JP2014019405A - 車両位置決め制御装置 - Google Patents

車両位置決め制御装置 Download PDF

Info

Publication number
JP2014019405A
JP2014019405A JP2012162958A JP2012162958A JP2014019405A JP 2014019405 A JP2014019405 A JP 2014019405A JP 2012162958 A JP2012162958 A JP 2012162958A JP 2012162958 A JP2012162958 A JP 2012162958A JP 2014019405 A JP2014019405 A JP 2014019405A
Authority
JP
Japan
Prior art keywords
trajectory
target
vehicle
error
positioning control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012162958A
Other languages
English (en)
Inventor
Taichi Mizojiri
太一 溝尻
Keita Iwasaki
敬太 岩崎
Takuma Suzuki
卓馬 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012162958A priority Critical patent/JP2014019405A/ja
Publication of JP2014019405A publication Critical patent/JP2014019405A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】車両位置決め制御装置において、移動経路に勾配、うねり、段差などの外乱が存在している状況で軌道を補正した場合でも、車両乗り心地が損なわれないようにする。
【解決手段】位置決め制御系の機能として、規範軌道生成部200と、誤差検出部300と、モデル追従制御部400とを備え、規範軌道生成部200は、目標距離L及び目標到達時間tfに基づいて目標軌道を生成する目標軌道生成部210と、経過時間tc及び誤差量(走行距離誤差)Ldに基づいて誤差補正軌道を生成する誤差補正軌道生成部220と、目標軌道及び誤差補正軌道に基づいて規範軌道を生成する軌道統合部230と、を備えている。そして、軌道統合部230は、車両乗り心地を損なわないように目標軌道に基づいて予め決められた所定タイミングで、目標軌道と誤差補正軌道とを統合して規範軌道を生成する。
【選択図】図2

Description

本発明は、車両位置決め制御装置に関し、特に、移動経路に勾配、うねり、段差などの外乱が存在した場合に車両が走行する軌道を補正した場合でも、車両乗り心地が損なわれないようにしたものである。
本発明に関係する従来の技術としては、例えば、特許文献1に記載された装置がある。即ち、特許文献1に記載された従来の装置は、半導体製造装置のステージに対する高精度位置決め制御を行うために、ステージの移動行程における躍度(加加速度)が連続的に変化するとともに、位置決め制御の開始時点及び終了時点における躍度がゼロとなるようにステージを駆動するようにしていた。かかる構成により、引用文献1に記載された装置では、ステージの駆動によって発生する振動を抑制することができるというものであった。
特開平11−312643号公報
しかしながら、上記従来の装置では、半導体製造装置のステージという限定された環境下で動作させる移動対象の位置決めを行うものであるため、そもそも目標位置のずれに対処するということ自体が不要であった。従って、上記従来の装置では、制御開始前に外乱が存在しないことを前提として目標軌道を生成し、この目標軌道に追従するように位置決め制御を行うので、一般の道路を走行する車両のように移動中に外乱が加わる制御対象に適用することができなかった。
本発明は、このような従来の技術が有する未解決の問題点に着目してなされたものであって、移動行程に勾配、うねり、段差などの外乱が存在した場合でも滑らかさを失わない車両位置決め制御装置を提供することを目的とする。
上記課題を解決するため、本発明の一態様である車両位置決め制御装置は、車両の位置決め制御開始位置から目標位置までの距離である目標距離と車両が前記目標位置に到達するに要する時間である目標到達時間とに基づき、目標軌道を生成する一方、実際の走行距離と、走行路が平坦路であると仮定した場合に前記車両が走行しているはずの走行距離との差を補正するための軌道である誤差補正軌道を生成し、そして、それら目標軌道及び誤差補正軌道に基づいて規範軌道を生成し、車両が規範軌道を追従して走行するように当該車両を制御するものであり、車両乗り心地を損なわないように目標軌道に基づいて予め決められた所定タイミングで、目標軌道と誤差補正軌道とを統合して規範軌道を生成するようにした。
本発明によれば、実走行距離と平坦路走行距離との間の差である走行距離誤差が発生した場合に、直ちに目標軌道を補正して規範軌道を生成するのではなく、車両乗り心地を損なわないように目標軌道に基づいて予め決められた所定タイミングで規範軌道を生成するようにしたため、移動経路に勾配、うねり、段差などの外乱が存在したために軌道を補正した場合でも、車両乗り心地を損なう可能性が低いという効果がある。
第1実施形態における車両の概略構成図である。 第1実施形態における制御系全体の構成を示すブロック図である。 モデル追従制御部の具体的構成を示すブロック図である。 走行中の車両に影響を与える走行路の外乱を説明する図である。 目標軌道及び所定タイミングの一例を示す波形図である。 車両位置決め制御の全体の流れを示すフローチャートである。 補正軌道の算出処理の概要を示すフローチャートである。 誤差量の算出処理の概要を示すフローチャートである。 第1実施形態の作用を説明する波形図である。 第1実施形態の作用を説明する波形図である。 第1実施形態の作用を説明する波形図である。 第1実施形態の作用を説明する波形図である。
以下、本発明の実施形態を説明する。
(第1実施形態)
(構成)
図1は、本発明に係る車両位置決め制御装置を適用した車両の概略構成図である。
即ち、この車両100は、走行するための駆動源としての電気モータ1と、その電気モータ1で発生した回転トルクを減速して駆動輪である前輪4FL、4FR側の車軸2Aに伝達する減速器2と、を有している。従って、電気モータ1で発生した駆動トルクは、減速器2で減速されて車軸2Aに伝達し、その車軸2Aに伝達された駆動トルクによって前輪4FL、4FRが回転駆動する。なお、電気モータ1には、その電気モータ1の回転速度を検出するためのレゾルバ(駆動軸回転角速度センサ)3が設けられていて、そのレゾルバ3から出力された検出信号は、図示しないCPUやインタフェース回路などから構成された車両位置決め制御コントローラ14に供給されるようになっている。
また、前輪及び後輪としての車輪4FL〜4RRのそれぞれには、ブレーキアクチュエータ5FL〜5RRと、ブレーキディスク6FL〜6RRとが設置されていて、これにより、車輪4FL〜4RRのそれぞれに制動トルクが発生するようになっている。
そして、車輪4FL〜4RRには、それぞれの回転速度を検出する車輪速センサ7FL〜7RRが設けられていて、それら車輪速センサ7FL〜7RRから出力された検出信号は、車両位置決め制御コントローラ14に供給されるようになっている。
また、車両100は、ドライバによって操舵可能なステアリングホイール8を有し、ドライバがステアリングホイール8を操舵すると、ステアリングコラム8Aを含む操舵系を介して転舵輪としての前輪4FL、4FRに転舵角が発生するようになっている。なお、ステアリングコラム8A以外の操舵系については、公知の構成が適用されるものであるため、ここでの図示及び詳細な説明は省略する。
そしてステアリングコラム8Aには、操舵角を検出するための操舵角センサ9が設けられていて、その操舵角センサ9から出力された検出信号が、車両位置決め制御コントローラ14に供給されるようになっている。
また、車両100の運転席近傍の位置には、ドライバ操作可能な例えばタッチパネル式の入力装置10が設置されている。そして、ドライバは、その入力装置10を操作することで、この車両100の位置決め制御における目標距離と到達時間などを指定することができる。入力装置10に入力された情報は、車両位置決め制御コントローラ14に供給されるようになっている。
車両100には、アクセルペダル、ブレーキペダルも設けられている。図1には、模式的にアクセル・ブレーキペダル11として図示している。ドライバは、これらペダルを操作することで、車両100を加速又は減速させることができる。なお、アクセル・ブレーキペダル11には、それらペダル操作の状態を検出するストロークセンサ11Aが設けられていて、ストロークセンサ11Aから出力された検出信号は、車両位置決め制御コントローラ14に供給されるようになっている。なお、アクセル・ブレーキペダル11には、外部からの制御信号に応じてそれらアクセルペダル及びブレーキペダルの踏み込み反力を調整可能なペダル反力アクチュエータ11Bが設けられている。
さらに、車両100は、前後方向の加速度を検出する前後加速度センサ12を有している。前後加速度センサ12から出力された検出信号は、車両位置決め制御コントローラ14に供給されるようになっている。
さらに、車両100は、車両位置決め制御コントローラ14とは別に、図示しないCPUやインタフェース回路などから構成されたローカルコントローラ13を有している。このローカルコントローラ13は、上位コントローラとしての車両位置決め制御コントローラ14から供給される指令信号に応じて所定の演算処理を実行し、電気モータ1、ブレーキアクチュエータ5FL〜5RR、ペダル反力アクチュエータ11Bのそれぞれに対して制御信号を出力するようになっている。
図2は、本実施形態における制御系の全体構成を示すブロック図である.
即ち、図2は、車両100の位置決め制御系全体の基本的な構成を示しており、位置決め制御系の機能としては、規範軌道生成部200と、誤差検出部300と、モデル追従制御部400とを備えている。
規範軌道生成部200は、目標距離L及び目標到達時間tfに基づいて目標軌道を生成する目標軌道生成部210と、経過時間tc及び誤差量(走行距離誤差)Ldに基づいて誤差補正軌道を生成する誤差補正軌道生成部220と、目標軌道及び誤差補正軌道に基づいて規範軌道を生成する軌道統合部230と、を備えている。
より具体的には、図3に示すように、車両100の位置決め制御開始位置から目標位置までの距離である目標距離Lを指定することが可能な目標距離指定部240と、車両が目標位置に到達するまでの要する時間である目標到達時間tfを指定する目標到達時間指定部250と、タイマー260とを備えていて、目標距離指定部240で指定された目標距離L及び目標到達時間指定部250で指定された目標到達時間tfが規範軌道生成部200に供給されるようになっている。
目標軌道生成部210、誤差補正軌道生成部220及び軌道統合部230における具体的な演算処理は後述する。
図2に戻って、誤差検出部300は、経過時間tcと、車両100に備えられた車輪速センサ7FR〜7RRから供給される車輪速検出信号VFR〜VRRと、レゾルバ3から供給される駆動軸回転角検出信号Dθとに基づき、走行距離誤差としての誤差量Ldを演算する。
モデル追従制御部400は、軌道統合部230から供給される規範軌道を追従して車両100が走行するように、車両100の電気モータ1等を制御する。なお、図3に示すように、車輪速センサ7FR〜7RRから供給される車輪速検出信号VFR〜VRRと、レゾルバ3から供給される駆動軸回転角検出信号Dθと、前後加速度センサ12から供給される加速度検出信号Gとに基づき、車両100の走行状態を推定する車両状態推定部410を有し、モデル追従制御部400は、その車両状態推定部41が推定した走行状態にも基づいて電気モータ1等を制御するようになっている。つまり、モデル追従制御部400は、車両100の実際の走行距離及び車速と、目標軌道が示す経過時間における走行位置及び車速とを比較し、前者が後者に一致するように、電気モータ1等を制御する。
ここで、目標軌道生成部210における目標軌道の生成処理について説明する。
上記のように、本実施形態の車両位置決め制御装置では、制御を実行する前に、予め目標距離指定部240及び目標到達時間250において、目標距離L及び目標到達時間tfを指定する。そして、これら目標距離L及び目標到達時間tfを入力として、目標軌道生成部210において位置決め制御開始位置から目標位置までの行程における躍度及び到達時間と、位置決め制御開始位置及び目標位置における躍度とを最小化する目標軌道を生成する。
そして、本実施形態では、下記(1)式に基づいて目標軌道を設定するようになっている。
Figure 2014019405
なお、下記(2)式で表される躍度最小化軌道を滑らかに変化する周期関数で近似してなる目標軌道(近似軌道)に、さらにローパスフィルタを適用することで、発進・停止時の躍度および躍度の変化率がゼロになるようにした軌道を用いることもできる。
Figure 2014019405
そのような近似軌道の一例が(3)式である。
Figure 2014019405
ここで、上記(1)〜(3)式における状態量x=[x1、x2、x3、x4、x5]は、制御開始位置から目標位置までの目標軌道を表す状態量であり、具体的には、x1は距離[m]、x2は速度[m/s]、x3は加速度[m/s]、x4は躍度[m/s]、x5は躍度の時間変化率[m/s]である。なお、上記(1)式にローパスフィルタを適用して躍度の時間変化率の次元まで滑らかに変化する規範軌道を用いても良い。ただし、ローパスフィルタを適用すると目標到達時間が若干長くなるため、目標到達時間が厳密に守られる必要がある場合は、目標到達時間tfを補正して再計算することにより当初の目標到達時間tfで目標距離Lに至る目標軌道を生成することができる。
そして、車輪速センサ7FL〜7RRやレゾルバ3のような車両100に設けられたセンサのみを用いて走行距離を算出すると、図4に示すように、車両100の位置決め制御の開始位置と目標位置との間に、段差、うねり、勾配等の路面外乱が存在する場合には、目標距離Lを追従するように走行した場合の実際の走行距離と、走行路が平坦路であると仮定した場合に走行しているはずの走行距離(水平方向の走行距離)との間に、走行距離誤差(誤差量Ld)が生じる。
かかる誤差量Ldは、誤差検出部300において算出される。具体的には、車輪速センサ7FL〜7RRから供給される各車輪の車輪速検出信号VFL〜VRR同士を比較することで、走行路面における平坦路との差異を検出し誤差量Ldを算出する。例えば、前輪である2輪(車輪4FL、4FR)の走行距離の平均値Lfと、後輪である2輪(車輪4RL、4RR)の走行距離の平均値Lrとの差分を計算し、それを積算すれば、誤差量Ldを算出できる。走行路上の段差やうねり路等の外乱は、走行中の車両100はその前輪が先に通過するため、細かいサンプリング周期で求めた前輪及び後輪の走行距離の差から外乱を推定することが可能だからである。
さらに、各車輪4FL〜4RRの情報をそれぞれ処理しても良い。例えば、4輪のうち1輪だけ段差に乗り上げた場合を考えると、段差に乗り上げた車輪だけ他の車輪の走行距離に比べて走行距離が長くなる。このため、最も走行距離の短い車輪との走行距離差を比較することにより、どの車輪が段差を乗り越えたかを判別することもできる。これは段差のみならず、路面のうねりや勾配などの路面外乱に対しても適用できる。
一方、誤差補正軌道生成部220においても、目標軌道生成部210と同様の演算処理を実行することで、誤差補正軌道を生成するようになっている。具体的には、目標到達時間指定部250で指定された目標到達時間tfと、タイマー260が出力する制御開始からの経過時間tcとの差分から残り時間trを算出し、この残り時間trを目標到達時間Lと同様に扱うとともに、誤差検出部300で算出した誤差量Ldを目標距離と同様に扱うことで、上記(1)〜(3)式を用いて、誤差補正軌道生成部220において誤差補正軌道を生成する。
そして、図5は、本実施形態において求めた目標軌道の一例を示している。なお、この図5に示す目標軌道は、上記(1)式を用いるとともに、目標距離Lを1[m]、目標到達時間tfを1[s]とした場合における距離[m]、速度[m/s]、加速度[m/s]、躍度[m/s]を示している。
ここで、図5において、躍度が極値又はゼロ値を取るタイミングをt1〜t5で示す。即ち、タイミングt1、t3、t5は、躍度が極値を取り、タイミングt2、t4は、躍度がゼロ値を取っている。
そして、本実施の形態における規範軌道生成部200の軌道統合部230は、タイミングt1〜t5であるときに、誤差量Ldが閾値以上であることが確認されると、目標軌道と誤差補正軌道とを統合して規範軌道を生成し、それ以外のタイミングでは、目標軌道と誤差補正軌道との統合は行わない。なお、軌道統合部230は、目標軌道と誤差軌道とを統合する条件を満たさないときには、目標軌道そのものを規範軌道としてモデル追従制御部400に供給する。
このように誤差補正のタイミングを限定しているのは、タイミングt1〜t5は速度や加速度が変曲点や極値を取るので、そのときに誤差補正軌道を目標軌道に重畳しても乗り心地を悪化させる可能性が低いからである。
一方、例えばタイミングt4のように減速様態にあるときに誤差補正軌道を目標軌道に重畳した場合、先ず、誤差補正量が小さければ減速中の車速の変化も小さく且つ再加速に至るようなことはないので、乗り心地は悪化しない。また、誤差補正量が多少大きくても車速が一定速になる程度であれば、乗り心地は保たれる。しかし、車速が再加速になるような大きな誤差補正量を重畳してしまうと、乗員はそれを違和感として感じてしまい、乗り心地は悪化してしまう。
このような誤差補正量と乗り心地との関係は、タイミングt1〜t5の全てにおいて生じる。つまり、目標到達時間tfはそのままで、乗り心地を損なわずに統合できる誤差補正量には、タイミングt1〜t5ごとに限界がある。その限界量を、表1に示す。
Figure 2014019405
ここで、上記(1)式の第4式は、目標位置に至るまでの躍度を表す多項式であり、この多項式の根は「0」「0.2764」「0.7236」「1」の4つである。この4つの根から始点および終点に対する根「0」「1」を除いた残りの2点が得られる。この2点は加速度が極値を取る点である。
また、上記(1)式の第5式は、躍度の時間微分値を表す多項式であり、この多項式の根は「0.1127」「0.5」「0.8873」の3つである。これらの3点は加速度の変曲点である。
これら計5点(つまり、タイミングt1〜t5)が、補正軌道の重畳点の候補となる。
そして、表1からも判るように、目標距離Lの終盤に差し掛かっているタイミングt4及びt5では、乗り心地を損なわずに誤差補正可能な限界値が低い。特にタイミングt5においては、目標距離Lに対して既に89%程度の距離を走行済みであるので、この時点で大きな外乱が累積されていて限界値以上の補正が必要になった場合には、乗り心地と位置決め精度の両立ができない。
そこで、誤差補正量が乗り心地を損なわずに補正できる限界値を超えた場合には、目標到達時間tfの制約条件を緩めることで、乗り心地を損なわずに誤差補正をすることが望ましい。例えば、誤差補正後の目標軌道が乗り心地を損なわずに補正できる限界値を超えた場合には、誤差補正後の目標軌道が再加速にならないように到達時間tfを増加した補正軌道を生成する。
また、本実施形態では、軌道統合部230が生成した規範軌道に車両100を追従させるモデル追従制御部400の制御として、その規範軌道と実際の軌道との差である追従誤差を状態量としたモデル追従スライディングモード制御を用いる。よって、未知の不確かさが存在しても、オーバーシュートや振動的な挙動とならず、ロバスト性が高い制御系が構築できる。これにより、段差・うねり・勾配といった路面外乱や、輪加重変動や車重変動などのパラメータ変動、軸摩擦のようなモデル化誤差といった未知の不確かさが生じても、乗り心地を損なうことなく高い位置決め精度を行うことができる。
(動作)
次に、動作を説明する。
図6〜図8は、本実施の形態で実行される車両位置決め制御における処理の流れを示すフローチャートであり、図6は制御全体の流れを示し、図7は補正軌道を生成する処理の流れを示し、図8は誤差量Ldを求める処理の流れを示す。
図6の処理が開始されると、先ずはそのステップS601において、目標距離L及び目標到達時間tfがドライバにより指定され、ステップS602に移行して、それら目標距離L及び目標到達時間tfに基づき、上記(1)式を用いて、目標軌道x1〜x5を算出する。目標軌道x1〜x5が算出されたら、誤差補正を行うタイミングとして、上記表1に示したようなタイミングt1〜t5を求める。即ち、躍度x4が極値又はゼロ値を取るタイミングを所定タイミングとして設定する。
そして、ステップS603に移行し、例えばドライバがブレーキペダルから足を離したことを契機として、モデル追従制御部400は車両100に対して位置決め制御を開始する。すると、車両100は、目標軌道を追従して走行することになる。
そして、ステップS604に移行し、ドライバが運転に介入しているか否か(アクセルペダルやブレーキペダルを操作したか否か)を判断し、ここでドライバの介入が確認された場合は、ステップS605に移行し、今回の車両位置決め制御を一時停止する。
そして、ステップS606に移行し、車両位置決め制御を再開するか否かを判断し、ここで再開するという判断が行われたら、車両位置決め制御を再開するとともに、ステップS604に戻る。なお、ステップS606における判断は、例えば、ドライバに車両位置決め制御を再開するか否かの判断を促し、そのときのドライバの入力に基づいて再開させるか否かを判断することができる。或いは、ドライバの介入が極短い時間だけ行われたことが確認できた場合には制御を再開すると判断し、ドライバの介入が所定時間以上継続した場合には再開しないと判断する、ということも考えられる。そして、ステップS606の判断が「NO」の場合には、これで今回の処理は終了する。
一方、ステップS604の判断が「NO」の場合には、ステップS607に移行し、誤差補正を行うタイミング(補正点)に到達したか否かを判定する。上記の例であれば、図5及び表1に示すタイミングt1〜t5のいずれかに達した時点であるか否かを判定することになる。
ステップS607の判定が「NO」の場合には、ステップS608に移行し、今度は、目標位置に到達したか否かを判定する。このステップS608の判定が「NO」の場合には、ステップS604に戻って上記の処理を繰り返し実行し、ステップS608の判定が「YES」の場合には、今回の車両位置決め制御が完了したと判断して、電気モータ1のトルクをゼロにするとともにブレーキを作動させて車両100を確実に停止させ、今回の処理を終了する。
そして、ステップS607の判定が「YES」の場合には、ステップS609に移行し、その時点での誤差量Ldが閾値以上であるか否かを判定する。誤差量Ldの演算については後述する。
そして、このステップS609の判定が「NO」の場合、つまり誤差量Ldが小さい場合には、ステップS604に戻って上述した処理を繰り返し実行する。
しかし、ステップS609の判定が「YES」の場合には、誤差補正を行う必要があると判断し、ステップS610に移行する。ステップS610では補正軌道を生成する。そして、ステップS611でその補正軌道と目標軌道とを統合して規範軌道を生成し、ステップS604に戻って上述した処理を再び実行する。
ステップS610における処理は、具体的には、図7に示すようになっている。
即ち、誤差補正軌道の精製処理が開始されると、先ずそのステップS701において、その時点での誤差積分値(誤差量Ld)を取得するとともに、目標到達時間tfと経過時間tcとの差分から残り時間trを算出する。
ついで、ステップS702に移行し、ステップS701で取得した誤差量Ldが、今回の補正のタイミングによって決まる補正の限界値(例えば、表1の下段の値)を越えているか否かを判断する。
ステップS703の判断が「NO」の場合には、このまま補正軌道を生成しても乗り心地を悪化させる可能性は低いと判断し、ステップS703に移行して、上記(1)式を用いて補正軌道を生成する。
これに対し、ステップS702の判定が「YES」の場合には、ステップS704に移行し、指定された目標到達時間tfに一定時間を加算するなどの演算を行うことで、その目標到達時間tfを緩和する。
そして、ステップS705に移行し、緩和された目標到達時間tfに基づいて誤差量Ldが、今回の補正のタイミングによって決まる補正の限界値を越えているか否かを判断する。
ここで、図6のステップS601で指定された当初の目標到達時間tfに対して、タイミングt1〜t5における残り時間tr(=α×tf)(ただし、α=0.8873、0.7236、0.5、0.2764、0.11)において、誤差量Ldが表1に示した限界値以内の場合には、ステップS703で誤差量Ldと残り時間trとを用いて補正軌道を生成すればよい。
しかし、誤差量Ldが限界値から外れている場合には、ステップS704に移行し、目標到達時間tfを緩和する。この緩和の考え方を、具体的に説明すると、図5及び表1に示したタイミングt3において、誤差量Ldが限界値から外れている場合には、現在の残り時間trを倍の2tr(=2×α×tr)とすることで、補正後の目標到達時間tfを(1+α)×tfに緩和する。これにより、誤差補正できる限界を、全行程の+20%〜+40%にすることができ、その条件下であれば、乗り心地を悪化させることなく誤差補正を行える可能性が高くなる。従って、ステップS704に移行し、緩和した目標到達時間tfに基づいた補正の限界値を、誤差量Ldが外れているか否かを判断しても、外れていると判断される可能性は低くなっている。そこで、ステップS703に移行し、補正軌道が求められる。
図9は、タイミングt3において補正軌道を重畳した場合の様子を示しており、実線はステップS602において当初設定された目標軌道、破線はタイミングt3においてステップS703で求められる誤差軌道、一点鎖線はタイミングt3においてそれら目標軌道と誤差軌道とを統合した結果としての規範軌道をそれぞれ示している。なお、この線の使い分けは、図10〜図12においても同様である。
この例では、目標到達時間tfが、当初設定された1[s]から緩和後の1.5[s]程度に緩和された様子を示している。そして、補正軌道を当初の目標軌道に重畳しても、再加速は行われず、ドライバは補正軌道の重畳により速度の変化を違和感として感じにくく、従って乗り心地が悪化する可能性は低くなっている。
なお、ステップS704で目標到達時間tfを緩和したとしても、ステップS705の判定が「YES」となる可能性もある。その場合には、ステップS706に移行し、その時点での補正不足量を求め、ステップS707に移行し、補正限界軌道を算出し、そして、ステップS708に移行し、図9の時点(a)において強制的に一定速走行軌道を挿入した規範軌道を生成する。これにより、ステップS705の判定が「YES」となってしまった場合であっても、軌道の滑らかさを失うことなく目標位置を補正することが可能となる。
ステップS706〜708における一定速走行軌道挿入処理について具体例を示す。例えば補正量Ladj(誤差量Ld)が当初の目標距離Lに対して+50%の場合は、先に示した目標到達時間緩和時の補正限界(+40%)に対して、10%の補正不足が生じることになる。
そこで、目標軌道の速度を表す上記(1)式1の第2式において、t/tf=0.5と置くと、図9の時点(a)における補正軌道の速度最大値Vmaxは、下記の(4)式で表される。
Figure 2014019405
そこで、不足している0.1L分の距離を補正するために時点(a)にΔt(=0.1/Vmax)[s]だけ一定速Vmaxで走行する軌道を挿入すれば、目標到達時間緩和時の補正限界を超えた場合においても軌道の滑らかさを失うことなく目標位置を補正することが可能となる。この考え方は、他のタイミングに対しても同様に拡張可能であり、図10は、タイミングt4に拡張した場合の様子を示している。
そして、図6のステップS611では、図7の処理で生成された補正軌道を用いて規範軌道が生成される。
一方、図8の処理においては、先ずそのステップS801において、誤差量Ldを求める際の演算処理における積分値を初期化し、ステップS802に移行する。ステップS802では、前輪側の車輪速センサ7FL、7FRから供給される車輪速検出信号VFL、VFRである車輪速パルスカウントと、後輪側の車輪速センサ7RL、7RRから供給される車輪速検出信号VRL、VRRである車輪速パルスカウントとの差を検出し、ステップS803に移行し、その車輪速パルスカウントの差を累積して積分値を求める。
そして、ステップS804に移行し、ステップS803で求めた積分値が閾値に達しているか否かを判断し、その判断が「NO」の場合にはステップS802に戻って上記処理を繰り返し実行する。
しかし、ステップS804の判断が「YES」となった場合、つまり積分値が閾値に達した場合には、ステップS805に移行し、その誤差の積分値を、補正量Ldとして出力する。その後、ステップS801に戻って上記の処理を再び実行する。
以上のような処理が実行されれば、補正軌道が重畳されるのは、乗り心地が悪化する可能性が低い所定タイミングのみとなる。よって、補正軌道が重畳されることで乗り心地が損なわれる可能性は低くなる。
図11は、躍度x4がゼロ値を取るタイミングt4において補正軌道を重畳した場合の様子を示している。この図11に示す例では、乗り心地を損なうことなく補正できる限界を超えてない範囲で補正軌道を重畳しているため、加速度x3における補正軌道を重畳した後の波形(一点鎖線)は、再加速となる正側の領域には至っていない。このため、全行程中で加速及び減速の出現回数は、当初の目標軌道と同じままであり、補正軌道を重畳しても滑らかさを失うことなく目標位置を修正することができる。
一方、図12は、図11と同様にタイミングt4において補正軌道を重畳しているが、そのときに重畳する補正量が限界値を超えている場合の様子を示している。この図12に示す例では、加速度x3における補正軌道を重畳した後の波形(一点鎖線)は、加速度0のラインを跨いで複数回上下動を繰り返した波形となっている。このため、時刻t4において再加速となり、その後、再度の減速が行われてしまい、これのより滑らかさが失われ乗り心地が悪化してしまう。
(第1実施形態の効果)
(1)軌道統合部230は、車両乗り心地を損なわないように目標軌道x1〜x5に基づいて予め決められた所定タイミングt1〜t5で、目標軌道と誤差補正軌道とを統合して規範軌道を生成するようにしたため、補正軌道が重畳されることで乗り心地が損なわれる可能性は低い。
(2)軌道統合部230は、目標軌道と誤差補正軌道とを統合する前は目標軌道を規範軌道とするから、誤差補正軌道を統合する前後で車両位置決め制御の内容を大きく変える必要がない。
(3)誤差補正軌道を重畳する所定タイミングt1〜t5は、目標軌道において躍度が極値又はゼロ値を取るタイミングとしたため、より確実に補正軌道が重畳されることで乗り心地が損なわれる可能性を低くできる。
(4)軌道統合部230は、走行距離誤差が閾値を越えていない場合には当初設定された目標軌道x1〜x5を規範軌道とし、走行距離誤差が閾値を越えている場合には、所定タイミングt1〜t5で目標軌道と誤差補正軌道とを統合して規範軌道を生成する。このため、誤差量が小さい状況では誤差補正軌道の重畳は行わず、誤差量が大きくなると誤差補正軌道の重畳が行われるから、閾値を適宜設定することで、誤差補正軌道の重畳は必要最小限で済むようになる。
(5)目標軌道生成部210は、車両100の位置決め制御開始位置から目標位置までの行程における躍度x4及び目標到達時間tfと、車両100の位置決め制御開始位置及び目標位置における躍度x4とが最小化されるように目標軌道x1〜x5を生成するため、乗り心地がよい目標軌道を設定することができる。
(6)誤差検出部300は、車輪速センサ7FL〜7RRから供給される車輪速検出信号VFL〜VRRに基づいて走行距離誤差を検出するため、システム構成も演算処理の内容も簡易で済む。
(7)誤差補正軌道生成部220は、残り時間trと走行距離誤差とに基づき誤差補正軌道を生成するため、目標軌道を演算する際と同様の処理で誤差補正軌道を生成することができるから、開発コストを抑えることにも寄与できる。
(変形例)
上記第1実施形態では、本発明に係る車両位置決め装置及び車両位置決め制御方法を、電気モータ1を駆動源とした車両100に適用した場合について説明したが、本発明が適用し得る車両はこれに限定されるものではなく、内燃機関を駆動源とした車両や、内燃機関及び電気モータの両方を駆動源とした所謂ハイブリッド車両であっても、本願発明は適用可能である。
また、上記第1実施形態では、発明の理解を容易にするために車両100が直進走行する場合を例に説明しているが、本発明に係る車両位置決め制御装置は、旋回走行する場合にも当然に適用可能である。
1 電気モータ、2 減速器、2A 車軸、3 レゾルバ、4FL〜4RR 車輪、5FL〜5RR ブレーキアクチュエータ、6FL〜6RR ブレーキディスク、7FL〜7RR 車輪速センサ、8 ステアリングホイール、8A ステアリングコラム、9 操舵角センサ、10 入力装置、11 アクセル・ブレーキペダル、11A ストロークセンサ、11B ペダル反力アクチュエータ、12 前後加速度センサ、13 ローカルコントローラ、14 車両位置決め制御コントローラ、100 車両、200 規範軌道生成部、210 目標軌道生成部、220 誤差軌道生成部、230 軌道統合部、300 誤差検出部、400 モデル追従制御部

Claims (7)

  1. 車両の位置決め制御開始位置から目標位置までの距離である目標距離と前記車両が前記目標位置に到達するに要する時間である目標到達時間とに基づき、目標軌道を生成する目標軌道生成部と、
    前記車両の実際の走行距離である実走行距離と走行路が平坦路であると仮定した場合に前記車両が走行しているはずの走行距離である平坦路走行距離との差である走行距離誤差を検出する走行距離誤差検出部と、
    この走行距離誤差検出部が検出した前記走行距離誤差分を補正するための軌道である誤差補正軌道を生成する誤差補正軌道生成部と、
    前記目標軌道及び前記誤差補正軌道に基づいて規範軌道を生成する軌道統合部と、
    前記車両が前記規範軌道を追従して走行するように当該車両を制御するモデル追従制御部と、
    を備え、
    前記軌道統合部は、車両乗り心地を損なわないように前記目標軌道に基づいて予め決められた所定タイミングで、前記目標軌道と前記誤差補正軌道とを統合して前記規範軌道を生成することを特徴とする車両位置決め制御装置。
  2. 前記軌道統合部は、前記目標軌道と前記誤差補正軌道とを統合する前は、前記目標軌道を前記規範軌道とする請求項1記載の車両位置決め制御装置。
  3. 前記所定タイミングは、前記目標軌道において躍度が極値又はゼロ値を取るタイミングである請求項1又は2に記載の車両位置決め制御装置。
  4. 前記軌道統合部は、前記走行距離誤差が閾値を越えていない場合には、前記目標軌道を前記規範軌道とし、前記走行距離誤差が閾値を越えている場合には、前記所定タイミングで、前記目標軌道と前記誤差補正軌道とを統合して前記規範軌道を生成する請求項1乃至3のいずれか1項に記載の車両位置決め制御装置。
  5. 前記目標軌道生成部は、前記車両の位置決め制御開始位置から前記目標位置までの行程における躍度及び前記目標到達時間と、前記車両の位置決め制御開始位置及び前記目標位置における躍度とが最小化されるように前記目標軌道を生成する請求項1乃至4のいずれか1項に記載の車両位置決め制御装置。
  6. 前記車両の各車輪の車輪速を検出する車輪速検出手段を備え、
    前記走行距離誤差検出部は、前記車輪速検出手段の検出結果に基づいて前記走行距離誤差を検出する請求項1乃至5のいずれか1項に記載の車両位置決め制御装置。
  7. 前記誤差補正軌道生成部は、前記目標到達時間と、前記目標到達時間から現在位置に達するまでの時間を減じた時間である残り時間と、前記走行距離誤差と、に基づき、前記誤差補正軌道を生成する請求項1乃至6のいずれか1項に記載の車両位置決め制御装置。
JP2012162958A 2012-07-23 2012-07-23 車両位置決め制御装置 Pending JP2014019405A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162958A JP2014019405A (ja) 2012-07-23 2012-07-23 車両位置決め制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162958A JP2014019405A (ja) 2012-07-23 2012-07-23 車両位置決め制御装置

Publications (1)

Publication Number Publication Date
JP2014019405A true JP2014019405A (ja) 2014-02-03

Family

ID=50194763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162958A Pending JP2014019405A (ja) 2012-07-23 2012-07-23 車両位置決め制御装置

Country Status (1)

Country Link
JP (1) JP2014019405A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177844A (ja) * 2016-03-28 2017-10-05 日野自動車株式会社 目標経路生成装置及び操舵制御装置
JP2021062653A (ja) * 2019-10-10 2021-04-22 株式会社デンソー 軌道生成装置、軌道生成方法及び軌道生成プログラム
CN113392709A (zh) * 2021-05-14 2021-09-14 西安理工大学 一种基于路面起伏标识的道路车辆辅助定位方法
CN113885319A (zh) * 2021-09-24 2022-01-04 清华大学 车辆合流的控制方法、装置、设备及存储介质
CN113911103A (zh) * 2021-12-14 2022-01-11 北京理工大学 一种混合动力履带车辆速度与能量协同优化方法及系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177844A (ja) * 2016-03-28 2017-10-05 日野自動車株式会社 目標経路生成装置及び操舵制御装置
JP2021062653A (ja) * 2019-10-10 2021-04-22 株式会社デンソー 軌道生成装置、軌道生成方法及び軌道生成プログラム
JP7192738B2 (ja) 2019-10-10 2022-12-20 株式会社デンソー 軌道生成装置、軌道生成方法及び軌道生成プログラム
CN113392709A (zh) * 2021-05-14 2021-09-14 西安理工大学 一种基于路面起伏标识的道路车辆辅助定位方法
CN113392709B (zh) * 2021-05-14 2024-04-02 西安理工大学 一种基于路面起伏标识的道路车辆辅助定位方法
CN113885319A (zh) * 2021-09-24 2022-01-04 清华大学 车辆合流的控制方法、装置、设备及存储介质
CN113885319B (zh) * 2021-09-24 2024-04-30 清华大学 车辆合流的控制方法、装置、设备及存储介质
CN113911103A (zh) * 2021-12-14 2022-01-11 北京理工大学 一种混合动力履带车辆速度与能量协同优化方法及系统

Similar Documents

Publication Publication Date Title
US11092967B2 (en) Vehicle movement control device
JP5970322B2 (ja) 車両の運動制御装置
CN110799399B (zh) 车辆运动控制装置及其方法、和目标轨道生成装置及其方法
KR20080101738A (ko) 가가속도 정보를 이용한 차량의 운동 제어장치
JP2005256636A (ja) 車両安定化制御システム
JP2015047298A (ja) 歩行アシスト移動体
JP2008018923A (ja) 車両用制動制御装置及び車両制動制御方法
JP2011088576A (ja) 車両運動制御装置
CN103827941A (zh) 车辆的驾驶辅助系统
CN106843231A (zh) 无人驾驶汽车、无人驾驶汽车的控制方法及其控制装置
JP2014019405A (ja) 車両位置決め制御装置
JP2007209068A (ja) 電動車両の駆動力制御装置、自動車及び電動車両の駆動力制御方法
JP6506812B2 (ja) 車両の運動制御装置、及び運動制御プログラム
WO2018230341A1 (ja) 車両制御装置
JP2016111834A (ja) 車両の制駆動力制御装置
JP2016057909A (ja) スライディングモード制御装置及び制御方法並びに車両位置決め制御装置
JP2016182959A (ja) 車両の運動制御装置
JP2020058156A (ja) モーター制御装置
JP2010260544A (ja) 加加速度情報を用いた車両の運動制御方法
JP2016127637A (ja) 車両の制御装置及び車両の制御方法
JP2007252045A (ja) 車両用駆動制御装置、自動車及び車両用駆動制御方法
JP2007334843A (ja) システムの最適制御方法
JP6247898B2 (ja) 自動制動装置
JP2016094139A (ja) 四輪駆動車両の車両速度推定装置および制御装置
JP2016040968A (ja) 電動車両のスリップ率制御装置