JP2014030857A - ロボット及び搬送装置 - Google Patents

ロボット及び搬送装置 Download PDF

Info

Publication number
JP2014030857A
JP2014030857A JP2012170879A JP2012170879A JP2014030857A JP 2014030857 A JP2014030857 A JP 2014030857A JP 2012170879 A JP2012170879 A JP 2012170879A JP 2012170879 A JP2012170879 A JP 2012170879A JP 2014030857 A JP2014030857 A JP 2014030857A
Authority
JP
Japan
Prior art keywords
inertial sensor
sensor
socket
robot
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012170879A
Other languages
English (en)
Inventor
Daisuke Kirihara
大輔 桐原
Toshihiro Saito
敏廣 齋藤
Kazunari Umetsu
一成 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012170879A priority Critical patent/JP2014030857A/ja
Publication of JP2014030857A publication Critical patent/JP2014030857A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

【課題】少ない個数のセンサーで多くの可動部の振動を検出できる構造のロボットを提供する。
【解決手段】上腕部11と、上腕部11を駆動する肩関節部7と、を有し、肩関節部7には上腕部11の振動を検出する慣性センサーを着脱可能に支持するセンサーソケット10が設置されている。センサーソケット10は上腕部11に対して慣性センサーの向きを所定の向きに合わせる方向合わせ部を備える。
【選択図】図1

Description

本発明は、ロボット及び搬送装置に関するものである。
ロボットアームやマニピュレーターが移動する時及び停止する時には、加速度が加わるので可動部が振動する。そして、振動が減衰するまで待機した後、次の動作に移行していた。可動部の振動が小さいときには待機時間が短くなるので、振動の小さいロボットが求められていた。他にも、位置決め精度を向上させるために振動の小さいロボットが求められていた。
振動制御機能を備えたロボットアームが特許文献1に開示されている。それによると、ロボットアームには振動センサーが設置され、振動センサーがロボットアームの振動を検出する。ロボットアームはロボットアームの中に流体を流入する装置を備えている。そして、ロボットアームが振動するとき、振動センサーが振動を検出し、ロボットアームの中に流体を流入する。これにより、ロボットアームの振動を減衰させていた。
特開2002−331489号公報
ロボットは多くの可動部を備えている。そして、可動部は移動及び停止の動作に伴って振動する。可動部は多くの部品により構成され、各部品の連結部分の緩みや摺動部の磨耗により振動が大きくなる。従って、可動部の振動を検出することにより、メインテナンスが必要か否かの判断をすることができる。
特許文献1の例ではアーム毎に振動センサーが設置されている。このとき、振動を検出する可能性のある場所の数と同数のセンサーを用意する必要がある。そして、振動を検出する可能性のある各場所にセンサーを設置するためにはセンサーが多く必要となる。そこで、少ないセンサーで多くの可動部の振動を検出でき、生産性良くロボットを製造できる構造のロボットが望まれていた。
本発明は、上述の課題を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
[適用例1]
本適用例にかかるロボットであって、可動部と、前記可動部を駆動する駆動部と、を有し、前記可動部には前記可動部の振動を検出する慣性センサーを着脱可能に支持するソケットが設置されていることを特徴とする。
本適用例によれば、駆動部が可動部を駆動し、可動部は移動して停止する。このとき、可動部は移動中や停止するときに振動する。そして、可動部にはソケットが設置され、ソケットには慣性センサーを着脱可能に設置することができる。従って、振動を検出する場所のソケットに慣性センサーを設置することができる。そして、振動を検出した後でソケットから慣性センサーを外して別のソケットに設置することができる。これにより、1つの慣性センサーでソケットが設置された多くの場所の振動を検出することができる。尚、慣性センサーが複数あるときには慣性センサーの個数と同数の場所の振動を同時に検出することができる。その結果、ロボットの構造を少ないセンサーで多くの可動部の振動を検出でき、生産性良く製造できる構造にすることができる。
[適用例2]
上記適用例にかかるロボットにおいて、前記ソケットは前記可動部に対して前記慣性センサーの向きを所定の向きに合わせる方向合わせ部を備えることを特徴とする。
本適用例によれば、ソケットは慣性センサーの向きを所定の向きに合わせる方向合わせ部を備えている。慣性センサーは振動方向に対する検出感度の特性を有する。つまり、慣性センサーは振動方向をパラメーターとする検出感度特性がある。方向合わせ部は慣性センサーの向きを所定の向きに合わせる為、可動部に対して振動を検出し易い姿勢に慣性センサーを設置することができる。
[適用例3]
上記適用例にかかるロボットにおいて、前記慣性センサーは基準面を有し、前記方向合わせ部は前記基準面を接触させる突当部と、前記慣性センサーを前記突当部に付勢する付勢部とを備えることを特徴とする。
本適用例によれば、方向合わせ部は突当部及び付勢部を備えている。そして、基準面が突当部に接触するように付勢部により慣性センサーが付勢される。従って、突当部を調整することにより再現性良く基準面を所定の向きに合わせることができる。
[適用例4]
上記適用例にかかるロボットにおいて、前記突当部は複数の柱状のピンを有し、前記基準面を前記ピンに接触させて前記基準面を所定の向きに合わせることを特徴とする。
本適用例によれば、突当部は複数の柱状のピンを有し、基準面がピンに接触させられる。従って、複数のピンの位置を調整することにより、確実に基準面を所定の向きに合わせることができる。
[適用例5]
上記適用例にかかるロボットにおいて、前記慣性センサーを覆うソケット保護部を備えることを特徴とする。
本適用例によれば、慣性センサーはソケット保護部に覆われている。ソケット保護部は塵やオイルミストが慣性センサーに付着することを防止することができる。従って、慣性センサーやソケットの内部が塵やオイルミストにより汚れることを防止することができる。
[適用例6]
上記適用例にかかるロボットにおいて、前記ソケットは前記慣性センサーの信号を伝送する第1電極を備え、前記可動部は内部に前記第1電極と接続する配線を備えることを特徴とする。
本適用例によれば、ソケットと慣性センサーとは第1電極を介して信号を伝送する。そして、ソケットに設置された第1電極と接続する配線は可動部の内部に設置される。従って、配線が可動部の動きを阻害しないようにすることができる。
[適用例7]
上記適用例にかかるロボットにおいて、前記慣性センサーは第2電極を備え、前記方向合わせ部は前記第2電極を用いて前記慣性センサーの向きを所定の向きに合わせることを特徴とする。
本適用例によれば、第2電極は信号を伝送するとともに方向合わせの基準を兼ねている。従って、第2電極とは別に方向合わせ部を設置するときに比べて生産性良く慣性センサー及びソケットを製造することができる。
[適用例8]
上記適用例にかかるロボットにおいて、前記ソケットは前記ソケットから前記慣性センサーが離脱することを防止する離脱防止部を備えることを特徴とする。
本適用例によれば、ロボットのソケットは離脱防止部を備えている。可動部が移動するとき慣性センサーに加速度が作用する。慣性センサーがソケットから離脱する方向に加速度が作用するときには慣性センサーがソケットから離れる力が作用する。このとき、離脱防止部がソケットから慣性センサーが離脱することを防止する。従って、慣性センサーを所定の場所に維持することができる。
[適用例9]
上記適用例にかかるロボットにおいて、前記慣性センサーの出力を用いて、前記可動部が振動する振動強度のピークの周波数を解析する解析部を備えることを特徴とする。
本適用例によれば、ロボットは解析部を備えている。そして、解析部は慣性センサーの出力を用いて、可動部が振動する振動強度のピークの周波数を解析する。ピークの周波数が解ることにより、可動部の振動モードを推定することができる。従って、解析部は振動モードを推定する情報を提供することができる。
[適用例10]
本適用例にかかる搬送装置であって、車輪を連結する車軸と、前記車軸を回動可能に支持する軸受部が設置された車台と、を有し、前記車台には振動を検出する慣性センサーを着脱可能に支持するソケットが設置されていることを特徴とする。
本適用例によれば、搬送装置は車台に軸受け部が設置され、車輪と接続する車軸が軸受け部に支持されている。そして、車輪を回転させることにより搬送装置は移動し、車輪を停止させることにより搬送装置は停止する。搬送装置は移動中や停止するときに振動する。そして、搬送装置にはソケットが設置され、ソケットには慣性センサーを着脱可能に設置することができる。従って、振動を検出する場所にのみ慣性センサーを設置すれば良いので、1つの慣性センサーで多くの搬送装置の振動を検出することができる。
第1の実施形態にかかわるロボットの構成を示す概略斜視図。 センサーソケットの概略分解斜視図。 (a)はセンサーソケットの構造を示す模式側断面図、(b)はセンサーソケットの土台の構造を示す模式平面図。 (a)は慣性センサーの電気制御ブロック図、(b)は振動の解析方法を説明するための図。 第2の実施形態にかかわり、(a)は、センサーソケットの構造を示す模式側断面図、(b)は、センサーソケットの土台の構造を示す模式平面図。 第3の実施形態にかかわり、(a)は、センサーソケットの構造を示す模式側断面図、(b)は、センサーソケットの土台の構造を示す模式平面図。 第4の実施形態にかかわるセンサーソケットの土台の構造を示す模式平面図。 第5の実施形態にかかわるセンサーソケットの土台の構造を示す模式側断面図。 第6の実施形態にかかわり、(a)はロボットの構造を示す模式側面図、(b)はロボットの構造を示す概略斜視図、(c)は、自動車の構造を示す模式平面図。 (a)は、ロボットの構成を示す模式平面図、(b)は、ロボットの構成を示す模式側面図。
本実施形態では、複数のセンサーソケットを備えるロボットの特徴的な例について図に従って説明する。尚、各図面における各部材は、各図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせて図示している。
(第1の実施形態)
第1の実施形態にかかわるロボットについて図1〜図4に従って説明する。
図1は、ロボットの構成を示す概略斜視図である。図1に示すように、ロボット1は車体部2を備えている。車体部2は車体本体2aを備え、車体本体2aの地面側には4つの車輪2bが設置されている。そして、車体本体2aには車輪2bを駆動する回転機構が内蔵されている。さらに、車体本体2aにはロボット1の姿勢及び動作を制御し振動を解析する制御部3が内蔵されている。
車体本体2a上には駆動部としての本体回転部4、本体部5がこの順に重ねて設置されている。本体回転部4には本体部5を回転させる回転機構が設置されている。これにより、本体部5は鉛直方向を回転中心として回動する。本体部5上には一対の撮像装置6が設置され、撮像装置6はロボット1の周囲を撮影する。そして、撮影した物と撮像装置6との距離を検出することができる。
本体部5の側面のうち互いに逆側を向く2つの面には可動部及び駆動部としての肩関節部7が設置されている。そして、肩関節部7と接続して可動部としての左腕部8及び右腕部9が設置されている。つまり、ロボット1は双腕ロボットとなっている。
肩関節部7は本体部5に対して左腕部8及び右腕部9を回動または屈曲させる。肩関節部7は駆動部及び可動部としての前後回動部7aと駆動部及び可動部としての左右回動部7bとを備えている。撮像装置6が撮影する向きを前方向1aとする。前後回動部7aはモーター及び減速器を備え、減速器の出力軸は左右回動部7bと接続している。そして、前後回動部7aの減速器の出力軸は前方向1aと直交する方向を向き、前後回動部7aは左右回動部7bを前後に回動する。
左右回動部7bはモーター及び減速器を備え、減速器の出力軸は腕接続部7cを介して左腕部8または右腕部9と接続している。そして、左右回動部7bの減速器の出力軸と直交する方向に左腕部8または右腕部9が接続されている。これにより、左右回動部7bは左腕部8または右腕部9を左右に回動する。さらに、左腕部8及び右腕部9は前後回動部7aの減速器の出力軸と直交している。従って、肩関節部7は左腕部8及び右腕部9を前後左右に移動させることができる。
前後回動部7a、左右回動部7b、腕接続部7cにはソケットとしてのセンサーソケット10が設置されている。センサーソケット10には加速度センサーまたは角速度センサー等の慣性センサーが着脱可能に設置される。慣性センサーは設置された場所の振動を検出することができる。従って、操作者は振動を検出する場所に設置されたセンサーソケット10にのみ慣性センサーを設置し、振動の検出が終了した後に慣性センサーを外すことができる。本実施形態では慣性センサーに加速度センサーが用いられている。
左腕部8及び右腕部9は可動部としての上腕部11、下腕部12、ハンド部13を備えている。上腕部11と下腕部12との間には駆動部としての肘関節14が設置され、肘関節14は上腕部11に対して下腕部12を回動または屈曲させる。上腕部11の肘関節14にはセンサーソケット10が設置されている。
下腕部12では可動部としての第1下腕部15、第2下腕部16、第3下腕部17がこの順に接続して設置させている。第1下腕部15は駆動部としての回転機構15aを備え、回転機構15aは下腕部12を捻る機能を備えている。第2下腕部16は駆動部としての回転機構16aを備え、回転機構16aは下腕部12を屈曲させる機能を備えている。第2下腕部16は人体における手首に相当する部位である。第3下腕部17は駆動部としての回転機構17aを備え、回転機構17aはハンド部13を回転させる機能を備えている。そして、第1下腕部15及び第3下腕部17にはセンサーソケット10が設置されている。
ハンド部13はハンド本体13aとハンド本体13aの先端に位置する一対の板状の可動部としての把持部13bを備えている。ハンド本体13aには把持部13bを移動して把持部13bの間隔を変更させる直動機構が内蔵されている。ハンド部13は把持部13bを開閉して被把持物を把持することができる。そして、ハンド本体13aにはセンサーソケット10が設置されている。このように、左腕部8及び右腕部9には複数のセンサーソケット10が設置されている。操作者は所望のセンサーソケット10に慣性センサーを設置して振動を検出することができる。そして、操作者は振動を検出した後にセンサーソケット10から慣性センサーを外すことができる。
図2はセンサーソケットの概略分解斜視図である。センサーソケット10は土台20を備えている。土台20は左腕部8や右腕部9に固定される部位である。土台20は直方体の形状をしており、側面が向く2つの方向をX方向及びY方向とする。そして、X方向及びY方向と直交する方向で土台20が左腕部8または右腕部9を向く方向と反対の方向をZ方向とする。
土台20のY方向及び−Y方向の側面には一対の三角柱状の凸部20aが設置されている。凸部20aはZ方向を向く面と−Z方向を向く面が斜面となっている。土台20の内部には凸部20aと接続してコイルバネが設置され、凸部20aはコイルバネにより付勢されている。これにより、凸部20aは押されると引っ込み、離すと突出する。土台20のZ方向を向く上面20bにはY方向の中央にX方向に延びる一対の溝20cが設置されている。溝20cはX方向の中央にはなく、土台20の側面側に設置されている。
そして、各溝20cには離脱防止部21が設置されている。離脱防止部21は2つの角柱が直交する形状をしており、離脱防止部21の一端が溝20cで回動自在に設置されている。土台20の上面20bの中央には慣性センサー22が着脱可能に設置されている。慣性センサー22が土台20から離れないように慣性センサー22の上面22aを離脱防止部21が接触して支持する。
慣性センサー22を覆ってソケット保護部23が設置されている。ソケット保護部23は直方体の箱の形状をしており、図中−Z方向を向く側が開口している。この開口している場所から土台20がソケット保護部23に挿入される。ソケット保護部23は図中Y方向及び−Y方向の面に孔部23aが設置されている。そして、操作者がソケット保護部23を土台20に被せると、一対の凸部20aが一対の孔部23aに入る。これにより、ソケット保護部23が土台20から自然に抜けることを防止することができる。また、操作者がソケット保護部23を把持して引き上げるときには凸部20aが押圧されて土台20内に入るので、ソケット保護部23は土台20から離すことができる。
図3(a)はセンサーソケットの構造を示す模式側断面図である。図3(a)に示すように、慣性センサー22は図中−Z方向の面に第2電極としての電極24が設置されている。1つの慣性センサー22には電極24が6つ設置され、3行2列の格子状に電極24が配列している。電極24は円柱の形状をしており、根元側を位置決め部24aとし、先端側を第1接点部24bとする。位置決め部24aは第1接点部24bより太い形状となっている。
土台20の上面20bには第1位置決孔20dが設置され、土台20の内部には第1位置決孔20dと連通する空洞部20eが設置されている。第1位置決孔20dに電極24が挿入され、第1位置決孔20dが位置決め部24aと接触する。空洞部20eには第1電極としての第2接点部25が設置されている。第2接点部25は2つの板状の導通部材からなりバネ性を有している。つまり、第2接点部25は板バネとなっている。これにより、一対の第2接点部25の間隔が所定の間隔を維持するようになっている。そして、一対の第2接点部25の間に第1接点部24bが挿入されると第2接点部25が第1接点部24bを挟んで押圧する。これにより、第1接点部24bと第2接点部25とが導通する。
第2接点部25は配線26と接続され、配線26は土台20の内部から左腕部8または右腕部9の内部を通って制御部3と接続している。配線26は左腕部8または右腕部9の内部に設置されているため、配線26が左腕部8または右腕部9の動作を阻害しないようになっている。
離脱防止部21の一端は溝20cに挿入され、溝20cに挿入された場所には離脱防止部21を回動させる回転軸21aが設置されている。これにより、離脱防止部21は図中Y方向を回転中心にして回動する。回転軸21aの図中−Z方向には離脱防止部21を押圧する押圧部27が設置されている。押圧部27はコイルバネ27aを備え、コイルバネ27aは押圧部27を離脱防止部21に向けて付勢する。
離脱防止部21が回転軸21aを中心として回転するとき、回転軸21aと押圧部27との距離が変わるように離脱防止部21の形状が形成されている。つまり、回転軸21aの近くでは離脱防止部21が板カムとなっている。そして、操作者が離脱防止部21を立てた状態から倒していくとき、回転軸21aと押圧部27との距離が離れてまた接近する。離脱防止部21が土台20の上面20bに対して45度の角度となるとき、最も回転軸21aと押圧部27とが離れるようになっている。従って、離脱防止部21が土台20に対して立っているときと倒れているとき、離脱防止部21が安定した状態となっている。
図3(b)はセンサーソケットの土台の構造を示す模式平面図であり、土台20から慣性センサー22及びソケット保護部23が除去された状態を示している。図3(b)に示すように土台20の上面20bには慣性センサー22の電極24と対向する場所に6つの孔が設置されている。
6つの孔のうち図中左下に位置する孔が第1位置決孔20dである。そして、6つの孔のうち図中右上に位置する孔が第2位置決孔20fである。第2位置決孔20fは平面視で1方向に長い長孔であり、第2位置決孔20fは長手方向に第1位置決孔20dが位置する孔形状となっている。そして、平面視で第2位置決孔20fの長手方向と直交する方向の幅は第1位置決孔20dの直径と同じ寸法となっている。6つの孔のうち第1位置決孔20d及び第2位置決孔20f以外の孔が第3位置決孔20gである。第3位置決孔20gの直径は第1位置決孔20dの直径より大きな寸法となっている。従って、第3位置決孔20gでは電極24が第3位置決孔20gに接触しないようになっている。
慣性センサー22を土台20に設置するとき、慣性センサー22の電極24が第1位置決孔20d、第2位置決孔20f及び第3位置決孔20gに挿入される。そして、第1位置決孔20dに挿入される電極24により慣性センサー22の位置が確定され、第2位置決孔20fに挿入される電極24により慣性センサー22の向きが確定される。そして、第1位置決孔20d及び第2位置決孔20fが方向合わせ部となっており、方向合わせ部は慣性センサー22の電極24を用いて慣性センサー22を所定の向きに合わせる。
図4(a)は慣性センサーの電気制御ブロック図である。図4において、ロボット1の制御部3は慣性センサー22の動作を制御するセンサー制御部28を備えている。そして、センサー制御部28はプロセッサーとして各種の演算処理を行うCPU(中央演算処理装置)29と、各種情報を記憶するメモリー30とを備えている。さらに、センサー切替装置31、表示装置32、入力装置33は入出力インターフェイス34及びデータバス35を介してCPU29に接続されている。
ロボット1には多くのセンサーソケット10が設置されている。そして、センサーソケット10のいくつかには慣性センサー22が設置されている。センサーソケット10はセンサー切替装置31と接続されている。センサー切替装置31は慣性センサー22が設置されたセンサーソケット10を検出する。そして、慣性センサー22が設置された場所と慣性センサー22が検出した振動の信号をCPU29に転送する。
表示装置32は液晶表示装置等の表示装置であり、CPU29が演算した解析結果を表示する装置である。操作者は表示装置32を見てロボット1の振動状況を確認することができる。入力装置33はキーボードやマウスの他外部機器と接続してデータを入力する装置である。操作者は入力装置33を用いて振動の検出条件や振動を検出する指示を入力することができる。
メモリー30は、RAM、ROM等といった半導体メモリーや、ハードディスク、DVD−ROMといった外部記憶装置を含む概念である。機能的には、センサー制御部28の制御手順が記述されたプログラムソフト36を記憶する記憶領域や、慣性センサー22が検出したロボット1の振動データ37を記憶するための記憶領域が設定される。他にも、CPU29が振動を解析した解析データ38を記憶するための記憶領域が設定される。他にも、CPU29のためのワークエリアやテンポラリーファイル等として機能する記憶領域やその他各種の記憶領域が設定される。
CPU29は、メモリー30内に記憶されたプログラムソフト36に従って、ロボット1の振動を検出し解析するものである。CPU29は具体的な機能実現部としてセンサー制御部41を有する。センサー制御部41はロボット1の動作を監視し、ロボット1の動作と連動して振動を検出する指示信号を出力する。さらに、CPU29はデータ収集部42を有する。データ収集部42は慣性センサー22が検出する振動の波形データをメモリー30に振動データ37として記憶させる。
他にも、CPU29は解析部43を有する。解析部43は振動データ37をフーリエ変換してパワースペクトルを算出する。そして、振動のパワーが大きいピーク周波数を検出する。
尚、本実施形態では、上記の各機能がCPU29を用いてプログラムソフトで実現することとしたが、上記の各機能がCPU29を用いない単独の電子回路(ハードウェア)によって実現できる場合には、そのような電子回路を用いることも可能である。
次に、センサー制御部28が振動を解析する手順について説明する。まず、操作者は振動を検査したい場所のセンサーソケット10に慣性センサー22を設置する。すると、センサー切替装置31はセンサーソケット10に順次通電して慣性センサー22が設置された場所を検索する。次に、操作者はロボット1を作動させる。これにより、左腕部8及び右腕部9が移動する。このとき、左腕部8及び右腕部9は振動を伴って移動し、慣性センサー22は振動による加速度を検出する。
慣性センサー22は加速度を電気信号に変換する回路と電気信号をデジタル信号に変換する回路とを備えている。従って、慣性センサー22は設置された場所の加速度の推移をデジタル信号にして出力する。次に、センサー制御部41は左腕部8及び右腕部9の動作指令を監視する。そして振動データを収集するタイミングでセンサー切替装置31にデータ収集の指示信号を出力する。センサー切替装置31はデータ収集の指示信号を入力し、慣性センサー22を駆動する。次に、慣性センサー22が加速度を電気信号に変換し、さらに、加速度を示す電気信号をデジタル信号に変換する。そして、デジタルデータに変換された加速度データをデータ収集部42に転送する。そして、データ収集部42は転送された加速度データをメモリー30に振動データ37として記憶する。
図4(b)は振動の解析方法を説明するための図である。次に、解析部43は振動データ37をフーリエ変換してパワースペクトルを算出する。その結果、図4(b)に示すスペクトル線44が得られる。縦軸は振動の強度を示し、横軸は周波数を示す。スペクトル線44が示すようにロボット1に振動が発生するとき振動の周波数にて強度分布にピーク44aが検出される。そして、ピーク44aが検出された周波数がピーク周波数44bである。
センサー制御部28は表示装置32にスペクトル線44及びピーク周波数44bを表示する。そして、操作者はピーク周波数44bを参照して振動の発生源を推定する。そして、操作者は、慣性センサー22を設置するセンサーソケット10を変更して振動の解析を継続する。そして、操作者が振動を解析したい場所を総て解析したところで解析作業を終了する。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、ロボット1は左腕部8及び右腕部9を備えている。左腕部8及び右腕部9は移動中や停止するときに振動する。そして、左腕部8及び右腕部9には多くのセンサーソケット10が設置され、センサーソケット10には慣性センサー22を着脱可能に設置することができる。従って、振動を検出する場所のセンサーソケット10に慣性センサー22を設置することができる。そして、振動を検出した後でセンサーソケット10から慣性センサー22を外して別のセンサーソケット10に設置することができる。これにより、1つの慣性センサー22でセンサーソケット10が設置された多くの左腕部8及び右腕部9の振動を検出することができる。尚、慣性センサー22が複数あるときには慣性センサー22の個数と同数の場所の振動を同時に検出することができる。その結果、ロボット1の構造を少ない慣性センサー22で多くの場所の振動を検出でき、生産性良く製造できる構造にすることができる。
(2)本実施形態によれば、センサーソケット10は慣性センサー22の向きを所定の向きに合わせる第1位置決孔20d及び第2位置決孔20fを備えている。そして、第1位置決孔20d及び第2位置決孔20fに電極24を挿入することにより、慣性センサー22を位置精度良く左腕部8及び右腕部9に設置することができる。慣性センサー22は振動方向をパラメーターとする検出感度特性がある。第1位置決孔20d及び第2位置決孔20fは慣性センサー22の向きを所定の向きに合わせる為、検出感度を再現性良く慣性センサー22を設置することができる。
(3)本実施形態によれば、慣性センサー22はソケット保護部23に覆われている。ソケット保護部23は塵やオイルミストが慣性センサー22に付着することを防止することができる。従って、慣性センサー22やセンサーソケット10の内部が塵やオイルミストにより損傷をうけることを防止することができる。
(4)本実施形態によれば、センサーソケット10と慣性センサー22とは第1接点部24b及び第2接点部25を介して信号を伝送する。そして、センサーソケット10に設置された第2接点部25と接続する配線26は左腕部8や右腕部9の内部に設置される。従って、配線26が左腕部8や右腕部9の動きを阻害しないようにすることができる。
(5)本実施形態によれば、電極24は信号を伝送するとともに方向合わせの基準を兼ねている。従って、慣性センサー22の外形寸法がばらつくときにも慣性センサー22を精度良く左腕部8または右腕部9に設置することができる。また、電極24とは別に方向合わせ部を設置するときに比べて生産性良く慣性センサー22及びセンサーソケット10を製造することができる。
(6)本実施形態によれば、センサーソケット10は離脱防止部21を備えている。慣性センサー22がセンサーソケット10から離脱する方向に加速度が作用するときには慣性センサー22がセンサーソケット10から離脱する力が作用する。このとき、離脱防止部21がセンサーソケット10から慣性センサー22が離脱することを防止する。従って、慣性センサー22を所定の場所に維持させることができる。
(7)本実施形態によれば、解析部43は慣性センサー22の出力を解析する。そして、解析部43は、左腕部8及び右腕部9が振動する振動強度のピーク周波数44bを検出する。ピーク周波数44bが解ることにより、左腕部8及び右腕部9の振動モードを推定することができる。従って、解析部43は振動モードを解析する情報を提供することができる。そして、操作者は振動モードから不具合のある場所を検出することができる。
(第2の実施形態)
次に、センサーソケットの一実施形態について図5(a)のセンサーソケットの構造を示す模式側断面図、及び図5(b)のセンサーソケットの土台の構造を示す模式平面図を用いて説明する。本実施形態が第1の実施形態と異なるところは、電極と方向合わせ部との構造が異なる点にある。尚、第1の実施形態と同じ点については説明を省略する。
すなわち、本実施形態では、図5(a)に示すように、ロボット47は左腕部8及び右腕部9を備え、左腕部8及び右腕部9上にソケットとしてのセンサーソケット48が設置されている。センサーソケット48は土台49を備え、土台49上には慣性センサー50が着脱可能に設置されている。
慣性センサー50が土台49を向く面には第2電極としての電極51が設置されている。1つの慣性センサー50には電極51が6つ設置され、3行2列の格子状に電極51が配列している。電極51は四角形の板状となっている。
土台49は上面49bに案内孔49dが設置され、土台49の内部には案内孔49dと連通する空洞部49eが設置されている。案内孔49dには円筒状の第1電極としての電極52が挿入され、電極52は案内孔49dを図中Z方向に摺動する。空洞部49eにはコイルバネ53が設置されている。そして、コイルバネ53は電極52を付勢し、電極52を電極51に押圧する。これにより、電極52は電極51と接触し導通する。電極52は図示しない配線と接続され、配線は左腕部8または右腕部9の内部を通って制御部3と接続されている。
図5(b)はセンサーソケット48の土台49からソケット保護部23が除去され、離脱防止部21が倒れた状態の図となっている。慣性センサー50の図中Y方向を向く側面を第1基準面50aとし、図中X方向を向く側面を第2基準面50bとする。第1基準面50aと第2基準面50bとは直交している。慣性センサー50には加速度を検出する素子が内蔵され、この素子は第1基準面50a及び第2基準面50bを基準にして配置されている。第1基準面50aと対向し−Y方向を向く面を第3面50cとし、第2基準面50bと対向し−X方向を向く面を第4面50dとする。
土台49の上面49bには円柱状の突当部及びピンとしての第1ピン54、第2ピン55、第3ピン56が設置されている。そして、第1ピン54及び第2ピン55に第1基準面50aが接触し、第3ピン56に第2基準面50bが接触するように慣性センサー50が配置される。
第3面50cに対向する場所には付勢部としての第1付勢部57が設置されている。第1付勢部57は押圧部57aと押圧部57aを図中Y方向に摺動可能に案内する案内部57bとを備えている。さらに、第1付勢部57は押圧部57aを図中Y方向に付勢するコイルバネ57cを備えている。第1ピン54及び第2ピン55と第1付勢部57との間に慣性センサー50が配置されるとき、慣性センサー50は第1付勢部57によって付勢され第1ピン54及び第2ピン55に押圧される。これにより、第1基準面50aは確実に第1ピン54及び第2ピン55に接触する。従って、第1基準面50aが向く方向が限定される。
同様に、第4面50dに対向する場所には付勢部としての第2付勢部58が設置されている。第2付勢部58は押圧部58aと押圧部58aを図中X方向に摺動可能に案内する案内部58bを備えている。さらに、第2付勢部58は押圧部58aを図中X方向に付勢するコイルバネ58cを備えている。第3ピン56と第2付勢部58との間に慣性センサー50が配置されるとき、慣性センサー50は第2付勢部58によって付勢され第3ピン56に押圧される。これにより、第2基準面50bは確実に第3ピン56に接触する。従って、慣性センサー50の図中X方向の位置が限定される。
第1ピン54、第2ピン55及び第1付勢部57により慣性センサー50は第1基準面50aが向く方向が限定される。そして、第3ピン56及び第2付勢部58により慣性センサー50の図中X方向の位置が限定される。従って、慣性センサー50を姿勢と位置とを再現性良くセンサーソケット48に設置することができる。そして、慣性センサー50に内蔵された素子は第1基準面50a及び第2基準面50bを基準にして配置されている。その結果、慣性センサー50は加速度の感度を再現性良くロボット47に設置することができる。尚、第1ピン54、第2ピン55、第3ピン56、第1付勢部57、第2付勢部58により方向合わせ部が構成されている。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、第1基準面50aが第1ピン54及び第2ピン55に接触するように第1付勢部57により慣性センサー50が付勢される。さらに、第2基準面50bが第3ピン56に接触するように第2付勢部58により慣性センサー50が付勢される。従って、第1ピン54、第2ピン55及び第3ピン56を調整することにより確実に慣性センサー50を所定の向きに合わせることができる。
(第3の実施形態)
次に、センサーソケットの一実施形態について図6(a)のセンサーソケットの構造を示す模式側断面図、及び図6(b)のセンサーソケットの土台の構造を示す模式平面図を用いて説明する。本実施形態が第2の実施形態と異なるところは、方向合わせ部の構造が異なる点にある。尚、第1の実施形態及び第2の実施形態と同じ点については説明を省略する。
すなわち、本実施形態では、図6(a)に示すように、ロボット61は左腕部8及び右腕部9を備え、左腕部8及び右腕部9上にソケットとしてのセンサーソケット62が設置されている。センサーソケット62は土台63を備え、土台63上には慣性センサー50が着脱可能に設置されている。この慣性センサー50は第2の実施形態と同じ形態となっている。
土台63には慣性センサー50が設置される面に凹部63aが設置されている。XY平面の平面視で凹部63aは四角形であり慣性センサー50より大きな形状となっている。そして、凹部63aの深さは慣性センサー50の厚みより浅くなっている。従って、慣性センサー50を凹部63aに挿入することが可能になっている。そして、慣性センサー50を凹部63aに挿入したとき、慣性センサー50の一部が凹部63aから突出する。従って、凹部63aから突出した慣性センサー50の部分を挟んで慣性センサー50を凹部63aから取り出すことが可能になっている。
慣性センサー50において凹部63aの底面63bを向く面には電極51が設置されている。1つの慣性センサー50には電極51が6つ設置され、3行2列の格子状に電極51が配列している。電極51は四角形の板状となっている。
土台63は底面63bに案内孔63dが設置され、土台63の内部には案内孔63dと連通する空洞部63eが設置されている。案内孔63dには円筒状の電極52が挿入され、電極52は案内孔63dを図中Z方向に摺動する。空洞部63eにはコイルバネ53が設置されている。そして、コイルバネ53は電極52を付勢し、電極52を電極51に押圧する。これにより、電極52は電極51と接触し導通する。電極52は図示しない配線と接続され、配線は左腕部8または右腕部9の内部を通って制御部3と接続されている。
図6(b)はセンサーソケット62の土台63からソケット保護部23が除去され、離脱防止部21が倒れた状態の図となっている。土台63の凹部63aの図中Y方向に位置する側面を第1側面63fとし、図中X方向に位置する側面を第2側面63gとする。第1側面63fと第2側面63gとはXY平面の平面視で直交している。第1側面63fには第1基準面50aが突き当てられ、第2側面63gには第2基準面50bが突き当てられる。第1側面63f及び第2側面63gは突当部となっている。
第3面50cに対向する場所には付勢部としての第1付勢部64が設置されている。第1付勢部64は押圧部64aと押圧部64aを図中Y方向に摺動可能に案内する案内部64bを備えている。案内部64bは凹部63aの側面の一部となっている。さらに、第1付勢部64は押圧部64aを図中Y方向に付勢するコイルバネ64cを備えている。第1側面63fと第1付勢部64との間に慣性センサー50が配置されるとき、慣性センサー50は第1付勢部64によって付勢され第1側面63fに押圧される。これにより、第1基準面50aは確実に第1側面63fに接触する。従って、第1基準面50aが向く方向が限定される。
同様に、第4面50dに対向する場所には第2付勢部65が設置されている。第2付勢部65は押圧部65aと押圧部65aを図中X方向に摺動可能に案内する案内部65bとを備えている。案内部65bは凹部63aの側面の一部となっている。さらに、第2付勢部65は押圧部65aを図中X方向に付勢するコイルバネ65cを備えている。第2側面63gと第2付勢部65との間に慣性センサー50が配置されるとき、慣性センサー50は第2付勢部65によって付勢され第2側面63gに押圧される。これにより、第2基準面50bは確実に第2側面63gに接触する。従って、慣性センサー50の図中X方向の位置が限定される。
第1側面63f及び第1付勢部64により慣性センサー50は第1基準面50aが向く方向が限定される。そして、第2側面63g及び第2付勢部65により慣性センサー50の図中X方向の位置が限定される。従って、慣性センサー50を姿勢と位置とを再現性良くセンサーソケット62に設置することができる。そして、慣性センサー50に内蔵された素子は第1基準面50a及び第2基準面50bを基準にして配置されている。その結果、慣性センサー50は加速度の感度を再現性良くロボット61に設置することができる。尚、第1側面63f、第2側面63g、第1付勢部64、第2付勢部65により方向合わせ部が構成されている。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、第1基準面50aが第1側面63fに接触するように第1付勢部64により慣性センサー50が付勢される。さらに、第2基準面50bが第2側面63gに接触するように第2付勢部65により慣性センサー50が付勢される。従って、第1側面63f及び第2側面63gの向きにあわせて再現性良く慣性センサー50の向きを合わせることができる。
(第4の実施形態)
次に、センサーソケットの一実施形態について図7のセンサーソケットの土台の構造を示す模式平面図を用いて説明する。本実施形態が第2の実施形態と異なるところは、方向合わせ部の構造が異なる点にある。尚、第1の実施形態及び第2の実施形態と同じ点については説明を省略する。
すなわち、本実施形態では、図7に示すように、ロボット68は左腕部8及び右腕部9を備え、左腕部8及び右腕部9上にソケットとしてのセンサーソケット69が設置されている。センサーソケット69は直方体状の土台70を備え、土台70上には慣性センサー50が着脱可能に設置されている。この慣性センサー50は第2の実施形態と同じ形態となっている。図7はセンサーソケット69の土台70からソケット保護部23が除去され、離脱防止部21が倒れた状態の図となっている。
土台70の上面70aには2つの角柱が直交した形状の突当部71が設置されている。突当部71の図中−Y方向を向く側面を第1側面71aとし、図中−X方向を向く側面を第2側面71bとする。第1側面71aと第2側面71bとはXY平面の平面視で直交している。第1側面71aには第1基準面50aが突き当てられ、第2側面71bには第2基準面50bが突き当てられる。
第3面50cに対向する場所には第1付勢部57が設置されている。第1側面71aと第1付勢部57との間に慣性センサー50が配置されるとき、慣性センサー50は第1付勢部57によって付勢され第1側面71aに押圧される。これにより、第1基準面50aは確実に第1側面71aに接触する。従って、第1基準面50aが向く方向が限定される。
同様に、第4面50dに対向する場所には第2付勢部58が設置されている。第2側面71bと第2付勢部58との間に慣性センサー50が配置されるとき、慣性センサー50は第2付勢部58によって付勢され第2側面71bに押圧される。これにより、第2基準面50bは確実に第2側面71bに接触する。従って、慣性センサー50の図中X方向の位置が限定される。
第1側面71a及び第1付勢部57により慣性センサー50は第1基準面50aが向く方向が限定される。そして、第2側面71b及び第2付勢部58により慣性センサー50の図中X方向の位置が限定される。従って、慣性センサー50を姿勢と位置とを再現性良くセンサーソケット69に設置することができる。そして、慣性センサー50に内蔵された素子は第1基準面50a及び第2基準面50bを基準にして配置されている。その結果、慣性センサー50は加速度の感度を再現性良くロボット68に設置することができる。尚、第1側面71a、第2側面71b、第1付勢部57、第2付勢部58により方向合わせ部が構成されている。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、第1基準面50aが第1側面71aに接触するように第1付勢部57により慣性センサー50が付勢される。さらに、第2基準面50bが第2側面71bに接触するように第2付勢部58により慣性センサー50が付勢される。従って、第1側面71a及び第2側面71bの向きにあわせて再現性良く慣性センサー50の向きを合わせることができる。
(第5の実施形態)
次に、センサーソケットの一実施形態について図8のセンサーソケットの土台の構造を示す模式側断面図を用いて説明する。本実施形態が第1の実施形態と異なるところは、離脱防止部の構造が異なる点にある。尚、第1の実施形態と同じ点については説明を省略する。
すなわち、本実施形態では、図8に示すように、ロボット74は左腕部8及び右腕部9を備え、左腕部8及び右腕部9上にソケットとしてのセンサーソケット75が設置されている。センサーソケット75は直方体状の土台76を備え、土台76上には慣性センサー77が着脱可能に設置されている。
慣性センサー77は図中−Z方向の面に電極78が設置されている。1つの慣性センサー77には電極78が6つ設置され、3行2列の格子状に電極78が配列している。電極78は円柱の形状をしており、根元側を位置決め部78aとし、先端側を第1接点部78bとする。位置決め部78aは第1接点部78bより太い形状となっている。
土台76は図中Z方向を向く上面76aに位置決孔76bが設置され、土台76の内部には位置決孔76bと連通する空洞部76cが設置されている。位置決孔76bに電極78が挿入されて位置決め部78aと位置決孔76bとが接触する。
空洞部76cには第2接点部79が設置されている。第2接点部79は2つの板状の導通部材からなりバネ性を有している。つまり、第2接点部79は板バネとなっている。これにより、一対の第2接点部79の間隔が所定の間隔を維持するようになっている。そして、第2接点部79に第1接点部78bが挿入されると第2接点部79が第1接点部78bを挟んで押圧する。これにより、第1接点部78bと第2接点部79とが導通する。第2接点部79は図示しない配線と接続され、配線は土台76の内部から左腕部8または右腕部9の内部を通って制御部3と接続している。
第1接点部78bには外周方向に凹んだ凹部78cが設置されている。そして、第2接点部79は第1接点部78bと接触する場所の形状が突出した形状となっている。従って、第2接点部79は突出した場所で第1接点部78bの凹部78cを押圧する。操作者が慣性センサー77を土台76から引き抜くとき、凹部78cが上昇するので一対の第2接点部79の間隔が広げられる。従って、慣性センサー77は土台76から引き抜き難くなっている為、慣性センサー77に加速度が作用しても抜け難くなっている。そして、電極78及び第2接点部79により離脱防止部が構成されている。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、電極78及び第2接点部79により離脱防止部が構成されている。左腕部8及び右腕部9が移動するとき慣性センサー77に加速度が作用する。慣性センサー77がセンサーソケット75から離脱する方向に加速度が作用するときには慣性センサー77がセンサーソケット75から離脱する力が作用する。このとき、離脱防止部がセンサーソケット75から慣性センサー77が離脱することを防止する。従って、慣性センサー77を所定の場所に維持することができる。
(2)本実施形態によれば、電極78及び第2接点部79が電気の接点の機能と離脱防止部の機能とを兼ねている。従って、電気の接点の機能を有する部位と離脱防止の機能を有する部位とを別に設置する構造に比べて製造し易くすることができる。
(第6の実施形態)
次に、上記のセンサーソケットが設置された装置の実施形態について図9及び図10を用いて説明する。本実施形態が第1の実施形態と異なるところは、センサーソケットが設置された装置の形態が異なる点にある。尚、第1の実施形態と同じ点については説明を省略する。
センサーソケットを備えたロボットについて説明する。図9(a)はロボットの構造を示す模式側面図である。本実施形態では、図9(a)に示すように、ロボット82は2つのアームを水平に移動する水平多関節ロボットである。ロボット82は土台83を備え、土台83の上に支持台84が設置されている。そして、支持台84の上には第1モーター85が設置されている。
第1モーター85に重ねて減速装置86が設置され、第1モーター85の回転軸は減速装置86と接続されている。減速装置86の出力軸は可動部としての第1アーム87と接続されている。従って、第1モーター85は第1アーム87を回転させることができる。第1アーム87において減速装置86と反対側の端には駆動部としての第2モーター88が設置されている。さらに、第1アーム87の両端にはソケットとしてのセンサーソケット89が設置されている。第2モーター88の出力軸は可動部としての第2アーム90と接続されている。従って、第2モーター88は第2アーム90を回転させることができる。
第2アーム90において第2モーター88と反対側の端には駆動部としての第3モーター91が設置されている。さらに、第2アーム90において第3モーター91側の端にはセンサーソケット89が設置されている。第3モーター91の回転軸はハンド支持部94と接続し、ハンド支持部94を回転させることができる。ハンド支持部94は可動部としての第4モーター95と接続し、第4モーター95の回転軸は可動部としてのロボットハンド96と接続している。そして、第4モーター95にはセンサーソケット89が設置されている。
ロボット82には4つのセンサーソケット89が設置されており、センサーソケット89は第1の実施形態〜第5の実施形態のいずれかに記載のセンサーソケットが用いられている。従って、センサーソケット89に慣性センサーを着脱可能に設置することができる。そして、所望のセンサーソケット89を選択して慣性センサーを設置することができる。また。ロボット82は第1モーター85、第2モーター88、第3モーター91、第4モーター95及びロボットハンド96を制御する制御装置97を備えている。ロボット82の内部にはセンサーソケット89と制御装置97との間で電気信号を伝送する配線が設置されている。制御装置97はセンサー制御部28を備え、センサー制御部28はセンサーソケット89に設置された慣性センサーの出力を用いてロボット82の振動を解析する。
次に、センサーソケットを備えた別の形態のロボットについて説明する。図9(b)はロボットの構造を示す概略斜視図である。図9(b)に示すように、本実施形態のロボット100は1つのアームに複数の関節が設置された垂直多関節ロボットである。ロボット100は上下方向に長い土台101を備え、土台101の内部には制御装置102が設置されている。
土台101の図中上側の1つの側面には可動部としての肩関節部7が設置されている。そして、肩関節部7と接続して腕部103が設置されている。腕部103は第1の実施形態の右腕部9と同様の構造であり、肩関節部7、上腕部11、下腕部12、ハンド部13を備えている。そして、腕部103は駆動部としての前後回動部7a、左右回動部7b、肘関節14、回転機構15a、回転機構16a、回転機構17aが設置されている。
さらに、可動部である前後回動部7a、左右回動部7b、上腕部11、第1下腕部15、第3下腕部17、ハンド部13にはソケットとしてのセンサーソケット104が設置されている。センサーソケット104には第1の実施形態〜第5の実施形態のいずれかに記載のセンサーソケットが用いられている。従って、センサーソケット104に慣性センサーを着脱可能に設置することができる。そして、所望のセンサーソケット104を選択して慣性センサーを設置することができる。また、制御装置102は前後回動部7a、左右回動部7b、肘関節14、回転機構15a、回転機構16a、回転機構17a及びハンド本体13aを制御する。そして、ロボット100の内部にはセンサーソケット104と制御装置102との間で電気信号を伝送する配線が設置されている。制御装置102はセンサー制御部28を備え、センサー制御部28はセンサーソケット104に設置された慣性センサーの出力を用いてロボット100の振動を解析する。
次に、センサーソケットを備えた搬送機である自動車について説明する。尚、センサーソケットは自動車以外にも、電車、二輪車、トラック、各種作業車等の各種搬送機に用いることができる。図9(c)は、自動車の構造を示す模式平面図である。すなわち、本実施形態では、図9(c)に示すように、搬送装置としての自動車107は可動部としての車台108を備えている。車台108には直流電流で作動する一対の駆動部としてのモーター109が設置されている。各モーター109の出力軸と接続して減速機110が設置されている。各減速機110の出力軸には車輪111が取り付けられている。車台108にはモーター109の近くにソケットとしてのセンサーソケット119が設置されている。
モーター109は配線112を介して分配装置113と接続され、分配装置113は配線112を介して蓄電池114と接続されている。さらに、分配装置113は配線112を介して制御装置115と接続されている。
制御装置115は蓄電池114から各モーター109に流動させる電流量を制御する装置である。分配装置113は制御装置115が出力する指示信号に従って、各モーター109に電流を供給する。これによりモーター109が回転し、減速機110がモーター109の回転数を減速した回転数で車輪111を回転させる。
車台108の長手方向においてモーター109が配置された場所と反対の場所には、差動装置116が設置されている。そして、差動装置116には一対の車軸117が設置され、各車軸117に車輪111が取り付けられている。差動装置116は一対の車軸117の回転速度を調整する装置である。差動装置116の作用により車輪111は異なる回転速度で回転することが可能になっている。
車台108には車軸117を回動可能に支持する軸受け部118が設置され、軸受け部118にはセンサーソケット119が設置されている。センサーソケット119には第1の実施形態〜第5の実施形態のいずれかに記載のセンサーソケットが用いられている。従って、センサーソケット119に慣性センサーを着脱可能に設置することができる。そして、所望のセンサーソケット119を選択して慣性センサーを設置することができる。また。そして、センサーソケット119と制御装置115との間で電気信号を伝送する配線が設置されている。制御装置115はセンサー制御部28を備え、センサー制御部28はセンサーソケット119に設置された慣性センサーの出力を用いて車軸117の振動を解析する。
次に、センサーソケットを備えたロボットについて説明する。図10(a)は、ロボットの構成を示す模式平面図であり、図10(b)は、ロボットの構成を示す模式側面図である。図10に示すようにロボット122は可動部が直交する2方向に移動する直交ロボットである。ロボット122は基台123を備えている。基台123上において図中左側には駆動部としてのYステージ124が配置されている。Yステージ124の両端にはソケットとしてのセンサーソケット125が設置されている。Yステージ124が延在する方向をY方向とし、水平面においてY方向と直交する方向をX方向とする。そして、鉛直方向をZ方向とする。
Yステージ124の図中右側には可動部及び駆動部としてのXステージ126が配置されている。Yステージ124は内部にY方向に直線移動するY軸直動機構を備えており、Xステージ126を移動させる駆動部となっている。そして、Yステージ124はXステージ126をY方向に往動及び復動させる。さらに、Yステージ124は内部に位置検出部を備えている。そして、Xステージ126のY方向の位置を検出することができる。Xステージ126の両端にはセンサーソケット125が配置されている。
Xステージ126の−Y方向を向く面には可動部としての移動ステージ127が設置されている。Xステージ126は内部にX方向に直線移動するX軸直動機構を備えており、移動ステージ127を移動させる駆動部となっている。そして、Xステージ126は移動ステージ127をX方向に往動及び復動させる。さらに、Xステージ126は内部に位置検出部を備えており、移動ステージ127のX方向の位置を検出することができる。移動ステージ127のX方向の面にはセンサーソケット125が設置されている。
移動ステージ127はZ方向に伸縮する駆動部としての昇降装置128を備えている。そして、昇降装置128の図中下側には駆動部としての回転装置129を備え、回転装置129の下側には可動部としての把持装置130が配置されている。そして、把持装置130にはセンサーソケット125が設置されている。
センサーソケット125には第1の実施形態〜第5の実施形態のいずれかに記載のセンサーソケットが用いられている。従って、センサーソケット125に慣性センサーを着脱可能に設置することができる。そして、所望のセンサーソケット125を選択して慣性センサーを設置することができる。Xステージ126、移動ステージ127、昇降装置128、回転装置129及び把持装置130の各装置が駆動される。このとき、把持装置130、移動ステージ127、Xステージ126が振動する。さらに、Xステージ126の振動がYステージ124に伝播するのでYステージ124も振動する。そして、センサーソケット125は振動する可能性のある部位に設置されているので、振動を検出したい場所のセンサーソケット125に慣性センサーを設置して各部位の振動を検出することができる。
基台123のY方向側には制御装置131が配置されている。制御装置131はロボット122の動作を制御する装置である。センサーソケット125と制御装置131との間で電気信号を伝送する配線が設置されている。制御装置131はセンサー制御部28を備え、センサー制御部28はセンサーソケット125に設置された慣性センサーの出力を用いてロボット122の振動を解析する。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、ロボット82は第1アーム87、第2アーム90及び第4モーター95を備えている。第1アーム87、第2アーム90及び第4モーター95は移動中や停止するときに振動する。そして、第1アーム87、第2アーム及び90第4モーター95にはセンサーソケット89が設置され、センサーソケット89には慣性センサーを着脱可能に設置することができる。従って、振動を検出する場所を変えることで、1つの慣性センサーで多くの場所の振動を検出することができる。
(2)本実施形態によれば、ロボット100は腕部103を備えている。腕部103は移動中や停止するときに振動する。そして、腕部103には多くのセンサーソケット104が設置され、センサーソケット104には慣性センサーを着脱可能に設置することができる。従って、振動を検出する場所を変えることで、1つの慣性センサーで多くの場所の振動を検出することができる。
(3)本実施形態によれば、自動車107は車台108に軸受け部118が設置され、車輪111と接続する車軸117が軸受け部118に支持されている。そして、車輪111を回転させることにより自動車107は移動し、車輪を停止させることにより自動車107は停止する。自動車107は移動中や停止するときに振動する。そして、自動車107にはセンサーソケット119が設置され、センサーソケット119には慣性センサーを着脱可能に設置することができる。従って、振動を検出する場所にのみ慣性センサーを設置すれば良いので、1つの慣性センサーで多くの場所の振動を検出することができる。
(4)本実施形態によれば、ロボット122は移動可能なXステージ126、移動ステージ127、把持装置130を備えている。移動可能なXステージ126、移動ステージ127、把持装置130は移動中や停止するときに振動する。そして、移動可能なXステージ126、移動ステージ127、把持装置130には多くのセンサーソケット125が設置され、センサーソケット125には慣性センサーを着脱可能に設置することができる。従って、振動を検出する場所を変えることで、1つの慣性センサーで多くの場所の振動を検出することができる。
尚、本実施形態は上述した実施形態に限定されるものではなく、本発明の技術的思想内で当分野において通常の知識を有する者により種々の変更や改良を加えることも可能である。変形例を以下に述べる。
(変形例1)
前記第1の実施形態では、電極24の形状は円柱としたが、円柱に限らず角柱でもよい。他にも、第1接点部24bを板状としても良い。これにより、第2接点部25と接触する第1接点部24bの接触面積を広くすることができる。従って、接点の接触抵抗を小さくできる。
(変形例2)
前記第1の実施形態では、電極24は位置決め部24aと第1接点部24bとで太さを変えたが、電極24を第1接点部24bで挟めるようであれば位置決め部24aと第1接点部24bとを同じ太さにしても良い。電極24を製造し易くすることができる。
(変形例3)
前記第2の実施形態では、第1ピン54、第2ピン55及び第3ピン56の形状は円柱としたが、円柱に限らず角柱でもよい。設計し易い形状を選択しても良い。
(変形例4)
前記第1の実施形態では、ソケット保護部23は土台20に挿入する形態であったが、この形態に限らない。例えば、ソケット保護部23と土台20との間に蝶番を配置してソケット保護部23を開閉可能に設置しても良い。ソケット保護部23を開閉し易くすることができる。
(変形例5)
前記第1の実施形態では、加速度データを振動データ37として記憶し、振動データ37をフーリエ変換してパワースペクトルを算出した。この方法に限らず、加速度データを積分して速度データを算出し、速度データを振動データ37としても良い。波形の性質に合わせてピーク周波数44bを算出し易い方法を選択しても良い。尚、この内容は、第2の実施形態〜第6の実施形態にも適用することができる。
(変形例6)
前記第1の実施形態では、慣性センサー22は加速度を検出するセンサーであったが、角速度を検出するセンサーにしても良い。角速度のセンサーは回転中心からの距離を補正する演算をすることなく振動の強度を算出することができる。従って、振動強度の演算を容易にすることができる。角速度のセンサーが検出する角速度の波形データを用いて振動の強度を算出しても良く、角速度の波形データを1回積分した波形データを用いて振動の強度を算出しても良い。振動を検出し易い方法を採用することができる。
1,47,61,68,74,82,100,122…ロボット、4…駆動部としての本体回転部、7…可動部としての肩関節部、7a…駆動部及び可動部としての前後回動部、7b…駆動部及び可動部としての左右回動部、8…可動部としての左腕部、9…可動部としての右腕部、10,48,62,69,75,89,104,119,125…ソケットとしてのセンサーソケット、11…可動部としての上腕部、12…可動部としての下腕部、13…可動部としてのハンド部、14…駆動部としての肘関節、15…可動部としての第1下腕部、15a,16a,17a…駆動部としての回転機構、16…可動部としての第2下腕部、17…可動部としての第3下腕部、20d…方向合わせ部としての第1位置決孔、20f…方向合わせ部としての第2位置決孔、21…離脱防止部、22…慣性センサー、23…ソケット保護部、24,51…第2電極としての電極、25…第1電極としての第2接点部、26…配線、43…解析部、52…第1電極としての電極、54…突当部及ピンとしての第1ピン、55…突当部及ピンとしての第2ピン、56…突当部及ピンとしての第3ピン、57,64…付勢部としての第1付勢部、58…付勢部としての第2付勢部、63f…突当部としての第1側面、63g…突当部としての第2側面、78a…位置決め部、78…離脱防止部及び第2電極としての電極、79…離脱防止部及び第1電極としての第2接点部、87…可動部としての第1アーム、88…駆動部としての第2モーター、90…可動部としての第2アーム、91…駆動部としての第3モーター、95…可動部としての第4モーター、107…搬送装置としての自動車、108…可動部としての車台、109…駆動部としてのモーター、111…車輪、117…車軸、118…軸受け部、124…駆動部としてのYステージ、126…可動部及び駆動部としてのXステージ、127…可動部としての移動ステージ、128…駆動部としての昇降装置、129…駆動部としての回転装置、130…可動部としての把持装置。

Claims (10)

  1. 可動部と、前記可動部を駆動する駆動部と、を有し、
    前記可動部には前記可動部の振動を検出する慣性センサーを着脱可能に支持するソケットが設置されていることを特徴とするロボット。
  2. 請求項1に記載のロボットであって、
    前記ソケットは前記可動部に対して前記慣性センサーの向きを所定の向きに合わせる方向合わせ部を備えることを特徴とするロボット。
  3. 請求項2に記載のロボットであって、
    前記慣性センサーは基準面を有し、
    前記方向合わせ部は前記基準面を接触させる突当部と、前記慣性センサーを前記突当部に付勢する付勢部とを備えることを特徴とするロボット。
  4. 請求項3に記載のロボットであって、
    前記突当部は複数の柱状のピンを有し、
    前記基準面を前記ピンに接触させて前記基準面を所定の向きに合わせることを特徴とするロボット。
  5. 請求項1〜4のいずれか一項に記載のロボットであって、
    前記慣性センサーを覆うソケット保護部を備えることを特徴とするロボット。
  6. 請求項1〜5のいずれか一項に記載のロボットであって、
    前記ソケットは前記慣性センサーの信号を伝送する第1電極を備え、
    前記可動部は内部に前記第1電極と接続する配線を備えることを特徴とするロボット。
  7. 請求項2に記載のロボットであって、
    前記慣性センサーは第2電極を備え、前記方向合わせ部は前記第2電極を用いて前記慣性センサーの向きを所定の向きに合わせることを特徴とするロボット。
  8. 請求項1〜7のいずれか一項に記載のロボットであって、
    前記ソケットは前記ソケットから前記慣性センサーが離脱することを防止する離脱防止部を備えることを特徴とするロボット。
  9. 請求項1〜8のいずれか一項に記載のロボットであって、
    前記慣性センサーの出力を用いて、前記可動部が振動する振動強度のピークの周波数を解析する解析部を備えることを特徴とするロボット。
  10. 車輪を連結する車軸と、
    前記車軸を回動可能に支持する軸受部が設置された車台と、を有し、
    前記車台には振動を検出する慣性センサーを着脱可能に支持するソケットが設置されていることを特徴とする搬送装置。
JP2012170879A 2012-08-01 2012-08-01 ロボット及び搬送装置 Withdrawn JP2014030857A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012170879A JP2014030857A (ja) 2012-08-01 2012-08-01 ロボット及び搬送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012170879A JP2014030857A (ja) 2012-08-01 2012-08-01 ロボット及び搬送装置

Publications (1)

Publication Number Publication Date
JP2014030857A true JP2014030857A (ja) 2014-02-20

Family

ID=50281097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170879A Withdrawn JP2014030857A (ja) 2012-08-01 2012-08-01 ロボット及び搬送装置

Country Status (1)

Country Link
JP (1) JP2014030857A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175165A (ja) * 2015-03-20 2016-10-06 トヨタ自動車株式会社 ジャイロセンサの配置方法
JP2018011477A (ja) * 2016-07-15 2018-01-18 株式会社アドヴィックス 車両のモータ回転速度決定方法
JP2018171665A (ja) * 2017-03-31 2018-11-08 セイコーエプソン株式会社 装置、ロボット、およびロボットシステム
CN109746910A (zh) * 2017-11-08 2019-05-14 欧姆龙株式会社 移动式机械手、移动式机械手的控制方法及记录介质
CN110405718A (zh) * 2019-07-28 2019-11-05 南京昱晟机器人科技有限公司 一种工业加工机器人巡检装置
CN110640766A (zh) * 2018-06-26 2020-01-03 发那科株式会社 进行学习控制的机器人系统
CN112103835A (zh) * 2019-07-03 2020-12-18 苏州力佳达电子科技有限公司 一种巡检机器人
JP2021014319A (ja) * 2019-07-10 2021-02-12 東芝エレベータ株式会社 乗客コンベア
EP3792330A1 (en) 2014-01-31 2021-03-17 Agc Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
EP3812446A1 (en) 2014-02-20 2021-04-28 Agc Inc. Composition for heat cycle system, and heat cycle system
WO2021141049A1 (ja) * 2020-01-10 2021-07-15 ファナック株式会社 制御システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183279U (ja) * 1984-11-07 1986-06-02
JPS61187427U (ja) * 1985-05-13 1986-11-21
JPH01111341A (ja) * 1987-10-26 1989-04-28 Toshiba Corp 電子部品の位置決め装置
JPH07266197A (ja) * 1994-03-28 1995-10-17 Saisu:Kk センサ付装置、センサ付研削装置及びセンサ
JP2006246623A (ja) * 2005-03-03 2006-09-14 Toyota Motor Corp 衝突判定システムおよび車両
JP2006322947A (ja) * 2000-12-06 2006-11-30 Nsk Ltd 機械設備の振動ピーク値抽出方法およびピーク値抽出装置
JP2008091039A (ja) * 2006-09-29 2008-04-17 Yukita Electric Wire Co Ltd コネクタ端子の接続構造
JP2011167817A (ja) * 2010-02-19 2011-09-01 Fanuc Ltd 学習制御機能を備えたロボット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183279U (ja) * 1984-11-07 1986-06-02
JPS61187427U (ja) * 1985-05-13 1986-11-21
JPH01111341A (ja) * 1987-10-26 1989-04-28 Toshiba Corp 電子部品の位置決め装置
JPH07266197A (ja) * 1994-03-28 1995-10-17 Saisu:Kk センサ付装置、センサ付研削装置及びセンサ
JP2006322947A (ja) * 2000-12-06 2006-11-30 Nsk Ltd 機械設備の振動ピーク値抽出方法およびピーク値抽出装置
JP2006246623A (ja) * 2005-03-03 2006-09-14 Toyota Motor Corp 衝突判定システムおよび車両
JP2008091039A (ja) * 2006-09-29 2008-04-17 Yukita Electric Wire Co Ltd コネクタ端子の接続構造
JP2011167817A (ja) * 2010-02-19 2011-09-01 Fanuc Ltd 学習制御機能を備えたロボット

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4417667A1 (en) 2014-01-31 2024-08-21 Agc Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
EP3792330A1 (en) 2014-01-31 2021-03-17 Agc Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
EP3812446A1 (en) 2014-02-20 2021-04-28 Agc Inc. Composition for heat cycle system, and heat cycle system
JP2016175165A (ja) * 2015-03-20 2016-10-06 トヨタ自動車株式会社 ジャイロセンサの配置方法
JP2018011477A (ja) * 2016-07-15 2018-01-18 株式会社アドヴィックス 車両のモータ回転速度決定方法
JP2018171665A (ja) * 2017-03-31 2018-11-08 セイコーエプソン株式会社 装置、ロボット、およびロボットシステム
US10948917B2 (en) 2017-11-08 2021-03-16 Omron Corporation Mobile manipulator, method for controlling mobile manipulator, and program therefor
CN109746910A (zh) * 2017-11-08 2019-05-14 欧姆龙株式会社 移动式机械手、移动式机械手的控制方法及记录介质
EP3482884A1 (en) 2017-11-08 2019-05-15 Omron Corporation Mobile manipulator, method for controlling mobile manipulator, and program therefor
US11230003B2 (en) 2018-06-26 2022-01-25 Fanuc Corporation Robot system configured to perform learning control
JP2020001107A (ja) * 2018-06-26 2020-01-09 ファナック株式会社 学習制御を行うロボットシステム
CN110640766A (zh) * 2018-06-26 2020-01-03 发那科株式会社 进行学习控制的机器人系统
CN110640766B (zh) * 2018-06-26 2024-05-14 发那科株式会社 进行学习控制的机器人系统
CN112103835A (zh) * 2019-07-03 2020-12-18 苏州力佳达电子科技有限公司 一种巡检机器人
JP2021014319A (ja) * 2019-07-10 2021-02-12 東芝エレベータ株式会社 乗客コンベア
CN110405718A (zh) * 2019-07-28 2019-11-05 南京昱晟机器人科技有限公司 一种工业加工机器人巡检装置
WO2021141049A1 (ja) * 2020-01-10 2021-07-15 ファナック株式会社 制御システム
JPWO2021141049A1 (ja) * 2020-01-10 2021-07-15
CN114929435A (zh) * 2020-01-10 2022-08-19 发那科株式会社 控制系统
JP7384933B2 (ja) 2020-01-10 2023-11-21 ファナック株式会社 制御システム
US12350844B2 (en) 2020-01-10 2025-07-08 Fanuc Corporation Control system

Similar Documents

Publication Publication Date Title
JP2014030857A (ja) ロボット及び搬送装置
JP5886513B2 (ja) レーザスキャナを伴う関節式測定アーム
JP6756166B2 (ja) 力覚センサーユニットおよびロボット
US9481084B2 (en) Touch quality test robot
US9869597B1 (en) Compound strain gage carrier for multi-axis force/torque sensing
US9342066B2 (en) Robot, robot system, and robot control device
JP5586930B2 (ja) 眼鏡枠形状測定装置
CN104227722A (zh) 机器人系统与机器人控制方法
US11372012B2 (en) Dispensing robot, method of controlling dispensing robot, and dispensing method
JP2015182142A (ja) ロボット、ロボットシステム及び教示方法
CN106232305A (zh) 抓持器指部、抓持器末端和抓持器爪以及机器人系统
JP2011122898A (ja) 眼鏡枠形状測定装置
EP2982933B1 (en) Apparatus and method for measuring a bending angle of a workpiece
JP4798105B2 (ja) ロボットハンドシステム
JPWO2018212203A1 (ja) 把持システム
CN111578829A (zh) 一种用于标定多机器人协同工作坐标系的装置及标定方法
CN105643267A (zh) 一种机械手力控制装配装置及装配方法
JP2014188641A (ja) ロボット
WO2018083970A1 (ja) ロボットシステム
CN113692335B (zh) 吸附垫及变形测量装置
JP6668665B2 (ja) ロボット装置
CN207710082U (zh) 一种全向移动激光加工机器人
JP2019042853A (ja) 画像情報処理装置、把持システム、および画像情報処理方法
Ekkachai et al. Development of the generator inspection vehicle and the inspection equipment
CN207643124U (zh) 一种多功能装配用机器人

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160623

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160719