JP2013246976A - 導電性光学部材用支持材、この導電性光学部材用支持材を備える導電性光学部材、及びこの導電性光学部材を備える電子デバイス - Google Patents

導電性光学部材用支持材、この導電性光学部材用支持材を備える導電性光学部材、及びこの導電性光学部材を備える電子デバイス Download PDF

Info

Publication number
JP2013246976A
JP2013246976A JP2012120034A JP2012120034A JP2013246976A JP 2013246976 A JP2013246976 A JP 2013246976A JP 2012120034 A JP2012120034 A JP 2012120034A JP 2012120034 A JP2012120034 A JP 2012120034A JP 2013246976 A JP2013246976 A JP 2013246976A
Authority
JP
Japan
Prior art keywords
optical member
conductive
layer
conductive optical
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012120034A
Other languages
English (en)
Inventor
Ryozo Fukuzaki
僚三 福崎
Kazuhiko Kaneuchi
和彦 金内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012120034A priority Critical patent/JP2013246976A/ja
Publication of JP2013246976A publication Critical patent/JP2013246976A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】本発明の目的とするところは、金属ナノワイヤを含有する導電層を備える導電性光学部材を得るために使用され、この導電性光学部材において導電層が視認されにくくなり、更に導電層の耐久性が向上される導電性光学部材用支持材を提供することにある。
【解決手段】本発明に係る導電性光学部材用支持材20は、透明な基材2と、前記基材2を覆う機能層8とを備える。前記機能層8が、アンチモン粒子とアンチモン化合物粒子とから選ばれる少なくとも一種からなる粒子21を含有し、前記機能層8の厚みが150nm以下であり、前記機能層8の、波長380nmの光の、入射角5°での正反射率が、8%以上である。
【選択図】図1

Description

本発明は、透明性と導電性とを併せ持つ導電性光学部材を得るために用いられる導電性光学部材用支持材、この導電性光学部材用支持材を備える導電性光学部材、及びこの導電性光学部材を備える電子デバイスに関する。
従来、透明性と導電性とを併せ持つ導電性光学部材は、タッチパネル、有機EL、液晶ディスプレイ、太陽電池等の電子デバイスに広く適用されている。このような導電性光学部材として、近年、金属ナノワイヤを利用するものが、提案されている。また、金属ナノワイヤを含有する導電層を保護したり、導電層における光の反射を抑制したりするために、導電層を被覆することも行われている。
例えば特許文献1には、透明基材の上に金属ナノワイヤを含む透明塗膜によって形成される透明導電膜(導電層)を設け、透明導電膜の表面に透明なオーバーコート層を設けると共にオーバーコート層を加水分解性シラン化合物の縮合物をマトリクス樹脂として形成することで、透明導電膜付き基材を得ることが開示されている。また、基材の表面に一層ないし複数層のハードコート層が形成され、透明導電膜がハードコート層の上に形成されることも、記載されている。
しかし、従来の導電性光学部材が外部から観察されると、金属ナノワイヤを含有する導電層の白っぽい色が視認されやすくなる。このため、導電性光学部材がタッチパネル等の電子デバイスに適用されると、導電層のパターン形状が視認されやすくなり、このため、電子デバイスで表示される画像等の視認性が、低下してしまう。
また、導電性光学部材がタッチパネル等の電子デバイスに使用される場合には、画像表示装置等とタッチパネルとの間のエアギャップや端面などにおいて、導電性光学部材が酸素、硫化水素等に曝されやすくなり、このため導電層が酸素に侵されて酸化されたり、硫化水素に侵されて硫化されたりしやすくなる。このため、導電層の耐久性が低下しやすいという問題もある。
特開2011−204649号公報
本発明は上記事由に鑑みてなされたものであり、その目的とするところは、金属ナノワイヤを含有する導電層を備える導電性光学部材を得るために使用され、この導電性光学部材において導電層が視認されにくくなり、更に導電層の耐久性が向上される導電性光学部材用支持材を提供することにある。
また、本発明の目的とするところは、前記導電性光学部材用支持材を備え、導電層が視認されにくく、且つ導電層の耐久性が高い導電性光学部材、及びこの導電性光学部材を備える電子デバイスを提供することにある。
本発明に係る導電性光学部材用支持材は、金属ナノワイヤを含有する導電層を備える導電性光学部材における前記導電層を支持するために用いられる導電性光学部材用支持材であって、透明な基材と、前記基材を覆う機能層とを備え、前記機能層が、アンチモン粒子とアンチモン化合物粒子とから選ばれる少なくとも一種からなる粒子を含有し、前記機能層の厚みが150nm以下であり、前記機能層の、波長380nmの光の、入射角5°での正反射率が、8%以上であることを特徴とする。
前記機能層の屈折率が、1.60以上であることが好ましい。
前記機能層が、前記基材上に、塗布法により形成されたものであることが好ましい。
本発明に係る導電性光学部材は、前記導電性光学部材用支持材と、前記機能層を覆う、金属ナノワイヤを含有する導電層とを備えることを特徴とする。
前記金属ナノワイヤが、銀ナノワイヤを含有することが好ましい。
本発明に係る電子デバイスは、前記導電性光学部材を備えることを特徴とする。
本発明によれば、機能層を備えることで、この機能層に重ねられる導電層が視認されにくくなり、且つこの導電層が酸素及び硫化水素に侵されにくくなる。このため、導電層が視認されにくく、且つ導電層の耐久性が高い導電性光学部材が、得られる。また、機能層を備えることで、高熱処理の際の基材からの低分子量成分のブリードアウトを抑制することができ、これにより高熱処理後の導電層の導通の安定化効果も併せて得られる。
本発明の一実施形態における導電性光学部材用支持材を示す断面図である。 本発明の一実施形態における導電性光学部材を示す断面図である。 本発明の一実施形態におけるタッチパネル及び画像表示機器を示す断面図である。
本実施形態に係る導電性光学部材用支持材20(以下、支持材20という)は、図1に示すように、透明な基材2と、基材2を覆う機能層8とを備える。
まず、基材2について説明する。基材2は光透過性を有することが好ましい。基材2の光線透過率は、50%以上であることが好ましく、70%以上であればより好ましく、80%以上であれば特に好ましい。
基材2の形状は、特に制限されないが、板状又はフィルム状であることが好ましい。特に、導電性光学部材1の生産性及び運搬性を向上する観点からは、基材2の形状はフィルム状であることが好ましい。
基材2がフィルム状である場合、基材2の厚みは10μm以上500μm以下の範囲であることが好ましい。この場合、基材2の透明性が特に良好になり、また導電性光学部材1の生産時及び取り扱い時の作業性も良好になる。基材2の厚みは、更に25μm以上200μm以下の範囲であることが好ましい。特に基材2の厚みが25μm以上150μm以下であると、導電性光学部材1の薄型化、軽量化が可能となり、また導電性光学部材1の表裏における干渉の発生が抑制され、更に基材2が加熱される際の熱収縮が抑制されて基材2の熱収縮による加工性の悪化等の不具合が抑制される。
基材2の材質は、特に制限されない。基材2の材質の例としては、ガラス、透明樹脂等が挙げられる。透明樹脂の例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル共重合体、トリアセチルセルロース、ポリオレフィン、ポリアミド、ポリ塩化ビニル、非晶質ポリオレフィン、シクロオレフィンポリマー、シクロオレフィンコポリマー、アクリレート樹脂、ウレタンアクリレート樹脂等が挙げられる。
特に、基材2が、ポリエステルから形成されることが好ましい。ポリエステルフィルムのうち、特に、ポリエチレンテレフタレート(PET)又はポリエチレンナフタレートからなる2軸延伸フィルムは、優れた機械的特性、耐熱性、耐薬品性等を有するため、磁気テープ、強磁性薄膜テープ、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、ラミネート用フィルム、ディスプレイ等の表面に貼るフィルム、各種部材の保護用フィルム等の素材として好適である。特に、ディスプレイ用途に関しては、液晶表示装置の部材であるプリズムレンズシート、タッチパネル、バックライト等のベースフィルムや、テレビの光学フィルムのベースフィルム、プラズマテレビの前面光学フィルターに用いられる光学フィルム、近赤外線カットフィルム、電磁波シールドフィルムのベースフィルム等として、好適である。
ポリエステルとして、例えば、テレフタル酸、イソフタル酸、2,6−ナフタリンジカルボン酸、4,4′−ジフェニルジカルボン酸等の芳香族ジカルボン酸成分と、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオール等のグリコール成分とが反応することで生成する芳香族ポリエステルが好ましい。特に、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタリンジカルボキシレートなどが、好ましい。またポリエステルは、前記例示した複数の成分等が共重合して生成したものでもよい。
基材2は有機または無機の粒子を含有してもよい。この場合、基材2の巻き取り性、搬送性等が向上する。基材2が含有することができる粒子として、炭酸カルシウム粒子、酸化カルシウム粒子、酸化アルミニウム粒子、カオリン、酸化珪素粒子、酸化亜鉛粒子、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、尿素樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子等が挙げられる。
また、基材2は、更に着色剤、帯電防止剤、紫外線吸収剤、酸化防止剤、潤滑剤、触媒、他の樹脂等も、透明性を損なわない範囲で含有してもよい。
基材2のヘーズは3%以下であることが好ましい。この場合、導電性光学部材1を通した映像等の視認性が向上し、光学的用途の部材として特に適するようになる。ヘーズが1.5%以下であれば更に好ましい。
基材2の、第一の主面とは反対側の第二の主面上には、透明な裏面被覆層9が積層していることが好ましい。この場合、基材2から低分子量成分が析出しにくくなり、このため基材2の白化が抑制される。このため、導電性光学部材1の良好な透明性が維持される。
裏面被覆層9の材質は、特に制限されないが、例えばアクリレート樹脂、ウレタンアクリレート樹脂等から形成される。
また、裏面被覆層9が基材2からの低分子量成分の析出を充分に抑制するためには、裏面被覆層9の厚みが、0.5μm以上10μm以下の範囲であることが好ましい。
また、裏面被覆層9は、アンチブロッキング性を有することが好ましい。すなわち、導電性光学部材1がロール状に巻き回されるなどして重ねられる場合に、裏面被覆層9によってブロッキングが抑制されることが好ましい。そのためには、裏面被覆層9の表面が凹凸に形成されることが好ましい。そのためには、裏面被覆層9の表面に機械的加工が施されることでこの表面が凹凸に形成されることが好ましい。また、裏面被覆層9がシリカ粒子等のフィラーを含有することでこの裏面被覆層9の表面に凹凸が形成されることも好ましい。この場合、裏面被覆層9が、例えばアクリレート樹脂またはウレタンアクリレート樹脂を80質量%以上95質量%以下の範囲で含有し、更に平均粒子径250nmのシリカ粒子を5質量%以上20質量%以下の範囲で含有することが好ましい。
また、裏面被覆層9によって導電性光学部材1の滑性を向上することも好ましく、そのためには、裏面被覆層9が例えばシリコーン系のレベリング剤を含有することも好ましい。
裏面被覆層9が形成される場合、基材2の、裏面被覆層9と重なる面には、裏面被覆層9が形成される前に、表面処理が施されることが好ましい。この場合、基材2と裏面被覆層9との間の濡れ性、密着性等の向上が可能となる。また、基材2の、機能層8と重なる面にも、機能層8が形成される前に、表面処理が施されることが好ましい。この場合、基材2と機能層8との間の濡れ性、密着性等の向上が可能となる。表面処理の方法としては、プラズマ処理、コロナ放電処理、フレーム処理などの物理的表面処理、並びにカップリング剤、酸性成分、アルカリ性成分等による化学的表面処理などが、挙げられる。
次に、機能層8について説明する。機能層8は、アンチモン粒子とアンチモン化合物粒子とから選ばれる少なくとも一種からなる粒子21を含有する。また、機能層8の厚みは150nm以下である。更に、機能層8の、波長380nmの光の、入射角5°での正反射率は、8%以上である。
アンチモン化合物粒子としては、アンチモンドープ酸化錫粒子、三酸化アンチモン粒子、五酸化アンチモン粒子等が挙げられる。特にアンチモンドープ酸化錫粒子が用いられることが好ましい。機能層8が粒子21を含有することで、機能層8の屈折率が高くなる。このように機能層8の屈折率が高くなり、且つ機能層8の厚みが150nm以下であることで、導電層3と機能層8とが重なると、導電層3の色が外部から視認されにくくなる。このため、導電層3がパターン状に形成されても、導電層3のパターンが外観上目立ちにくくなる。また、アンチモン化合物粒子は難燃化作用を有するため、アンチモン化合物粒子が使用されると、支持材20、及びこれを備える導電性光学部材1の難燃性が向上する。
尚、機能層8の屈折率は、後述する被覆層4の屈折率よりも大きいことが好ましく、特に1.60以上であることが好ましい。このように機能層8の屈折率が調整されると、導電性光学部材1の外観に、導電層3の色が更に現れにくくなる。機能層8の屈折率は、1.65〜1.95の範囲であればより好ましく、1.65〜1.90の範囲であれば更に好ましく、1.70〜1.85の範囲であれば特に好ましい。また、機能層8の厚みは5〜100nmであればより好ましく、5〜80nmであれば特に好ましい。
また、アンチモン粒子及びアンチモン化合物粒子は酸素及び硫化水素を捕捉しやすいため、機能層8がアンチモン粒子及びアンチモン化合物粒子から選ばれる少なくとも一方の粒子21を含有すると、機能層8上に導電層3が形成される場合に、導電層3の酸化及び硫化が抑制され、このため導電層3の耐久性が向上する。このため、例えば導電層3を備える導電性光学部材1が、液晶表示装置を備える画像表示機器に取り付けられる場合には、導電性光学部材1が、画像表示機器におけるタッチパネル等の構造に起因するエアギャップ、端面などにおいて、酸素及び硫化水素に曝されることがあるが、このような場合でも、導電層3の耐久性が高くなる。
機能層8中の粒子21の割合は、0.5〜75質量%の範囲であることが好ましい。この粒子21の割合が0.5質量%以上であると、導電層3の酸素、硫化水素等に対する耐久性が特に向上する。また、この割合が75質量%以下であると、機能層8の粗密化が抑制され、このため機能層8を酸素、硫化水素等が透過しにくくなり、このため、機能層8の硫化水素等に対する耐久性が特に向上する。この粒子21の割合は、1〜60質量%であればより好ましく、3〜50質量%であれば更に好ましい。
粒子21の平均粒径は、特に制限されないが、0.5〜150nmの範囲であることが好ましい。この平均粒径が0.5nm以上であると、機能層8の屈折率が向上しやすくなる。また、この平均粒径が150nm以下であると、機能層8の透明性及び平滑性が特に向上する。尚、粒子21の平均粒径は、粒子21の電子顕微鏡写真画像から算出される投影面積と同一の面積を有する円(面積相当円)の径の、算術平均値である。
機能層8は、粒子21以外の、屈折率調整用の粒子22を更に含有してもよい。屈折率調整用の粒子22は、比較的屈折率の高い粒子であることが好ましく、特に屈折率が1.6以上の粒子であることが好ましい。この粒子22は、金属粒子と金属酸化物粒子とから選択される少なくとも一種からなることが好ましい。
機能層8中の屈折率調整用の粒子22の含有量は、機能層8の屈折率が適切な値となるように適宜調整されるが、特に機能層8中の屈折率調整用の粒子22の割合が5〜70体積%となるように調整されることが好ましい。
屈折率調整用の粒子22の具体例としては、チタン、アルミニウム、セリウム、イットリウム、ジルコニウム、ニオブ、及びこれらの酸化物から選ばれる、一種あるいは二種以上を含有する粒子が挙げられる。酸化物の具体例としては、ZnO(屈折率1.90)、TiO2(屈折率2.3〜2.7)、CeO2(屈折率1.95)、SnO2、ITO(屈折率1.95)、Y23(屈折率1.87)、La23(屈折率1.95)、ZrO2(屈折率2.05)、Al23(屈折率1.63)等が挙げられる。
屈折率調整用の粒子22の粒径は十分に小さいこと、すなわち屈折率調整用の粒子22がいわゆる超微粒子であることが好ましい。この場合、機能層8の光透過性が十分に維持されるようになる。屈折率調整用の粒子22の粒径は特に、0.5nm〜150nmの範囲であることが好ましい。この屈折率調整用の粒子22の粒径とは、粒子22の電子顕微鏡写真画像から算出される投影面積と同一の面積を有する円(面積相当円)の径のことである。
機能層8が、メタクリル官能性シランと、アクリル官能性シランとのうち少なくとも一方を含有することも好ましい。この場合、機能層8と導電層3との密着性が向上する。メタクリル官能性シランとしては、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。アクリル官能性シランとしては3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルメチルジメトキシシラン等が挙げられる。
機能層8中のメタクリル官能性シランとアクリル官能性シランの含有量は特に制限されないが、機能層8中のメタクリル官能性シランとアクリル官能性シランの総量の割合が5〜30質量%の範囲であることが好ましい。前記割合が5質量%以上であると機能層8と導電層3との密着性が十分に高くなり、また前記割合が30質量%以下であると機能層8中の架橋密度が十分に向上して機能層8の硬度が十分に高くなる。
更に、機能層8の、波長380nmの光の、入射角5°での正反射率が、8%以上であることで、導電層8のパターンが更に目立ちにくくなる。これは、導電層3からの反射光は金属ナノワイヤ5に起因して380nm付近にピークを有し、このような導電層3からの反射光と、機能層8からの反射光とが重なり合うことで、導電層3の白い色が打ち消されるためであると、考えられる。このような機能層8の光反射特性は、機能層8を高屈折率化及び薄膜化することで、達成される。
機能層8の、波長380nmの光の、入射角5°での正反射率が高いほど、導電層8のパターンがより目立ちにくくなる。但し、機能層8から反射光により導電性光学部材1の外観がぎらついて見えることを抑制するためには、前記の正反射率は8〜25%の範囲であることが好ましい。
機能層8の、基材2とは反対側の主面には、導電層3が形成される前に表面処理が施されることが好ましい。この場合、機能層8と導電層3との間の濡れ性、密着性等の向上が可能となる。表面処理の方法としては、プラズマ処理、コロナ放電処理、フレーム処理などの物理的表面処理、カップリング剤、酸、アルカリによる化学的表面処理などが、挙げられる。
機能層8は、アンチモン粒子とアンチモン化合物粒子とから選ばれる少なくとも一種の粒子を含有する反応性硬化型樹脂組成物から形成されることが好ましい。例えば機能層8は、熱硬化型樹脂組成物と電離放射線硬化型樹脂組成物の少なくとも一方から形成されることが好ましい。
熱硬化型樹脂組成物は、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、ポリシロキサン樹脂等の熱硬化性樹脂を含有する。熱硬化性樹脂と共に、必要に応じて架橋剤、重合開始剤、硬化剤、硬化促進剤、溶剤等が使用されてもよい。このような熱硬化型樹脂組成物が例えば基材2上に塗布され、続いてこの熱硬化型樹脂組成物が加熱されて熱硬化することで、機能層8が形成され得る。
電離放射線硬化型樹脂組成物は、アクリレート系の官能基を有する樹脂を含むことが好ましい。アクリレート系の官能基を有する樹脂としては、例えば比較的低分子量の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマーなどが挙げられる。前記の多官能化合物としては、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等が挙げられる。電離放射線硬化型樹脂組成物は更に反応性希釈剤を含有することも好ましい。反応性希釈剤としては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N−ビニルピロリドン等の単官能モノマー、並びにトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートの多官能モノマーが挙げられる。
電離放射線硬化型樹脂組成物が紫外線硬化型樹脂組成物などの光硬化型樹脂組成物である場合には、光硬化型樹脂組成物が光重合開始剤を含有することが好ましい。光重合開始剤としてはアセトフェノン類、ベンゾフェノン類、α−アミロキシムエステル、チオキサントン類などが挙げられる。光硬化型樹脂組成物が光重合開始剤に加えて、或いは光重合開始剤に代えて、光増感剤を含有してもよい。光増感剤としては、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、チオキサントンなどが挙げられる。このような光硬化型樹脂組成物が例えば基材2上に塗布され、続いてこの光硬化型樹脂組成物に紫外線などの光が照射されて光硬化することで、機能層8が形成され得る。
次に、支持材20と導電層3とを備える導電性光学部材1について、説明する。本実施形態では、導電性光学部材1は、図2に示すように、支持材20と、導電層3と、被覆層4とを備える。すなわち、導電性光学部材1は、基材2、機能層8、導電層3、及び被覆層4を備える。基材2、機能層8、導電層3、及び被覆層4は、この順番に積層している。すなわち、基材2の第一の主面上に機能層8が積層し、機能層8の基材2とは反対側の主面上に導電層3が積層し、導電層3の機能層8とは反対側の主面上に被覆層4が積層している。
導電層3について説明する。導電層3は、金属ナノワイヤ5を含有する、透明な層である。金属ナノワイヤ5とは、ナノサイズ(1〜1000nm)の直径を有する金属繊維である。金属ナノワイヤ5を構成する金属の種類は、特に制限されないが、例えばAg、Au、Cu、Co、Al、Pt等が挙げられる。特に導電層3の導電性をより向上するためには、金属ナノワイヤ5を構成する金属がAu、Ag、Cu及びPtから選ばれる少なくとも一種を含むことが好ましく、特にAg及びCuから選ばれる少なくとも一種を含むことが好ましい。
金属ナノワイヤ5が、銀ナノワイヤ(Agナノワイヤ)を含有することが、特に好ましい。この場合、導電率の高い銀ナノワイヤを使用することで、金属ナノワイヤ5が使用量を抑制して導電層3の高い透明性を確保しつつ、導電層3に高い導電性を付与することが可能となる。
金属ナノワイヤ5の製造方法としては、特に制限されず、例えば、液相法や気相法等の公知の方法が採用されることができる。例えばAgナノワイヤ(銀ナノワイヤ)の製造方法の具体例として、Adv.Mater.2002,14,P833〜837、Chem.Mater.2002,14,P4736〜4745、特表2009−505358号公報等の文献に開示されている方法が、挙げられる。また、Auナノワイヤ(金ナノワイヤ)の製造方法の具体例としては、特開2006−233252号公報等に開示されている方法が、挙げられる。また、Cuナノワイヤ(銅ナノワイヤ)を製造する方法としては、特開2002−266007号公報等に開示されている方法が挙げられる。また、Coナノワイヤ(コバルトナノワイヤ)を製造する方法としては、特開2004−149871号公報等に開示されている方法が挙げられる。特に、Adv.Mater.2002,14,P833〜837、並びにChem.Mater.2002,14,P4736〜4745に開示されているAgナノワイヤの製造方法が採用されると、水系で簡便にかつ大量にAgナノワイヤが製造されることができる。
金属ナノワイヤ5の平均直径は、10nm以上100nm以下の範囲であることが好ましい。この平均直径が10nm以上であると、導電層3の導電性が特に高くなる。またこの平均粒径が100nm以下であると、導電層3の透明性が特に高くなる。この金属ナノワイヤ5の平均直径は、20nm以上100nm以下の範囲であればより好ましく、40nm以上100nm以下の範囲であれば最も好ましい。
また金属ナノワイヤ5の平均長さは、1μm以上100μm以下の範囲であることが好ましい。この平均長さが1μm以上であると、導電層3の導電性が特に高くなる。またこの平均粒径が100μm以下であると、導電層3中で金属ナノワイヤ5が凝集しにくくなり、このため導電層3の透明性が向上する。この金属ナノワイヤ5の平均長さは、1μm以上50μm以下の範囲であればより好ましく、3μm以上50μm以下の範囲であれば最も好ましい。
尚、金属ナノワイヤ5の平均直径は、充分な数の金属ナノワイヤ5の直径を測定し、その結果を算術平均して得られる値である。また、金属ナノワイヤ5の平均長さは、充分な数の金属ナノワイヤ5の長さを測定し、その結果を算術平均して得られる値である。金属ナノワイヤ5の直径及び長さは、金属ナノワイヤ5の電子顕微鏡画像を画像解析することで導出される。例えば金属ナノワイヤ5の電子顕微鏡画像が屈曲している場合に、画像解析によって金属ナノワイヤ5の直径(投影径(D))及び面積(投影面積(S))が、算出される。更に投影面積(S)を投影径(D)で割ることで、金属ナノワイヤ5の長さ(L=S/D)が、求められる。金属ナノワイヤ5の平均直径及び平均長さを導出するためには、少なくとも100個の金属ナノワイヤ5の直径及び長さを測定することが好ましく、300個以上の金属ナノワイヤ5の直径及び長さを測定すれば更に好ましい。
導電層3における金属ナノワイヤ5の割合は、特に制限されないが、0.01質量%以上90質量%以下の範囲であることが好ましく、0.1質量%以上30質量%以下の範囲であれば更に好ましく、0.5質量%以上10質量%以下の範囲であれば最も好ましい。
導電層3は、例えば金属ナノワイヤ5と樹脂成分とを含有する組成物から形成される。この場合、湿式の成膜法によって導電層3が形成され得る。
導電層3を形成するための組成物中の樹脂成分としては、例えば、セルロース樹脂、シリコーン樹脂、フッ素樹脂、アクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリアクリルニトリル樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリイミド樹脂、ジアクリルフタレート樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、その他の熱可塑性樹脂、これらの樹脂を構成する単量体が2種以上重合して成る共重合体等が、挙げられる。
樹脂成分が、反応性硬化型樹脂を含有することも好ましい。反応性硬化型樹脂としては、例えば熱硬化型樹脂と電離放射線硬化型樹脂の少なくとも一方が用いられることが好ましい。
熱硬化型樹脂としては、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、ポリシロキサン樹脂等が、挙げられる。組成物は、熱硬化性樹脂と共に、必要に応じて架橋剤、重合開始剤、硬化剤、硬化促進剤、溶剤等を含有してもよい。
電離放射線硬化型樹脂としては、アクリレート系の官能基を有する樹脂が用いられることが好ましい。アクリレート系の官能基を有する樹脂としては、例えば比較的低分子量の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマーなどが挙げられる。前記の多官能化合物としては、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等が挙げられる。電離放射線硬化型樹脂を含有する組成物は、更に反応性希釈剤を含有することも好ましい。反応性希釈剤としては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N−ビニルピロリドン等の単官能モノマー、並びにトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートの多官能モノマーが挙げられる。
電離放射線硬化型樹脂が紫外線硬化型樹脂などの光硬化型樹脂である場合には、組成物が更に光重合開始剤を含有することが好ましい。光重合開始剤としてはアセトフェノン類、ベンゾフェノン類、α−アミロキシムエステル、チオキサントン類などが挙げられる。光硬化型樹脂を含有する組成物が、光重合開始剤に加えて、或いは光重合開始剤に代えて、光増感剤を含有してもよい。光増感剤としては、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、チオキサントンなどが挙げられる。
導電層3を形成するための組成物は、必要に応じて溶媒を含有してもよい。溶媒として、例えば有機溶剤が用いられ、或いは水が用いられ、或いは有機溶剤と水とが併用される。有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)等のアルコール類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル等のエステル類;ハロゲン化炭化水素類;トルエン、キシレン等の芳香族炭化水素類、並びにこれらの混合物が、挙げられる。
組成物中の溶媒の量は、組成物中において固形分が均一に溶解又は分散することができるように、適宜調整される。組成物中の固形分濃度は、0.1〜50質量%の範囲であることが好ましく、0.5〜30質量%の範囲であれば更に好ましい。
導電層3を形成するための組成物が塗布され、更に成膜されることで、導電層3が形成される。組成物の塗布にあたっては、例えばロールコート法、スピンコート法、ディップコート法などの適宜の方法が採用される。組成物を成膜するための手法は、組成物中の樹脂成分等の種類に応じて適宜選択される。例えば組成物が熱硬化型樹脂を含有する場合は、組成物が加熱されて熱硬化することで、金属ナノワイヤ5を含有する導電層3が形成される。また、組成物が電離放射線硬化型樹脂を含有する場合には、組成物に紫外線等の電離放射線が照射されることで、組成物が硬化することで、金属ナノワイヤ5を含有する導電層3が形成される。
導電層3の、基材2とは反対側の主面には、被覆層4が形成される前に表面処理が施されることが好ましい。この場合、導電層3と被覆層4との間の濡れ性、密着性等の向上が可能となる。表面処理の方法としては、プラズマ処理、コロナ放電処理、フレーム処理などの物理的表面処理、カップリング剤、酸、アルカリによる化学的表面処理などが、挙げられる。
導電層3の屈折率は、特に制限されないが、導電性光学部材1の外観上、導電層3の白い色が充分に目立たなくなるためには、1.35〜1.65の範囲であることが好ましい。また、導電層3の厚みは、特に制限されないが、10〜300nmの範囲であることが好ましい。導電層3の屈折率は、導電層3を形成するための組成物の組成が変更されることで、容易に調整される。
次に、被覆層4について説明する。被覆層4は、透明導電層3を覆う透明な層である。被覆層4は、樹脂マトリクス7から構成される。また被覆層4は、樹脂マトリクス7と、粒子6とを含有することも好ましく、この場合、粒子6は、被覆層4において、樹脂マトリクス7中に分散している。
被覆層4が粒子6を含有する場合、導電層3が被覆層4によって覆われているにもかかわらず、導電層3がエッチングされやすくなる。すなわち、湿式のエッチング処理のために被覆層4がエッチング液に曝されると、被覆層4中の樹脂マトリクス7と粒子6との間の界面にエッチング液が浸入しやすくなり、これによりエッチング液が被覆層4を浸透しやすくなる。このため、エッチング液が被覆層4によって遮蔽されずに導電層3まで到達しやすくなり、このため導電層3がエッチングされやすくなる。
また、導電層3が被覆層4で覆われていることで、導電層3が被覆層4によって保護される。このため導電層3に傷などの破損が生じにくくなる。
粒子6の空隙率が25%以下であることが好ましい。また、粒子6の屈折率が1.20〜1.34であることが、好ましい。この場合、被覆層4の低屈折率化が可能であり、且つ、被覆層4を水分が透過しにくくなって導電性光学部材1の耐久性が高くなる。尚、屈折率1.20未満の粒子6を得ることは困難であり、このように粒子6を低屈折率化しようとすると、粒子6の結晶構造が弱くなったり、粒子6の空隙率が高くなったりしてしまう。そうすると、エッチング処理時に被覆層4が崩壊しやすくなったり、導電性光学部材1の耐久性が低下したりしてしまう。また、屈折率が1.34より高くなると、被覆層4の低屈折率化が困難となり、また粒子6の結晶構造が強固になりすぎてエッチングが困難となる。また、粒子6の空隙率が25%より高くなると、被覆層4を水分が透過しやすくなることで導電性光学部材1の耐久性が低下しやすくなり、また粒子6の強度が低下してエッチング処理時に被覆層4が崩壊しやすくなる。
粒子6の屈折率は、1.24〜1.33であれば更に好ましい。また、粒子6の空隙率は、0〜20%であれば更に好ましい。粒子6の空隙率が0〜15%であれば更に好ましい。
尚、粒子6の空隙率は、「マイクロCTシステムによるCT撮影による体積測定および超ミクロ天秤により測定された質量から計算される密度」と、「静水法により測定される密度」との、測定値差から導出される。また、粒子6の屈折率の値は、理科年表、各種論文などによって公知である。また、粒子6の屈折率は、ベッケ法、ミー散乱を利用する方法等の、公知の方法により測定される。
粒子6の平均粒径は、被覆層4の厚み以下であることが好ましい。この場合、被覆層4の平滑性が高くなる。また、粒子6の平均粒径は、10〜100nmの範囲であることが好ましい。平均粒径が10nm以下であれば、粒子6の配合割合が過剰に多くなることなく、被覆層4の屈折率が充分に低減され得る。このため、被覆層4内における粒子6と樹脂マトリクス7との界面の面積の大きさが適度に維持され、このため、被覆層4へのエッチング液の浸透性が適度に保たれる。また、平均粒径が100nm以下であると、粒子6によって被覆層4の透明性が阻害されにくくなる。尚、粒子6の平均粒径は、動的光散乱法によって測定される。
上記条件を満たすための、粒子6の好ましい材質の例としては、ヘキサフルオロアルミン酸ナトリウム(氷晶石)、フッ化マグネシウム等が、挙げられる。特に粒子6が、ヘキサフルオロアルミン酸ナトリウム粒子とフッ化マグネシウム粒子とのうち、少なくとも一方を含有することが好ましい。この場合、上記条件を満たす粒子6が容易に得られる。
粒子6がヘキサフルオロアルミン酸ナトリウム粒子を含有すると、特に好ましい。この場合、エッチング液として塩化鉄系・塩化銅系等の酸性のエッチング液を用いられることで、導電層3が更にエッチングされやすくなる。
また、被覆層4中の粒子6の割合は、25〜80質量%の範囲であることが好ましい。この粒子6の割合が25質量%以上であると、被覆層4中に粒子6と樹脂マトリクス7との界面が充分に形成され、このため被覆層4へエッチング液が更に浸透しやすくなり、そのため導電層3が更にエッチングされやすくなる。またこの粒子6の割合が80%以下であると、被覆層4を水分が更に透過しにくくなり、このため導電性光学部材1の耐久性が更に向上する。
被覆層4の屈折率は、1.30〜1.50の範囲であることが好ましく、1.40〜1.49の範囲であれば更に好ましい。また、被覆層4の屈折率は、導電層3の屈折率より低いことが好ましい。また、被覆層4の厚みは200nm以下の範囲であることが好ましい。この場合、導電層3の表面での光の反射が特に抑制される。被覆層4の屈折率は、被覆層4中の樹脂マトリクス7の組成、粒子6の種類、粒子6の割合等が変更されることで、容易に調整される。
被覆層4は、例えば粒子6と、樹脂マトリクス7を形成するためのバインダー材料とを含有する組成物から形成される。この場合、被覆層4が、湿式の成膜法により形成され得る。
バインダー材料としては、例えばシリコンアルコキシド系樹脂、飽和炭化水素及びポリエーテルの少なくともいずれかを主鎖とするポリマー(例えばUV硬化型樹脂組成物、熱硬化型樹脂組成物等)、ポリマー鎖中にフッ素原子を含む単位を含む樹脂等から選択される材料が、用いられる。
上記のような組成物が導電層3の上に塗布され、更にこの組成物に、バインダー材料の性状に応じて加熱、加湿、紫外線照射、電子線照射等の処理が施されることで、組成物が硬化させられる。これにより、被覆層4が形成される。組成物の塗布にあたっては、例えばロールコート法、スピンコート法、ディップコート法などの適宜の方法が採用される。
被覆層4は、フッ素置換アルキル基を備える加水分解性オルガノシラン重縮合物を含有してもよい。この場合、被覆層4の耐水性及び耐アルカリ性が向上する。更に、このような特性を備える被覆層4を、湿式の成膜法によって形成することが可能になる。このため、蒸着法等の乾式の成膜法が採用される場合と比べて、製造設備の簡便化が可能となる。また、導電性光学部材1の製造効率が向上する。
フッ素置換アルキル基を備える加水分解性オルガノシラン重縮合物を含有する被覆層4を、バインダー材料を含有する組成物を用いて、湿式の成膜法により形成することについて、更に説明する。この場合、バインダー材料が、フッ素置換アルキル基を備える加水分解性シラン化合物と、その部分加水分解物とから選ばれる、少なくとも一種を含有することが好ましい。フッ素置換アルキル基を備える加水分解性シラン化合物としては、例えば一般式X3Si−(CF2n−SiX3で示される化合物、一般式X3Si−(CH22−(CF2n−(CH22−SiX3で示される化合物、一般式X3Si−(CF2n−CF3で示される化合物、一般式X3Si−(CH22−(CF2n−CF3で示される化合物などが、挙げられる。これらの式において、Xは加水分解縮合反応性を有する官能基を示す。このXは、例えばOCH3、OCH2CH3、OCH(CH32等のアルコキシ基、Cl、F等のハロゲンなどから、選択されることができる。一分子中の複数のXの種類は、各々独立に選択される。nは整数であり、特にnが、1以上10以下の整数であることが好ましい。また、mは整数であり、特にmが、0以上9以下の整数であることが好ましい。
組成物は、更に撥水、撥油性材料を含有してもよい。この場合、被覆層4に防汚性が付与され得る。撥水、撥油性材料としては、一般的なワックス系の材料等が使用され得る。特に含フッ素化合物が使用されると、被覆層4の汚れ、指紋等の除去性が特に向上すると共に、被覆層4の表面の摩擦抵抗が低減して被覆層4の耐摩耗性が向上する。
導電層3が被覆層4によって覆われた状態で、必要に応じて導電層3に湿式のエッチング処理が施されることで、導電層3がパターニングされる。これにより、導電性光学部材1における導電層3が、適宜のパターン形状に形成される。
湿式のエッチング処理による導電層3のパターニングは、例えば次のようにしておこなわれる。まず、導電性光学部材1における被覆層4上にエッチングレジストが形成される。次に、被覆層4におけるエッチングレジストで覆われていない領域が、エッチング液に曝される。この領域では、エッチング液が上述の通り被覆層4を浸透して導電層3に到達し、これにより、導電性光学部材1から導電層3及びこれを覆う被覆層4が、部分的に除去される。エッチングレジストで覆われてる領域では、導電層3及びこれを覆う被覆層4が、導電性光学部材1に残存する。続いて、導電性光学部材1からエッチングレジストが除去される。これにより、導電層3及びこれを覆う被覆層4が、適宜のパターン形状に形成される。
尚、本実施形態に係る導電性光学部材1は、基材2、機能層8、導電層3、及び被覆層4を備えるが、導電性光学部材1の構成はこれに限られない。例えば、導電性光学部材1が、被覆層4を備えなくてもよい。また、導電性光学部材1が、基材2、機能層8、導電層3、及び被覆層4以外の、付加的な要素を備えてもよい。
導電性光学部材1のヘーズは、2以下であることが好ましい。この場合、導電性光学部材1の透明性が高くなることで、導電性光学部材1が、光学的な特性が必要とされる電子デバイスのために適したものとなる。
導電性光学部材1における導電層3は、例えばタッチパネル、有機エレクトロルミネッセンスディスプレイパネル、プラズマディスプレイパネル、液晶ディスプレイパネル、光電変換デバイス等の、光学的な特性が必要とされる電子デバイスにおける電極等を形成するために利用される。
本実施形態に係る導電性光学部材1が、例えばそのまま電子デバイス内に組み込まれることで、導電性光学部材1における導電層3が電極等として利用される。また、導電性光学部材1から、導電層3と被覆層4よりなる部材が剥離され、或いは導電層3と被覆層4と機能層8よりなる部材が剥離され、これらの部材が電子デバイス内に組み込まれることで、導電層3が電極等として利用されてもよい。
導電性光学部材1を備える電子デバイスにおいては、導電性光学部材1が外部から視認され、且つ導電性光学部材1が被覆層4側から視認されるように、導電性光学部材1が設けられることが好ましい。例えば電子デバイスが、導電性光学部材1と、この導電性光学部材1に対してその被覆層4側に配置されている透明なカバー部材とを備え、このカバー部材を介して外部から導電性光学部材1が視認されるように構成されていることが好ましい。この場合、導電層3のパターン形状が外部から特に視認されにくくなる。
図3に、導電性光学部材1を備えるタッチパネル10の例、並びにこのタッチパネル10を備える画像表示機器17の例の、概略構成を示す。尚、図において、導電性光学部材1中の裏面被覆層9の図示を省略している。
図3に示される画像表示機器17は、液晶表示装置などの画像表示装置16とタッチパネル10とを備える。タッチパネル10は、反射防止層11と、二つの導電性光学部材1(以下、第一の導電性光学部材101及び第二の導電性光学部材102という)と、透明なカバー部材18とを備える。反射防止層11は、例えば公知の反射防止フィルムから形成される。カバー部材18は、例えばガラス板、アイコンシート等から構成される。反射防止層11、第一の導電性光学部材101、第二の導電性光学部材102、及びカバー部材18は、この順番に積層している。反射防止層11と、第一の導電性光学部材101における導電層3とは反対側の面とは、透明粘着層(OCA(optically clear adhesive)層)12を介して接合されている。第一の導電性光学部材101における導電層3側の面と、第二の導電性光学部材102における導電層3とは反対側の面とは、透明粘着層(OCA(optically clear adhesive)層)13を介して接合されている。また、第二の導電性光学部材102における導電層3側の面と、カバー部材18とは、透明粘着層(OCA(optically clear adhesive)層)14を介して接合されている。このタッチパネル10では、第一の導電性光学部材101における導電層3、及び第二の導電性光学部材102における導電層3が、電極として機能する。
このタッチパネル10における反射防止層11の外面と、画像表示装置16とが、粘着テープ15により固定されている。
導電性光学部材1がタッチパネル10等の装置に組み込まれる場合には、導電性光学部材1を構成する層の屈折率、すなわち基材2、機能層8、導電層3、及び被覆層4の屈折率が、装置の光学的な設計に応じて適宜調整されることが好ましい。
[実施例1]
基材として、透明なポリエチレンテレフタレート製フィルム(厚み125μm)を用意した。
この基材上に、次のようにして裏面被覆層を形成した。
アクリル樹脂(新中村化学工業株式会社製、品番U−6LPA)10.8質量部に、メチルエチルケトン80.84質量部を加えて混合することで、アクリル樹脂を溶解させ、これにより混合液を調製した。この混合液にブロッキング防止用の粒子(メチルエチルケトンを分散溶媒とするシリカ粒子分散体;固形分15%)8.0質量部を加え、室温で混合した。この混合液に更に光重合開始剤(1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、チバガイギー社製、品名イルガキュア184)0.36質量部を加え、よく混合した後、25℃の恒温雰囲気下で30分間撹拌混合した。これにより、裏面層を形成するための組成物を調製した。この組成物を、基材の一面にワイヤバーコーター#10によって塗布し、常温で2分間乾燥した後、80℃で3分間乾燥し、更に紫外線(紫外線強度500mJ/cm)を照射して硬化させた。これにより、屈折率1.49、厚み1100nm、シリカ粒子の割合15質量%である、裏面被覆層を形成した。
次に、基材の、裏面側被覆層とは反対側の面上に、次のようにして機能層を形成した。
アクリル樹脂(新中村化学工業株式会社製、品番U−6LPA)と、アンチモンドープ酸化錫粒子(平均粒子径0.02μm、屈折率2.0)のメチルエチルケトン分散液とを配合した。これにより、アクリル樹脂に対するアンチモンドープ酸化錫粒子の固形分割合が40質量%であり、且つ全質量固形分が35質量%である樹脂含有液を調製した。この樹脂含有液5.0質量部に、メチルエチルケトン39.30質量部及びメチルイソブチルケトン39.30質量部を加えて混合することで、アクリル樹脂を溶解させ、これにより混合液を調製した。この混合液に、ジルコニア粒子(平均粒径0.05μm、屈折率2.19)のメチルエチルケトン分散液(固形分20質量%)16.25質量部を加え、室温で混合した。更に、この混合液に光重合開始剤(1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、チバガイギー社製、品名イルガキュア184)0.15質量部を加え、よく混合した後、25℃の恒温雰囲気下で30分間撹拌混合した。これにより、機能層を形成するための組成物を得た。
この組成物を、基材の上にワイヤバーコーター#4によって塗布し、常温で2分間乾燥した後、80℃で3分間乾燥し、更に紫外線(紫外線強度500mJ/cm)を照射して硬化することで、屈折率1.867、厚み50nm、アンチモンドープ酸化錫粒子の割合14質量%である、機能層を形成した。
これにより、基材及び機能層を備える、支持材を得た。
この支持材における機能層上に、次のようにして導電層を形成した。
アクリル樹脂(新中村化学工業株式会社製、品番A−DPH)1.5質量部を、メチルエチルケトン22.0質量部とメチルイソブチルケトン26.35質量部とを混合することで、樹脂含有液を調製した。また、金属ナノワイヤとして、平均直径60nm、平均長さ5μmの銀ナノワイヤを用意した。尚、この銀ナノワイヤは、公知論文(Materials Chemistry and Physics vol.114 p333-338 "Preparation of Ag nanorods with high yield by polyol process")に記載の方法に準じた方法で作製した。この金属ナノワイヤをメチルエチルケトンに加えることで、固形分割合3.0質量%の、金属ナノワイヤ分散液を得た。
樹脂含有液に、金属ナノワイヤ分散液を50.0質量部加えてよく混合した。さらに光重合開始剤1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(チバガイギー社製、品名イルガキュア184)0.15質量部を加えてよく混合し、25℃の恒温雰囲気下で30分間撹拌混合した。これにより、導電層を形成するための組成物を調製した。この組成物を、機能層の上に、ワイヤーバーコーター#10で塗布した。更に、機能層上の組成物を常温下(23℃)に2分間放置することで乾燥し、続いて120℃で2分間加熱した。続いてこの組成物に紫外線を強度500mJ/cmで照射した。これにより、厚み100nmの導電層を形成した。
この導電層上に、次のようにして被覆層を形成した。
アクリル樹脂(新中村化学工業株式会社製、品番U−6LPA)1.05質量部に、メチルエチルケトン43.0質量部及びメチルイソブチルケトン42.8質量部を加えて混合することで、アクリル樹脂を溶解させ、これにより混合液を調製した。この混合液に、ヘキサフルオロアルミン酸ナトリウム粒子分散体(固形分15質量%)13.0質量部を加え、室温で混合した。尚、このヘキサフルオロアルミン酸ナトリウム粒子分散体に含まれるヘキサフルオロアルミン酸ナトリウム(氷晶石)粒子の平均粒径は0.5μm、空隙率は5%以下、屈折率は1.33であり、またその分散溶媒はメチルエチルケトンである。この混合液に更に光重合開始剤1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(チバガイギー社製、品名イルガキュア184)0.15質量部を加え、よく混合した後、25℃の恒温雰囲気下で30分間撹拌混合した。これにより、被覆層を形成するための組成物を得た。
この組成物を、導電層の上にワイヤバーコーター#4によって塗布し、常温で2分間乾燥した後、80℃で3分間乾燥し、更に紫外線(紫外線強度500mJ/cm)を照射して硬化することで、屈折率1.428、厚み100nm、ヘキサフルオロアルミン酸ナトリウム(氷晶石)粒子の割合65質量%の、被覆層を形成した。
これにより、裏面被覆層、基材、機能層、導電層及び被覆層が順次積層した構造を有する導電性光学部材を得た。
[実施例2]
実施例1において、機能層の厚みを100nmに変更した。それ以外は実施例1と同じ方法により、導電性光学部材を得た。
[実施例3]
実施例1において、機能層の厚みを150nmに変更した。それ以外は実施例1と同じ方法により、導電性光学部材を得た。
[実施例4]
実施例1において、機能層におけるアンチモンドープ酸化錫粒子の割合を0.5質量%に変更し、機能層の屈折率を1.834に変更した。それ以外は実施例1と同じ方法により、導電性光学部材を得た。
[実施例5]
実施例1において、機能層におけるアンチモンドープ酸化錫粒子の固形分割合を75.0質量%に変更し、機能層の屈折率を1.816に変更した。それ以外は実施例1と同じ方法により、導電性光学部材を得た。
[実施例6]
実施例1において、機能層におけるアンチモンドープ酸化錫の割合を80.0%に変更し、機能層の屈折率を1.849に変更した。それ以外は実施例1と同じ方法により、導電性光学部材を得た。
[実施例7]
実施例1において、機能層中のアンチモン化合物の粒子を、アンチモンドープ酸化錫粒子から三酸化アンチモン粒子へ変更した。それ以外は実施例1と同じ方法により、導電性光学部材を得た。
[比較例1]
実施例1において、機能層を形成するための組成物中にアンチモン化合物の粒子を配合しなかった。それ以外は実施例1と同じ方法で、導電性光学部材を得た。
[評価試験]
各実施例及び比較例で得られた導電性光学部材について、次の評価試験を実施した。その結果を後掲の表1に示す。
(機能層の正反射率評価)
機能層の、波長380nmの光の、入射角5°での正反射率を測定した。評価にあたっては、株式会社日立ハイテクノロジーズ製の「日立分光光度計U−4100」の5°正反射測定器具を用いて、波長340〜800nmの範囲の分光反射率を測定し、得られたデータから波長380nmでの正反射率の値を読み取った。その結果を、表1に示す。
(耐酸化試験)
各実施例及び比較例で得られた導電性光学部材の、酸素成分に対する耐性を、次のようにして評価した。各実施例及び比較例で得られた導電性光学部材の膜抵抗を測定した。続いて、この導電性光学部材を、空気中で、60±1℃、90±3%RHの環境下に96時間曝露する処理を施した。続いて、導電性光学部材の膜抵抗を再度測定した。
処理前後での導電性光学部材の膜抵抗の測定結果を比較し、これに基づいて導電性光学部材の耐久性を次のように評価した。
5:処理の前後で、抵抗値の変化が認められない。
4:処理後の抵抗値の上昇率が10倍未満。
3:処理後の抵抗値の上昇率が10倍以上100倍未満。
2:処理後の抵抗値が測定可能であり、且つ処理後の抵抗値の上昇率が100倍以上。
1:処理後の抵抗値が無限大(測定不能)。
(耐硫化試験)
各実施例及び比較例で得られた導電性光学部材1の、硫黄成分に対する耐性を、次のようにして評価した。各実施例及び比較例で得られた導電性光学部材の膜抵抗を測定した。続いて、この導電性光学部材を、硫化水素ガス濃度15ppmの雰囲気中で、25±1℃、75±3%RHの環境下に96時間曝露する処理を施した(JIS C60068−2−42:1993に準拠)。続いて、導電性光学部材の膜抵抗を再度測定した。
処理前後での導電性光学部材の膜抵抗の測定結果を比較し、これに基づいて導電性光学部材の耐久性を次のように評価した。
5:処理の前後で、抵抗値の変化が認められない。
4:処理後の抵抗値の上昇率が10倍未満。
3:処理後の抵抗値の上昇率が10倍以上100倍未満。
2:処理後の抵抗値が測定可能であり、且つ処理後の抵抗値の上昇率が100倍以上。
1:処理後の抵抗値が無限大(測定不能)。
(パターン視認性評価)
導電性部材における被覆層上にエッチングレジストを形成した。続いて、この導電性光学部材における被覆層の、エッチングレジストで覆われていない領域を、35℃のエッチング液(塩化第二鉄水溶液)に1分間接触させるエッチング処理を施した。続いて、導電性光学部材を洗浄し、更に導電性光学部材からエッチングレジストを除去した。
上記エッチング処理の前後で、導電性光学部材の外観を観察し、その結果を比較することで、パターン視認性を次のように評価した。
○:エッチング処理の前後で、導電性光学部材の見え方に差異が認められず、エッチング処理後でも、導電層のパターン形状が視認されない。
×:エッチング処理の前後で、導電性光学部材の見え方に差異が生じ、エッチング処理後には、導電層のパターン形状が視認される。
Figure 2013246976
Figure 2013246976
1 導電性光学部材
2 基材
3 導電層
4 被覆層
5 金属ナノワイヤ
8 機能層
20 導電性光学部材用支持材
21 粒子

Claims (6)

  1. 金属ナノワイヤを含有する導電層を備える導電性光学部材における前記導電層を支持するために用いられる導電性光学部材用支持材であって、
    透明な基材と、前記基材を覆う機能層とを備え、
    前記機能層が、アンチモン粒子とアンチモン化合物粒子とから選ばれる少なくとも一種からなる粒子を含有し、
    前記機能層の厚みが150nm以下であり、
    前記機能層の、波長380nmの光の、入射角5°での正反射率が、8%以上である導電性光学部材用支持材。
  2. 前記機能層の屈折率が、1.60以上である請求項1に記載の導電性光学部材用支持材。
  3. 前記機能層が、前記基材上に、塗布法により形成されたものである請求項1又は2に記載の導電性光学部材用支持材。
  4. 請求項1乃至3のいずれか一項に記載の導電性光学部材用支持材と、前記機能層を覆う、金属ナノワイヤを含有する導電層とを備えることを特徴とする導電性光学部材。
  5. 前記金属ナノワイヤが、銀ナノワイヤを含有する請求項4に記載の導電性光学部材。
  6. 請求項4又は5に記載の導電性光学部材を備える電子デバイス。
JP2012120034A 2012-05-25 2012-05-25 導電性光学部材用支持材、この導電性光学部材用支持材を備える導電性光学部材、及びこの導電性光学部材を備える電子デバイス Pending JP2013246976A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120034A JP2013246976A (ja) 2012-05-25 2012-05-25 導電性光学部材用支持材、この導電性光学部材用支持材を備える導電性光学部材、及びこの導電性光学部材を備える電子デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120034A JP2013246976A (ja) 2012-05-25 2012-05-25 導電性光学部材用支持材、この導電性光学部材用支持材を備える導電性光学部材、及びこの導電性光学部材を備える電子デバイス

Publications (1)

Publication Number Publication Date
JP2013246976A true JP2013246976A (ja) 2013-12-09

Family

ID=49846592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120034A Pending JP2013246976A (ja) 2012-05-25 2012-05-25 導電性光学部材用支持材、この導電性光学部材用支持材を備える導電性光学部材、及びこの導電性光学部材を備える電子デバイス

Country Status (1)

Country Link
JP (1) JP2013246976A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033882A1 (ja) * 2013-09-03 2015-03-12 日東電工株式会社 透明導電性フィルム
JP2016058097A (ja) * 2013-12-19 2016-04-21 積水化学工業株式会社 光透過性導電性フィルム、及びその光透過性導電性フィルムを含有するタッチパネル
JP2016139600A (ja) * 2015-01-27 2016-08-04 日東電工株式会社 透明導電性フィルム
WO2016121662A1 (ja) * 2015-01-27 2016-08-04 日東電工株式会社 透明導電性フィルム
JP2016173983A (ja) * 2015-03-16 2016-09-29 日東電工株式会社 透明導電性フィルム
CN107210091A (zh) * 2015-01-27 2017-09-26 日东电工株式会社 透明导电性膜
JP2017207981A (ja) * 2016-05-19 2017-11-24 大日本印刷株式会社 透視性電極、タッチパネル、およびタッチ位置検出機能付き表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033882A1 (ja) * 2013-09-03 2015-03-12 日東電工株式会社 透明導電性フィルム
JP2016058097A (ja) * 2013-12-19 2016-04-21 積水化学工業株式会社 光透過性導電性フィルム、及びその光透過性導電性フィルムを含有するタッチパネル
JP2016139600A (ja) * 2015-01-27 2016-08-04 日東電工株式会社 透明導電性フィルム
WO2016121662A1 (ja) * 2015-01-27 2016-08-04 日東電工株式会社 透明導電性フィルム
CN107210091A (zh) * 2015-01-27 2017-09-26 日东电工株式会社 透明导电性膜
CN107210091B (zh) * 2015-01-27 2019-09-17 日东电工株式会社 透明导电性膜
JP2016173983A (ja) * 2015-03-16 2016-09-29 日東電工株式会社 透明導電性フィルム
JP2017207981A (ja) * 2016-05-19 2017-11-24 大日本印刷株式会社 透視性電極、タッチパネル、およびタッチ位置検出機能付き表示装置

Similar Documents

Publication Publication Date Title
KR101080907B1 (ko) 방현필름
CN104335078B (zh) 纳米结构化材料及其制造方法
TWI460742B (zh) 透明導電膜
JP2013246976A (ja) 導電性光学部材用支持材、この導電性光学部材用支持材を備える導電性光学部材、及びこの導電性光学部材を備える電子デバイス
JP4792732B2 (ja) 反射防止膜及び反射防止膜を用いた光学部品及び反射防止膜を用いた画像表示装置
JP6078938B2 (ja) 光学フィルム、偏光板、液晶パネルおよび画像表示装置
US9383482B2 (en) Antireflective films comprising microstructured surface
TWI454753B (zh) 光學積層體、偏光板、顯示裝置及光學積層體之製造方法
US20080095997A1 (en) Function-Enhancing Optical Film
TW201333976A (zh) 透明導電性膜
CN103443211A (zh) 纳米结构化制品
KR20130021391A (ko) 광학 적층체, 편광판 및 표시 장치
TW201213132A (en) Optical laminate, polarizer and display device
CN104302693A (zh) 制品及其制造方法
TW201410475A (zh) 積層體、導電性積層體及觸控面板、以及塗料組成物及使用該塗料組成物之積層體的製造方法
JP2007038447A (ja) 反射防止積層体、光学部材および液晶表示素子
WO2007053158A2 (en) Low refractive index coating composition for use in antireflection polymer film coatings and manufacturing method
JP5861089B2 (ja) 反射防止部材及び画像表示機器
JP2009175722A (ja) 光学フィルム、偏光板、および画像表示装置
JP2013246975A (ja) 導電性光学部材及びそれを備える電子デバイス
JP2009265651A (ja) 光学フィルム、偏光板、および画像表示装置
JP2014198405A (ja) 導電性光学部材
KR102638362B1 (ko) 광학 적층체, 물품 및 화상 표시 장치
JP2010186020A (ja) 防眩性反射防止フィルム
TWI495116B (zh) 光學構件