JP2014006132A - ガスセンサとそのガスセンサを用いたガス検出装置 - Google Patents

ガスセンサとそのガスセンサを用いたガス検出装置 Download PDF

Info

Publication number
JP2014006132A
JP2014006132A JP2012141500A JP2012141500A JP2014006132A JP 2014006132 A JP2014006132 A JP 2014006132A JP 2012141500 A JP2012141500 A JP 2012141500A JP 2012141500 A JP2012141500 A JP 2012141500A JP 2014006132 A JP2014006132 A JP 2014006132A
Authority
JP
Japan
Prior art keywords
gas
gas sensor
porous silica
sensor according
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012141500A
Other languages
English (en)
Other versions
JP6083065B2 (ja
Inventor
Hiroyoshi Mizuguchi
博義 水口
Junji Ikeda
順治 池田
Kazuki Nakanishi
和樹 中西
Yuji Matsubara
雄二 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO MONOTECH Co Ltd
Original Assignee
KYOTO MONOTECH Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO MONOTECH Co Ltd filed Critical KYOTO MONOTECH Co Ltd
Priority to JP2012141500A priority Critical patent/JP6083065B2/ja
Publication of JP2014006132A publication Critical patent/JP2014006132A/ja
Application granted granted Critical
Publication of JP6083065B2 publication Critical patent/JP6083065B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

【課題】ガスを短時間で検出できるガスセンサ、および、そのガスセンサを利用した装置を提供する。
【解決手段】シリカを主成分とする反応溶液の相分離を伴うゾル−ゲル転移を起こさせることにより得られた多孔性シリカ連続体と、多孔性シリカ連続体の層間に位置する色素材料と、多孔性シリカ連続体の層間に位置する水分保持材料と、を含むガスセンサ104を用いる。また、ガス導入部と、ガスが表面に導かれるガスセンサ104と、ガスセンサ104に、光を照射するLED光源部103と、センサ104で反射された光を検出するホトセンサ102と、を含むガス検出装置100を用いる。
【選択図】図1

Description

本発明は、ガスセンサおよびそれを利用したガス検出装置に関するものに関する。
従来、呼気中ガス分析、雰囲気ガス分析用ガスセンサとしては、抵抗値変化を利用するものがあった(特許文献1、2、3)。
特開2010−25721号公報 特表2003−526768号公報 特開2001−337064号公報
ここで、従来のガスセンサでは、ガスをセンサが吸収した後、センサの抵抗値が徐々に変化する。しかし、通常の抵抗値測定器で検出できる程度まで抵抗値が変化するまでに時間が必要であった。そのため、即座の検出ができなかった。
この発明では、ガスセンサとして、短時間でガスを検出できるガスセンサおよびそのガスセンサを利用したガス検出装置を実現することを課題とする。
上記課題を解決するために、シリカを主成分とする反応溶液の相分離を伴うゾル−ゲル転移を起こさせることにより得られた多孔性シリカ連続体と、前記多孔性シリカ連続体の層間に位置する色素材料と、前記多孔性シリカ連続体の層間に位置する水分保持材料と、を含むなるガスセンサを用いる。
また、ガス導入部と、前記ガスが表面に導かれる上記のセンサと、上記センサに光を照射する光源部と、上記センサで反射された光を検出する検出部と、を含むガス検出装置を用いる。
本願発明のガスセンサでは、ガス通過性のよい材料を使用するので短時間にガスを検出できる。また、色変化を検出するので、微量ガスの検出ができる。
(a)本発明のガスセンサシステムの斜視図、(b)ガスセンサ部の断面図 (a)ガスセンサの斜視図、(b)ガスセンサの平面図、(c)本発明のガスセンサの斜視図、(d)ガスセンサの平面図 (a)ガスセンサの斜視図、(b)ガスセンサの斜視図、(c)本発明のガスセンサの斜視図 (a)ガスセンサの斜視図、(b)ガスセンサの斜視図
(ガス検出装置について)
図1(a)、(b)に、本願発明のガス検出装置100を示す。図1(a)は、全体のシステム構成を示す図、図1(b)は、ガスセンサ104部分の断面を示す図である。センサユニット101とポンプ105とからなり、センサユニット101は、ホトセンサ102と、LED光源103と、ガスセンサ104とからなる。
センサユニット101は、雰囲気ガス、呼気中のガスを検出するための基本ユニットである。
ポンプ105は、センサユニット101へガスを送り込むポンプである。風船状のもので、手で押さえてガスを押し出してもよい。雰囲気中のガスを分析する場合には、この方法でもよい。簡易ポンプ装置を用いてもよい。息中のガスを分析する場合には、ポンプ105の代わりに、直接、呼気を吹き込んでもよい。
センサユニット101は、ホトセンサ102とLED光源103と、ガスセンサ104とを内部に含む。
ホトセンサ102は、ガスセンサ104で反射した光を検出するものである。光の強度からガス濃度を判断する。
LED光源103は、ガスセンサ104に光を照射するものである。あらかじめ、ガスセンサ104で変化する色がわかっているので、その色に合わせた波長の色とする。
ガスセンサ104は、送られてくるガスにより発色するものである。
図示しないが、制御部と表示部があり、ホトセンサ102の出力により、ガス濃度を表示するようになっている。
図1(b)は、ガスセンサ104の部分の断面である。ガスが、ガス通路106を通じて、ガスセンサ104の裏面に導かれ、ガスセンサ104の上面の色が変化する。その変化を、上記に示したLED光源103とホトセンサ102にて検出するものである。
(ガスセンサ104の構成に関して)
ガスセンサ104について、説明する。ガスセンサ104に関しては、別途、詳細に説明するが、構成上の特徴を、まず、説明する。図2(a)にガスセンサ104を示す。中央に検出領域201があり、全体として多孔性シリカ連続体202からなる。多孔性シリカ連続体202の多孔質体に、ガスにより変色する色素材料が検出領域201に保持されている。多孔性シリカ連続体202は、ガスの透過能力が高く、ガスが多孔性シリカ連続体202を通過時に、検出領域201の試薬に触れ、試薬の色が変化する。たとえば、上記のように、手動のポンプ105や、息によるガスの導入によっても、多孔性シリカ連続体202からなるガスセンサ104の場合、十分に、ガスが、短時間で通過し、ガスの検出ができる。単なる多孔質体の場合、一部の大きな孔を通過してしまう。特に、色素材料を保持させていると、なおさら、ガス通過性に問題が生じ、ガスの検出ができない。多孔性シリカ連続体202の場合、孔径がそろっており、ガスの均質に通過できる。
図1(b)のガスセンサ104では、全体に試薬を含ませて、ガスセンサ104の下部よりガスを供給していたが、この例の図2(a)では、多孔性シリカ連続体202の1部にのみ試薬を滴下するなどで、検出領域201を設けている。ガスの通気性がよく、即座の検出ができる。
図2(b)は、図2(a)の変形例である。図2(a)では、検出領域201が1つであったが、図2(b)では、複数の検出領域201を有し、ガスとの接触表面積の向上をさせている。
図2(c)は、図2(a)、(b)のガスセンサ104を、チューブ203にいれたものである。このチューブ203内がガス通路106であり、ガスが流れ、ガスセンサ104が反応する。図1(b)の場合と異なり、ガスセンサ104の側面から、ガスセンサ104の内部をガスが通過する形式である。熱収縮型の筒状のパイプに、ガスセンサ104を入れ、熱で収縮して作製できる。
図2(d)は、図2(c)をマルチ化したものの上面図であり、各種ガスに応じた複数の種類のガスセンサ104を設けることで、複数種類のガスを一度に検出できる。
なお、上記、図2のガスセンサ104は、その色変化を目視で観察してもよいし、図1のように装置に組み込んで、LED光源103とホトセンサ102との組み合わせで、定性、定量評価してもよい。
また、図2(b)で、検出領域201に、異なるガスを検出するための色素材料を、複数設ける。または、図2(d)で、異なるガス種のセンサを組み合わせたセンサを用い、図1のLED光源103として、多波長の複数LEDのユニットを利用して、マルチガス検出をしてもよい。この場合、ガスセンサ104側と、LED光源103とホトセンサ102側とを相対的に移動させると、よりよく、マルチでガスの検出ができる。
図3(a)から(c)は、ガスセンサ104の別の構造を示す。図3(a)に示すように、多孔性シリカ連続体202を、チューブ203内に形成する。製法は下記に記載している溶液状態の多孔性シリカ連続体をチューブ203に入れ、硬化されると得られる。次に、図3(b)に示すように、多孔性シリカ連続体202の上面のチューブ203に開口部301を形成する。最後に、図3(c)に、示すように検出領域201を設ける。色素材料の溶液を、多孔性シリカ連続体202上に滴下することで形成できる。この時、開口部301の全体に検出領域201を設けるのがよい。ガス通路106を流れてきたガスが、開口部301から放出されず、チューブ203を経由して流れる。ガスは、検出領域201の色素材料と反応し、色素材料に色の変化は生じる。チューブ203は、ガラス製でも、ポリエチレンなど樹脂性でよい。
図4(a)、(b)では、さらに水分保持領域を設けた例を示す。検出領域201の色素材料で、色変化が起こすためには、水分が必要な場合が多い。
図4(a)は、図2(a)に相当する図であり、水分保持領域401を、検出領域201の周辺の多孔性シリカ連続体202に設けている。
図4(b)は、図2(c)に相当する図であり、水分保持領域401を、多孔性シリカ連続体202の前方、ガスが導入される側に設けた。
水分保持領域401に設けるものは、グリセリンなどの水分を保持できるものを設ける。グリセリンやベタイン、ヒアルロン酸、グリセリンとヒアルロン酸ナトリウムを一緒に組み合わせたものなどが利用できる。水分保持領域401から、水分が検出領域201の色素材料へ供給され、長時間、色変化を可能とし、ガス検出を可能とする。
(ガスセンサ104中の多孔性シリカ連続体について)
本発明におけるガスセンサは,多孔性シリカ連続体と色素材料とを組み合わせたものである。
多孔性シリカ連続体は、シリカを主成分とする反応溶液の相分離を伴うゾル−ゲル転移を起こさせることにより得られる。ゾル−ゲル反応に用いられるゲル形成を起こす網目成分の前駆体としては、金属アルコキシド、錯体、金属塩、有機修飾金属アルコキシド、有機架橋金属アルコキシド、およびこれらの部分加水分解生成物、部分重合生成物である多量体を用いることができる。水ガラスほかケイ酸塩水溶液のpHを変化させることによるゾル−ゲル転移も、同様に利用することができる。
さらに、具体的には、多孔性シリカ連続体は、水溶性高分子、熱分解する化合物を酸性水溶液に溶かし、それに加水分解性の官能基を有する金属化合物を添加して加水分解反応を行い、生成物が固化した後、次いで湿潤状態のゲルを加熱することにより、ゲル調製時にあらかじめ溶解させておいた低分子化合物を熱分解させ、次いで乾燥し加熱して製造されることが好ましい。
ここで、水溶性高分子は、理論的には適当な濃度の水溶液と成し得る水溶性有機高分子であって、加水分解性の官能基を有する金属化合物によって生成するアルコールを含む反応系中に均一に溶解し得るものであれば良いが、具体的には高分子金属塩であるポリスチレンスルホン酸のナトリウム塩またはカリウム塩、高分子酸であって解離してポリアニオンとなるポリアクリル酸、高分子塩基であって水溶液中でポリカチオンを生ずるポリアリルアミンおよびポリエチレンイミン、あるいは中性高分子であって主鎖にエーテル結合を持つポリエチレンオキシド、側鎖にカルボニル基を有するポリビニルピロリドン等が好適である。また、有機高分子に代えてホルムアミド、多価アルコール、界面活性剤を用いてもよく、その場合多価アルコールとしてはグリセリンが、界面活性剤としてはポリオキシエチレンアルキルエーテル類が最適である。
加水分解性の官能基を有する金属化合物としては、金属アルコキシド又はそのオリゴマーを用いることができ、これらのものは例えば、メトキシ基、エトキシ基、プロポキシ基等の炭素数の少ないものが好ましい。また、その金属としては、最終的に形成される酸化物の金属、例えばSi、Ti、Zr、Alが使用される。この金属としては1種又は2種以上であっても良い。一方オリゴマーとしてはアルコールに均一に溶解分散できるものであればよく、具体的には10量体程度まで使用できる。
また、酸性水溶液としては、通常塩酸、硝酸等の鉱酸0.001モル濃度以上のもの、あるいは酢酸、ギ酸等の有機酸0.01モル濃度以上のものが好ましい。
相分離・ゲル化にあたっては、溶液を室温40〜80℃で0.5〜24時間保存することにより達成できる。相分離・ゲル化は、当初透明な溶液が白濁してシリカ相と水相との相分離を生じついにゲル化する過程を経る。この相分離・ゲル化で水溶性高分子は分散状態にありそれらの沈殿は実質的に生じない。
あらかじめ共存させる熱分解性の化合物の具体的な例としては、尿素あるいはヘキサメチレンテトラミン、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド等の有機アミド類を利用できるが、加熱後の溶媒のpH値が重要な条件であるので、熱分解後に溶媒を塩基性にする化合物であれば特に制限はない。
共存させる熱分解性化合物は、化合物の種類にもよるが、例えば尿素の場合には、反応溶液10gに対し、0.05〜0.8g、好ましくは0.1〜0.7gである。また、加熱温度は、例えば尿素の場合には40〜200℃で、加熱後の溶媒のpH値は、6.0〜12.0が好ましい。また、熱分解によってフッ化水素酸のようにシリカを溶解する性質のある化合物を生じるものも、同様に利用できる。
多孔性シリカ連続体は、メソポアを有しても焼成して消失させてもよい。焼成温度は、例えば600°から1200°、好ましくは、950℃から1050℃である。特に950℃焼成から1050℃焼成にかけてその比表面積,メソポア細孔径,細孔容積はそれぞれ大きく減少し,その分機械的強度が大きくなる。ここでメソポアとは、2nmから50nmの細穴である。
加える色素材料は、検出目的のガスの種類に応じて、選択する必要がある。たとえば、アンモニアを検出する場合は、アンモニアと反応する色素材料、または、アンモニアと反応した材料の結果、できた化合物が色を発するものであればよい。以下の実施の形態で、各色素材料の例を示す。
(実施の形態1:アンモニア検出用のガスセンサ104)
アンモニアを検出する場合、色素材料は、デジルトリメチルアンモニウム、または、ローダミン系色素である。ローダミンは、通常固体化により発光性を失うが、多孔性シリカ連続体中に保持させることで、発光性を失わない。このローダミン系色素は、水溶液中でpHの増加に伴い、強い発光性陽イオンから無発光性のラクトン型へ分子内環化反応により変化する。この分子内環化反応を多孔性シリカ連続体中で誘発することで色変化をさせる。結果、塩基性ガスを色変化で検出できる。たとえば、アンモニアガスと触れると、pHがあがり、発光が消える。ただし、水分が必要である。よって、グリセリンなどで、ガスセンサ104から水分が蒸発しないようにするか、以下の多孔性シリカ連続体膜中に水分保持のための材料、例えば、ランダム型アルキレンオキシド誘導体やソルビトールを導入することができる。
(多孔性シリカモノリスの調製)
分子量10,000のポリエチレングリコール(PEG)4.2gに0.01N酢酸水溶液50mlを加え攪拌し溶解させた。完全に溶解した後に氷冷し,テトラメトキシシラン24mlを加え攪拌を継続した。角型容器に溶液を移しテフロン(登録商標)リングを入れ,密封して40℃恒温槽(水浴)に1日間放置した。得られたシリカバルクをエタノール/水=1/1(v/v)の水溶液に浸漬し1日放置した。このバルクを0.5M尿素水溶液に浸漬させ,テフロン(登録商標)製の分解ビンを用いて加熱処理した後,40℃オーブンに移し2日間放置し,続いて60℃オーブンに移し1日間放置し,電気炉を用いて焼成して,多孔性シリカモノリスを調製した。
(多孔性シリカ連続体膜の調製)
多孔性シリカモノリスを直径12mm,厚さ3.0mmの円筒状(膜状)に加工し,これに熱収縮チューブ(PTFE)を巻き成形することにより多孔性シリカ連続体膜を調製した。
多孔性シリカ連続体膜へのローダミン付与の方法は以下3つがある。
(1)ローダミン含む水溶液へ多孔性シリカ連続体膜を浸し、攪拌後、多孔性シリカ連続体膜を取り出す方法。
(2)ローダミンを含む水溶液とイオン交換性無機層状化合物のナノシートコロイド懸濁液とデシルトリメチルアンモニウムとの混合溶液に、多孔性シリカ連続体膜を浸し、攪拌後、多孔性シリカ連続体膜を取り出す方法。具体的には以下である。
CsCO粉末とTiO粉末を1:2.65の割合で、混ぜて、1073K、40時間で焼結させることで、Cs0.7Ti1.8250.175(□は空孔)の層状チタネイトを作製する。
水1dm(1000cm)中、1molHCL溶液溶けている水溶液に3日間、この層状チタネイトを漬け、層間のCsイオンを取り除く。毎日液は新しいものに交換する。
この層状チタネイト0.4gを、室温のTBAOH(水酸化テトラブチルアンモニウム )溶液100cmに入れ、かき混ぜる。TBA濃度は、0.017moldm−3である。結果、層が剥離し、単層のチタネイトができる。混合溶液は、10日間振り混ぜられ、チタン酸ナノシートコロイドが作製される。
チタン酸ナノシートの陽イオン交換容量(4.12meq./g)に対して、0.02%のローダミン3Bと100%のデシルトリメチルアンモニウムブロマイドを加え室温で1時間撹拌する。
撹拌後、減圧濾過にて固相を回収し、水/エタノール(50/50(v/v))で十分洗浄後、上記の多孔性シリカ連続体膜(中心孔径3.5μm)に浸漬し、取り出す。
なお、他の例においても、チタン酸ナノシートに色素材料を上記のように保持させ、多孔性シリカ連続体膜にさらに保持させると、安定して、長期間にわたってセンサーが利用できる。
(3)多孔性シリカ連続体膜の一部に、ローダミン含む水溶液を滴下する方法。図2に示す、部分的に検出領域201を設ける方法である。
上記で作製された多孔性シリカ連続体膜がガスセンサ104である。この場合、ホトセンサ102、LED光源103は、色素に合わせて、600nm前後の波長のものにする。また、この色素は水分が必要であるので、上記のように、グリセリンなどで覆い乾燥しないようにするか、水分保持剤を層間に導入するか、定期的に水分を供給する仕組みが必要である。
このセンサは、上記図1から図4のガスセンサ104として使用できる。
(効果)
ガスセンサ104中の多孔性シリカモノリスは、流体を通過させる能力が高く、小さな圧で流体を通過させることができる。この結果、ガスセンサ104中の色素材料とガスの反応が短時間(数秒)で起こり、色素材料で発色が起こり、ガスを検出できる。発色を検出するので、微量でも検出できる。以下の実施の形態でも同様の効果がある。
(実施の形態2:ホルムアルデヒド検出用ガスセンサ104)
実施の形態1との違いは、色素材料を変更したことである。色素としては、4−アミノヒドラジン−5メルカプト−1,2,4−トリアゾール(AHMT)を用いた。AHMTのHCl水溶液とKOH水溶液の1:1混合液に対して、実施の形態1の方法(1)から(3)の方法で、色素材料を添加した。
ガス検出装置、ガスセンサ104は上記と同じである。このセンサ104をホルムアルデヒドガスに暴露した時の変色を540nmのLEDで照射し,その反射光をフォトダイオードで検出した。フィルタ着色強度は0.04−1ppmのHCHO濃度範囲で試料採取時間と共に増加した。3minの試料採取時間で0.04ppmのホルムアルデヒドの検出限界が達成できた。この方法はSBSを引き起こす他のアルデヒドおよび揮発性有機化合物には応答しなかった。WHO標準規制値(0.08ppm)のホルムアルデヒドを3min以内の試料採取時間で検出可能であった。このセンサは迅速に、選択的に、簡単にホルムアルデヒドガスの検出が可能で,現場での検出に適している。
このセンサは、上記図1から図4のガスセンサ104として使用できる。
(実施の形態3:ホルムアルデヒド:FA、検出用ガスセンサ104)
実施の形態1との違いは色素材料である。色素材料として、以下を用いる。つまり、酵素の1つであるFA脱水素酵素(formaldehyde dehydrogenase:FALDH)は、FA(ホルムアルデヒド)と、酸化型ニコチンアミドアデニンジヌクレオチド(NAD)とから、ギ酸と還元型のNADHを生成する。反応生成物であるNADHは340nmの紫外線が照射されると、491nmの蛍光を発する特性が有る。その蛍光強度を調べて、FAを定量できる。
ホルムアルデヒド脱水素酵素1mg(東洋紡(株)製、Formaldehyde Dehydrogenase)と、アルブミン2mg(和光純薬工業(株)社製)と、ニコチン酸アミドアデニンジヌクレオチド2.4mg(和光純薬工業(株)社製)とを2mlのリン酸緩衝液(pH7.5、50mM)に十分溶解させた。
得られた溶液を用いて、多孔性シリカモノリスに、実施の形態1の方法(1)から(3)の方法で、色素材料を添加し、ガスセンサ104を作製した。
(開発したセンサの性能評価)
FAガスに対するこのセンサ特性を評価したところ、FAガスを流入すると、NADHの蛍光強度の増加と安定が確認され、センサの外観写真清浄空気を流入すると、蛍光強度の減少が観察された。本センサのFAガスに対する定量特性を調べたところ、厚生労働省の室内濃度指針値である80ppbを含む30.0ppb〜17800ppbの広いダイナミックレンジが得られた。また、本センサの他のガスに対する影響を調べたところ、FAガスに対する高い選択性が確認できた。
本発明で測定(定性分析および定量分析を含む)の対象となるホルムアルデヒドを含む被検体(サンプル)には特に制限はなく、大気中、溶液中、または固体中に含まれるホルムアルデヒドを広く含むものである。また、かかるサンプルに含まれるホルムアルデヒドの濃度についても特に制限はなく、適当な前処理(希釈、濃縮等)、測定条件の最適化を行うことにより、広い範囲の濃度で測定することが可能となる。
本発明にかかるガスセンサ104は、その基本構成として、多孔性シリカ連続体膜に、ホルムアルデヒド脱水素酵素を吸着させ、さらに前記酵素を架橋して固定して作製するものである。さらに、高感度、簡便に測定可能とするために、発色反応系と組み合わせて作製するものである。
本発明において使用可能なホルムアルデヒド脱水素酵素についても特に制限はない。かかる酵素の選択については該酵素の特性(基質種類、濃度、温度、pH、安定性、立体特異性、選択性等)を考慮して選択することが可能である。また、酵素は、公知若しくは市販品(例えばTOYOBOから市販されているホルムアルデヒド脱水酵素。酵素純度は5.42U/mg)として入手可能であり、必要ならば大量培養により、また適当な手段により精製した後使用することが可能である。さらに、入手した酵素は従来公知の方法により純度、活性等を測定することが可能である。
また、本発明においては、該酵素とともに、適当な蛋白質を共存させることが好ましく、例えば、アルブミンが挙げられる。かかる共存蛋白質は該酵素とともに吸着され、かつ以下説明する架橋剤により架橋され、担体上でより安定な構造を維持することを可能とするものである。
また、本発明において発色系との組み合わせによるホルムアルデヒドの検出のために種々の公知の発色系成分を加えることが可能である。かかる発色波長に従い検出波長を選択することが可能である。特に本発明においてはPMS(フェナジン=メトスルファート)−NTB(ニトロブルーテトラゾリウム)を含むものが好ましい。かかる場合、生成するDiformazan(ジホルマザン)の570nm吸光度を測定することによりホルムアルデヒドを簡便に検出することが可能となる。
また、さらに本発明は、酵素反応を促進するためにトリトン−Xを成分として含むものである。
また、本発明においては、ホルムアルデヒド脱水素酵素、アルブミン、およびニコチン酸アミドアデニンジヌクレオチドを多孔性シリカ連続体膜に吸着させて、さらに適当な架橋剤により架橋反応を施すことを特徴とする。かかる架橋剤により、前記ホルムアルデヒド脱水素酵素、共存するアルブミン、若しくはニコチン酸アミドアデニンジヌクレオチドの少なくとも一部がグルタルアルデヒドで架橋される。架橋剤としては、公知の種々の架橋剤が使用可能であるが、本発明においては特にグルタルアルデヒドが好ましい。
さらに、架橋の仕方についても、密閉容器中でグルタルアルデヒド(原液)を気化させて担体上の酵素を架橋させる方法(1〜3時間程度)や、グルタルアルデヒド溶液(約2〜5%、数分)による方法が可能である。架橋の程度は架橋反応時間を制御することにより適宜選択することが可能である。
(測定)実施の形態1と同じガス検出装置を使用できる。本発明で使用可能な測定方法は、該酵素とホルムアルデヒドとの反応により生じる化学的変化による発色変化を検出できる方法であれば特に制限はなく、公知の種々の手段が選択可能である。該反応により得られるNADH自体に基づく反応、若しくはそれと組み合わせた化学反応による方法が挙げられる。かかる発色系との組み合わせた例を以下に示す。

HCHO+NAD+HO→HCOOH+NADH+H+NADH+PMS→NAD+PMS(還元型)
2PMS(還元型)+NTB→2PMS+Diformaszan

ここで、ホルムアルデヒドが反応するに際し、NADがNADHに還元される。また、NADHが、PMS−NTBとの組み合わせによりジホルマザン(570nm)を検出する。
このジホルマザンの検出方法によるホルムアルデヒドの検出限度は、酵素量、酵素反応時間、他成分量等により異なるが、最適化することは容易である。たとえば、粗酵素の状態では酵素量が0.2U/mlでは0.05ppmまでであるが、2U/mlでは0.001ppmまで測定可能である。
また、1サンプルごとの測定であるのか、または、特定時間積算して測定するのかでも、酵素の量、他成分の量等、適宜最適化することが可能である。
このセンサは、上記図1から図4のガスセンサ104として使用できる。
(実施の形態4:ホルマリン検出用ガスセンサ104)
硫酸ヒドロキシルアミン1.0グラムを100ミリリットルの精製水に溶解して第1の液を調製する。硫酸に対して呈色反応を示す水素イオン濃度指示薬メタニールイエロー0.02グラム、グリセリン15ミリリットルをメタノールで全量100ミリリットルとなるように溶解して第2の液を調整する。第1、及び第2の液を混合することにより、発色液を調製する。この発色液を用い、実施の形態1の方法(1)から(3)にて、多孔性シリカ連続体に色素材料を添加する。その後、40°C程度で有機溶媒を自然乾燥させる。これにより、多孔性シリカ連続体1平方メートル当たり、硫酸ヒドロキシルアミン0.35グラム、メタニールイエロー0.15グラム、及びグリセリン21グラムが展開されたガスセンサ104ができあがる。
実施の形態1のガス検出装置において、LED光源103として、ピーク波長555nmの発光ダイオードを用い、波長560nmに最大感度を有するホトセンサ102として、pin型フォトダイオードを用いた。
被検ガスがガスセンサ104を通過する過程で、ガスセンサ104上のグリセリンが保持している水分が、ホルマリンを取り込み、元から存在する硫酸ヒドロキシルアミンが2HCHO+(NHOH)SO→2HC=NOH+HSO+2HOなる反応により硫酸を発生する。この硫酸は、多孔性シリカ連続体に存在するメタニールイエローと反応して、その濃度、つまりホルマリンの濃度に比例してメタニールイエローを呈色反応させてガスセンサ104上に反応痕を生じさせる。このようにして所定のサンプリング時間、例えば40秒程度が経過した時点で、吸引を停止して反応痕の光学的濃度の測定工程に移る。LED光源103からの光は、ガスセンサ104表面に形成された反応痕の光学的濃度に応じて吸収を受けるので、測定開始前の光学的濃度、つまりガスセンサ104のバックグランド濃度との光学的濃度差を求めることによりガスセンサ104を通過したホルマリンの濃度を知ることができる。
このガスセンサ104を上記実施の形態1のガス検出装置にセットして、ホルマリンの濃度を、1000ppm、2000ppm、3000ppmと変えながら反応痕の光学的濃度を測定したところ、濃度3000ppm程度まで高い直線性でもって検出することができた。またサンプリング時間を40秒から60秒に延長すると、同一のホルマリン濃度に対する光学的濃度が高くなった。
ところで、上述の実施例では担体にグリセリンを含有させているが、濃度1000ppm以上のホルマリンを検出対象とする場合には、グリセリンの有無に関りなく同一感度を示した。このことからグリセリンは、特に低濃度のホルマリンを検出する場合には有効な添加剤であることが確認できた。
なお、この実施例においてはホルマリンと反応して酸を生じる物質として硫酸ヒドロキシルアミンを用いたが、ホルマリンにより分解されて水素イオン濃度指示薬であるメタニールイエローに反応痕を生じさせる酸を生じる他のヒドロキシルアミンの強酸塩として、塩酸ヒドロキシルアミンがあり、これを用いても同様の作用を奏することが確認された。また、ヒドロキシルアミンの強酸塩とホルマリンとの反応により生じる酸に対して呈色反応を示す水素イオン濃度指示薬としては、メタニールイエローの他に、アリザリンイエロー、ベンジルイエロー、及びメチルイエロー等が存在し、これらを用いても同様の作用効果を奏することが確認された。
ところで、メタニールイエローは、水素イオン濃度pH1.2乃至pH2.3に変色域を有する水素イオン濃度指示薬であるから、空気中に存在する炭酸ガスや、フッ化水素等の弱酸性ガスや、アルカリ性ガスであるアンモニア、さらにはアルコール等の有機溶媒に対しては全く反応しないから、ホルマリンを高い選択性で検出することができるばかりでなく、空気中の炭酸ガス等の弱酸性ガスにも反応しないから、長期保存性を有することになる。
なお、サンプリング時間を3分程度に延長すると、数ppm程度の低い濃度のホルマリンを検出することができる。
以下実施例に即して本発明を説明するが本発明はこれらの実施例になんら制約されるものではない。また、上記実施の形態は、矛盾がない範囲で組み合わせができる。
本願発明のガスセンサは、短時間にガスを検出できる。色で検出するので、部分的に変化しても即座に検出できる。
101 センサーユニット
102 ホトセンサ
103 LED光源
104 ガスセンサ
105 ポンプ
106 ガス通路
201 検出領域
202 多孔性シリカ連続体
203 チューブ
401 水分保持領域

Claims (12)

  1. シリカを主成分とする反応溶液の相分離を伴うゾル−ゲル転移を起こさせることにより得られた多孔性シリカ連続体と、
    前記多孔性シリカ連続体に設けられ、色素材料が保持されたガス検出領域と、
    を含むガスセンサ。
  2. チタン酸ナノシートに前記色素材料を保持させた前記ガス検出領域である請求項1記載のガスセンサ。
  3. 前記多孔性シリカ連続体の一部分の領域として、前記ガス検出領域が配置された請求項1または2記載のガスセンサ。
  4. 前記多孔性シリカ連続体に、前記ガス検出領域が複数配置された請求項1から3のいずれか1項に記載のガスセンサ。
  5. 前記多孔性シリカ連続体が、チューブ内に配置された請求項1から4のいずれか1項に記載のガスセンサ。
  6. さらに、水分保持領域を前記多孔性シリカ連続体内、または、隣接して設けた請求項1から5のいずれか1項に記載のガスセンサ。
  7. 前記水分保持材料がグリセリンである請求項1から6のいずれか1項に記載のガスセンサ。
  8. 前記色素材料がpHの変化で色が変化するものである請求項1から7のいずれか1項に記載のガスセンサ。
  9. ホルマリンガスを検出する場合に、
    前記色素材料は、メタニールイエロー、アリザリンイエロー、ベンジルイエロー、及びメチルイエローから選択される1つである請求項1から8のいずれか1項に記載のガスセンサ。
  10. アンモニアガスを検出する場合に、
    前記色素材料は、デジルトリメチルアンモニウム、または、ローダミン系色素である請求項1から8のいずれか1項に記載のガスセンサ。
  11. ホルムアルデヒドを検出する場合に、
    前記色素材料は、4−アミノヒドラジン−5メルカプト−1,2,4−トリアゾール、または、FA脱水素酵素である請求項1から8のいずれか1項に記載のガスセンサ。
  12. ガス導入部と、
    前記ガスが表面に導かれる請求項1から11のいずれか1項に記載のガスセンサと、
    前記ガスセンサに光を照射する光源部と、
    前記ガスセンサで反射された光を検出する検出部と、
    を含むガス検出装置。
JP2012141500A 2012-06-22 2012-06-22 ガスセンサとそのガスセンサを用いたガス検出装置 Expired - Fee Related JP6083065B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141500A JP6083065B2 (ja) 2012-06-22 2012-06-22 ガスセンサとそのガスセンサを用いたガス検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141500A JP6083065B2 (ja) 2012-06-22 2012-06-22 ガスセンサとそのガスセンサを用いたガス検出装置

Publications (2)

Publication Number Publication Date
JP2014006132A true JP2014006132A (ja) 2014-01-16
JP6083065B2 JP6083065B2 (ja) 2017-02-22

Family

ID=50103988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141500A Expired - Fee Related JP6083065B2 (ja) 2012-06-22 2012-06-22 ガスセンサとそのガスセンサを用いたガス検出装置

Country Status (1)

Country Link
JP (1) JP6083065B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008820A (ja) * 2014-06-22 2016-01-18 株式会社 京都モノテック ガスセンサとガス検出装置
KR20210064737A (ko) * 2019-11-26 2021-06-03 성균관대학교산학협력단 가스 진단 센서 및 이를 포함하는 가스절연개폐장치 진단 시스템

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340910A (ja) * 1992-06-11 1993-12-24 Figaro Eng Inc ガスセンサ
JPH0772138A (ja) * 1993-06-25 1995-03-17 Riken Keiki Co Ltd 酸性ガス検知紙
US20030129085A1 (en) * 2000-03-21 2003-07-10 Board Of Trustees Of The University Of Illinois Siloxy porpyhrins and metal complexes thereof
JP2005069761A (ja) * 2003-08-21 2005-03-17 Riken Keiki Co Ltd ガス検知材
JP2005274288A (ja) * 2004-03-24 2005-10-06 Tokai Univ ホルムアルデヒドの検知方法および検知材料
US20080050839A1 (en) * 2000-03-21 2008-02-28 Suslick Kenneth S Apparatus and method for detecting lung cancer using exhaled breath
WO2008041603A1 (fr) * 2006-09-27 2008-04-10 National Institute Of Advanced Industrial Science And Technology Substance détectant le formaldéhyde, détecteur de formaldéhyde, procédé de détection du formaldéhyde et réactif détectant le formaldéhyde
JP2009508134A (ja) * 2005-09-15 2009-02-26 コミツサリア タ レネルジー アトミーク 直接光学変換を有するアルデヒドのためのナノ多孔性物質
JP2010066170A (ja) * 2008-09-11 2010-03-25 Hitachi Chem Co Ltd 塩基性ガスセンサ
JP2010177146A (ja) * 2009-02-02 2010-08-12 Kagawa Univ 色素増感型太陽電池およびそれに用いる二酸化チタンナノ粒子の製法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340910A (ja) * 1992-06-11 1993-12-24 Figaro Eng Inc ガスセンサ
JPH0772138A (ja) * 1993-06-25 1995-03-17 Riken Keiki Co Ltd 酸性ガス検知紙
US20030129085A1 (en) * 2000-03-21 2003-07-10 Board Of Trustees Of The University Of Illinois Siloxy porpyhrins and metal complexes thereof
US20080050839A1 (en) * 2000-03-21 2008-02-28 Suslick Kenneth S Apparatus and method for detecting lung cancer using exhaled breath
JP2005069761A (ja) * 2003-08-21 2005-03-17 Riken Keiki Co Ltd ガス検知材
JP2005274288A (ja) * 2004-03-24 2005-10-06 Tokai Univ ホルムアルデヒドの検知方法および検知材料
JP2009508134A (ja) * 2005-09-15 2009-02-26 コミツサリア タ レネルジー アトミーク 直接光学変換を有するアルデヒドのためのナノ多孔性物質
WO2008041603A1 (fr) * 2006-09-27 2008-04-10 National Institute Of Advanced Industrial Science And Technology Substance détectant le formaldéhyde, détecteur de formaldéhyde, procédé de détection du formaldéhyde et réactif détectant le formaldéhyde
JP2010066170A (ja) * 2008-09-11 2010-03-25 Hitachi Chem Co Ltd 塩基性ガスセンサ
JP2010177146A (ja) * 2009-02-02 2010-08-12 Kagawa Univ 色素増感型太陽電池およびそれに用いる二酸化チタンナノ粒子の製法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008820A (ja) * 2014-06-22 2016-01-18 株式会社 京都モノテック ガスセンサとガス検出装置
KR20210064737A (ko) * 2019-11-26 2021-06-03 성균관대학교산학협력단 가스 진단 센서 및 이를 포함하는 가스절연개폐장치 진단 시스템
KR102273162B1 (ko) 2019-11-26 2021-07-02 성균관대학교산학협력단 가스 진단 센서 및 이를 포함하는 가스절연개폐장치 진단 시스템

Also Published As

Publication number Publication date
JP6083065B2 (ja) 2017-02-22

Similar Documents

Publication Publication Date Title
EP1889050B1 (en) Metal oxide membrane with a gas-selective compound
Chu et al. Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS
Chu et al. Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors
Nivens et al. Multilayer sol–gel membranes for optical sensing applications: single layer pH and dual layer CO2 and NH3 sensors
Barczak et al. Micro-and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015)
US8759111B2 (en) Nanoporous detectors of monocyclic aromatic compounds and other pollutants
JP5922146B2 (ja) ガス状化合物の多機能検出器、およびその使用
US10656091B2 (en) Optical sensor for detecting a chemical species
Takagai et al. “Turn-on” fluorescent polymeric microparticle sensors for the determination of ammonia and amines in the vapor state
Hu et al. A fluorescent and colorimetric sensor based on a porphyrin doped polystyrene nanoporous fiber membrane for HCl gas detection
KR101738761B1 (ko) 검출 감도가 향상된 유해물질 검지용 필름 및 이의 제조방법
JP4456131B2 (ja) ホルムアルデヒドの濃度測定方法
US20150110687A1 (en) Optical sensor element
Liao et al. Optical chemosensors for the gas phase detection of aldehydes: mechanism, material design, and application
JP6083065B2 (ja) ガスセンサとそのガスセンサを用いたガス検出装置
JP6432079B2 (ja) ガスセンサとガス検出装置
JP2014505260A (ja) 過酸化水素検出のための装置及び方法
JP2011154014A (ja) 揮発性有機物質の測定方法
JP6810583B2 (ja) 酵素センサー
JP4286169B2 (ja) ホルムアルデヒドの検知方法および検知材料
Izumi et al. A porous glass-based KI/α-CD chip for ozone sensing: Improvement in the humidity response of the chip through optimizing reagent concentrations in the impregnation process
Tao et al. A facile and efficient method for rapid detection of trace nitroaromatics in aqueous solution
Arduini et al. Chemical optimisation of a sol–gel procedure for the development of fluorescence Cu (II) nanosensors
RU2596786C2 (ru) Оптический химический датчик для определения органофосфатов и способ его изготовления
Brigo et al. Natively porous films as halide anion fluorescence optical sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170104

R150 Certificate of patent or registration of utility model

Ref document number: 6083065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees