JP2014015504A - バイオガスの処理方法および処理システム - Google Patents

バイオガスの処理方法および処理システム Download PDF

Info

Publication number
JP2014015504A
JP2014015504A JP2012152288A JP2012152288A JP2014015504A JP 2014015504 A JP2014015504 A JP 2014015504A JP 2012152288 A JP2012152288 A JP 2012152288A JP 2012152288 A JP2012152288 A JP 2012152288A JP 2014015504 A JP2014015504 A JP 2014015504A
Authority
JP
Japan
Prior art keywords
biogas
carbon dioxide
gas
sodium bicarbonate
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012152288A
Other languages
English (en)
Other versions
JP5963304B2 (ja
Inventor
Yoshinori Takada
吉則 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2012152288A priority Critical patent/JP5963304B2/ja
Publication of JP2014015504A publication Critical patent/JP2014015504A/ja
Application granted granted Critical
Publication of JP5963304B2 publication Critical patent/JP5963304B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

【課題】簡単な操作により低コストでバイオガスから高濃度のメタンガスを回収し、これと並行して高品質の重曹を生成するバイオガスの処理方法と処理システムを提供する。
【解決手段】メタンおよび二酸化炭素を主成分として含有するバイオガスを、二酸化炭素との反応によって重曹を生成する成分を含む液体3へ供給源2から吹き込むことによって、バイオガス中の二酸化炭素を用いて重曹を生成する。重曹の生成のために消費された二酸化炭素をバイオガスから除いた残余ガスを、回収路18を介して濃縮メタンガスとして回収する。
【選択図】図1

Description

本発明は、例えばバイオマスや有機性廃棄物等の有機物のメタン発酵によって得られるバイオガスに含まれるメタンを回収し、これと並行して重曹を生成するのに適するバイオガスの処理方法および処理システムに関する。
地球温暖化防止や循環型社会の構築のため、バイオガスをエネルギーとして利用する技術の開発が進められている。例えば、下水処理場において最初沈殿池および最終沈殿池で発生する下水汚泥を、嫌気性発酵させることで生成する下水汚泥消化ガスの利用が期待されている。下水汚泥消化ガスのようなバイオガスは、メタン及び二酸化炭素を主成分とし(メタン:約60vol%、二酸化炭素:約40vol%)、微量の不純物として硫黄系化合物(硫化水素等)などを含む。また、都市部の下水汚泥から得られるバイオガスには、シャンプー等に由来するシロキサン化合物が多く含まれていることが知られている。
バイオガスからメタンを分離して回収する技術として、バイオガス中の二酸化炭素を高圧下で水に吸収することで除去する高圧水吸収法と呼ばれる技術(特許文献1参照)や、圧力変動吸着式ガス分離法(Pressure Swing Adsorption :PSA法)を利用してバイオガス中の二酸化炭素をカーボン系吸着剤に吸着させることで除去する技術(特許文献2参照)がある。また、バイオガス中の二酸化炭素をポリイミド膜に透過させ、非透過のメタンを回収する膜分離法と呼ばれる技術(特許文献3参照)がある。
一方、重曹は炭酸水素ナトリウムあるいは重炭酸ナトリウムとも呼ばれ、一般的には塩化ナトリウム溶液の電気分解で得られる水酸化ナトリウム溶液に、二酸化炭素を吹き込むことで生成され、その生成反応式は以下の通りである。
NaOH+CO2 →NaHCO3
また、重曹は工業的にはソルベー法を利用して生成され、その生成反応式は以下の通りである。
NaCl+H2 O+NH3 +CO2 →NH4 Cl+NaHCO3
重曹は、粉末化したものに流動性付与剤として無水ケイ酸やホワイトカーボンを加え、さらに防湿剤として金属石鹸やシリコーンオイルをコーティングすることで、消火剤として利用される。工業用としては、研磨剤や酸性ガス中和剤、半導体分野における薬剤、pH調整剤、排ガス処理剤等にも重曹は利用されている。食品添加物でしては、ベーキングパウダーのような発泡剤として利用され、また、クエン酸を混ぜると炭酸ガスが発生し炭酸水となるので飲料用に利用される。医薬品としては、胃酸過多に対する制酸剤として使われている。
特許第4022555号公報 特開2006−83311号公報 特許第4353367号公報
高圧水吸収法を用いてバイオガスからメタンを回収する場合、大量の水を必要とし、また、バイオガスを高圧にするための圧縮機や高圧用反応容器を必要とするため、設備が大型化してコストが増大する。PSA法のみでバイオガスからメタンを回収する場合、設備が大型化してコストが増大する。膜分離法を用いてバイオガスからメタンを回収する場合、ポリイミド膜をガスが透過するように差圧を発生させる設備が必要でコストが増大し、また、大量処理には不向きである。すなわち、回収したメタンを燃料とするにはコスト的な問題がある。さらに、バイオガスに含まれる二酸化炭素を大気中に放散するのは地球温暖化防止の観点から好ましくなく、有効活用するには高純度化する設備が必要になってコストが増大するという問題がある。
一般に、重曹生成のために水酸化ナトリウム水に吹き込まれる二酸化炭素は、不活性ガスにより希釈されることで40〜60重量%程度の濃度とされている。これは、重曹の生成に際して二酸化炭素を希釈することなく用いると、生成される重曹結晶は粒径が小さくなり過ぎて凝集し、ろ過性が悪くなり、重曹を利用する際の操作性が悪化することによる。しかし、二酸化炭素の希釈用ガスの確保や、希釈操作が必要であり、重曹の製造コストが増大するという問題がある。
本発明は、上記のような従来技術の問題を解決できるバイオガスの処理方法および処理システムを提供することを目的とする。
本発明によるバイオガスの処理方法は、メタンおよび二酸化炭素を主成分として含有するバイオガスを、二酸化炭素との反応によって重曹を生成する成分を含む液体へ吹き込むことによって、前記バイオガス中の二酸化炭素を用いて重曹を生成し、前記重曹の生成のために消費された二酸化炭素を前記バイオガスから除いた残余ガスを、濃縮メタンガスとして回収することを特徴とする。
本発明方法によれば、二酸化炭素との反応によって重曹を生成する成分を含む液体へバイオガスを吹き込むことで、その成分と二酸化炭素との反応により重曹が生成され、同時に、重曹生成のために消費された二酸化炭素がバイオガスから除かれる。これにより、バイオガスから二酸化炭素を除いた残余ガスを濃縮メタンガスとして回収できる。また、重曹の生成に際して液体に吹き込まれるバイオガスは、メタンガスにより希釈された二酸化炭素として重曹生成反応に供される。すなわちメタンガスは二酸化炭素の希釈剤として機能することから、生成される重曹結晶の粒径が小さくなり過ぎるのを防止できる。この際、バイオガスにおける二酸化炭素濃度は通常は40%程度であるので、重曹の生成に適する。
本発明によるバイオガスの処理システムは、二酸化炭素との反応によって重曹を生成する成分を含む液体が収容される反応器と、メタンおよび二酸化炭素を主成分として含有するバイオガスの供給源から、前記バイオガスを前記反応器内の液体に導くガス供給路と、重曹の生成のために消費された二酸化炭素を前記バイオガスから除いた残余ガスを、前記反応器から濃縮メタンガスとして流出させる回収路とを備えることを特徴とする。
本発明システムによれば本発明方法を実施できる。
前記バイオガスに不純物として含有される硫黄系化合物とシロキサン化合物とを、前記液体への吹き込み前に前記バイオガスから除去するのが好ましい。これにより、重曹の生成反応の前工程でバイオガスから硫黄系化合物とシロキサン化合物とを除去できるので、バイオガスが吹き込まれる液体に含まれる成分と硫黄系化合物との反応を防止し、重曹に硫化ナトリウム等の硫化物が混入するのを防止できる。また、重曹にシロキサン化合物が付着するのを防止でき、さらに、回収されたメタンを燃料として利用する場合に、ボイラー等の燃焼室へのシリカの付着等の悪影響を防止できる。
硫黄系化合物と酸化亜鉛または酸化鉄との反応は水分存在下の方が効率的であるので、バイオガス中に水分が含まれている場合、前記硫黄系化合物を酸化亜鉛または酸化鉄と反応させて金属硫化物を生成することで前記バイオガスから除去し、しかる後に、前記シロキサン化合物を前記バイオガスに不純物として含有される水分と共に活性炭に吸着させることで前記バイオガスから除去するのが好ましい。この場合の本発明システムは、前記ガス供給路に、前記バイオガスが導入される第1不純物除去器と、前記第1不純物除去器から流出する前記バイオガスが導入される第2不純物除去器が設けられ、前記第1不純物除去器に、硫黄系化合物との反応により金属硫化物を生成する酸化亜鉛または酸化鉄が充填され、前記第2不純物除去器に、シロキサン化合物を水分と共に吸着する活性炭が充填されているのが好ましい。第1不純物除去器に充填される酸化亜鉛または酸化鉄と、第2不純物除去器に充填される活性炭とは、交換が必要になる周期が通常は相異するため、それぞれ独立して交換可能とするのが好ましい。
前記濃縮メタンガスに含有される二酸化炭素および酸素を、圧力スイング吸着法により吸着剤に吸着させる圧力スイング吸着装置が、前記回収路に接続されているのが好ましい。これにより、回収されるメタンガスの純度を高めることができる。
本発明によれば、簡単な操作により低コストでバイオガスから高濃度のメタンガスを回収し、これと並行して高品質の重曹を生成するのに適したバイオガスの処理方法と処理システムを提供できる。
本発明の実施形態に係るバイオガスの処理システムの構成説明図 本発明の実施形態に係る圧力スイング吸着装置の構成説明図
図1に示す本発明の実施形態に係るバイオガスの処理システム1は、バイオガスの供給源2から供給されるバイオガスを用いて重曹を生成すると共に、バイオガスから高濃度のメタンを回収するために用いられる。
供給源2は、例えば下水処理場において最初沈殿池及び最終沈殿池で発生する下水汚泥をメタン発酵させてバイオガス(下水汚泥消化ガス)を生成する。本実施形態におけるバイオガスは、メタンおよび二酸化炭素を主成分として含有し、不純物として硫黄系化合物、シロキサン化合物、水分、酸素を含むが、これら以外の成分を含んでいてもよい。また、本発明が適用されるバイオガスの生成方法は特に限定されず、メタンおよび二酸化炭素を主成分として含有するバイオガスを生成できればよい。
処理システム1は、二酸化炭素との反応によって重曹を生成する成分を含む液体を収容する反応器4を備える。液体は、本実施形態では水酸化ナトリウム水溶液3とされる。水酸化ナトリウム水溶液3は、一般的に市販されている濃度のものを用いればよく、例えば20重量%のものを用いる。水酸化ナトリウム水溶液3は、タンク5からポンプ6により反応器4に供給される。反応器4内の水酸化ナトリウム水溶液3を攪拌する攪拌機7が設けられている。また、反応器4内の反応温度を調節するため、温度調節機能付ジャケット4aにより反応器4は覆われる。なお、反応器4に収容される液体は水酸化ナトリウム水溶液3に限定されず、二酸化炭素との反応によって重曹を生成する成分を含むものであればよく、例えばアンモニアかん水や飽和炭酸ナトリウム水であってもよい。
供給源2からバイオガスを反応器4内の水酸化ナトリウム水溶液3に導くガス供給路10が配管により構成されている。ガス供給路10に、供給源2からのバイオガスが導入される乾式の第1不純物除去器11、第1不純物除去器11から流出するバイオガスが導入される乾式の第2不純物除去器12、一時貯留容器13、送風機14、および流量調整装置15が設けられている。
第1不純物除去器11は、本実施形態では充填剤が充填される反応塔を有し、反応塔に硫化水素、メルカプタン等の硫黄系化合物との反応により金属硫化物を生成する酸化亜鉛または酸化鉄が充填剤として充填され、生成された金属硫化物は充填剤に吸着される。例えば硫黄系化合物が硫化水素である場合、酸化亜鉛または酸化鉄と反応することで硫化亜鉛または硫化鉄が水と共に生成され、生成された金属硫化物は充填剤に吸着されることでバイオガスから除去される。
第2不純物除去器12は、本実施形態では充填剤が充填される吸着塔を有し、吸着塔にシロキサン化合物を水分と共に吸着する活性炭が充填されている。第2不純物除去器12から流出するバイオガスは一時貯留容器13に導入された後に、送風機14によって反応器4内の水酸化ナトリウム水溶液3に吹き込まれ、その吹き込み流量は流量調整装置15により調整される。
これにより、バイオガスの水酸化ナトリウム水溶液3への吹き込み前に、第1不純物除去器11によって硫黄系化合物をバイオガスから除去し、第2不純物除去器12によってシロキサン化合物をバイオガスに含有される水分と共にバイオガスから除去することができる。この際、硫黄系化合物と酸化亜鉛または酸化鉄との反応は水分存在下の方が効率的であるので、硫黄系化合物の除去をシロキサン化合物と水分の除去に先行させることで、効率的に行うことができる。
反応器4内の水酸化ナトリウム水溶液3にバイオガスが吹き込まれることで、バイオガスに含有される二酸化炭素と水酸化ナトリウムとが反応し、重曹の結晶が析出される。すなわち、バイオガス中の二酸化炭素を用いて重曹が生成され、また、この重曹の生成のために消費された二酸化炭素がバイオガスから除かれる。バイオガスの吹き込みは、予め設定した一定時間の経過後に終了すればよい。反応器4内で生成された重曹を含む液体は、ろ過装置16により湿ケーキとろ液とに分離され、ろ液はタンク16aに導入される。ろ過装置16は、例えば加圧ろ過器、遠心分離機、減圧ろ過器などにより構成できる。ろ過装置16から取り出された湿ケーキが、棚段乾燥機、コニカルドライヤー等の乾燥装置17により乾燥処理されることで、粉粒状の重曹が得られる。
反応器4内で重曹生成のために消費された二酸化炭素をバイオガスから除いた残余ガスは、バイオガスよりもメンタ濃度が高められたガスである。その残余ガスを反応器4から濃縮メタンガスとして流出させる回収路18が設けられている。本実施形態の回収路18は、反応器4における水酸化ナトリウム水溶液3の上方空間を、反応器4の外部に設けられた貯留タンク19に接続する配管により構成される。これにより、重曹の生成のために消費された二酸化炭素をバイオガスから除いた残余ガスが、濃縮メタンガスとして回収路18を介して貯留タンク19に回収される。
反応器4と貯留タンク19の間において、回収路18に水洗装置20と除湿装置21が設けられている。水洗装置20により、反応器4から回収される濃縮メタンガスに含まれる水酸化ナトリウムのミストが除去される。水洗装置20は、例えば棚段塔や磁製ラシヒリングなどが充填された充填塔から構成される水洗塔を有し、水洗塔を通過する濃縮メタンガスを洗浄水と接触させる。除湿装置21により、水洗装置20から流出する濃縮メタンガスに含まれる水分が除去される。除湿装置21は、例えば冷凍機や、アルミナ、シリカゲル等の水分吸着剤が充填された吸着塔により構成され、濃縮メタンガスの水分含有率を低下させる。除湿装置21の通過後に貯留タンク19に回収される濃縮メタンガスは、メタン濃度が例えば97vol%以上とされる。
反応器4から流出する濃縮メタンガスを更に高純度化するため、回収路18に貯留タンク19を介して圧力スイング吸着装置30が接続される。貯留タンク19に回収される濃縮メタンガスは、重曹の生成に供されなかった二酸化炭素や、バイオガスに当初から含有された酸素等を含有する。そのような濃縮メタンガスに含有される二酸化炭素や酸素を、圧力スイング吸着装置30が圧力スイング吸着(Pressure Swing Absorption )法により吸着剤に吸着させることで、回収された濃縮メタンガスを更に高純度化できる。
圧力スイング吸着装置30は公知のものを用いることができる。例えば図2に示す圧力スイング吸着装置30は2塔式であり、メタンガスを圧縮する圧縮機32と、第1、第2吸着塔33、33′を有し、各吸着塔33、33′に吸着剤が充填されている。圧力スイング吸着法に用いる吸着剤は、二酸化炭素や酸素の吸着能力が高く、メタンの吸着能力が低いカーボン系吸着剤が好ましく、本実施形態ではカーボンモレキュラーシーブが用いられる。
吸着塔33、33′の入口33a、33a′それぞれは、切替バルブ33b、33b′を介して原料配管33fに接続され、切替バルブ33c、33c′およびサイレンサー33eを介して大気中に接続され、切替バルブ33dと下部均圧配管33gを介して互いに接続される。貯留タンク19に貯留されたメタンガスは、圧縮機32により圧縮された後に原料配管33fに到る。
吸着塔33、33′の出口33kそれぞれは、切替バルブ33l、33l′を介して流出配管33oに接続され、切替バルブ33m、33m′を介して洗浄配管33pに接続され、切替バルブ33nと上部均圧配管33qを介して互いに接続される。
流出配管33oは、並列配置された逆止弁33rと切替バルブ33sを介して均圧槽34の入口に接続される。均圧槽34の出口は、吸着塔33、33′における吸着圧力を制御するための圧力調節バルブ34aを介して製品槽35に接続される。
また、流出配管33oと均圧槽34は、流量制御バルブ33u、流量指示調節計33vを介して洗浄配管33pに接続され、吸着塔33、33′から流出した不純物濃度の低減されたメタンガスを、洗浄配管33pを介して吸着塔33、33′に一定流量に調節して再び送ることが可能とされている。
第1、第2吸着塔33、33′それぞれにおいて、吸着工程、均圧工程、脱着工程、洗浄工程、均圧工程、昇圧工程が順次行われる。
すなわち、第1吸着塔33において切替バルブ33b、33lのみが開かれることで、圧縮機32により圧縮されたメタンガスが、切替バルブ33bを介して第1吸着塔33に導入される。その導入されたメタンガス中の少なくとも二酸化炭素と酸素が吸着剤に吸着されることで、第1吸着塔33においては吸着工程が行われる。第1吸着塔33において不純物の含有率が低減されたメタンガスは、流出配管33oを介して均圧槽34に送られる。この際、第2吸着塔33′において、切替バルブ33m′、33c′のみが開かれることで、第1吸着塔33から流出配管33oに送られたメタンガスの一部が、洗浄配管33p、流量制御バルブ33uを介して第2吸着塔33′に送られ、第2吸着塔33′においては洗浄工程が行われる。
次に、第1吸着塔33において切替バルブ33b、33lが閉じられ、第2吸着塔33′において切替バルブ33m′、33c′が閉じられ、切替バルブ33n、33dが開かれることで、第1吸着塔33と第2吸着塔33′において内部圧力の均一化を図る均圧工程が行われる。
次に、切替バルブ33n、33dが閉じられ、第1吸着塔33において切替バルブ33cが開かれることで、吸着剤から不純物を脱着する脱着工程が第1吸着塔33において行われ、脱着された不純物はガスと共にサイレンサー33eを介して大気中に放出される。この際、第2吸着塔33′における切替バルブ33b′、33l′と、切替バルブ33sが開かれることで、圧縮機32により圧縮されたメタンガスが切替バルブ33b′を介して導入され、また、均圧槽34における不純物の含有率が低減されたメタンガスが切替バルブ33sと切替バルブ33l′を介して導入され、第2吸着塔33′において昇圧工程が行われると共に吸着工程が開始される。
次に、第1吸着塔33において切替バルブ33mが開かれ、切替バルブ33sが閉じられ、これにより、吸着工程が行われている第2吸着塔33′から流出配管33oに送られたメタンガスの一部が、洗浄配管33p、流量制御バルブ33uを介して第1吸着塔33に送られ、第1吸着塔33において洗浄工程が行われる。洗浄工程で用いられたガスは、切替バルブ33c、サイレンサー33eを介して大気中に放出される。
次に、第1吸着塔33において切替バルブ33c、33mが閉じられ、第2吸着塔33′において切替バルブ33b′、33l′が閉じられ、切替バルブ33n、33dが開かれることで、第1吸着塔33と第2吸着塔33′において内部圧力の均一化を図る均圧工程が行われる。
次に、切替バルブ33n、33dが閉じられ、第1吸着塔33において切替バルブ33b、33lが開かれ、切替バルブ33sが開かれることで、圧縮機32により圧縮されたメタンガスと均圧槽34における不純物の含有率が低減されたメタンガスが導入され、第1吸着塔33において昇圧工程が行われると共に吸着工程が開始される。この際、第2吸着塔33′において切替バルブ33c′が開かれることで、吸着剤から不純物を脱着する脱着工程が第2吸着塔33′において行われ、不純物はガスと共にサイレンサー33eを介して大気中に放出される。
上記の各工程が第1、第2吸着塔33、33′それぞれにおいて順次繰り返されることで、高純度化されたメタンガスが製品槽35に送られる。
なお、圧力スイング吸着装置30は図2に示すものに限定されず、例えば塔数は2以外、例えば3でも4でもよく、通常は塔数は9以下とされる。
上記実施形態によれば、バイオガスを反応器4内の水酸化ナトリウム水溶液3へ吹き込むことで、水酸化ナトリウムと二酸化炭素との反応により重曹が生成され、同時に、重曹生成のために消費された二酸化炭素がバイオガスから除かれる。これにより、バイオガスから二酸化炭素を除いた残余ガスを濃縮メタンガスとして回収できる。また、重曹の生成に際して水酸化ナトリウム水溶液3に吹き込まれるバイオガスは、メタンガスにより希釈された二酸化炭素として重曹生成反応に供される。すなわちメタンガスは二酸化炭素の希釈剤として機能することから、生成される重曹結晶の粒径が小さくなり過ぎるのを防止できる。また、バイオガスの水酸化ナトリウム水溶液3への吹き込み前に硫黄系化合物をバイオガスから除去することで、硫黄系化合物と水酸化ナトリウムとの反応を防止し、重曹に硫化ナトリウム等の硫化物が混入するのを防止できる。また、バイオガスの水酸化ナトリウム水溶液3への吹き込み前にシロキサン化合物をバイオガスから除去することで、生成された重曹にシロキサン化合物が付着するのを防止でき、回収されたメタンガスを燃料として利用する場合に、ボイラー等の燃焼室へのシリカの付着等の悪影響を防止できる。さらに、回収された濃縮メタンガスに含有される二酸化炭素および酸素を、圧力スイング吸着法により吸着剤に吸着させて除去することで、回収メタンガスをより高純度化できる。特に、回収したメタンガスを燃料電池用燃料ガスとして利用するために都市ガスと混合するような場合、圧力スイング吸着装置30による回収メタンガスの高純度化は有効である。すなわち、炭化水素を水蒸気改質して水素を生成する触媒は酸素によって劣化が促進することから、燃料電池用燃料ガスとして用いられるメタンガスにおける酸素含有量を制限することが必要となる。圧力スイング吸着装置30を用いることで、回収メタンガスの酸素含有量を例えば10volppm未満に低減することが可能になり、燃料電池用燃料ガスとして利用する場合の品質を確保できる。
上記実施形態の処理システム1を用いてバイオガスの処理を行った。本実施例では圧力スイング吸着装置30を用いず、濃縮されたメタンガスを貯留タンク19に回収した。
ガラス製の反応器4に、20重量%の水酸化ナトリウム水溶液3を1800g仕込んだ。反応器4は容量3Lとし、攪拌機7は4枚傾斜パドル翼(翼外径dと反応器4の内径Dとの比d/D=0.4)により水酸化ナトリウム水溶液3を攪拌するものとし、ガス供給路10の一部を構成する吹き込み管は内径5.8mmの単管により構成した。
処理対象のバイオガスは、供給源2から供給されるバイオガスの組成を想定して調製したもので、組成はメタン60.0vol%、二酸化炭素38.7vol%、窒素0.5vol%、酸素0.3vol%、水0.3vol%、硫化水素0.2vol%であり、さらにシロキサンを50mg/Nm3 含有する。ここで、メタンは島津製作所社製ガスクロマトグラフィー(FID検出器)を、二酸化炭素および窒素は株式会社島津製作所製ガスクロマトグラフィー(TCD検出器)を、酸素はDELTA F社製微量酸素濃度計(型式DF−150E)を、水分は露点計(GE−センシング社製MTS−5)を、硫化水素は北川式検知管120U(測定範囲0.2〜6ppm)を、シロキサンは島津製作所社製ガスクロマトグラフィー(FID検出器、カラム=アジレントテクノロジー社製J&WキャピラリーカラムDB−17)を、それぞれ用いて測定した。
第1不純物除去器11の反応塔は直径37mmの円筒状とし、そこに充填剤として酸化亜鉛(ハクスイテック社製、JIS規格1種造粒品)を2.0kg充填し、バイオガスを流速0.1Nm/秒で通過させ、硫化水素を酸化亜鉛と25℃の温度で反応させることで除去した。
第2不純物除去器12の吸着塔は直径37mmの円筒状とし、そこに吸着剤として活性炭(キャタラー社製メソコールSG)を0.5kg充填し、バイオガスを流速0.1Nm/秒で通過させ、シロキサンを25℃の温度で吸着剤により吸着することで除去した。
第2不純物除去器12から流出するバイオガスの水酸化ナトリウム水溶液3への吹き込み流量は500ml/min、反応器4の内部温度は35℃、攪拌機7による撹拌速度は200rpm(回転/min)とした。
水酸化ナトリウム水溶液3へのバイオガスの吹き込み開始と同時に白色の結晶が析出し始めた。貯留タンク19に回収されたメタンガスの組成は、水分を除くと、メタン98.4vol%、二酸化炭素0.32vol%、窒素0.8vol%、酸素0.48vol%、二酸化炭素濃度1vol%以下、硫化水素は検出限界以下、シロキサン濃度1volppm未満であり、貯留タンク19へのメタンガスの回収流量は水分を除くと300ml/minであり、メタンの回収率は98.4%であった。
水酸化ナトリウム水溶液3へのバイオガスの吹き込みを1時間続けた後に、吹き込みを止めて重曹の生成反応を停止させた。反応停止後に反応器4内に生成された白色結晶を残存した液体と共に吸引し、ろ過により湿ケーキとろ液とに分離し、その湿ケーキを棚段乾燥機にて減圧下50℃で乾燥したところ、40.6gの重曹が得られた。得られた重曹は、比較例と同様に白色で臭気も無い流動性の良い結晶であった。
本実施例においては、実施例1と同様に貯留タンク19へメタンガスを回収した後に、回収したメタンガスを圧力スイング吸着装置30により高純度した。
圧力スイング吸着装置30の吸着塔33は直径37mmの円筒状とし、そこに吸着剤として細孔径が3Åのカーボンモレキュラーシーブ(クラレケミカル製、GN−UC−H)を0.6kg充填した。吸着工程における最高圧力を0.8MPa、脱着工程における最低圧力を大気圧として、貯留タンク19に回収したメタンガスにおける不純物を圧力スイング吸着法により吸着剤に吸着させ、製品槽35に高純度化されたメタンガスを回収した。
製品槽35に回収されたメタンガスの組成は、メタン99.988vol%、二酸化炭素10volppm、窒素0.01vol%、酸素8volppm、硫化水素は検出限界以下、シロキサン1volppm未満であり、製品槽35へのメタンガスの回収流量は280ml/minであり、メタンの回収率は93.3%であった。
比較例
実施例1のバイオガスに代えて、窒素で希釈された二酸化炭素を水酸化ナトリウム水溶液3に吹き込むことで重曹を生成した。吹き込んだガスの組成は、窒素61.3vol%、二酸化炭素38.7vol%とした。なお、本比較例では第1不純物除去器11、第2不純物除去器12は不要であるので用いず、また、回収すべきメタンガスは存在しないため、回収路18を介して反応器4から流出するガスは廃棄した。他は実施例1と同様にして重曹を生成した。
水酸化ナトリウム水溶液3へのガスの吹き込み開始と同時に白色の結晶が析出し始めた。その吹き込みを1時間続けた後に、吹き込みを止めて重曹の生成反応を停止させた。反応停止後に反応器4内に生成された白色結晶を残存した液体と共に吸引し、ろ過により湿ケーキとろ液とに分離し、その湿ケーキを棚段乾燥機にて減圧下50℃で乾燥したところ、40.6gの重曹が得られた。得られた重曹は、実施例1と同様に白色で臭気も無い流動性の良い結晶であった。
本発明は上記実施形態や実施例に限定されるものではない。例えば、実施例2では圧力スイング吸着装置での脱着工程における最低圧力を大気圧としたが、圧力スイング吸着装置の吸着塔に真空ポンプを接続して大気圧未満にしてもよく、例えば、吸着工程における吸着圧力を大気圧(0.101MPa)〜4.0MPaとし、脱着工程における脱着圧力を吸着圧力よりも低くい0.001〜0.3MPaとしてもよい。また、第1不純物除去器11や第2不純物除去器12による不純物の除去は必須ではなく、さらに、圧力スイング吸着装置30による濃縮メタンガスの高純度化も必須ではない。
1…処理システム、2…バイオガス供給源、3…水酸化ナトリウム水溶液(液体)、4…反応器、10…ガス供給路、11…第1不純物除去器、12…第2不純物除去器、18…回収路、30…圧力スイング吸着装置。

Claims (6)

  1. メタンおよび二酸化炭素を主成分として含有するバイオガスを、二酸化炭素との反応によって重曹を生成する成分を含む液体へ吹き込むことによって、前記バイオガス中の二酸化炭素を用いて重曹を生成し、
    前記重曹の生成のために消費された二酸化炭素を前記バイオガスから除いた残余ガスを、濃縮メタンガスとして回収するバイオガスの処理方法。
  2. 前記バイオガスに不純物として含有される硫黄系化合物とシロキサン化合物とを、前記液体への吹き込み前に前記バイオガスから除去する請求項1に記載のバイオガスの処理方法。
  3. 前記硫黄系化合物を酸化亜鉛または酸化鉄と反応させて金属硫化物を生成することで前記バイオガスから除去し、しかる後に、前記シロキサン化合物を前記バイオガスに不純物として含有される水分と共に活性炭に吸着させることで前記バイオガスから除去する請求項2に記載のバイオガスの処理方法。
  4. 二酸化炭素との反応によって重曹を生成する成分を含む液体が収容される反応器と、
    メタンおよび二酸化炭素を主成分として含有するバイオガスの供給源から、前記バイオガスを前記反応器内の液体に導くガス供給路と、
    重曹の生成のために消費された二酸化炭素を前記バイオガスから除いた残余ガスを、前記反応器から濃縮メタンガスとして流出させる回収路とを備えるバイオガスの処理システム。
  5. 前記ガス供給路に、前記バイオガスが導入される第1不純物除去器と、前記第1不純物除去器から流出する前記バイオガスが導入される第2不純物除去器が設けられ、
    前記第1不純物除去器に、硫黄系化合物との反応により金属硫化物を生成する酸化亜鉛または酸化鉄が充填され、
    前記第2不純物除去器に、シロキサン化合物を水分と共に吸着する活性炭が充填されている請求項4に記載のバイオガスの処理システム。
  6. 前記濃縮メタンガスに含有される二酸化炭素および酸素を、圧力スイング吸着法により吸着剤に吸着させる圧力スイング吸着装置が、前記回収路に接続されている請求項4または5に記載のバイオガスの処理システム。
JP2012152288A 2012-07-06 2012-07-06 バイオガスの処理方法および処理システム Expired - Fee Related JP5963304B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152288A JP5963304B2 (ja) 2012-07-06 2012-07-06 バイオガスの処理方法および処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152288A JP5963304B2 (ja) 2012-07-06 2012-07-06 バイオガスの処理方法および処理システム

Publications (2)

Publication Number Publication Date
JP2014015504A true JP2014015504A (ja) 2014-01-30
JP5963304B2 JP5963304B2 (ja) 2016-08-03

Family

ID=50110496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152288A Expired - Fee Related JP5963304B2 (ja) 2012-07-06 2012-07-06 バイオガスの処理方法および処理システム

Country Status (1)

Country Link
JP (1) JP5963304B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105910389A (zh) * 2016-04-27 2016-08-31 南京师范大学 一种生物质气中硅氧烷脱除装置
CN105928320A (zh) * 2016-04-27 2016-09-07 南京师范大学 一种蓄冷型生物质气中硅氧烷脱除装置
CN107601705A (zh) * 2017-09-26 2018-01-19 湖北大学 一种联用秸秆法去除沼液中悬浮物和有毒重金属的方法及回收液和回收液的应用
KR102668704B1 (ko) * 2023-12-05 2024-05-23 (주)대길엔지니어링 바이오가스 고질화를 위한 탄산수소나트륨 제조장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123000A (en) * 1981-01-26 1982-07-31 Mitsubishi Heavy Ind Ltd Methane fermentation device
JP2001348346A (ja) * 2000-06-07 2001-12-18 Kyodo Shoji:Kk メタン発酵ガスの浄化方法
JP2004067946A (ja) * 2002-08-08 2004-03-04 Sumitomo Seika Chem Co Ltd ガスタービン用燃料としての嫌気性消化発酵ガスの精製システムおよび精製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123000A (en) * 1981-01-26 1982-07-31 Mitsubishi Heavy Ind Ltd Methane fermentation device
JP2001348346A (ja) * 2000-06-07 2001-12-18 Kyodo Shoji:Kk メタン発酵ガスの浄化方法
JP2004067946A (ja) * 2002-08-08 2004-03-04 Sumitomo Seika Chem Co Ltd ガスタービン用燃料としての嫌気性消化発酵ガスの精製システムおよび精製方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105910389A (zh) * 2016-04-27 2016-08-31 南京师范大学 一种生物质气中硅氧烷脱除装置
CN105928320A (zh) * 2016-04-27 2016-09-07 南京师范大学 一种蓄冷型生物质气中硅氧烷脱除装置
CN105910389B (zh) * 2016-04-27 2018-12-11 江苏优淼环保工程有限公司 一种生物质气中硅氧烷脱除装置
CN105928320B (zh) * 2016-04-27 2018-12-18 南京师范大学 一种蓄冷型生物质气中硅氧烷脱除装置
CN107601705A (zh) * 2017-09-26 2018-01-19 湖北大学 一种联用秸秆法去除沼液中悬浮物和有毒重金属的方法及回收液和回收液的应用
CN107601705B (zh) * 2017-09-26 2019-11-22 湖北大学 一种联用秸秆法去除沼液中悬浮物和有毒重金属的方法及回收液和回收液的应用
KR102668704B1 (ko) * 2023-12-05 2024-05-23 (주)대길엔지니어링 바이오가스 고질화를 위한 탄산수소나트륨 제조장치

Also Published As

Publication number Publication date
JP5963304B2 (ja) 2016-08-03

Similar Documents

Publication Publication Date Title
US8518356B2 (en) Method and apparatus for adjustably treating a sour gas
TWI521056B (zh) Methane recovery method and methane recovery unit
JP5906074B2 (ja) 水素製造システム
JP6845241B2 (ja) 二酸化炭素の回収及び脱塩のための方法
CN105858606B (zh) 一种超纯氢的全温程变压吸附纯化方法
JP2008045060A (ja) 吸着剤を利用したバイオ発酵ガスからのメタンの回収、精製方法
WO2010081289A1 (zh) 一种常温下脱除气体中的硫化氢的工艺
CA2872873C (en) Plant and process for treating methane-containing gas from natural sources
AU2014253837A1 (en) Absorbent, process for producing an absorbent, and process and device for separating off hydrogen sulphide from an acidic gas
WO2018190886A1 (en) Systems and processes for removing hydrogen sulfide from gas streams
CN109569251B (zh) 一种利用含so2烟气制稀硫酸的装置及方法
JP5963304B2 (ja) バイオガスの処理方法および処理システム
WO2014163920A1 (en) Method for removing sulfur compounds from sour gas streams and hydrogen rich streams
JP2007308600A (ja) ガス精製装置およびメタンの製造方法
JP2009022874A (ja) 硫化水素除去方法およびガス精製装置
US9174853B2 (en) Method for producing high purity germane by a continuous or semi-continuous process
JP2006016439A (ja) ガス精製装置
JP2007261840A (ja) 液化炭酸ガス精製装置
Vakili et al. Removal of hydrogen sulfide from gaseous streams by a chemical method using ferric sulfate solution
JP2008208268A (ja) メタンガス精製装置及びメタンガス精製装置システム
JP2004300035A (ja) メタンガスの分離方法および装置
JP2010280535A (ja) 水素製造装置、方法、及びプログラム
EP3337595B1 (en) Process for capture of carbon dioxide and desalination
CN103657340A (zh) 高选择性硫化氢气体捕集吸收介质
CN103638781A (zh) 一种硫化氢气体捕集吸收介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160624

R150 Certificate of patent or registration of utility model

Ref document number: 5963304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees