JP2014026452A - 半導体の輪郭線データを広視野化する画像処理装置、及びコンピュータプログラム - Google Patents

半導体の輪郭線データを広視野化する画像処理装置、及びコンピュータプログラム Download PDF

Info

Publication number
JP2014026452A
JP2014026452A JP2012166060A JP2012166060A JP2014026452A JP 2014026452 A JP2014026452 A JP 2014026452A JP 2012166060 A JP2012166060 A JP 2012166060A JP 2012166060 A JP2012166060 A JP 2012166060A JP 2014026452 A JP2014026452 A JP 2014026452A
Authority
JP
Japan
Prior art keywords
coordinate data
contour
processing apparatus
image processing
contour line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012166060A
Other languages
English (en)
Other versions
JP6027362B2 (ja
Inventor
Masahiro Kitazawa
正弘 北澤
Yuichi Abe
雄一 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012166060A priority Critical patent/JP6027362B2/ja
Publication of JP2014026452A publication Critical patent/JP2014026452A/ja
Application granted granted Critical
Publication of JP6027362B2 publication Critical patent/JP6027362B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】本発明は、輪郭線の座標データを幾何計算を用いて輪郭線の形状を保ったまま膨張/収縮させることにより複数のSEM像から求めた輪郭線のつなぎ合わせを良好に行う技術を提供する。
【解決手段】本発明の画像処理装置は、検査又は計測すべきパターン形状のSEM像から得られた複数の輪郭線座標データを格納する格納部707と、複数の輪郭線座標データのそれぞれに対してSEM像が撮像された視野の位置情報を加える移動部709と、位置情報が加えられた複数の輪郭線座標データの間のズレを補正する補正部711と、補正部711によって補正された複数の輪郭線座標データを1つの広視野輪郭線座標データに統合する統合部713と、を備える。
【選択図】図7

Description

本発明は、輪郭線データを広視野化する画像処理装置、及び広視野化処理をコンピュータに実行させるコンピュータプログラムに関する。
半導体回路の製造工程に人間が入ると、半導体回路には、塵や湿度の変化および振動などによってパターン形状の形成不良などの欠陥が発生してしまう。したがって、半導体回路の検査及び計測を完全に自動的に実行したいという要求が強い。
図1は、一般的な走査型電子顕微鏡(SEM)101を用いた検査装置の構成を示す。まず、ステージ105に検査する半導体回路のウェハをセットする。そして、制御装置103に搭載された計算機104からSEM101に指示を出して半導体回路を撮像し、SEM101で撮像した画像(SEM像)を表示部109に表示する。
SEM像からパターンの形状や寸法などを求めて検査する方法としては、SEM像から輪郭線を抽出して設計データと比較する方法がある(例えば、特許文献1)。また、広視野でパターン形状の検査・計測を行うための手法としては、SEM像をつなぎあわせてパノラマ化画像とする方法がある(例えば、特許文献2)。
国際公開第2011/118745(A1)号パンフレット 国際公開第2011/090111(A1)号パンフレット 国際公開第10/061516号パンフレット 米国特許出願公開第2009/242760(A1)号明細書
SEM像からパターン形状を精度良く検査及び計測しようとする場合、SEMの撮像倍率を高くして、パターン形状の細部までSEM像に撮像されることが望ましい。一方、SEMの撮像倍率が高いと撮像できる視野は狭くなる。したがって、検査及び計測するべきパターン形状が1枚のSEM像に撮像されない場合があり、複数のSEM像で検査及び計測を行う必要が生じる。あるいは、複数のSEM像から求めた輪郭線をつなぎあわせて検査したいパターン形状全体に相当する輪郭線を求める必要が生じる。
複数のSEM像から求めた輪郭線をつなぎあわせる場合、一般的な方法として、複数のSEM像に含まれる重複した領域を位置合わせの為に用いる方法がある。しかしながら、SEM像の歪みや撮像による帯電などの影響により、複数のSEM像に含まれる重複した領域における輪郭線が同一にならない可能性がある。
輪郭線をつなぎ合わせる際の形状補正に画像を用いると、画像内の画素単位での膨張/収縮処理を行うことになり、nm単位での微妙な形状補正が困難である。また、画像を使った膨張/収縮処理では鋭角なコーナーの先端部は丸みができてしまい、正確な形状補正ができない。
本発明は、上記課題を解決するために、輪郭線座標データにおける輪郭線の形状を保ったまま膨張/収縮させることにより複数のSEM像から求めた輪郭線のつなぎ合わせを良好に行い、オペレータフリーな画像処理装置及びコンピュータプログラムを提供する。
上記課題を解決するために、本発明の画像処理装置は、検査又は計測すべきパターン形状のSEM像から得られた複数の輪郭線座標データを格納する格納部と、前記複数の輪郭線座標データのそれぞれに対して前記SEM像が撮像された視野の位置情報を加える移動部と、前記位置情報が加えられた前記複数の輪郭線座標データの間のズレを補正する補正部と、前記補正部によって補正された前記複数の輪郭線座標データを1つの広視野輪郭線座標データに統合する統合部と、を備える。
また、本発明によれば、検査又は計測すべきパターン形状のSEM像から得られた複数の輪郭線座標データから1つの広視野輪郭線座標データを作成する処理を、記憶部と演算部とを備える情報処理装置に実行させるためのプログラムが提供される。前記記憶部が、前記複数の輪郭線座標データを格納している。当該プログラムは、前記演算部に、前記複数の輪郭線座標データのそれぞれに対して前記SEM像が撮像された視野の位置情報を加える処理と、前記位置情報が加えられた前記複数の輪郭線座標データの間のズレを補正する処理と、前記補正する処理によって補正された前記複数の輪郭線座標データを1つの広視野輪郭線座標データに統合する処理と、を実行させる。
本発明によれば、輪郭線座標データにおける輪郭線の形状を保ったまま膨張/収縮させることにより、複数のSEM像から求めた輪郭線のつなぎ合わせを良好に行うことが可能になる。
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成および効果は、以下の実施例の説明により明らかにされる。
走査型電子顕微鏡(SEM)を用いた検査装置の構成を示す図である。 半導体回路パターンの設計データを画像化した一実施例の図である。 図2の設計データをSEMで撮像する場合の一実施例の図である。 図3のSEM像視野で撮像した半導体回路のパターン形状の一実施例の図である。 図4のSEM像から輪郭線座標データを抽出した結果の一実施例の図である。 複数の輪郭線データがつなぎ合わされた、1枚の広視野輪郭線座標データの一実施例の図である。 本発明の一実施例である画像処理装置の構成及びデータの流れを説明する図である。 2つの輪郭線座標データのつなぎ合わせの部分を説明するための図である。 歪み補正処理を説明するための図である。 図8Aの符号801の部分を拡大した図であり、本発明のズレ補正処理の一例を示す図である。 本発明の一実施例である輪郭線データの膨張/収縮処理の一例を説明する図である。 本発明の一実施例である輪郭線データの膨張/収縮処理の一例を説明する図である。 本発明の一実施例である輪郭線データの膨張/収縮処理の一例を説明する図である。 本発明の一実施例である輪郭線データの収縮処理の一例を説明する図である。 本発明の一実施例である輪郭線データの膨張処理の一例を説明する図である。 本発明の一実施例であるズレ補正処理を説明するフローチャートである。 本発明の一実施例である輪郭線座標データ膨張処理を説明するフローチャートである。 本発明の一実施例である表示部に表示される画面を説明する図である。 本発明の一実施例であるダブルパターンニングへの適用を説明する図である。 本発明の一実施例であるダブルパターンニングへの適用を説明する図である。 本発明の一実施例であるホールアレイへの適用を説明する図である。 本発明の一実施例であるホールアレイへの適用を説明する図である。 本発明の一実施例であるホールアレイへの適用を説明する図である。 本発明の一実施例である膨張処理の一例を説明する図である。 本発明の一実施例である膨張処理の一例を説明する図である。
以下、添付図面を参照して本発明の実施例について説明する。なお、添付図面は本発明の原理に則った具体的な実施例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。
<第1実施例>
本実施例は、図1に示す走査型電子顕微鏡(SEM)101に用いられる画像処理装置である。例えば、本実施例の画像処理装置は、図1の計算機104に搭載されている。画像処理装置は、SEM101で撮像された複数のSEM像の輪郭線データをつなぎあわせて、広い視野とした輪郭線座標データを算出するものである。
図2は、半導体回路パターンの設計データを画像化した図を示す。設計データ201には、パターン形状202が含まれている。図3は、図2の設計データ201をSEMで撮像する場合の例を示す。例えば、高い倍率で設定されたSEM像視野302によってパターン形状202を撮像する場合、パターン形状202の全体を1枚のSEM像で撮像することが困難である。したがって、SEM像の視野を移動して、SEM像視野302、303、304、305からなる4枚のSEM像を撮像する。
図4は、図3のSEM像視野で撮像したSEM像を示す。SEM像視野302、303、304、305で撮像したSEM像は、それぞれ、SEM像402、403、404、405に対応する。また、図5は、図4のSEM像から輪郭線座標データを抽出した結果の画像を示す。SEM像402、403、404、405は、それぞれ、輪郭線画像502、503、504、505に対応する。
<画像処理装置のハードウェア構成>
次に、本実施例の画像処理装置のハードウェア構成について説明する。画像処理装置は、計算機104に搭載されており、パーソナルコンピュータなどの情報処理装置によって構成されている。なお、本実施例では、画像処理装置が計算機104に搭載されているが、計算機104に接続された別の情報処理装置で構成してもよい。画像処理装置は、上述した表示部109と、キーボードやマウスなどの入力部110と、メモリと、中央処理装置(又は演算部ともいう)と、記憶装置とを備える。記憶装置は、HDDやCD−ROM、DVD−ROMなどの記憶媒体である。
中央処理装置は、CPU(Central Processing Unit)やマイクロプロセッサなどで構成されている。以下で詳細に説明する画像処理装置の各処理部は、各処理部の機能を実現するソフトウェアのプログラムコードによって実現できる。すなわち、画像処理装置の各処理部は、プログラムコードとしてメモリに格納され、中央処理装置が各プログラムコードを実行することによって実現されてもよい。なお、画像処理装置の各処理部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。なお、以下で詳細に説明する画像処理装置の各格納部は、上述のメモリまたは記憶装置により実現される。
<画像処理装置の構成>
図7は、本実施例に係る画像処理装置700の構成とデータの流れを示す図である。画像処理装置700は、SEM像格納部701と、輪郭線抽出部703と、輪郭線座標データ変換部705と、輪郭線座標データ格納部707と、輪郭線歪み補正部741と、輪郭線座標データ視野移動部709と、ズレ補正部711と、輪郭線座標データ統合部713と、広視野輪郭線座標データ格納部715と、設計データ格納部720と、輪郭線検査・計測部721と、補正量演算部723とを備える。
SEM像格納部701は、例えば、図4に示すような複数のSEM像402、403、404、405を格納する。画像処理装置700への入力は、SEM像格納部701に格納されたSEM像402である。
輪郭線抽出部703は、SEM像格納部701に格納されたSEM像402を取得し、特許文献3の図3で示されているようにSEM像402を平準化してノイズを除去する。その後、輪郭線抽出部703は、所定の手法を用いて輪郭線を抽出する。輪郭線を抽出する手法の一例としては、エッジを検出して二値化像に変換して、ホワイトバンドの中心線を求めて細い線の画像を得る手法がある。このように、輪郭線抽出部703は、SEM像に特化した上述の手法を用いてSEM像402を輪郭線の画像に変換して、輪郭線画像502として輪郭線座標データ変換部705に入力する。
輪郭線座標データ変換部705は、輪郭線画像502をポリゴン形式の座標データへ変換する。ここで、例えば、ポリゴン形式の座標データとは、パターン形状の輪郭線の頂点の座標が羅列されたデータである。輪郭線座標データ変換部705は、変換後の座標データを輪郭線座標データ706として輪郭線座標データ格納部707に格納する。輪郭線座標データ格納部707には、検査または計測するべきパターン形状の周辺のSEM像から求めた複数の輪郭線座標データが格納される。
また、輪郭線座標歪み補正部741は、輪郭線座標データ格納部707から輪郭線座標データを取得し、輪郭線座標データの歪みを補正する。輪郭線座標データは、数値データであるため、画像を画素単位で補正するよりも細かく補正することが可能である。輪郭線座標歪み補正部741は、歪み係数830を用いて歪み補正の処理を実行する。輪郭線座標歪み補正部741は、歪み補正後の輪郭線座標データ708を輪郭線座標データ視野移動部709に入力する。ここでは、検査または計測するべきパターン形状の周辺のSEM像に対応する複数の輪郭線座標データ708が輪郭線座標データ視野移動部709に入力される。
輪郭線座標データ視野移動部709は、SEM像1枚ごとにおける座標値である輪郭線座標データ708に対して、SEM像を撮像した位置情報(SEM像視野の位置情報)を加える。この際、輪郭線座標データ視野移動部709は、SEM像視野の位置情報として設計データ格納部720の設計データ301を用いる。設計データ格納部720には、SEM像の撮像位置を示し且つ輪郭線の検査又は計測に使用するための設計データが格納されている。そして、輪郭線座標データ視野移動部709は、SEM像視野の位置情報が加えられた輪郭線座標データ708を、パノラマ用輪郭線座標データ710としてズレ補正部711に入力する。
ズレ補正部711は、パノラマ用輪郭線座標データ710の視野間のズレにより生じた輪郭線座標データにおけるズレを、輪郭線形状を維持したままで膨張/収縮を使った手法によって補正する。この補正処理を実行するために、ズレ補正部711は、輪郭線座標データの膨張処理を実行する輪郭線座標データ膨張処理部と、輪郭線座標データの縮小処理を実行する輪郭線座標データ縮小処理部とを備える。
図7において矢印を省略しているが、ズレ補正部711は、パノラマ用輪郭線座標データ710を輪郭線検査・計測部721に入力する。輪郭線検査・計測部721は、設計データ格納部720の設計データとパノラマ用輪郭線座標データ710とを比較することにより、後述するズレ量を算出する。算出したズレ量724は、ズレ補正部711及び補正量演算部723に出力される。
ズレ補正部711は、輪郭線検査・計測部721により出力されたズレ量724から求めた移動量926を補正量演算部723に入力する。補正量演算部723は、後述する補正手法を用いて移動量926を補正して、補正した移動量923をズレ補正部711に出力する。なお、補正量演算部723は、表示部109上で入力された補正対象となるパターンの角度の閾値(例えば、図14の閾値設定ボックス1405の値)を取得し、この閾値を用いて補正した移動量923を算出することも可能である。ズレ補正部711は、この補正した移動量923、及び輪郭線検査・計測部721により出力されたズレ量724から求めた移動量926等を用いて輪郭線座標データにおけるズレを補正する。ズレ補正部711は、ズレを補正した輪郭線座標データを、ズレ補正済み輪郭線座標データ712として輪郭線座標データ統合部713に入力する。
輪郭線座標データ統合部713は、ズレ補正済み輪郭線座標データ712に対してパノラマ化処理を実行し、1枚のSEM像から得られた輪郭線座標データに相当する広視野輪郭線座標データ601を算出する。輪郭線座標データ統合部713は、広視野輪郭線座標データ601を広視野輪郭線座標データ格納部715に格納し、さらに、広視野輪郭線座標データ601を表示部109に出力する。
広視野輪郭線座標データ格納部715は、1枚のSEM像から得られた輪郭線座標データに相当する広視野輪郭線座標データ601を格納する。図6は、広視野輪郭線座標データ601を画像化した一例を示す。図6に示すように、広視野輪郭線座標データ601の画像は、複数の輪郭線画像502、503、504、505を統合して(すなわち、つなぎ合わせて)、広い視野とした画像である。
また、輪郭線検査・計測部721は、広視野輪郭線座標データ格納部715から広視野輪郭線座標データ601を取得し、設計データ格納部720からの設計データ301との比較を実行し、特許文献4に記載されているような手法を用いて良否判定処理を実行する。例えば、良否判定処理は、広視野輪郭線座標データ601からパターンの形状を測長し、その測長結果と設計データ301とを比較することにより行われる。輪郭線検査・計測部721は、良否判定処理の結果を良否判定データ722として表示部109に出力する。したがって、表示部109は、広視野輪郭線座標データ601と共に良否判定データ722を表示する。この際、表示部109は、SEM像格納部701からのSEM像402も表示可能とする。これにより、ユーザ又はオペレータが、表示部109上において、SEM像402、広視野輪郭線座標データ601、及び良否判定データ722の全てを確認することができる。
また、輪郭線検査・計測部721は、広視野輪郭線座標データ601と設計データ301とを比較することによりパターン形状のズレ量724を算出し、再度、ズレ量724を補正量演算部723及びズレ補正部711に入力することもできる。これにより、一度算出されたズレ量724によって補正された広視野輪郭線座標データ601が、設計データ301に対してズレがある場合は、再度算出したズレ量724をフィードバックとして補正量演算部723及びズレ補正部711に入力して、精度の良いズレ補正を実行することが可能となる。
<歪み補正処理及びズレ補正処理について>
上述したように、図6は、複数の輪郭線座標データをつなぎ合わせてパノラマ化した広視野輪郭線座標データ601を画像化した例を示している。このような広視野輪郭線座標データ601を作成する場合、設計データ301からSEM像を撮像した相対的な距離(オフセット値)を求めて、輪郭線画像502、503、504、505に対応する輪郭線座標データを連続した領域で計算できるように座標値にオフセット値を加算し、複数の輪郭線座標データをOR演算により統合すれば良い。しかしながら、実際には二つの輪郭線座標データ(例えば、輪郭線画像502と503の輪郭線座標データ)の間ではSEM像を撮像した際のズレや、SEM像から輪郭線を抽出する際のズレがあるため、OR演算すると輪郭線座標データのつなぎ合わせは段差が生じることが考えられる。
本実施例では、まず、輪郭線座標データに歪み補正処理を実行し、その後、ズレ補正処理を実行する。まず、輪郭線座標歪み補正部741の歪み補正処理について説明する。図8Aは、輪郭線座標データのつなぎ合わせの部分を説明するための図である。以下では、輪郭線画像502、503の輪郭線座標データを、それぞれ、輪郭線座標データ502、503として説明する。図8Aに示すように、輪郭線座標データ502は、パターン形状802を含み、輪郭線座標データ503は、パターン形状803を含む。また、輪郭線座標データ502と輪郭線座標データ503との間には、重なり領域820がある。本実施例では、パターン形状802とパターン形状803のズレ量を算出する前に、歪み補正処理を実行する。
図8Bに示すように、輪郭線座標歪み補正部741は、SEM像を画像として曲線状画像840から直線状画像841となるように、歪み係数830を用いて歪み補正処理を実行する。ここで、歪み係数830は、予め装置単位で始業点検時などに自動で取得されているものとする。このように、輪郭線座標歪み補正部741は、例えば、切り捨てられるSEM像の額縁領域に対して歪み補正処理を実行し、使用する輪郭線座標データを増やすとともに、パターン形状802とパターン形状803とのズレを極力少なくする。
歪みを補正しても、パターン形状間のズレは完全には無くならないのでズレ補正を行う必要がある。次に、ズレ補正部711のズレ補正処理の一例について説明する。図8Cは、図8Aの符号801の部分を拡大した図である。符号801の部分は、輪郭線座標データ502と輪郭線座標データ503のつなぎあわせの部分について一部を拡大したものである。符号801の部分は、輪郭線座標データ502のパターン形状802にかかる視野境界部分と、輪郭線座標データ503のパターン形状803にかかる視野境界部分とを輪郭線座標データから図に描画したものである。
パターン形状802とパターン形状803との間のズレ量を算出するには、輪郭線座標データ502の視野境界線804とパターン形状803の輪郭線とが交差する交差座標805を求める。同様に、輪郭線座標データ503の視野境界線806とパターン形状802の輪郭線とが交差する交差座標807を求める。
ここで、輪郭線座標データ503の視野境界線806上において交差座標807と対になる頂点808を求め、交差座標807と頂点808と間の距離をズレ量810とする。また、輪郭線座標データ502の視野境界線804上において交差座標805と対になる頂点811を求め、交差座標805と頂点811と間の距離をズレ量812とする。なお、輪郭線座標データ503の視野境界線806と輪郭線座標データ502の視野境界線804との間の範囲、すなわち、輪郭線座標データ503と輪郭線座標データ502との重なり領域820に、さらに頂点が存在する場合は、各頂点毎にズレ量を算出する。
各頂点のズレ量を、以下の数1の式で演算し、頂点を移動させる量を求める。
Figure 2014026452
ここで、重み814は、図8Cに示すように、視野境界線806では0.0であり、視野境界線804では1.0となるような線形に変化する0から1までの浮動小数点値である。なお、重み814の変化は、視野境界線806から視野境界線804間の距離に比例した定量的な増加でもよいし、二次式を用いた曲線的な増加でもよい。また、数1における「パターン形状802側の頂点座標」とは、この例では、交差座標807と頂点811を示す。したがって、図8Cの場合、頂点808は、交差座標807に置き換えられ、頂点811は交差座標805に置き換えられる。パターン形状802とパターン形状803をつなぐ新たな辺は、辺821となる。これにより、重なり領域820においてパターン形状の線分に段差がある場合でも、段差のない線分に補正することが可能となる。
<膨張/収縮処理について>
次に、ズレ補正部711のズレ補正処理の一例である膨張/収縮処理について説明する。まず、図17A及び図17Bを用いて膨張処理について説明する。図17Aは、半導体のパターン露光を疑似的に再現するために輪郭線座標データを膨張する方法を示す。
辺1703、辺1705の矢印の向きは、一般的ポリゴン表記を同じである。すわなち、時計回りの矢印が穴を示しており、反時計回りの矢印が形状を示している。膨張処理では、形状部1701の外周の辺1702を構成する頂点1707の外角1708の1/2を通る方向へ頂点1707をズレ量725だけ移動させる。移動後の頂点1704で構成する外周の辺1705が膨張後の外周となる。
図17Aに示すように、形状部1701が内側に穴部1706を持つようなドーナツ形状である場合は、形状部1701の内周の辺1703を構成する頂点1709の内角1710の1/2を通る方向へ頂点1709をズレ量725だけ移動させる。移動した頂点1711により構成される辺1712が膨張後の内周となる。図17Bに示すように、外周の辺1705と内周の辺1712で構成する形状が膨張後の形状部1720となる。なお、収縮処理も同様のやり方で行うことが可能である。
このように、本発明における膨張/収縮処理は、パターン形状の全ての部分を同じ割合で引き伸ばしたり又は縮ませる拡大/縮小処理とは異なり、パターン形状を維持したまま形状を太らせる又は細らせることができる。なお、図17Aの例では、頂点1707のズレ量725を算出して膨張処理を行っているが、辺1702の垂直方向のズレ量726(平行移動方向のズレ量)を算出して膨張処理を行っても良い。
さらに、図9A乃至図9Cは、本発明における膨張/収縮処理の例を示す。図9Aに示すように、まず、輪郭線座標データの頂点間で構成された辺901、902で構成される角度906を求める。次に、角度906の1/2の角度を求めて三角関数で頂点908をズレ量725だけ移動させるためのX方向移動量907とY方向移動量909を求める。ズレ補正部711は、頂点908の座標データにX方向移動量907とY方向移動量909を加算または減算して、移動先の座標データ910を求める。
なお、別の例として、輪郭線座標データの頂点間で構成された辺901、902に対して直角な方向へのパターン形状のズレ量726を算出し、辺901、902をズレ量726だけ移動させて新たな辺904、905とし、パターン形状は変えずに膨張処理又は収縮処理を実行してもよい。なお、ズレ量725、726は、例えば、輪郭線検査・計測部721においてパノラマ用輪郭線座標データ710と設計データ301とを比較することにより求めることができる。
図9Bに示すように、輪郭線座標データの頂点間で構成された辺の角度が角度921のように鋭角な場合は、頂点が他の頂点の移動量と比べて移動量926のように異常に大きく移動し、辺922及び辺925のようにパターン形状が崩れてしまう。したがって、輪郭線座標データの頂点間で構成された辺の角度921が鋭角な場合、ズレ補正部711は、角度921から求めた移動量926を補正量演算部723に入力する。補正量演算部723は、数2を補正式として、移動量926とズレ量724とに基づいて移動量926を補正して、補正した移動量923を算出する(図7参照)。なお、輪郭線検査・計測部721から補正量演算部723へ入力されるズレ量724は、例えば、図9Aのズレ量725、726等であり、パノラマ用輪郭線座標データ710を設計データ301と比較して算出したズレ量である。また、図8Cのズレ量810、812のような、輪郭線座標データの重なり領域におけるパターン形状間のズレ量を用いて補正を行っても良い。
Figure 2014026452
補正量演算部723は、数2の式で求められたb(移動量923)をズレ補正部711へ出力する。図9Cに示すように、ズレ補正部711は、移動量923を用いて頂点924を移動させることによって、辺922、925が異常な形状になることを抑えることができる。
次に、収縮処理について説明する。収縮の場合、輪郭線座標データの頂点を移動できる限界としてパターン形状による面積が0になる座標で制限する必要がある。図10は、収縮処理の限界を説明する図を示す。
輪郭線座標データ1001において、頂点1002の収縮方向は頂点1002の内角1006の1/2方向の移動方向1007となる。同様に、頂点1003では、移動方向1008となる。移動方向1007と移動方向1008とが交差する点1010が、頂点1002と頂点1003の収縮限界である。同様に、他の頂点1004、1005から収縮限界を求めると、収縮限界線1011が求められる。収縮処理時は、収縮限界線1011を輪郭線座標データの頂点が超えない座標であることを判定し、超える場合は収縮限界線1011の座標で置き換える。このような処理により、収縮後のパターン形状が不適切な形状となるのを防ぐことが可能になる。
次に、膨張処理の別の例について説明する。例えば、輪郭線座標データに複数のパターン形状が含まれている場合、膨張処理によって隣接するパターン形状が重なり合うことが考えられる。図11は、膨張処理により隣接するパターン形状が重なった場合の処理を説明する図を示す。
入力された輪郭線座標データにおいて、パターン形状1101とパターン形状1102とが隣接して存在した場合、パターン形状1101を膨張させたパターン形状1103とパターン形状1102を膨張させたパターン形状1104が重なり、重なり領域1107が生じたものとする。膨張処理による重なり領域の確認は線分の交差で求めてもよいし、他の方式を用いてもよい。
この場合、重なり合った複数のパターン形状1103、1104を1つのパターン形状として補正する。例えば、パターン形状1101を膨張させたパターン形状1103とパターン形状1102を膨張させたパターン形状1104に対して、膨張処理により生じた頂点1105、1106を加えて、重なり領域1107にだけ属した頂点1109、1110を削除する。その後、輪郭線座標データがポリゴン形状を保つように頂点を整列させて輪郭線座標データ1108を求める。このような処理により、隣接するパターン形状1101とパターン形状1102が膨張処理により重なり合った場合でも、膨張処理後のパターン形状をより適切な形状にすることが可能になる。
<ズレ補正処理の流れ>
次に、ズレ補正処理の流れについて説明する。図12は、ズレ補正処理の流れを示すフローチャートである。
まず、ステップ1201において、ズレ補正部711は、複数個(N個)のパノラマ用輪郭線座標データ710を一時的に保持する。次に、ステップ1202において、ズレ補正部711は、ズレ補正が必要な領域を求めるために、隣接する輪郭線座標データ間で視野領域の重複する領域(例えば、図8Aの重なり領域820)を算出する。
次に、ステップ1203において、ズレ補正部711は、隣接する輪郭線座標データ間で重なり領域820があるかを判定する。重なり領域820がある場合、ステップ1204に進む。重なり領域820がない場合は、ステップ1212に進む。
次に、ステップ1204において、ズレ補正部711は、隣接する輪郭線座標データを1つの輪郭線座標データに置き換える。この処理は、図8Aの例では、輪郭線座標データ502と輪郭線座標データ503とを1つの輪郭線座標データに置き換える処理に相当する。
次に、ステップ1205において、ズレ補正部711は、隣接する輪郭線座標データ間の重なり領域のみで線分交差判定を行う。例えば、図8Cの例では、重なり領域820においてパターン形状802の輪郭線とパターン形状803の輪郭線とが交差するかを算出する。なお、ここで、輪郭線が交差した点を新たに頂点として追加する。
次に、ステップ1206において、ズレ補正部711は、重なり領域820おいて輪郭線座標データの線分間で段差が生じているかを判定する。例えば、図8Cの例では、輪郭線座標データ503の視野境界線806とパターン形状802の輪郭線とが交差する交差座標807を求め、輪郭線座標データ503の視野境界線806上におけるパターン形状803の輪郭線の座標を求め、これらの座標が一致すれば段差がないと判定し、一致しなければ段差があると判定する。
次に、ステップ1207において、輪郭線検査・計測部721が、輪郭線検査・計測部721のズレ量を算出する。例えば、算出するズレ量は、図9Aのズレ量725、726等であり、パノラマ用輪郭線座標データ710を設計データ301と比較して算出したズレ量である。また、図8Cのズレ量810、812のような、輪郭線座標データの重なり領域820における輪郭線間のズレ量も算出する。
次に、ステップ1208において、ズレ補正部711は、輪郭線座標データの重なり領域におけるズレ補正処理を実行する。例えば、図8Cに示すような、輪郭線座標データの重なり領域820における輪郭線間のズレ補正処理が実行される。
次に、ステップ1209において、ステップ1207で求めたズレ量の極性を判定し、極性が正の場合は、ステップ1210に進む。一方、ズレ量の極性が負の場合は、ステップ1211に進む。例えば、図17Aに示すように、外周の辺を構成する頂点の外角の1/2を通る方向を正の方向とし、頂点の内角の1/2を通る方向を負の方向として判定する。ステップ1210では、輪郭線座標データの膨張処理が実行され、ステップ1211では、輪郭線座標データの収縮処理が実行される。膨張処理の流れの詳細については後述する。
最後に、ステップ1212において、輪郭線座標データ統合部713に輪郭線座標データを送るために、輪郭線座標データがポリゴン形式として矛盾が無いように頂点の座標データを整列させる。その後、整列させた輪郭線座標データを輪郭線座標データ統合部713に出力する。
次に、輪郭線座標データ膨張処理の流れについて説明する。図13は、輪郭線座標データ膨張処理部の処理の流れを示すフローチャートであり、図12のステップ1210の処理に対応する。
まず、ステップ1301において、処理済み図形数Nを初期化する。次に、ステップ1302において、1つの図形における処理済み頂点数Mを初期化する。
次に、ステップ1303において、処理対象頂点Mと頂点(M−1)との線分と、処理対象頂点Mと頂点(M+1)との線分とが成す角度θ1を求めて、角度θ1を1/2した角度θ2を求める。例えば、図9Aの例において、処理対象頂点を頂点908とすると、頂点908と前後の頂点911、912により構成される辺の角度θ1を求めて、角度θ1を1/2した角度θ2(角度906)を求める。
次に、ステップ1304において、角度θ2が閾値より小さく鋭角であるかを判定する。ここで、角度θ2が閾値より小さい場合、ステップ1306に進む。一方、角度θ2が閾値以上の場合、ステップ1305に進む。
次に、ステップ1305において、処理対象頂点Mの移動量を、図12のステップ1207で求めたズレ量で設定する。一方、ステップ1306では、処理対象頂点Mの移動量として、数2の数式によって決定された移動量を設定する。
次に、ステップ1307において、ステップ1305又は1306で設定された移動量を基に、処理対象頂点Mの移動量について、X方向移動量とY方向移動量を算出する。この処理は、図9Aの例において、頂点908をズレ量725だけ移動させるためのX方向移動量907とY方向移動量909を求める処理に相当する。
次に、ステップ1308において、処理対象頂点Mに対してX方向移動量とY方向移動量を加算して、移動後の座標を求める。そして、ステップ1309において、ステップ1308で求められた移動後の座標を保存する。
次に、ステップ1310において、処理済み頂点数Mをインクリメント(+1)する。次に、ステップ1311において、図形を構成する全ての頂点を処理したかを判定する。全ての頂点の処理が終了していれば、ステップ1312に進む。まだ全ての頂点の処理が終了していない場合、処理対象頂点を隣の頂点へと切り替えて、ステップ1303からステップ1310までを実行する。
次に、ステップ1312において、元の図形と、膨張処理後の図形とでOR演算を実行し、膨張処理により自己交差(すなわち、隣接するパターン形状の重なり合い)が発生した場合の処理を実行する。この処理は、例えば、図11で説明した処理である。
次に、ステップ1313において、処理済み図形数Nをインクリメント(+1)する。次に、ステップ1314において、全ての図形を処理したかを判定する。全ての図形の処理が終了していれば、処理を終了する。まだ全ての図形の処理が終了していない場合、処理対象の図形を次の図形へと切り替えて、ステップ1302からステップ1313までを実行する。
ここでは、膨張処理についてのみを説明したが、収縮処理も同様のやり方で実行することができる。例えば、収縮処理は、頂点の移動方向が膨張処理とは反対の方向にするやり方で実行することができる。ただし、収縮処理の場合は、図10で説明した処理が追加される。例えば、まず、図形の内角の1/2方向として頂点を移動した結果、図形の面積が最小となる座標値を求める。そして、頂点の移動量が図形の面積が最小となる座標値を超える場合には、移動量が図形の面積が最小となる座標値に置き換える。なお、収縮処理の場合、膨張処理のように隣接する図形との重なりは生じないので、ステップ1312の自己交差の解消処理は実行しなくてもよい。
<表示部の画面について>
次に、表示部109に表示される画面について説明する。図14は、輪郭線データを広視野化した結果を表示する画面の実施例を示す。
表示部109に表示される画面は、結果表示部1401と、輪郭線データ一覧表示部1402と、機能選択部1403とによって構成される。機能選択部1403は、広視野化実行スイッチ1404と、閾値設定ボックス1405と、設計データ表示スイッチ1406と、グリッド表示スイッチ1407と、レイヤ設定ボックス1414とを備える。
広視野化実行スイッチ1404は、本実施例に係る画像処理装置によって広視野輪郭線座標データ601(図7参照)を算出する広視野化実行処理を指示するためのものである。また、閾値設定ボックス1405は、図13のステップ1304において使用する角度の閾値を入力又は選択するためのものである。また、設計データ表示スイッチ1406は、設計データ格納部720に格納されている設計データを結果表示部1401に表示させるためのものである。また、グリッド表示スイッチ1407は、輪郭線データをどのようにつなぎ合わせたかを示すグリッド線1411を表示させるためのものである。また、レイヤ設定ボックス1414は、膨張又は収縮処理を行う形状をレイヤ番号と呼ばれる設計データ上の識別番号で指定するためのものである。
輪郭線データ一覧表示部1402には、処理対象とする輪郭線データの一覧が表示される。輪郭線データの一覧には、輪郭線データを画像化して縮小したサムネイル画像1408と、ファイル名称1409が表示される。
結果表示部1401には、複数の輪郭線データをつなぎ合わせた1つの広視野輪郭線座標データ601を画像化したデータ1412と、設計データ1410と、グリッド線1411とが表示される。図7で示したように、輪郭線検査・計測部721が、良否判定処理の結果を良否判定データ722として表示部109に出力する。したがって、設計データ1410と比較して輪郭線に差異が生じていると判定された箇所1413を強調表示するようにしてもよい。なお、本実施例では、広視野輪郭線座標データ601を画像化したデータ1412と、設計データ1410と、グリッド線1411とが重ねて表示されているが、これらを個別に表示するようにしてもよい。
<第2実施例>
次に、本発明の第2実施例に係る画像処理装置について説明する。第2実施例に係る画像処理装置の構成については、図7と同様の構成であるため説明を省略する。本発明の画像処理装置は、第1実施例で説明したような半導体回路のパターン形状だけでなく、ダブルパターンニングによって製造されるパターン形状にも適用することができる。
図15A及び図15Bは、本発明の画像処理装置のダブルパターンニングへの適用を説明する図である。図15Aに示すように、設計データ1501において多重露光方式で半導体回路を製造した場合、1回目の露光で設計データのレイヤ1503を使用し、2回目の露光で設計データのレイヤ1502を使用したものとする。
設計データ1501によって製造された半導体回路のSEM像から形成されたパターン形状の輪郭線データを抽出したものを輪郭線データ1504とする。ここで、多重露光方式の場合、1回目の露光と2回目の露光で結像倍率の違いなどにより形状差異が生じることが考えられる。また、2回目の露光の後の工程で1回目の露光で形成されたパターン形状が薬品処理で変形しないように処理を行っていても、パターン形成直後とはパターン形状が変化することが考えられる。したがって、パターン形状の検査・計測工程において、1回目の露光部分と2回目の露光部分でパターン形状の太りや細りが生じている場合、SEM像と設計データのパターンマッチングが正しく行われずに、本来、検査・計測するべき位置とは違う場所を検査・計測することが考えられる。
パターンマッチングを正しく行うために、1回目の露光部分の輪郭線データ1505と2回目の露光部分の輪郭線データ1506との間で輪郭線データに差異が有る場合は、設計データ1501と比べて差異の大きい輪郭線データの形状を保ったまま膨張処理又は収縮処理を実行する。図15Aの場合は、設計データ1501と比べて輪郭線データ1505の差異が大きいので、輪郭線データ1505を膨張処理した輪郭線データに置き換える。
図15Bは、設計データと比べて差異が大きい輪郭線データを膨張処理した図を示す。設計データ1501と比べて差異が大きい図15Aの輪郭線データ1505が、膨張処理した輪郭線データ1507に置き換えられている。輪郭線データの形状が保たれたまま膨張処理して、設計データ1501と重ね合わせた画像が1504となる。
輪郭線データ1506と膨張処理した輪郭線データ1507を用いてパターンマッチングすることにより、検査・計測するべき位置でパターンマッチングを実行することが可能となる。なお、実際には、1回目の露光部分と2回目の露光部分とのどちらが設計データ1501と乖離しているのかは現物を見ないと判断できない場合があるため、膨張処理又は収縮処理を実行する対象のパターンを表示部109のレイヤ設定ボックス1414においてレイヤ番号を指定する。すなわち、図7の構成において、表示部109のレイヤ設定ボックス1414の値が、ズレ補正部711に入力され、ズレ補正部711が、レイヤ設定ボックス1414で指定されたレイヤに対応する輪郭線データに対して膨張処理又は収縮処理を実行する。なお、設計データと比較して輪郭線データとの差異(パターンの幅の差異等)が自動で検出できる場合は、設計データと比較して差異が大きい方の輪郭線データを選択するようにしてもよい。
<第3実施例>
次に、本発明の第3実施例に係る画像処理装置について説明する。第3実施例に係る画像処理装置の構成については、図7と同様の構成であるため説明を省略する。本発明の画像処理装置は、複数のホール形状を含むホールアレイのパターン形状にも適用することができる。
図16A乃至図16Cは、本発明の画像処理装置のホールアレイへの適用を説明する図である。図16Aに示すように、設計データ1601のような密度が高く1個のホール形状が小さいホールアレイの場合、通常の倍率でSEM像を撮像すると、SEM像1603のようにホール形状が鮮明に撮像できない。したがって、SEM像1603では、設計データ1601との位置合わせに必要な特徴的な領域1602が不鮮明な形状1614となり、位置合わせに失敗する場合がある。
この場合は、SEMの倍率を通常よりも高い倍率に設定して、撮像領域1604、1605、1606、1607、1608、1609、1610、1611、1612の順番で分割して撮像する。これにより、図16Bに示すように、特徴的な領域1602が鮮明に撮像されたホール形状1616を得ることが可能となる。SEM像1615は撮像領域1604から1612で分割されているので、輪郭線抽出部703が、撮像領域1604から1612についてそれぞれの輪郭線を求める。ズレ補正部711が、撮像領域1604から1612のそれぞれの輪郭線座標データに対して膨張処理又は収縮処理を実行する。その後、輪郭線座標データ統合部713が、撮像領域1604から1612の輪郭線座標データから1個の輪郭線座標データを作成する。なお、膨張処理又は収縮処理を実行する対象の輪郭線座標データは表示部109において指定するようにしてもよいし、隣接する輪郭線座標データの重なり領域にあるホール形状の輪郭線のズレ量などから自動的に決定してもよい。
図16Cは、複数の輪郭線座標データから1個の輪郭線座標データを作成した図である。撮像領域1604から1612の輪郭線座標データから1個の輪郭線座標データ1607が作成されている。この輪郭線座標データ1617と設計データ1601とで位置合わせすることにより、密度の高いホール形状でも正しく位置合わせすることが可能になる。
また、小さいホール形状を高い倍率で撮像して得た輪郭線座標データ1617を用いて、ホールの間隔1618とホールの間隔1619との間に差異があるかを判定し、差異によって生じる周期性の異常などを検査又は計測することも容易となる。
<まとめ>
第1実施例によれば、画像処理装置700は、検査又は計測すべきパターン形状のSEM像から得られた複数の輪郭線座標データを格納する輪郭線座標データ格納部707と、複数の輪郭線座標データ708のそれぞれに対してSEM像が撮像された視野の位置情報を加える輪郭線座標データ視野移動部709と、位置情報が加えられた複数のパノラマ用輪郭線座標データ710の間のズレを補正するズレ補正部711と、ズレ補正部711によって補正された複数の輪郭線座標データ712を1つの広視野輪郭線座標データに統合する輪郭線座標データ統合部713と、を備える。
この構成によれば、半導体回路をSEMで撮像した複数のSEM像から生成した複数の輪郭線座標データを用いて1枚の広視野化された輪郭線座標データを作成することにより、1枚のSEM像に撮像できないパターン形状においても検査・計測することが可能になる。例えば、半導体回路の電源ラインのように比較的大きなパターン形状の輪郭線を1枚の画像で検査・計測が可能となり、検査・計測時間を短縮できる。また、半導体回路の繰り返しパターン形状において複数個を連続して検査・計測することにより周期的な形状変動を検査・計測することも可能になる。また、作成された1枚の広視野化された輪郭線座標データは、広い視野を高い倍率で撮像した場合のデータに相当するので、位置合わせに多少のずれが生じても検査・計測するべきパターン形状を特定でき、オペレータフリーな半導体検査装置を提供することができる。
また、ズレ補正部711は、輪郭線座標データと設計データとの間のズレ量に基づいて移動量を算出し、複数の輪郭線座標データにおけるパターン形状を構成する線分又は頂点を移動量分だけ移動させることによって膨張処理又は収縮処理を実行する。この構成によれば、輪郭線の形状を保ったまま膨張/収縮させることにより、複数のSEM像から求めた輪郭線座標データのつなぎ合わせを良好に行うことが可能になる。
第2実施例によれば、パターン形状は、複数の露光プロセスによって形成されるパターン形状であり、複数の輪郭線座標データは、複数の露光プロセスの各々の輪郭線座標データを含み、ズレ補正部711が、複数の露光プロセスの輪郭線座標データのうち設計データ301と差異がある輪郭線座標データに対して膨張処理又は縮小処理を実行して、複数の輪郭線座標データ間のズレを補正する。
この構成によれば、ダブルパターンニングによって製造されるパターン形状の場合でも、広視野化された輪郭線座標データと設計データ1501とで正しく位置合わせすることが可能になる。これにより、ダブルパターニングによって製造されるパターン形状の異常などを検査又は計測することも容易となる。
第3実施例によれば、パターン形状は、複数のホール形状を含むホールアレイであり、ズレ補正部711が、複数の輪郭線座標データにおけるホール形状間のズレを膨張処理又は縮小処理によって補正する。
この構成によれば、密度の高いホールアレイの場合でも、広視野化された輪郭線座標データ1617と設計データ1601とで正しく位置合わせすることが可能になる。また、小さいホール形状を高い倍率で撮像して得た輪郭線座標データ1617を用いて、ホールの間隔1618とホールの間隔1619との間に差異があるかを判定し、差異によって生じる周期性の異常などを検査又は計測することも容易となる。
なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることがあり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
例えば、上述の第1実施例の画像処理装置は、ズレ補正処理として、図8C、図9A〜図9C、図10、図11の全ての処理を実行するが、この構成は本発明のより好ましい形態である。複数の輪郭線座標データの間のズレを補正するという点においては、これらの補正処理のうち少なくとも1つを含めばよい。したがって、これらの補正処理の一部を削除して本発明を構成することが可能である。当然ながら、第2実施例及び第3実施例の補正処理を第1実施例に追加することも可能である。
また、上述したように、画像処理装置は、実施例の機能を実現するソフトウェアのプログラムコードで実現してもよい。この場合、プログラムコードを記録した記憶媒体を情報処理装置に提供し、その情報処理装置(またはCPU)が記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施例の機能を実現することになり、そのプログラムコード自体、およびそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD−ROM、DVD−ROM、ハードディスク、光ディスク、光磁気ディスク、CD−R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
また、プログラムコードの指示に基づき、情報処理装置上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施例の機能が実現されるようにしてもよい。さらに、実施例の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することにより、それを情報処理装置の記憶装置またはCD−RW、CD−R等の記憶媒体に格納し、使用時にその情報処理装置のCPUが当該記憶装置や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。
本発明は、具体例に関連して記述したが、これらは、すべての観点に於いて限定の為ではなく説明の為である。本分野にスキルのある者には、本発明を実施するのに相応しいハードウェア、ソフトウェア、およびファームウエアの多数の組み合わせがあることが解るであろう。例えば、本実施例に記載の機能を実現するプログラムコードは、アセンブラ、C/C++、perl、Shell、PHP、Java(登録商標)等の広範囲のプログラムまたはスクリプト言語で実装できる。
また、画像処理装置は、それらの一部や全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。
また、図面における制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。
以上説明した本発明については、半導体デバイスのウェハや露光用マスクの回路パターンを検査するパターン検査方法、測長装置及び半導体検査システムに適用することが可能である。
101 :走査型電子顕微鏡(SEM)
103 :制御装置
104 :計算機
109 :表示部
110 :入力部
700 :画像処理装置
701 :SEM像格納部
703 :輪郭線抽出部
705 :輪郭線座標データ変換部
707 :輪郭線座標データ格納部
709 :輪郭線座標データ視野移動部
711 :ズレ補正部
713 :輪郭線座標データ統合部
715 :広視野輪郭線座標データ格納部
720 :設計データ格納部
721 :輪郭線検査・計測部
723 :補正量演算部

Claims (12)

  1. 検査又は計測すべきパターン形状のSEM像から得られた複数の輪郭線座標データを格納する格納部と、
    前記複数の輪郭線座標データのそれぞれに対して前記SEM像が撮像された視野の位置情報を加える移動部と、
    前記位置情報が加えられた前記複数の輪郭線座標データの間のズレを補正する補正部と、
    前記補正部によって補正された前記複数の輪郭線座標データを1つの広視野輪郭線座標データに統合する統合部と、
    を備えることを特徴とする画像処理装置。
  2. 請求項1に記載の画像処理装置において、
    前記補正部は、前記輪郭線座標データと設計データとの間のズレ量に基づいて移動量を算出し、前記複数の輪郭線座標データにおける前記パターン形状を構成する線分又は頂点を前記移動量分だけ移動させることによって膨張処理又は収縮処理を実行することを特徴とする画像処理装置。
  3. 請求項2に記載の画像処理装置において、
    前記補正部は、前記膨張処理を実行して前記複数の輪郭線座標データにおける複数のパターン形状が重なる場合、前記重なり合った前記複数のパターン形状を1つのパターン形状として補正することを特徴とする画像処理装置。
  4. 請求項2に記載の画像処理装置において、
    前記補正部は、前記収縮処理を実行して前記パターン形状の面積が最小となる座標値を求め、前記パターン形状を構成する前記線分又は頂点の前記移動量が前記座標値を超える場合には、前記線分又は頂点の移動先を前記座標値に置き換えることを特徴とする画像処理装置。
  5. 請求項2に記載の画像処理装置において、
    前記補正部は、前記複数の輪郭線座標データにおける前記パターン形状を構成する線分間の角度が鋭角の場合、前記移動量を補正することを特徴とする画像処理装置。
  6. 請求項1に記載の画像処理装置において、
    前記補正部は、前記複数の輪郭線座標データの重なり領域における前記パターン形状を構成する線分間のズレ量に基づいて、前記重なり領域における前記パターン形状を構成する線分を補正することを特徴とする画像処理装置。
  7. 請求項1に記載の画像処理装置において、
    前記広視野輪郭線座標データと設計データとを比較する検査・計測部を更に備えることを特徴とする画像処理装置。
  8. 請求項7に記載の画像処理装置において、
    前記検査・計測部が、前記広視野輪郭線座標データと設計データとの間のズレ量を前記補正部に出力し、
    前記補正部が、前記検査・計測部からの前記ズレ量に基づいて前記複数の輪郭線座標データの間のズレを更に補正することを特徴とする画像処理装置。
  9. 請求項1に記載の画像処理装置において、
    前記パターン形状は、複数の露光プロセスによって形成されるパターン形状であり、
    前記複数の輪郭線座標データは、前記複数の露光プロセスの各々の輪郭線座標データを含み、
    前記補正部が、前記複数の露光プロセスの輪郭線座標データのうち設計データと差異がある輪郭線座標データに対して膨張処理又は縮小処理を実行して、前記複数の輪郭線座標データ間のズレを補正することを特徴とする画像処理装置。
  10. 請求項1に記載の画像処理装置において、
    前記パターン形状は、複数のホール形状を含むホールアレイであり、
    前記補正部が、前記複数の輪郭線座標データにおけるホール形状間のズレを膨張処理又は縮小処理によって補正することを特徴とする画像処理装置。
  11. 請求項1に記載の画像処理装置において、
    前記広視野輪郭線座標データと設計データと前記SEM像が撮像された視野を示すグリッド線を重ねて又は個別に表示する表示部を更に備えることを特徴とする画像処理装置。
  12. 検査又は計測すべきパターン形状のSEM像から得られた複数の輪郭線座標データから1つの広視野輪郭線座標データを作成する処理を、記憶部と演算部とを備える情報処理装置に実行させるためのプログラムであって、
    前記記憶部が、前記複数の輪郭線座標データを格納しており、
    前記演算部に、
    前記複数の輪郭線座標データのそれぞれに対して前記SEM像が撮像された視野の位置情報を加える処理と、
    前記位置情報が加えられた前記複数の輪郭線座標データの間のズレを補正する処理と、
    前記補正する処理によって補正された前記複数の輪郭線座標データを1つの広視野輪郭線座標データに統合する処理と、
    を実行させるためのプログラム。
JP2012166060A 2012-07-26 2012-07-26 半導体の輪郭線データを広視野化する画像処理装置、及びコンピュータプログラム Expired - Fee Related JP6027362B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166060A JP6027362B2 (ja) 2012-07-26 2012-07-26 半導体の輪郭線データを広視野化する画像処理装置、及びコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166060A JP6027362B2 (ja) 2012-07-26 2012-07-26 半導体の輪郭線データを広視野化する画像処理装置、及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2014026452A true JP2014026452A (ja) 2014-02-06
JP6027362B2 JP6027362B2 (ja) 2016-11-16

Family

ID=50200039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166060A Expired - Fee Related JP6027362B2 (ja) 2012-07-26 2012-07-26 半導体の輪郭線データを広視野化する画像処理装置、及びコンピュータプログラム

Country Status (1)

Country Link
JP (1) JP6027362B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021260765A1 (ja) * 2020-06-22 2021-12-30

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043937A (ja) * 2007-08-09 2009-02-26 Hitachi High-Technologies Corp パターン測定装置
JP2010067516A (ja) * 2008-09-11 2010-03-25 Hitachi High-Technologies Corp 走査荷電粒子顕微鏡を用いたパノラマ画像合成方法およびその装置
US20100196804A1 (en) * 2009-02-04 2010-08-05 Tsutomu Murakawa Mask inspection apparatus and image creation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043937A (ja) * 2007-08-09 2009-02-26 Hitachi High-Technologies Corp パターン測定装置
JP2010067516A (ja) * 2008-09-11 2010-03-25 Hitachi High-Technologies Corp 走査荷電粒子顕微鏡を用いたパノラマ画像合成方法およびその装置
US20100196804A1 (en) * 2009-02-04 2010-08-05 Tsutomu Murakawa Mask inspection apparatus and image creation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021260765A1 (ja) * 2020-06-22 2021-12-30
WO2021260765A1 (ja) * 2020-06-22 2021-12-30 株式会社日立ハイテク 寸法計測装置、半導体製造装置及び半導体装置製造システム
JP7164716B2 (ja) 2020-06-22 2022-11-01 株式会社日立ハイテク 寸法計測装置、半導体製造装置及び半導体装置製造システム
TWI807346B (zh) * 2020-06-22 2023-07-01 日商日立全球先端科技股份有限公司 尺寸計測裝置,半導體製造裝置及半導體裝置製造系統

Also Published As

Publication number Publication date
JP6027362B2 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
JP4951496B2 (ja) 画像生成方法及びその画像生成装置
JP5771561B2 (ja) 欠陥検査方法および欠陥検査装置
JP7265592B2 (ja) 多層構造体の層間のオーバレイを測定する技法
JP4988274B2 (ja) パターンのずれ測定方法、及びパターン測定装置
JP5015721B2 (ja) 欠陥検査装置、欠陥検査プログラム、図形描画装置および図形描画システム
US8994815B2 (en) Method of extracting contour lines of image data obtained by means of charged particle beam device, and contour line extraction device
JP4950550B2 (ja) パターン合わせずれ計測方法およびプログラム
JP2011137901A (ja) パターン計測条件設定装置
CN104698770A (zh) 利用接近式拼接度量制作光刻图像场的方法
JP4989687B2 (ja) パターン形状評価方法およびパターン形状評価装置
JP6027362B2 (ja) 半導体の輪郭線データを広視野化する画像処理装置、及びコンピュータプログラム
JP2008058090A (ja) パターン評価方法およびプログラム
JP2009031006A (ja) 外観検査装置及び方法
JP6018802B2 (ja) 寸法測定装置、及びコンピュータープログラム
JP5566257B2 (ja) データ生成方法および画像検査方法
JP5620741B2 (ja) 情報処理装置、情報処理方法、およびプログラム
JP4629086B2 (ja) 画像欠陥検査方法および画像欠陥検査装置
JP2010190738A (ja) 半導体集積回路の故障解析方法、故障解析装置、及び故障解析プログラム
JP3754401B2 (ja) 代表点計測に基づく画像歪み補正方法、画像歪み補正装置及び画像歪み補正プログラム
JP2011180066A (ja) 画像比較方法および画像比較プログラム
US8300918B2 (en) Defect inspection apparatus, defect inspection program, recording medium storing defect inspection program, figure drawing apparatus and figure drawing system
JP2000293690A (ja) ウェーハ検査装置
JP2012042483A (ja) 画像生成装置
US20230296531A1 (en) Information processing apparatus, information processing method, and information processing program
JP6180214B2 (ja) 画像処理装置、及び画像処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6027362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees