD通電時間(例えば、600μs)を選択して、LD20への通電を実施する。
その結果、図2Bに示すように、低・中速モードM2においては、1回の点火に対して、始動モードM1よりも少ない回数(例えば、4回)だけ共振器11からパルス光LSRPLSが発振される。
さらに、作動回転数がNE2(例えば2000rpm)を超える高速モードにおいては、SEN41からの情報により高速モードM3と判定された場合には、図2Aに示すように、高速モード用通電時間TLD3として、低・中速モード用通電時間TLD2よりもさらに短いLD通電時間(例えば、300μs)を選択して、LD20への通電を実施する。
その結果、図2Bに示すように、高速モードM3においては、1回の点火に対して、始動モードM2よりもさらに少ない回数(例えば、1回)だけ共振器11からパルス光LSRPLSが発振される。
それぞれのモードでどのようなLD通電時間TLDを選択するかは予めマップ情報としてECU40に記憶させることによって、適用する内燃機関5に応じた任意のLD通電時間TLDを設定することができる。
図3A、図3Bを参照して、本発明の要部であるECU40で行われる第2の実施形態における通電制御方法について説明する。
上記実施形態においては、LD通電時間を、運転モードに合わせて段階的に不連続的に変化させる方法について説明したが、本実施形態においては、図3Aに示すように、各モードにおけるLD通電時間をアナログ的に連続的に変化させている点が相違する。
このときの変更曲線、すなわち、LD通電時間TLDは、エンジン回転数NEの関数として導出することができる。
例えば、TLD=f(NE)とし、
LDには、上限値TLD1、下限値TLD3にそれぞれ規定値を設けておく。
LD3≦f(NE)≦TLD
この規定値は、使用するレーザ媒質110の特性によって決定される値である。規定値を設けることによって、TLDが発散することなく、また、TLDが極端に短くなって、発振パルスが不足する事態も発生しない。
このような制御を行うことにより、低・中速モードM2及び高速モードM3において、より精度の高い発振パルスの調整が可能となる。
本実施形態によれば、図3Bに示すように、始動モードM1においては上記実施形態と同様、1点火に対して5回のパルス光LSRPLSが発振され、低・中速モードM2においては、実際の回転数NE等の運転状況に応じて、4回又は3回のパルス光LSRPLSが発振され、高速モードM3においては、実際の回転数NE等の運転状況に応じて、2回又は1回のパルス光LSRPLSが発振されることになる。
図4A、図4B、図4C、図4Dを参照して、比較例と共に本発明の効果について説明する。
図4Aは、始動モードM1(NE=480rpm(4気筒エンジンの場合、1の燃焼サイクルに対して2回転するため、駆動周波数4Hzに相当)における圧縮(CMP)、燃焼(EXP)、排気(EXT)、吸気(INT)の燃焼行程に対する点火信号IGtの出力時期、レーザ媒質110の温度TLSR、LD通電時間TLD、励起光LSRPMPの入力波形、パルス光LSRPLSの出力波形の関係を示す模式図である。
圧縮行程の所定の時期(例えば、BTDCA30°)に燃料噴射INJがなされ、点火信号IGtに従ってLD20への通電が開始され、所定のLD通電時間TLD(例えば800μs)だけ、LD20から励起光LSRPMP出力される。
励起光LSRPMPが共振器11に一定時間入力されると、Q値を超えたパルス光LSRPSLが1パルスだけ発振され、再びQ値を超えるとまたパルス光LSRPLSが1パルスだけ発振され、ほぼ等間隔(t≒t≒t≒t≒t)でパルス光LSRPLSの発振が繰り返される。
このとき、レーザ媒質110の温度TLSRは、上限温度TMAX1まで上昇するが、始動モードでは、次の点火まで250msという充分な時間があるので、その間にレーザ媒質110は放熱により安定した発振を維持できる温度まで冷却される。
したがって、次の点火の際には熱レンズ効果の影響を受けることなくパルス光LSRPLSが所定のタイミングで所定の回数だけ発振される。
図4Bに示すように、低・中速モードM2(例えば、NE=1200rpm(駆動周波数10Hzに相当))では、LD通電時間TLDが例えば、600μsに設定され、1の点火信号IGtに対して、パルス光LSRPLSが4パルス発振される。
低・中速モードM2では、LD通電時間TLDが始動モードM1の場合よりも短いため、レーザ媒質110の最高媒質温度TMAX2も始動モードM1の場合の最高媒質温度TMAX1よりも低い温度となり、次の点火までの時間が100msと短くなっていても、レーザ媒質110は放熱により安定した発振を維持できる温度まで充分に冷却される。
したがって、次の点火の際には熱レンズ効果の影響を受けることなくパルス光LSRPLSが所定のタイミングで所定の回数だけ発振される。
さらに、図4Cに示すように、高速モードM3(例えば、NE=2400rpm(駆動周波数20Hzに相当)では、LD通電時間TLDが例えば、300μsに設定され、1の点火信号IGtに対して、パルス光LSRPLSが1パルスだけ発振される。
高速モードM3では、LD通電時間TLDが低・中速モードM2の場合よりもさらに短いため、レーザ媒質110の最高媒質温度TMAX3も低・中速モードM2の場合の最高媒質温度TMAX2よりもさらに低い温度となり、次の点火までの時間が50msと短くなっていても、レーザ媒質110は放熱により安定した発振を維持できる温度まで充分に冷却される。
したがって、次の点火の際には熱レンズ効果の影響を受けることなくパルス光LSRPLSが所定のタイミングで所定の回数だけ発振される。
特に、高速モードM3においては、内燃機関5全体の温度が一定に保たれ、安定して着火できる状態が維持されているため、1回のパルス光LSRPLSの発振でも十分点火が可能と成っている。
一方、本発明によらず、1回の点火に対して、始動モードM1、低・中速モードM2、高速モードM3のいずれのモードにおいても、始動モードM1と同じLD通電時間TLD(例えば、800μs)だけ、LD20への通電を行った場合には、図4Dに示すように、高速モードにおいても、初回のパルス光LSRPLSは、始動モードM1と同様にパルス光LSRPLSが5回発振される。
このときレーザ媒質110の温度は最大媒質温度TMAX1まで上昇するが次の点火時期までの時間が50msと短く、始動モードM1の5分の1の時間しかないため、上限まで温度上昇したレーザ媒質110の温度が充分に冷却されない内に次の点火のための励起光LSRPMPの導入が始まってしまう。
このため、レーザ媒質110の温度は、点火の毎に重畳的に上昇し、やがて熱レンズ効果の影響により、集光点FPに焦点を結ばなく成ったり、パルス光LSRPLSの発振タイミングが徐々に遅れたり、発振間隔も長くなったりして、燃焼室52内の混合気に正常な点火タイミングでパルス光LSRPLSのエネルギを集光できなくなり、やがて失火に至る虞がある。
また、高速モードM3においては、燃焼室52内が比較的着火し易い状態となっているため、パルス光LSRPLSが1パルス発振されただけでも点火できるため、その後に発振されるルス光LSRPLSのエネルギが無駄となる場合もある。
ここで、図5A、図5Bを参照して、本発明に至るまでに本発明者等が行った試験とその結果について説明する。
図5Aは、上述のレーザ点火装置1を用いて、LD20へのLD通電時間TLDを800μsとした場合と300μsとした場合について、駆動周波数fを5Hzから70Hzまで変化させたときの発振パルス数の変化を観察したものである。
図5Aに示すように、800μsの場合、駆動周波数fが25Hz(作動回転数NEとして3000rpmに相当)より低い場合には、4回のパルス光LSRPLSが発振されたが、25Hz以上では、パルス光LSRPLSが発振されなくなった。
これは、熱レンズ効果により、レーザ媒質温度TLSRが上昇し、高い駆動周波数に対応できなくなったためと推察される。
一方、LD通電時間TLDを300μsとした場合、駆動周波数fが65Hz以下の場合には、パルス光LSRPLSを1パルス発振することができることが確認された。
駆動周波数fが65Hzを超えると、パルス光LSRPLSを発振することができなることが判明した。
図5Bは、異なる作動回転数に対して、発振パルス数を変化させたときの着火の可否を調査した結果である。
本図に示すように、1200回転以上の高速回転数のときには、1パルスの発振でも着火可能であったが、1200回転より低い回転数のときには、1パルスの発振では着火できず、作動回転数NEが300rpm以下では、4パルス以上の発振が必要で、作動回転数NEが低いほど、発振パルス数を多くする必要があり、作動回転数NEが高いほど、発振パルス数を少なくできることが判明した。
加えて、SEN41としてエンジン水温検出センサを利用して、該エンジン水温検出センサの検出結果TWに基づいて、エンジン水温TWが高いほどLD通電時間TLDを短く補正し、エンジン水温TWが低いほどLD通電時間TLDを長く補正することによって、さらに精度良くエンジンの運転状況を把握することができ、より適切な励起光LSRPLSの導入回数に調整することが可能となり、レーザ媒質110の更なる温度上昇を抑制すると共に、供給エネルギの損失を抑制することもできる。
1 レーザ点火装置
10 レーザ点火プラグ(共振・集光部)
100 励起光調整光学素子(励起光レンズ)
110 レーザ共振器
111 全反射鏡(808nm励起光透過、1064nm反射光全反射)
112 レーザ媒質
113 Qスイッチ(部分反射鏡)
120 パルス光拡張光学素子(拡張レンズ)
130 パルス光集光光学素子(集光レンズ)
140 保護用光学窓(保護ガラス)
15 ハウジング
20 光ファイバ
21 励起光出光部
30 励起光源
40 励起光源駆動制御装置
5 内燃機関
50 シリンダヘッド
51 燃焼室
52 ピストン
LSRPMP 励起光
LSRPLS パルス光
FP 集光点
S1 運転条件入力行程
S2 モード判定行程
S3 通電条件決定手段
S4 点火信号発生手段
特開昭62−162774号公報 特表2009−541651号公報

Claims (8)

  1. 内燃機関(5)に設けられ、励起光源(30)から励起光調整光学素子(100)を介して導入した励起光(LSRPMP)をQスイッチ(111)を設けたレーザ媒質(110)を含むレーザ共振器(11)に照射し、短いパルス幅でエネルギを集中させて放出するパルス光(LSRPLS)として発振し、該パルス光のビーム径を一旦、パルス光拡張光学素子(120)によって拡張した後、パルス光集光光学素子(130)を用いて、上記内燃機関の燃焼室(52)内に導入した混合気内の所定位置における集光点(FP)に集光して、エネルギ密度の高いプラズマ火炎核を発生させて、上記内燃機関の点火を行うレーザ点火装置であって、
    上記内燃機関の運転状況を検出する運転状況検出手段(41)と、その検出結果に応じて上記励起光源への通電を制御する励起光源駆動制御装置(40)とを具備し、
    該励起光源駆動制御装置(40)が、
    上記運転状況検出結果に基づいて、作動回転数(NE)が低いほど上記励起光源(30)への通電時間(TLD)を長くし、作動回転数(NE)が高いほど上記励起光源(30)への通電時間(TLD)を短くすることを特徴とするレーザ点火装置(1)。
  2. 上記内燃機関(5)の始動直後の作動回転数(NE)を把握できない状態、又は、所定の回転数(NE1)以下である場合においては、上記励起光源駆動制御装置(40)が、始動モード(M1)と判定し、予め設定した規定の通電時間(TLD1)だけ上記励起光源(30)への通電を行う請求項1に記載のレーザ点火装置(1)。
  3. 上記内燃機関(5)の作動回転数(NE)が所定の回転数の範囲(NE1〜NE2)内である場合においては、上記励起光源駆動制御装置(40)が、低・中速モード(M2)と判定し、上記規定の通電時間(TLD1)よりも短い、低・中速モード用通電時間(TLD2)だけ、上記励起光源(30)への通電を行う請求項1又は2に記載のレーザ点火装置(1)。
  4. 上記内燃機関(5)の作動回転数(NE)が所定の回転数(NE2)の以上である場合においては、上記励起光源駆動制御装置(40)が、高速モード(M3)と判定し、上記低・中速モード用通電時間(TLD2)よりも短い、高速モード用通電時間(TLD3)だけ、上記励起光源(30)への通電を行う請求項1ないし3のいずれかに記載のレーザ点火装置(1)。
  5. 上記励起光源(30)への通電時間(TLD)を、上記作動回転数に応じて段階的に変化させる請求項1ないし4のいずれかに記載のレーザ点火装置(1)。
  6. 上記励起光源(30)への通電時間(TLD)を、上記作動回転数に応じて連続的に変化させる請求項1ないし4のいずれかに記載のレーザ点火装置(1)。
  7. 上記運転状況検出手段(41)が、クランク角検出センサ、作動回転数検出センサ、エンジン水温検出センサ、アクセル開度検出センサのいずれか、又は、これらの組み合わせである請求項1ないし6のいずれかに記載のレーザ点火装置(1)。
  8. 上記運転状況検出手段(41)としてエンジン水温検出センサを具備し、該エンジン水温検出センサの検出結果に基づいて、エンジン水温が高いほど上記通電時間(TLD)を短く補正し、エンジン水温が低いほど上記通電時間(TLD)を長く補正する請求項1ないし7のいずれかに記載のレーザ点火装置(1)。
JP2012171881A 2012-08-02 2012-08-02 レーザ点火装置 Active JP5978053B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012171881A JP5978053B2 (ja) 2012-08-02 2012-08-02 レーザ点火装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012171881A JP5978053B2 (ja) 2012-08-02 2012-08-02 レーザ点火装置

Publications (2)

Publication Number Publication Date
JP2014031741A true JP2014031741A (ja) 2014-02-20
JP5978053B2 JP5978053B2 (ja) 2016-08-24

Family

ID=50281762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012171881A Active JP5978053B2 (ja) 2012-08-02 2012-08-02 レーザ点火装置

Country Status (1)

Country Link
JP (1) JP5978053B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079138A1 (ja) * 2016-10-28 2018-05-03 日本電気硝子株式会社 点火プラグ用鏡筒一体型レンズ及びその製造方法
JP2018152549A (ja) * 2017-02-06 2018-09-27 株式会社リコー レーザ装置および内燃機関
CN110486750A (zh) * 2019-08-01 2019-11-22 南京理工大学 基于双光纤双波长自检的半导体激光点火系统
JP2020127051A (ja) * 2015-12-02 2020-08-20 株式会社リコー レーザ装置、点火装置及び内燃機関

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660861A (en) * 1979-10-24 1981-05-26 Nissan Motor Co Ltd Internal combustion engine
JPH07103122A (ja) * 1993-09-30 1995-04-18 Mazda Motor Corp エンジンの点火装置
JPH11148452A (ja) * 1997-09-11 1999-06-02 Denso Corp 筒内噴射ガソリンエンジン用点火装置
JP2010014030A (ja) * 2008-07-03 2010-01-21 Ngk Spark Plug Co Ltd レーザ着火装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660861A (en) * 1979-10-24 1981-05-26 Nissan Motor Co Ltd Internal combustion engine
JPH07103122A (ja) * 1993-09-30 1995-04-18 Mazda Motor Corp エンジンの点火装置
JPH11148452A (ja) * 1997-09-11 1999-06-02 Denso Corp 筒内噴射ガソリンエンジン用点火装置
JP2010014030A (ja) * 2008-07-03 2010-01-21 Ngk Spark Plug Co Ltd レーザ着火装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127051A (ja) * 2015-12-02 2020-08-20 株式会社リコー レーザ装置、点火装置及び内燃機関
WO2018079138A1 (ja) * 2016-10-28 2018-05-03 日本電気硝子株式会社 点火プラグ用鏡筒一体型レンズ及びその製造方法
JP2018071412A (ja) * 2016-10-28 2018-05-10 日本電気硝子株式会社 点火プラグ用鏡筒一体型レンズ及びその製造方法
JP2018152549A (ja) * 2017-02-06 2018-09-27 株式会社リコー レーザ装置および内燃機関
JP7106853B2 (ja) 2017-02-06 2022-07-27 株式会社リコー レーザ装置および内燃機関
CN110486750A (zh) * 2019-08-01 2019-11-22 南京理工大学 基于双光纤双波长自检的半导体激光点火系统

Also Published As

Publication number Publication date
JP5978053B2 (ja) 2016-08-24

Similar Documents

Publication Publication Date Title
US7661401B2 (en) Laser type engine ignition device
JP4477636B2 (ja) 内燃機関用のレーザ点火装置
JP5630765B2 (ja) レーザ点火装置
JP2009127584A (ja) レーザ点火装置
JP4590537B2 (ja) レーザ点火装置
JP5978053B2 (ja) レーザ点火装置
JP2014150222A (ja) レーザ発振装置とその製造方法
EP3002835A1 (en) Laser device, ignition system, and internal combustion engine
US20100282196A1 (en) Method for operating a laser as an ignition device of an internal combustion engine
JP2012189044A (ja) レーザ点火装置とその制御方法
US20150377207A1 (en) Laser ignition system
JP2009194076A (ja) レーザ着火装置
JP2010014030A (ja) レーザ着火装置
JP5274456B2 (ja) 内燃機関用の点火装置の作動方法
JP5210309B2 (ja) ダイオードレーザを備えるポンプ光源の駆動方法
JP2020127051A (ja) レーザ装置、点火装置及び内燃機関
JP4415269B2 (ja) 内燃機関のレーザ点火装置
EP3023631A1 (en) Laser device, ignition system, and internal combustion engine
JP2016072610A (ja) レーザ装置、点火装置及び内燃機関
JP4349237B2 (ja) レーザ点火装置
JP2006220091A (ja) レーザ着火式エンジン
JP4306542B2 (ja) レーザ点火装置
JP2011256722A (ja) レーザ点火装置
JP2016072611A (ja) レーザ装置、点火装置及び内燃機関
JP2009188090A (ja) レーザ発振装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5978053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250