JP2013254814A - 半導体デバイス製造工程及びその製造工程を経て製造された半導体デバイス - Google Patents

半導体デバイス製造工程及びその製造工程を経て製造された半導体デバイス Download PDF

Info

Publication number
JP2013254814A
JP2013254814A JP2012128744A JP2012128744A JP2013254814A JP 2013254814 A JP2013254814 A JP 2013254814A JP 2012128744 A JP2012128744 A JP 2012128744A JP 2012128744 A JP2012128744 A JP 2012128744A JP 2013254814 A JP2013254814 A JP 2013254814A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor layer
semiconductor device
layer
manufacturing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012128744A
Other languages
English (en)
Inventor
Masataka Ota
征孝 太田
Shuichi Hirukawa
秀一 蛭川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012128744A priority Critical patent/JP2013254814A/ja
Publication of JP2013254814A publication Critical patent/JP2013254814A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】基板とその上に形成された半導体層を界面で分離する工程の前処理として、半導体層を基板とは別の支持基板に貼り付けるにあたり、貼り付け材料層が基板の側面に付着して基板の分離が妨げられるという事態が生じるのを防ぐ。
【解決手段】基板11とその上に形成された半導体層12の界面に電磁放射線を照射して基板11と半導体層12を分離する工程の前処理として、半導体層12を基板11とは別の支持基板13に貼り付けるにあたり、基板11と半導体層12の側面に保護膜16を形成する工程と、保護膜16が形成された半導体層12を支持基板13上の貼り付け材料層14に貼り付ける工程と、貼り付け材料層14に貼り付けられた半導体層12、及び基板11から、保護膜16を除去する工程と、が遂行される。
【選択図】図1

Description

本発明は半導体デバイス製造工程及びその製造工程を経て製造された半導体デバイスに関する。
半導体は今や日常生活に欠かせない存在である。照明の分野でも半導体デバイスの一種である発光ダイオード(LED)が従来の蛍光灯や白熱灯にとって代わりつつある。またLEDがテレビジョン、パーソナルコンピュータ、携帯電話などの液晶表示パネルのバックライトや、交通信号機などに用いられていることは多くの人の知るところである。
LEDとして用いられる半導体には様々な種類のものがあるが、最近ではGaN、AlN、InN及びそれらの混晶に代表される窒化物半導体が注目されている。窒化物半導体はAlGaInAs系半導体やAlGaInP系半導体に比べてバンドギャップEgが大きく、直接遷移型であるため、紫外線から緑色に及ぶ波長領域での発光が可能である。窒化物半導体はこのような特質を生かして、各種波長の光を出力する半導体レーザ素子や、紫外線から赤色光までの広い発光波長範囲をカバーできるLEDなどに用いることができる。
発光波長範囲が広い窒化物半導体は、プロジェクターやフルカラーディスプレイへの応用が考えられている。また、発光波長を短波長化できるという特質を生かして、殺菌・浄水・公害物質の高速分解といった公衆衛生・環境分野への適用や、各種医療分野への適用に期待が高まっている。それに伴い、深紫外領域(波長:200nm〜350nm)で発光するデバイスの研究開発が各研究機関で精力的に進められている。
窒化物半導体を用いた発光デバイスの構造例を図42に示す。発光デバイス100は、サファイアなどからなる基板101の上に図のような形状の窒化物半導体層102を成長させ、窒化物半導体層102の一箇所にn電極103を形成し、他の箇所にp電極104を形成したものである。n電極103とp電極104はAuを含む合金からなる。
図42の構造の発光デバイス100には次のような問題があった。Alの組成比が高いn−AlGaN層106にあっては、電子の到達しやすい領域105aに電流が集中し、その領域105aで電子とホールの結合が集中的に生じることになる。すなわち発光箇所が限定され、大面積発光を得ることが困難となる。
上記の問題は、発光デバイス100が殺菌用途で用いられる短波長光(例えば波長250nm〜280nm程度)を発するものである場合、一層顕著に現れる。このような用途の発光デバイスでは、活性層量子井戸のAl組成や、p型窒化物半導体層、n型窒化物半導体層のAl組成などが50%を超えることもあり、電流の広がりがさらに悪くなるからである。
図42の構造の発光デバイス100の問題点を解決するため、図43に示す構造の発光デバイス110が提案されている。発光デバイス110は、基板111の上に窒化物半導体層112を成長させた後、窒化物半導体層112から基板111を分離し、窒化物半導体層112をn電極113とp電極114で挟んだものである。このように半導体を形成する母体となる基板を半導体層から分離し、残された半導体層を電極で挟んだ構造は「縦型構造」と呼ばれる。これに対して図42に示す構造は「横型構造」と呼ばれる。
横型構造の半導体デバイスではn型半導体層(例えばGaNやAlGaN)を流れる電流の経路長が数十μmに達するのに対し、縦型構造の半導体デバイスではn型半導体層を流れる電流の経路長を数μm以下へと大幅に削減できる。電流の経路長が短くなれば抵抗が低減し、電流が均一に流れるようになる。このため縦型半導体デバイスを用いたLEDでは発光領域がLED全体に拡大する。このように、半導体デバイスを縦型構造にすることは、LEDの大出力化にあたり有力な手段と考えられている。また、動作電圧を低減できるため、LED素子の発熱が抑制され、発熱による発光効率の低下や信頼性の劣化を抑制する事が可能となる。
縦型構造の半導体デバイスを形成するためには、基板上に半導体層を成長させた後、半導体層から基板を分離する必要がある。このような目的で半導体層から基板を分離する方法の一例を特許文献1に見ることができる。特許文献1記載の方法では、半導体層と基板の界面にレーザービームを照射して界面を分離させ、基板を分離する。この方法はレーザーリフトオフ法と呼ばれている。
特表2007−534164号公報
窒化物半導体で縦型構造の半導体デバイスを形成する場合、窒化物半導体層の層厚は通常数十μm以下であるため、基板を分離してしまうと極薄膜の窒化物半導体層がとり残されることになる。このような極薄膜の窒化物半導体層は取り扱いが困難なので、窒化物半導体層の成長に用いた基板とは別の存在である支持基板に予め窒化物半導体層を貼り付けておき、その後に基板を分離するという手順がとられる。
支持基板に窒化物半導体層を貼り付けるにあたっては、はんだや熱可塑性樹脂などの貼り付け材料層を支持基板上に形成しておき、その貼り付け材料層に加熱圧着で窒化物半導体層を貼り付けるという方法が用いられる。支持基板に窒化物半導体層を貼り付けた後の状態が図44及び図45に示されている。図44及び図45において、11は基板、12は窒化物半導体層、13は支持基板、14は貼り付け材料層である。
加熱圧着工程で窒化物半導体層12を貼り付け材料層14に押し付けると、貼り付け材料層14が拡がって窒化物半導体層12の外側に不均一にはみ出すことがある。図46及び図47に示す例のように、基板11及び窒化物半導体層12よりも広い面積に貼り付け材料層14が形成されていた場合、窒化物半導体層12が貼り付け材料層14の中に沈み込む形になり、窒化物半導体層12の側面に貼り付け材料層14が付着する。
貼り付け材料層14の付着が窒化物半導体層12の側面だけで済めばよい。しかしながら、前述の通り窒化物半導体層12は層厚が数十μm以下という極薄膜であるため、貼り付け材料層14の方が窒化物半導体層12よりも厚くなっているのが普通である。その結果、窒化物半導体層12は貼り付け材料層14の中に完全に埋め込まれ、貼り付け材料層14が基板11の側面にも付着することになる。貼り付け材料層14が基板11の側面に付着すると基板11が支持基板13に接着された形になり、後工程で基板11を窒化物半導体層12から分離しようとしても、基板11を分離できないという事態が生じ得る。
上記の問題を回避する方策の一つは、加熱圧着工程を経ても貼り付け材料層14が窒化物半導体層12の外側にはみ出さないように、貼り付け材料層14の塗布面積を小さくしておく、というものである。そのようにした構成例を図48及び図49に示す。このようにすれば、窒化物半導体層12の側面にも基板11の側面にも貼り付け材料層14が付着することはないが、貼り付け材料層14によって接着されていない部分が窒化物半導体層12の端に不均一、不定形な形で生じるため、窒化物半導体層12の発光面積が素子毎に不均一になる。このため、出力基準値を満たさない半導体デバイスの割合が多くなり、製造の歩留まりが悪化するという新たな問題が生じる。
本発明は上記の点に鑑みなされたものであり、基板とその上に形成された半導体層の界面に電磁放射線を照射して基板と半導体層を界面で分離する工程の前処理として、半導体層を基板とは別の支持基板に貼り付けるにあたり、貼り付け材料層が基板の側面に付着して基板の分離が妨げられるという事態が生じるのを防ぐことを目的とする。
上記目的を達成するため、本発明に係る半導体デバイス製造工程は、基板とその上に形成された半導体層の界面に電磁放射線を照射して前記基板と前記半導体層を分離する工程の前処理として、前記半導体層を前記基板とは別の支持基板に貼り付けるにあたり、前記基板と前記半導体層の側面に保護膜を形成する工程と、前記保護膜が形成された前記半導体層を貼り付け材料層を介して、前記支持基板に貼り付ける工程と、前記貼り付け材料層を介して、前記支持基板に貼り付けられた前記半導体層、及び前記基板から、前記保護膜を除去する工程と、が遂行されることを特徴としている。
上記半導体デバイス製造工程において、前記半導体層を前記基板とは別の支持基板に貼り付けるにあたり、前記半導体層よりも厚さが大である前記貼り付け材料層を介して、貼り付けることが好ましい。
上記半導体デバイス製造工程において、前記基板と前記半導体層は、前記保護膜形成前に1チップの大きさに分割されることが好ましい。
上記半導体デバイス製造工程において、前記支持基板は、前記1チップの大きさに分割された前記基板と前記半導体層を貼り付けるのに適した大きさにされることが好ましい。
上記半導体デバイス製造工程において、前記半導体層の一部が発光デバイスの発光部となることが好ましい。
上記半導体デバイス製造工程において、前記半導体層は、前記基板に接する面よりもその反対側の面の方が面積小となるように側面が傾斜した形にされることが好ましい。
上記半導体デバイス製造工程において、前記基板は、前記半導体層に接する面よりもその反対側の面の方が面積大となるように側面が傾斜した形にされることが好ましい。
上記半導体デバイス製造工程において、前記保護膜を除去した後に前記半導体層の側面に対峙する前記貼り付け材料層の面が、前記半導体層の側面から出射した光を前記保護膜除去後の空間の外側へと反射する傾斜面となるように、前記保護膜は側面が傾斜した形にされることが好ましい。
上記半導体デバイス製造工程において、前記貼り付け材料層は、前記保護膜除去後に前記半導体層の側面に対峙する面の光反射率が高められていることが好ましい。
上記半導体デバイス製造工程において、前記貼り付け材料層に光反射率の高い材料が用いられていることが好ましい。
上記半導体デバイス製造工程において、前記基板は、研磨して薄くする工程を経たものであることが好ましい。
上記半導体デバイス製造工程において、半導体デバイスのチップ形状が角形であることが好ましい。
上記半導体デバイス製造工程において、半導体デバイスのチップ形状が円形であることが好ましい。
上記半導体デバイス製造工程において、前記半導体層が窒化物半導体からなることが好ましい。
上記半導体デバイス製造工程において、前記基板がサファイア基板であることが好ましい。
上記半導体デバイス製造工程において、前記基板と前記半導体層の界面にAlN層が形成されていることが好ましい。
上記半導体デバイス製造工程において、前記基板と前記半導体層の界面にGaN層が形成されていることが好ましい。
上記半導体デバイス製造工程において、前記電磁放射線の発生源がエキシマレーザーであることが好ましい。
上記半導体デバイス製造工程において、前記エキシマレーザーがArFエキシマレーザーであることが好ましい。
上記半導体デバイス製造工程において、前記エキシマレーザーがKrFエキシマレーザーであることが好ましい。
上記半導体デバイス製造工程において、前記保護膜がSiO2からなることが好ましい。
上記半導体デバイス製造工程において、前記保護膜がプラズマCVD法により形成されることが好ましい。
上記半導体デバイス製造工程において、前記保護膜は、前記半導体膜をフェイスアップとした状態で形成されることが好ましい。
また本発明は、上記半導体デバイス製造工程を経て製造された半導体デバイスであることを特徴としている。
本発明によると、基板とその上に形成された半導体層の側面に保護膜を形成し、半導体層を支持基板上の貼り付け材料層に貼り付けた後に保護膜を除去するから、貼り付け材料層が基板の側面に付着することはなく、基板の分離が妨げられない。これにより、縦型構造の半導体デバイスを滞りなく製造することが可能になる。
本発明に係る半導体デバイス製造工程の概念説明図である。 半導体層の第1の構成例を示す図である。 半導体層の第2の構成例を示す図である。 半導体層の第2構成例の活性層が備える量子井戸構造を示す図である。 基板分離に用いられる電磁放射線についての第1の説明図である。 基板分離に用いられる電磁放射線についての第2の説明図である。 基板分離に用いられる電磁放射線についての第3の説明図である。 ステップアンドリピートによるレーザー照射の第1の説明図である。 ステップアンドリピートによるレーザー照射の第2の説明図である。 基板と半導体層の分割についての第1の説明図である。 基板と半導体層の分割についての第2の説明図である。 基板と半導体層を支持基板に貼り付けた状態の断面図である。 基板と半導体層を支持基板に貼り付けた状態の上面図である。 基板と半導体層の側面に保護膜を形成した状態を示す断面図である。 平面形状角形の基板の側面に保護膜を形成した状態を示す断面図である。 平面形状円形の基板の側面に保護膜を形成した状態を示す断面図である。 半導体層をフェイスアップとした状態を説明する側面図である。 半導体層をフェイスアップとした状態を説明する上面図である。 半導体層をフェイスダウンとした状態を説明する側面図である。 半導体層をフェイスダウンとした状態を説明する上面図である。 側面に保護膜を形成した基板と半導体層を支持基板に貼り付ける姿勢とした状態を示す断面図である。 図21の基板と半導体層を貼り付け材料層を介して支持基板に貼り付けた状態を示す断面図である。 図22の状態から保護膜を除去した状態を示す断面図である。 図23の状態から基板を分離した状態を示す断面図である。 表面に電極が形成された半導体層と基板の側面に保護膜を形成した状態を示す断面図である。 図25の半導体層と基板を貼り付け材料層を介して支持基板に貼り付けた状態を示す断面図である。 図26の状態から保護膜を除去した状態を示す断面図である。 図27の状態から基板を分離した状態を示す断面図である。 表面に電極が形成された半導体層と基板の側面に傾斜をつけ、その側面に保護膜を形成した状態を示す断面図である。 図29の半導体層と基板を貼り付け材料層を介して支持基板に貼り付けた状態を示す断面図である。 図30の状態から保護膜を除去した状態を示す断面図である。 図31の状態から基板を分離した状態を示す断面図である。 図32の状態で、残った半導体層から側方に発光が行われる状態を示す断面図である。 表面に電極が形成された半導体層の側面に傾斜をつけ、基板の側面には傾斜をつけず、その半導体層と基板の側面に保護膜を形成した状態を示す断面図である。 図34の半導体層と基板を貼り付け材料層を介して支持基板に貼り付けた状態を示す断面図である。 図35の状態から保護膜を除去した状態を示す断面図である。 図36の状態から基板を分離した状態を示す断面図である。 図37の状態の貼り付け材料層に反射膜を形成し、残った半導体層から側方に発光が行われる状態を示す断面図である。 半導体層の第3の構成例を示す図である。 半導体層の第3構成例の活性層が備える量子井戸構造を示す図である。 半導体デバイス製造工程の第2の概念説明図である。 従来の半導体デバイスの構造例を示す図である。 従来の半導体デバイスの第2の構造例を示す図である。 基板と半導体層を支持基板に貼り付けた状態の断面図である。 基板と半導体層を支持基板に貼り付けた状態の上面図である。 基板と半導体層を支持基板に貼り付けるにあたっての問題点を説明する第1の断面図である。 基板と半導体層を支持基板に貼り付けるにあたっての問題点を説明する第1の上面図である。 基板と半導体層を支持基板に貼り付けるにあたっての問題点を説明する第2の断面図である。 基板と半導体層を支持基板に貼り付けるにあたっての問題点を説明する第2の上面図である。
縦型構造の半導体デバイスを製造する一連の工程の概要を、図1に基づき説明する。図1において、(a)の工程では基板の上に半導体層が形成される。(b)の工程では基板と半導体層が1チップの大きさに分割される。(c)の工程では1チップに分割された基板と半導体層の側面に保護膜が形成される。また、電極が形成される。(d)の工程では側面に保護膜が形成された基板と半導体層が貼り付け材料層を介して支持基板に貼り付けられる。(e)の工程では保護層が除去される。(f)の工程では半導体層から基板が分離される。
基板とその上に形成される半導体層の構成例を図2に示す。図2の構成例では、サファイア基板などの基板11の上に、MOCVD法などの成長方法により、窒化物半導体層12が形成されている。窒化物半導体層12は複数の層によって構成される。複数の層とは、基板11に近い側より、バッファ層21、バッファ層22、n型半導体層23、発光層24、及びp型半導体層25である。バッファ層21は電磁放射線の吸収層となる。n型半導体層23とp型半導体層25は位置を入れ替えてもよい。
縦型構造の半導体デバイスの製造段階が図1の(f)の工程にまで進んだとき、基板11と窒化物半導体層12の界面に電磁放射線(図2ではブロック矢印が電磁放射線を象徴している)が照射される。電磁放射線はバッファ層21で吸収されて界面に熱が発生し、その熱で基板11と窒化物半導体層12が分離する。電磁放射線がレーザー光であればレーザーリフトオフ法の実践ということになる。
基板11としては、電磁放射線を吸収しにくく、電磁放射線の透過率が大きいものが好ましい。サファイアは150nmから1000nmにわたる広い波長域で高い透過率を有しており、基板11の材料として好適である。
基板11の裏面(窒化物半導体層12が形成される面と反対側の面)から電磁放射線の照射が行われるため、基板11の裏面は粗面のままとしないのがよい。その上で、光の散乱を抑えるべく、基板11と空気との界面での反射を少なくする処理を施すのがよい。そのような処理としては、基板11を研磨して薄くした後、鏡面とするための研磨工程や、基板11の裏面にARコーティング処理(anti-reflective coating)を施したりすることが推奨される。
半導体層から基板を分離する(f)の工程以前に、基板を研磨工程などにより、100μm程度まで薄くする工程が含まれていても良い。この場合、研磨工程は、保護膜が除去される(e)の工程の前に実施すると良い。なぜなら、保護膜が除去された空間に、研磨工程で発生するゴミが入るのを防ぐ事ができるからである。
電磁放射線の波長がバッファ層21よりもバンドギャップの大きい波長であると、バッファ層21と基板11の界面で電磁放射線の吸収とそれに伴う熱分解が起こり、発熱が生じる。この熱が基板11の分離を招く。バッファ層21として好適する物質が何であるかは窒化物半導体層12の構成によって左右される。
窒化物半導体層12が発光デバイスを形成するのに用いられる場合、どの波長の光を出力することを目指すかによって窒化物半導体層12の構成が異なってくる。それに伴いバッファ層21として適する物質も異なってくる。
360nmよりも短い波長の光の出力を目指す窒化物半導体層12であれば、Alを含有する物質の層を中心とした構成になるため、バッファ層21をAlNとするのがよい。サファイア基板上に形成されたAlNにおいて、AlNとサファイア基板の界面付近のAlN層は一般的に欠陥を多く有し、欠陥が多ければより効率的に光を吸収するので、その意味でもAlNはバッファ層21に適すると言える。
青紫色(405nm)、青色(450nm)、緑色(525nm)などといった、360nmよりも長い波長の光の出力を目指す窒化物半導体層12であれば、バッファ層21はGaNとするのがよい。サファイア基板上に形成されたGaNにおいて、GaNとサファイア基板の界面付近のGaN層は一般的に欠陥を多く有し、欠陥が多ければより効率的に光を吸収する。その意味でもGaNはバッファ層21に適すると言える。
基板11の上に形成される窒化物半導体層12の構成例を図3に示す。基板11は両面研磨を施したサファイア基板であり、その上にAlNバッファ層31、ノンドープAlN層32、ノンドープAlGaN層33、n型AlGaN層34、活性層35、キャリアバリア層36、p型AlGaN層37、及びp型GaNコンタクト層38からなる窒化物半導体層12が形成されている。
ノンドープAlN層32の厚さは約3μmである。ノンドープAlGaN層33はAl0.50Ga0.50Nからなり、厚さは約1.0μmである。n型AlGaN層34もAl0.50Ga0.50Nからなり、厚さは約2.0μmである。キャリアバリア層36はp型Al0.75Ga0.25Nからなり、厚さは約15nmである。p型AlGaN層37はp型Al0.50Ga0.50Nからなり、厚さは約10nmである。p型GaNコンタクト層38の厚さは約15nmである。
活性層35は、図4に示す通り、量子井戸層35aと障壁層35bとが交互に積層された量子井戸構造を備えている。量子井戸層35aはAl0.401Ga0.60Nからなる。障壁層35bはAl0.601Ga0.40Nからなり、量子井戸数は5である。
図3に示した窒化物半導体層12の形成にあたっては、MOCVD(metal organic chemical vapor deposition)などのエピタキシャル成膜方法が用いられる。
窒化物半導体層12から基板11を分離する電磁放射線の発生源はエキシマレーザーとされる。エキシマレーザー光として通常用いられるのは波長193nmのArFエキシマレーザー光か波長248nmのKrFエキシマレーザー光である。
図2に示す構成の窒化物半導体層12であって、バッファ層21がAlNである場合には、波長248nmのKrFエキシマレーザー光を用いると、図6に示す通り、基板11とバッファ層21の界面でKrFエキシマレーザー光の吸収が生じず、KrFエキシマレーザー光はバッファ層21を抜けてさらに窒化物半導体層12の奥深くまで浸透する。そのような場所でKrFエキシマレーザー光が吸収され、熱分解が生じると、発光層24がダメージを受けるおそれがあり、好ましくない。図6中に描かれた、破線で囲んだ矩形であって、ハッチングを施していないものは、その領域で発熱が生じていないことを象徴している。
そこで、バッファ層21がAlNである場合には、波長193nmのArFエキシマレーザー光(図5参照)が使用される。波長193nmのArFエキシマレーザー光であれば、基板11とバッファ層21の界面でArFエキシマレーザー光が吸収されて発熱が生じ、基板11を分離することができる。図5中に描かれたハッチングを施した矩形はその領域における発熱を象徴している。
ArFエキシマレーザー光の設定条件の一例を以下に示す。パルス幅は20ナノ秒とする。照射面積は、メタルマスクまたはフォトマスクで整形を行い、500μm角とする。エネルギー密度は1000〜5000mJ/cm2とする。この設定条件のArFエキシマレーザー光を500μm角の照射エリアに1〜5パルス照射しては移動させるステップアンドリピートにより、5mm角といったウェハーサイズの窒化物半導体層12の全面をArFエキシマレーザー光で照射する。
ステップアンドリピートによるレーザー照射の概念を図8及び図9に示す。図8はチップ形状が角形の場合、図9はチップ形状が円形の場合である。図8及び図9で上方に示した例のように、照射エリア同士を互いの間に重なりが生じないように隣接させてレーザー照射してもよく、図8及び図9で下方に示した例のように、照射エリア同士を互いの間に重なりが生じる形で連続させてレーザー照射してもよい。
図2に示す構成の窒化物半導体層12であって、バッファ層21がGaNである場合は、波長248nmのKrFエキシマレーザー光(図7参照)が使用される。図7中に描かれたハッチングを施した矩形はその領域における発熱を象徴している。
KrFエキシマレーザー光の設定条件の一例を以下に示す。パルス幅は30ナノ秒とする。照射面積は、メタルマスクまたはフォトマスクで整形を行い、0.8mm角とする。エネルギー密度は700mJ/cm2とする。この設定条件のKrFエキシマレーザー光を0.8mm角の照射エリアに1パルス照射しては移動させる図8または図9に示すようなステップアンドリピートにより、6mm角といったウェハーサイズの窒化物半導体層12の全面をKrFエキシマレーザー光で照射する。
窒化物半導体層12が形成される基板11としては、例えば直径が2インチサイズであるサファイア基板が用いられる。このような寸法の基板11は、窒化物半導体層12の形成が完了した後、窒化物半導体層12共々1チップのサイズに分割される。
1チップサイズは、例えば1辺の長さが0.3mm程度の正方形とすることができる。窒化物半導体層12を発光デバイスとして用いる場合、大出力化のためには発光面積の拡大、すなわちチップサイズの拡大が有効である。例えば1辺の長さが0.5mm以上や1mm以上といったチップサイズにすればよい。チップサイズの拡大には、レジスト塗布工程で均一塗布が容易になるというメリットもある。1辺の長さが5mm以上というチップサイズにすれば、レジスト塗布の容易化に加えて、チップのハンドリングが容易になり、スループットが向上するというメリットももたらされる。さらに、1辺の長さが1cm程度というチップサイズにすれば、大出力になることは当然であるが、基板の分離が容易といったメリットも生まれる。
基板11と窒化物半導体層12を1チップサイズに分割するのは、レーザースクライブ法などを用いて行われる。図10と図11に2通りの分割手順を示す。
図10に示す手順は、窒化物半導体層12に対しp型化熱処理を行った段階で分割し、その後、分割後のチップに対しp電極を蒸着するというものである。この手順によると、金属蒸着膜が分割されないので、金属蒸着膜の端にダレが発生しない。またウェハーサイズが大きいと熱処理に伴うウェハーの反りも大きく、電極剥がれなどの問題を生じるが、ウェハーを分割してから電極を蒸着するという手順であれば、そのような問題の発生を避けられる。
図11に示す手順は、窒化物半導体層12に対しp型化熱処理とp電極の蒸着を済ませた後に分割するというものである。この手順によれば1回の処理で多くのチップを産出することができ、スループットが向上する。金属蒸着膜のダレの問題に関しては、分割箇所の金属蒸着膜を除去しておいてから分割することで問題を解決できる。
基板11と窒化物半導体層12のチップ形状は、図15に示す角形(正方形や矩形)に限定されない。図16に示す円形であってもよい。チップ形状を円形とすることのメリットは後で説明する。
上記のように1チップサイズに分割した基板11と窒化物半導体層12は、図1の(d)の工程で支持基板13(図12参照)に貼り付けられる。大面積の支持基板13にチップサイズに分割する前の基板11と窒化物半導体層12のチップを貼り付け、基板11を分離した後に、窒化物半導体層12と支持基板13を分割するという手順もあり得るが、それは、基板11を分離されて極薄膜となった窒化物半導体層12に対し支持基板分割時の応力が及び、結晶品質の劣化を招くおそれがあり、好ましくない。
そこで、支持基板13の方も基板11と窒化物半導体層12のチップサイズに見合ったサイズに予め加工しておくのがよい。基板11と窒化物半導体層12のチップサイズが5mm角であれば、支持基板13は1辺が5mm以上の角形ということになる。窒化物半導体層12に対してワイヤーボンディングが行われる場合は、支持基板13はワイヤーを張る領域も含めたサイズとする必要がある。また支持基板13のサイズを決めるにあたっては放熱性も考慮しなければならない。製造工程でのハンドリングの容易性や、使用時の放熱性などを考慮すれば、例えば、基板11と窒化物半導体層12が1辺1mm以下の角形であっても、支持基板13は1辺3mm以上の角形であるとより好ましい。
図12及び図13に示す支持基板13に対する基板11と窒化物半導体層12の組み合わせ態様では、支持基板13の上にパッド電極15が形成され、パッド電極15の上に貼り付け材料層14が形成されているが、パッド電極15を介さず支持基板13の上に直接貼り付け材料層14が形成されることもある。図22から図24に示す実施形態では支持基板13の上に直接貼り付け材料層14が形成された状態が描かれている。いずれにせよ、貼り付け材料層14に窒化物半導体層12が貼り付けられるのであるが、その前に踏むべき手順がある。それは図1の(c)の工程、すなわち1チップに分割された基板11と半導体層12の側面に保護膜を形成するという工程である。
図14には1チップに分割された基板11と窒化物半導体層12の側面に保護膜16が形成された状態が示されている。保護膜16としては例えばSiO2が用いられる。保護膜16の形成にあたっては、基板11と窒化物半導体層12の側面にも成膜が可能な成膜装置を用いる。
保護膜16を形成するに際し、基板11と窒化物半導体層12を保持するやり方には2通りある。その1は、図17及び図18に示すように、基板11が下で窒化物半導体層12が上の状態、すなわちフェイスアップの状態とするやり方である。その2は、図19及び図20に示すように、窒化物半導体層12が下で基板11が上の状態、すなわちフェイスダウンの状態とするやり方である。
フェイスダウンでは窒化物半導体層12を下から治具17で支える。そのため、窒化物半導体層12の表面に保護膜16が形成されない部分が生じる。その部分が窒化物半導体層12の側面であると、本発明の効果が減殺されてしまう。従って、保護膜形成時には基板11と窒化物半導体層12をフェイスアップで支持しておくのがよい。
窒化物半導体層12の上面における保護膜16の厚さは3μmとすることができる。保護膜16は窒化物半導体層12と共に貼り付け材料層14に埋め込まれるので、保護膜16の存在が基板11と窒化物半導体層12の反りに悪影響を及ぼすといった事態は、基本的には発生しない。しかしながら保護膜16が厚ければそのような悪影響が生じる可能性を排除できない。また保護膜16を誘電体膜とした場合、保護膜16が厚ければ形成に時間がかかり、生産性が悪化する。それらを考慮すると、窒化物半導体層12の上面における保護膜16の厚さは5μm以下にするのがよい。
基板11と窒化物半導体層12の側面における保護膜16の厚さは、窒化物半導体層12の上面における保護膜16の厚さよりも厚くする。すなわち図15及び図16に示すように、窒化物半導体層12の上面における保護膜16の厚さが5μm以下であるならば、基板11と窒化物半導体層12の側面における保護膜16の厚さは5μm以上とする。図15は基板11が角形である場合、図16は基板11が円形である場合を示す。
それが可能であるならば、基板11と窒化物半導体層12の側面に50μm程度の厚さの保護膜16を形成することもできる。基板11と窒化物半導体層12の側面に形成された保護膜16が厚ければ、貼り付け材料層14に対し後述の処理を行うとき、処理が楽である。
基板11と窒化物半導体層12を1チップサイズに分割する工程の説明のところで触れた、窒化物半導体層12に対するp電極の蒸着は、保護膜16を形成した後に行うこともできる。その時は保護膜を形成した基板11と窒化物半導体層12をフェイスダウンの状態で支持しておいてp電極の蒸着を行う。窒化物半導体層12を下から支える治具と窒化物半導体層12の間に保護膜16が介在するので、治具と窒化物半導体層12の間には隙間が生じている。このため、保護膜16から露出している窒化物半導体層12の全面に、治具によって邪魔されることなくp電極を蒸着することができる。この場合、保護膜16を、蒸着金属による被覆領域を画定する手段として利用することができる。
上記のように保護膜16を形成した後、基板11と窒化物半導体層12を支持基板13上の貼り付け材料層14に加熱圧着で貼り付ける。すなわち図1の(d)の工程を遂行する。そのために基板11と窒化物半導体層12を、図21に示す通り、窒化物半導体層12が下で基板11が上の状態に置く。
次いで図22に示す通り、窒化物半導体層12と基板11、及びそれらを囲む保護膜16を貼り付け材料層14に加熱圧着する。
貼り付け材料層14の厚さは10μm以上とするのがよい。50μmであればより好ましい。100μm以上であってもよい。このように貼り付け材料層14はある程度の厚さを有していることが求められる。しかしながら厚すぎるのは材料コストの観点から好ましくない。そこで、例えば500μmといった値を貼り付け材料層14の厚さの上限として設定することができる。尚、ここでの厚さとは、加熱圧着処理された後の窒化物半導体層12と支持基板13の間ではなく、それ以外の部分の、接着材料の厚さを意味する。
窒化物半導体層12と基板11、及び保護膜16を貼り付け材料層14に上から押し付けると、窒化物半導体層12と基板11、及び保護膜16は貼り付け材料層14の中に沈み込み、逆に貼り付け材料層14は窒化物半導体層12と基板11、及び保護膜16の外側に盛り上がる。貼り付け材料層14の厚さの方が窒化物半導体層12の厚さよりも大であれば、貼り付け材料層14の盛り上がりは基板11の側面にまで達する。もし保護膜16が存在していなかったら、基板11の側面に貼り付け材料層14が付着してしまうところであるが、保護膜16が存在するため、そのような事態は避けられる。
次いで図23に示す通り保護膜16を除去する。保護膜16がSiO2で形成されていれば、フッ素系溶液により保護膜16を溶解することができる。これにより、貼り付け材料層14の中で保護膜16が存在した箇所は空間と化す。
次いで基板11と窒化物半導体層12の界面に電磁放射線を照射してその界面で基板11と窒化物半導体層12を分離し、基板11を分離する。前述の通り、貼り付け材料層14の中で保護膜16が存在した箇所は空間と化しており、基板11と貼り付け材料層14は接触していない。このため、基板11は貼り付け材料層14によって阻害されることなく分離される。基板分離後の状態は図24に示す通りである。その後、支持基板13と貼り付け材料層14、及び窒化物半導体層12は次工程に送られる。
図25には窒化物半導体層12の表面に電極18が形成されている状態が描かれている。基板11、窒化物半導体層12、及び電極18の周囲に保護膜16を形成し、それらを支持基板13上の貼り付け材料層14に加熱圧着し(図26参照)、保護膜16を除去し(図27参照)、基板11を分離すると、貼り付け材料層14の上に電極18と窒化物半導体層12がとり残される(図28参照)。その後、支持基板13と貼り付け材料層14、及び窒化物半導体層12と電極18は次工程に送られる。
図29には図25と同様に表面に電極18が形成された窒化物半導体層12と基板11が描かれているが、その窒化物半導体層12と基板11、及び保護層16は次のような形状とされている。すなわち窒化物半導体層12は基板11に接する面よりもその反対側の面の方が面積小となるように側面が傾斜した形にされる。基板11は、窒化物半導体層12に接する面よりもその反対側の面の方が面積大となるように側面が傾斜した形にされる。窒化物半導体層12の側面の傾斜角度と基板11の側面の傾斜角度は等しくされる。保護膜16の側面にも窒化物半導体層12及び基板11の側面の傾斜角度と同じ傾斜角度が生じる。
上記のように側面が傾斜している基板11、窒化物半導体層12、及び保護膜16を支持基板13上の貼り付け材料層14に加熱圧着し(図30参照)、保護膜16を除去(図31参照)すると、貼り付け材料層14の中で保護膜16が存在していた空間に傾斜面14aが生じる。上記のように基板11の側面と窒化物半導体層12の側面の両方が同じように傾斜していると、傾斜面の面積が大きいため、貼り付け材料層14への形状転写効果が大きいというメリットがある。
その後基板11を分離すると、貼り付け材料層14の上に電極18と窒化物半導体層12がとり残される(図32参照)。
窒化物半導体層12が発光デバイスに用いられる場合、窒化物半導体層12から出射される光は、大半が窒化物半導体層12の主平面からそれと垂直方向に出射される。そのような主たる光が図33において上向きのブロック矢印で象徴されている。しかしながら、窒化物半導体層12の側面から側方に、図33では水平方向に、出射する光も一部存在する。そのような光は傾斜面14aに当たり、保護膜除去後の空間の外側へと反射される。この反射光が前記主たる光に加わることで、光の利用効率が向上する。
図34には図29に描かれた形状を少し変化させた形状が描かれている。ここでは、表面に電極18が形成された窒化物半導体層12は基板11に接する面よりもその反対側の面の方が面積小となるように側面が傾斜した形とされているが、基板11の側面は垂直のままとされている。保護膜16の側面には窒化物半導体層12の側面の傾斜角度と同じ傾斜角度がつけられている。
上記の基板11、窒化物半導体層12、及び保護膜16を支持基板13上の貼り付け材料層14に加熱圧着し(図35参照)、保護膜16を除去(図36参照)すると、貼り付け材料層14の中で保護膜16が存在していた空間に傾斜面14aが生じる。その後基板11を分離すると、貼り付け材料層14の上に電極18と窒化物半導体層12がとり残される(図37参照)。窒化物半導体層12が発光デバイスに用いられる場合、窒化物半導体層12の側面から側方に出射した光は、図33に示したのと同様に傾斜面14aに当たって図の上方に反射され、窒化物半導体層12の主平面からそれと垂直方向に出射される主たる光に加わる。これにより、光の利用効率が向上する。
保護膜除去後に窒化物半導体層12の側面に対峙する面、すなわち傾斜面14aは、光を効率的に取り出すため、光反射率が高い方がよい。そこで、次のようして傾斜面14aの光反射率を高める。
第1の手段としては、貼り付け材料層14の材料に光反射率の高い材料を使用することが挙げられる。
光反射率の高い材料を貼り付け材料層14に用いることができないときは、図38に示す通り、傾斜面14aに光反射率の高い反射膜19を形成する。反射膜19はフォトリソグラフィーと金属蒸着で形成することができる。
側面に傾斜をつけることを考えると、窒化物半導体層12と基板11のチップは平面形状が円形であることが望ましい。チップ形状が円形であればチップを回転させながら研磨することが可能になり、傾斜面形成の効率が上がり、スループットが向上する。
チップ形状が角形であっても、1辺ずつ研磨することで傾斜をつけることができる。傾斜面の形成には、特開2009−262249号公報に記載されているような装置を用いることができる。
チップ形状が角形である場合、電磁放射線の照射スポット形状を角形にすると、図8に示す通り、最小限の照射(ショット)でチップ全面を無駄なく照射することができる。チップ形状が円形である場合、照射スポット形状を角形にすると、端の部分の照射で無駄が生じる可能性がある。この場合は照射スポット形状を円形が好ましい。
本発明の発明者は様々な実験を行って本発明の有用性を確かめた。以下、その実験で得られた知見を「実施例」として紹介する。
<実施例1>
2インチサイズのサファイア基板に、図3及び図4に示す構造の窒化物半導体層を形成した。その基板をレーザースクライブ法で6mm角のチップに分割した。チップ分割後、プラズマCVD法を用いて保護膜となるSiO2膜を1.5μmの厚さに蒸着した。窒化物半導体層の上面では端から50μmまでSiO2膜を形成した。その後、p電極としてPdを200nmとAuを1000nm、EB蒸着法で蒸着した。なお窒化物半導体層に接する電極材料としては、PdやAuの他、発光波長で反射率が高い材料、例えばAl、Ni、Ptなども好ましい。Alは最も反射率が高いので好ましい。NiやPtも比較的反射率が高くp型半導体とのコンタクト性能が良好なので好ましい。
支持基板としてはゲルマニウムを10mm角に分割したものを用意した。貼り付け材料としてはSnを20質量%含有し、残りがAuからなるAuSnを用いた。支持基板の上にAuSnを置き、その上にSiO2保護膜を有するチップを置き、従来用いられているウェハーボンディング装置で貼り付けを行った。その後フッ素系溶液でSiO2保護膜を除去した。貼り付け材料の厚さは30μmであった。
続いてレーザーリフトオフでサファイア基板を分離した。光源は波長193nmのArFエキシマレーザー、パルス幅は20ナノ秒とした。照射面積は、メタルマスク若しくは、フォトマスクにより整形を行い、500μm角とした。照射エネルギー密度は2000mJ/cm2とした。
500μm角である1照射エリアに1〜5パルス程度照射しては移動させるステップアンドリピートにより、5mm角のチップ全面に照射を行った。その結果、SiO2保護膜を形成していたチップではサファイア基板を10個中9個分離することができた。
SiO2保護膜を形成していなかったチップについても上記と同じ条件で、但しSiO2保護膜の除去というステップは踏まないで、実験を行ったが、その結果、サファイア基板を分離することができたのは10個中0個であった。殆どのサファイア基板の側壁にAuSnが付着していた。
貼り付け材料の厚さのみを30μmから10μmに変え、上記の実験を繰り返した。その結果、SiO2保護膜を形成していたチップではサファイア基板を10個中10個分離することができた。SiO2保護膜を形成していなかったチップではサファイア基板を10個中2個しか分離することができなかった。サファイア基板を分離できた2個のチップでは、成長した窒化物半導体層の側面のみにAuSnが付着していた。
<実施例2>
2インチサイズのサファイア基板に、図3及び図4に示す構造の窒化物半導体層を形成した。その基板をレーザースクライブ法で10mm角のチップに分割した。分割後、窒化物半導体のチップとサファイア基板の両方の側面に図29に示すような傾斜面を形成した。それからプラズマCVD法を用いて保護膜となるSiO2膜を3.0μmの厚さに蒸着した。
支持基板にはAlN基板を用いた。その表面にはパッド電極を形成した。なお、パッド電極の材料としてはTi/AuやNi/Auなどを用いることができる。
貼り付け材料としては熱可塑性樹脂を用いた。厚さは約50μmとした。貼り付け材料の上にSiO2保護膜を有するチップを置き、従来用いられているウェハーボンディング装置で貼り付けを行った。その後フッ素系溶液でSiO2保護膜を除去した。
続いて貼り付け材料層に貼り付けたチップからレーザーリフトオフでサファイア基板を分離した。光源はArFエキシマレーザー、パルス幅は20ナノ秒とした。照射面積は、メタルマスク若しくは、フォトマスクにより整形を行い、1000μm角とした。照射エネルギー密度は2500mJ/cm2とした。
1000μm角である1照射エリアに1〜3パルス程度照射しては移動させるステップアンドリピートにより、12mm角のチップ全面に照射を行った。その結果、SiO2保護膜を形成していたチップでは全サンプルでサファイア基板を分離することができた。
後でその一例を示すn−AlGaN頭だしエッチングを行い、電極を形成し、電流注入による光出力特性について検討した。
窒化物半導体のチップとサファイア基板の両方の側面に図29に示すような傾斜面を形成した結果、貼り付け材料に傾斜面を形成しない場合(比較サンプル)に比べて光出力が約1.6倍になったことを確認できた。このような結果が得られたのは、窒化物半導体チップから横方向に出射する光を有効に取り出せたことに起因すると考えられる。
<実施例3>
2インチサイズのサファイア基板に、図39及び図40に示す構造の窒化物半導体層を形成した。図39において、基板11は両面研磨を施したサファイア基板であり、その上に低温GaNバッファ層41、ノンドープGaN層42、n型GaN層43、バッファ層44、活性層45、キャリアバリア層46、p型GaN層47、及びp型GaNコンタクト層48からなる窒化物半導体層12が形成されている。
低温GaNバッファ層41の厚さは約100nm、ノンドープGaN層42の厚さは約4μm、n型GaN層43の厚さは約2μm、バッファ層44の厚さは約0.6μm、キャリアバリア層46の厚さは約15nm、p型GaN層47の厚さは約80nm、p型GaNコンタクト層48の厚さは約20nmである。
キャリアバリア層46はp型AlGaNからなる。バッファ層44は約1.5nmのノンドープGaNと約1.5nmのノンドープIn0.03Ga0.97Nからなる超格子構造を備える。
活性層45は、図40に示す通り、量子井戸層45aと障壁層45bとが交互に積層された量子井戸構造を備えている。量子井戸層45aは、約3.5nmの厚さを有するノンドープIn0.16Ga0.84Nよりなる井戸層と、約15nmの厚さを有するノンドープGaNよりなる障壁層を6周期積層した6量子井戸構造を備える。
図39に示した窒化物半導体層12の形成にあたっては、MOCVD(metal organic chemical vapor deposition)などのエピタキシャル成膜方法が用いられる。
図30の基板11をレーザースクライブ法で6mm角のチップに分割した。チップ分割後、プラズマCVD法を用いて保護膜となるSiO2膜を1.5μmの厚さに蒸着した。窒化物半導体層の上面では端から50μmまでSiO2膜を形成した。その後、p電極としてPdを200nmとAuを1000nm、EB蒸着法で蒸着した。なお窒化物半導体層に接する電極材料としては、PdやAuの他、発光波長で反射率が高い材料、例えばAl、Ni、Ptなども好ましい。Alは最も反射率が高いので好ましい。NiやPtも比較的反射率が高くp型半導体とのコンタクト性能が良好なので好ましい。
支持基板としてはシリコン基板を10mm角に分割したものを用意した。貼り付け材料としてはSnを20質量%含有し、残りがAuからなるAuSnを用いた。貼り付け材料の厚さは30μmとした。支持基板の上にAuSnを置き、その上にSiO2保護膜を有するチップを置き、従来用いられているウェハーボンディング装置で貼り付けを行った。その後フッ素系溶液でSiO2保護膜を除去した。
続いてAuSnに貼り付けたチップからレーザーリフトオフでサファイア基板を分離した。光源は波長238nmのKrFエキシマレーザー、パルス幅は30ナノ秒とした。照射面積は、マスクにより整形して0.8mm角とした。照射エネルギー密度は700mJ/cm2とした。0.8mm角である1照射エリアに1パルス照射しては移動させるというステップアンドリピートにより、6mm角のチップ全面に照射を行った。その結果、SiO2保護膜を形成していたチップではサファイア基板を10個中10個分離することができた。SiO2保護膜を形成していなかったチップについても上記と同じ条件で、但しSiO2保護膜の除去というステップは踏まないで、実験を行ったが、その結果は10個中2個からしかサファイア基板を分離することができなかった。分離できた2個のサファイア基板はいずれも側壁にAuSnが付着していないものであった。
貼り付け材料の厚さのみを30μmから10μmに変え、上記の実験を繰り返した。その結果、SiO2保護膜を形成していたチップではサファイア基板を10個中10個分離することができた。SiO2保護膜を形成していなかったチップではサファイア基板を10個中4個しか分離することができなかった。サファイア基板を分離できた4個のチップでは、成長した窒化物半導体層の側面のみにAuSnが付着していた。
<実施例4>
2インチサイズのサファイア基板に、図39及び図40に示す構造の窒化物半導体層を形成した。その基板をレーザースクライブ法で10mm角のチップに分割した。分割後、窒化物半導体のチップとサファイア基板の両方の側面に図29に示すような傾斜を形成した。それからプラズマCVD法を用いて保護膜となるSiO2膜を3.0μmの厚さに蒸着した。
支持基板にはAlN基板を用いた。その表面にはパッド電極を形成した。なお、パッド電極の材料としてはTi/AuやNi/Auなどを用いることができる。
貼り付け材料としては熱可塑性樹脂を用いた。厚さは約50μmとした。貼り付け材料の上にSiO2保護膜を有するチップを置き、従来用いられているウェハーボンディング装置で貼り付けを行った。その後フッ素系溶液でSiO2保護膜を除去した。
続いて貼り付け材料層に貼り付けたチップからレーザーリフトオフでサファイア基板を分離した。光源はKrFエキシマレーザー、照射面積はマスクにより整形して2.0mm角とした。照射エネルギー密度は800mJ/cm2とした。
実施例3と同様、SiO2保護膜を形成していたチップではサファイア基板を全て分離することができた。
サファイア基板分離後に残された貼り付け材料層は、傾斜した光反射面を有する。この構成は、そのような光反射面を持たない構成に比べ、光出力が1.4倍程度増大した。これは、横方向の光の取り出しを効率良く行うことができたことによるものと考えられる。
尚、サファイア基板分離後の処理としては、ノンドープのGaN層に対し、RIEやICPを用いたドライエッチングや、KOH溶液やNaOH、水酸化テトラアンモニウム(PMAH)などのアルカリ性溶液を用いたウェットエッチングで、n型GaNの頭出しを行うことができる。
サファイア基板分離後の処理として、本発明ではICPドライエッチングを行った。その際、貼り付け材料層に接触していなかった部分が除去された。これはレーザー光照射の際、貼り付け材料層と空気の放熱性の違いにより、貼り付け材料層に接した部分と接していない部分とで温度分布に差が生じ、貼り付け材料層に接触していなかった部分にクラックが生じて強度が低下したため、エッチング中に除去されたものと考えられる。
エッチング工程の後で、エッチングによるダメージを除去するため、熱処理を行うこともできる。その後、n電極として、AlやTi、Mo、Auなどを含有する電極材料を蒸着する。n電極は、光取り出しの観点から、全面蒸着ではなく、メッシュ形状とすることも可能である。また貼り付け材料層の光反射面の反射率を高めるため、Alなどの金属材料を蒸着する。
図41には、貼り付け材料層に光反射面を有する半導体デバイスを形成する一連の工程が示されている。図41において、(a)の工程では基板の上に半導体層が形成される。(b)の工程では基板と半導体層が1チップの大きさに分割される。(c)の工程では基板と半導体層の側面に傾斜が形成される。(d)の工程では側面が傾斜した基板と半導体層に保護膜が形成され、保護膜の側面も傾斜面とされる。(e)の工程では半導体層の表面に電極が形成される。(f)の工程では側面に保護膜が形成された基板と半導体層が支持基板上の貼り付け材料層に貼り付けられる。(g)の工程では保護層が除去される。(h)の工程では半導体層から基板が分離される。(i)の工程では半導体層の側面が垂直にされる。(j)の工程では基板が分離した後の半導体層の表面にボンディング用の電極が形成される。(k)の工程では半導体層上の電極にボンディングツールでワイヤーボンディングが施される。
以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。
本発明は、半導体デバイス製造工程に広く利用可能である。
11 基板
12 窒化物半導体層
13 支持基板
14 貼り付け材料層
14a 傾斜面
15 パッド電極
16 保護膜

Claims (24)

  1. 基板とその上に形成された半導体層の界面に電磁放射線を照射して前記基板と前記半導体層を分離する工程の前処理として、前記半導体層を前記基板とは別の支持基板に貼り付けるにあたり、
    前記基板と前記半導体層の側面に保護膜を形成する工程と、
    前記保護膜が形成された前記半導体層を貼り付け材料層を介して、前記支持基板に貼り付ける工程と、
    前記貼り付け材料層を介して、前記支持基板に貼り付けられた前記半導体層、及び前記基板から、前記保護膜を除去する工程と、
    が遂行されることを特徴とする半導体デバイス製造工程。
  2. 前記半導体層を前記基板とは別の支持基板に貼り付けるにあたり、前記半導体層よりも厚さが大である前記貼り付け材料層を介して、貼り付けることを特徴とする請求項1に記載の半導体デバイス製造工程。
  3. 前記基板と前記半導体層は、前記保護膜形成前に1チップの大きさに分割されることを特徴とする請求項1または2に記載の半導体デバイス製造工程。
  4. 前記支持基板は、前記1チップの大きさに分割された前記基板と前記半導体層を貼り付けるのに適した大きさにされることを特徴とする請求項3に記載の半導体デバイス製造工程。
  5. 前記半導体層の一部が発光デバイスの発光部となることを特徴とする請求項1から4のいずれかに記載の半導体デバイス製造工程。
  6. 前記半導体層は、前記基板に接する面よりもその反対側の面の方が面積小となるように側面が傾斜した形にされることを特徴とする請求項5に記載の半導体デバイス製造工程。
  7. 前記基板は、前記半導体層に接する面よりもその反対側の面の方が面積大となるように側面が傾斜した形にされることを特徴とする請求項5または6に記載の半導体デバイス製造工程。
  8. 前記保護膜を除去した後に前記半導体層の側面に対峙する前記貼り付け材料層の面が、前記半導体層の側面から出射した光を前記保護膜除去後の空間の外側へと反射する傾斜面となるように、前記保護膜は側面が傾斜した形にされることを特徴とする請求項5に記載の半導体デバイス製造方法。
  9. 前記貼り付け材料層は、前記保護膜除去後に前記半導体層の側面に対峙する面の光反射率が高められていることを特徴とする請求項6から8のいずれかに記載の半導体デバイス製造工程。
  10. 前記貼り付け材料層に光反射率の高い材料が用いられていることを特徴とする請求項6から8のいずれかに記載の半導体デバイス製造工程。
  11. 前記基板は、研磨して薄くする工程を経たものであることを特徴とする請求項1から10のいずれかに記載の半導体デバイス製造工程。
  12. 半導体デバイスのチップ形状が角形であることを特徴とする請求項1から11のいずれかに記載の半導体デバイス製造工程。
  13. 半導体デバイスのチップ形状が円形であることを特徴とする請求項1から11のいずれかに記載の半導体デバイス製造工程。
  14. 前記半導体層が窒化物半導体からなることを特徴とする請求項1から13のいずれかに記載の半導体デバイス製造工程。
  15. 前記基板がサファイア基板であることを特徴とする請求項1から14のいずれかに記載の半導体デバイス製造工程。
  16. 前記基板と前記半導体層の界面にAlN層が形成されていることを特徴とする請求項14または15に記載の半導体デバイス製造工程。
  17. 前記基板と前記半導体層の界面にGaN層が形成されていることを特徴とする請求項14または15に記載の半導体デバイス製造工程。
  18. 前記電磁放射線の発生源がエキシマレーザーであることを特徴とする請求項1から17のいずれかに記載の半導体デバイス製造工程。
  19. 前記エキシマレーザーがArFエキシマレーザーであることを特徴とする請求項18に記載の半導体デバイス製造工程。
  20. 前記エキシマレーザーがKrFエキシマレーザーであることを特徴とする請求項18に記載の半導体デバイス製造工程。
  21. 前記保護膜がSiO2からなることを特徴とする請求項1から20のいずれかに記載の半導体デバイス製造工程。
  22. 前記保護膜がプラズマCVD法により形成されることを特徴とする請求項1から21のいずれかに記載の半導体デバイス製造工程。
  23. 前記保護膜は、前記半導体膜をフェイスアップとした状態で形成されることを特徴とする請求項1から22のいずれかに記載の半導体デバイス製造工程。
  24. 請求項1から23のいずれかの半導体デバイス製造工程を経て製造された半導体デバイス。
JP2012128744A 2012-06-06 2012-06-06 半導体デバイス製造工程及びその製造工程を経て製造された半導体デバイス Pending JP2013254814A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128744A JP2013254814A (ja) 2012-06-06 2012-06-06 半導体デバイス製造工程及びその製造工程を経て製造された半導体デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128744A JP2013254814A (ja) 2012-06-06 2012-06-06 半導体デバイス製造工程及びその製造工程を経て製造された半導体デバイス

Publications (1)

Publication Number Publication Date
JP2013254814A true JP2013254814A (ja) 2013-12-19

Family

ID=49952103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128744A Pending JP2013254814A (ja) 2012-06-06 2012-06-06 半導体デバイス製造工程及びその製造工程を経て製造された半導体デバイス

Country Status (1)

Country Link
JP (1) JP2013254814A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191911A (ja) * 2014-03-27 2015-11-02 株式会社東芝 半導体発光装置
WO2016051857A1 (ja) * 2014-09-30 2016-04-07 シャープ株式会社 窒化物半導体発光装置
WO2022091670A1 (ja) * 2020-10-30 2022-05-05 信越化学工業株式会社 発光ダイオード供給基板の製造方法、発光ダイオードディスプレイの製造方法、発光ダイオードディスプレイの分割ユニットの製造方法、及び素子供給基板の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191911A (ja) * 2014-03-27 2015-11-02 株式会社東芝 半導体発光装置
WO2016051857A1 (ja) * 2014-09-30 2016-04-07 シャープ株式会社 窒化物半導体発光装置
WO2022091670A1 (ja) * 2020-10-30 2022-05-05 信越化学工業株式会社 発光ダイオード供給基板の製造方法、発光ダイオードディスプレイの製造方法、発光ダイオードディスプレイの分割ユニットの製造方法、及び素子供給基板の製造方法
JP2022073007A (ja) * 2020-10-30 2022-05-17 信越化学工業株式会社 発光ダイオード供給基板の製造方法、発光ダイオードディスプレイの製造方法、発光ダイオードディスプレイの分割ユニットの製造方法、及び素子供給基板の製造方法

Similar Documents

Publication Publication Date Title
KR101438818B1 (ko) 발광다이오드 소자
US8203162B2 (en) Light emitting device having vertical structrue and method for manufacturing the same
US20050173692A1 (en) Vertical GaN light emitting diode and method for manufacturing the same
TW201234642A (en) Light emitting device, light emitting module, and method for manufacturing light emitting device
JP2011223049A (ja) 高光抽出led用の基板除去方法
JP4540514B2 (ja) 化合物半導体発光素子およびその製造方法
US20110133216A1 (en) Method of manufacturing semiconductor light emitting device and stacked structure body
JP2011505699A (ja) 光出力が高められた窒化ガリウム系薄型発光ダイオード
JP2009212500A (ja) 化合物半導体発光ダイオード
TW201434182A (zh) 半導體發光裝置及其製造方法
JP2007258672A (ja) 発光ダイオード及びその製造方法
US8158490B2 (en) Method for producing group III nitride-based compound semiconductor device
TWI493758B (zh) 半導體發光裝置及發光模組
JP2015088532A (ja) 窒化物半導体素子の製造方法
KR100774196B1 (ko) 수직형 발광 소자 제조방법
JP2013254814A (ja) 半導体デバイス製造工程及びその製造工程を経て製造された半導体デバイス
JP6617401B2 (ja) 半導体発光素子
JP2004228290A (ja) 半導体発光素子及びその製造方法
KR100752348B1 (ko) 수직 구조 발광 다이오드 제조 방법
KR20090115902A (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및제조방법
KR100752721B1 (ko) 수직구조 질화갈륨계 led 소자의 제조방법
TW201414004A (zh) 發光二極體的製作方法
KR100710394B1 (ko) 수직형 발광 소자의 제조방법
KR101526566B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및제조방법
JP6755230B2 (ja) 窒化物半導体発光素子および窒化物半導体発光素子の製造方法