JP2013241129A - ハイブリッド自動車の発電制御装置 - Google Patents

ハイブリッド自動車の発電制御装置 Download PDF

Info

Publication number
JP2013241129A
JP2013241129A JP2012116341A JP2012116341A JP2013241129A JP 2013241129 A JP2013241129 A JP 2013241129A JP 2012116341 A JP2012116341 A JP 2012116341A JP 2012116341 A JP2012116341 A JP 2012116341A JP 2013241129 A JP2013241129 A JP 2013241129A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
power generation
generator
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012116341A
Other languages
English (en)
Inventor
Teruo Wakashiro
輝男 若城
Yutaka Tagami
裕 田上
Susumu Nakasako
享 中佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012116341A priority Critical patent/JP2013241129A/ja
Priority to EP13724893.6A priority patent/EP2836407A1/en
Priority to KR1020147028665A priority patent/KR20140135246A/ko
Priority to CA2866818A priority patent/CA2866818A1/en
Priority to CN201380016604.9A priority patent/CN104220316A/zh
Priority to PCT/JP2013/061341 priority patent/WO2013154207A1/en
Priority to PCT/JP2013/061138 priority patent/WO2013154198A1/en
Priority to KR20147028663A priority patent/KR20140135245A/ko
Priority to US14/385,552 priority patent/US20150046007A1/en
Priority to CA2866827A priority patent/CA2866827A1/en
Priority to EP13724894.4A priority patent/EP2836408A1/en
Priority to CN201380017325.4A priority patent/CN104203701A/zh
Priority to US14/385,837 priority patent/US20150046010A1/en
Publication of JP2013241129A publication Critical patent/JP2013241129A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】蓄電池の残容量を維持しながら、アクセルペダルを操作したときの違和感を解消する。
【解決手段】制御装置24は、蓄電池11の状態に応じて発電機13の発電の可否を判定し、発電を許可したときに、巡行に必要な発電機13による発電ができる内燃機関回転数を設定し、必要となる電力量に応じた発電ができる上乗せ内燃機関回転数を設定し、内燃機関回転数および上乗せ内燃機関回転数に応じて内燃機関12および発電機13を制御するので、巡行するのに必要な出力を賄うことができる電力を内燃機関回転数による発電量で賄い、所定の余裕分を上乗せ内燃機関回転数で補いながら、車両の一時的な加速やEV走行を行う際に必要な電力を蓄電池11の電力で賄うことができる。これにより、内燃機関12を小型化しながら燃費最良点の近傍で運転でき、燃費の低減、CO2排出量の低減、アクセルペダルを操作したときの運転者の違和感を解消することができる。
【選択図】図1

Description

本発明は、内燃機関で駆動される発電機と、前記発電機により発電した電力を蓄える蓄電池と、前記内燃機関および前記発電機を制御する制御装置とを備えるハイブリッド自動車の発電制御装置に関する。
蓄電池に蓄えた電力のみによって電動機を駆動して走行するEV走行モードと、内燃機関で駆動される発電機によって発電された電力によって電動機を駆動して走行するシリーズ走行モードとを行うシリーズ型のハイブリッド自動車において、車速およびアクセルペダル開度等から導出した電動機の要求駆動力と蓄電池の残容量とに基づいて、発電機を駆動する内燃機関の始動の判断および発電機の発電量を決定するものが、下記特許文献1により公知である。
また内燃機関および電動機の2系統の動力源を有するパラレル型のハイブリッド自動車において、内燃機関単独による走行と、電動機単独による走行と、内燃機関および電動機の両方による走行とが可能であり、内燃機関は基本的に燃費が最良となる燃費最良点において一定回転数で運転され、内燃機関の出力に余剰がある場合には余剰出力で発電を行って蓄電池を充電するものが、下記特許文献2により公知である。
WO2011/078189 特開平09−224304号公報
ところで、プラグイン型のハイブリッド自動車では、蓄電池に蓄えた電力で走行するEV走行が基本となり、蓄電池の残容量が低下した場合に限って内燃機関で発電機を駆動して蓄電池を充電するため、プラグイン型以外のハイブリッド自動車に比べて発電機が作動する頻度が必然的に小さくなる。従って、プラグイン型のハイブリッド自動車では、発電機を駆動する内燃機関に小型で排気量が小さいものを使用することが望ましい。
上記特許文献1に記載されたものは、いわゆる「要求出力追従型発電制御」を行うもので、電動機の要求駆動力および蓄電池の残容量から内燃機関の駆動の要否および発電機の発電量を決定するが、近年の比較的に小型の内燃機関を装備したシリーズ型のハイブリッド自動車では、従来の比較的に大型の内燃機関を装備したシリーズ型のハイブリッド自動車に比べて、電動機の要求駆動力が大きい場合に内燃機関の回転数が大きくなるために燃費最良点から大きく外れてしまい、シリーズ走行時の燃費が大幅に悪化するという問題があるだけでなく、内燃機関の回転数増加によって振動や騒音が増加する可能性がある。
また特許文献2に記載されたものは、いわゆる「定点運転型発電制御」を行うもので、シリーズ走行時に内燃機関を燃費最良点で運転するようになっているが、近年の比較的に小型の内燃機関を装備したシリーズ型のハイブリッド自動車では、内燃機関により駆動される発電機の発電量が電動機の要求駆動力を満たすことができず、蓄電池が放電傾向となってエネルギーの維持が困難になる可能性がある。しかも「定点運転型発電制御」はアクセルペダル開度が変化しても内燃機関の回転数が一定に維持されるため、運転者がアクセルペダルを操作したときに違和感を感じる問題がある。
本発明は前述の事情に鑑みてなされたもので、「要求出力追従型発電制御」および「定点運転型発電制御」の弱点を補い、小型の内燃機関による発電で蓄電池の残容量を維持しながら電動機の要求駆動力を満たすとともに、アクセルペダルを操作したときの違和感を解消することが可能なハイブリッド自動車の発電制御装置を提供することを目的とする。
上記目的を達成するために、請求項1に記載された発明によれば、内燃機関で駆動される発電機と、前記発電機により発電した電力を蓄える蓄電池と、前記内燃機関および前記発電機を制御する制御装置とを備え、前記制御装置は、前記蓄電池の状態に応じて前記発電機の発電の可否を判定し、発電を許可したときに、走行状態に応じて巡行に必要な出力相当の前記発電機による発電ができる内燃機関回転数を設定するとともに、車両状態および走行状態により必要となる電力量に応じた前記発電機による発電ができる上乗せ内燃機関回転数を設定し、前記内燃機関回転数および前記上乗せ内燃機関回転数に応じて前記内燃機関および前記発電機を制御することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項2に記載された発明によれば、請求項1の構成に加えて、前記制御装置は、前記蓄電池の放電深度に基づいて発電の可否を判定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記制御装置は、前記蓄電池の残容量に基づいて発電の可否を判定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項4に記載された発明によれば、請求項1〜請求項3の何れか1項の構成に加えて、前記制御装置は、車速に基づいて前記内燃機関回転数を設定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項5に記載された発明によれば、請求項4の構成に加えて、前記制御装置は、車速に基づいて走行時の転がり抵抗および空気抵抗を導出し、導出した転がり抵抗および空気抵抗に基づいて前記内燃機関回転数を設定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項6に記載された発明によれば、請求項1〜請求項5の何れか1項の構成に加えて、前記制御装置は、路面の勾配推定値に基づいて前記上乗せ内燃機関回転数を設定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項7に記載された発明によれば、請求項1〜請求項6の何れか1項の構成に加えて、前記制御装置は、前記蓄電池の放電深度に基づいて前記上乗せ内燃機関回転数を設定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項8に記載された発明によれば、請求項1〜請求項7の何れか1項の構成に加えて、前記制御装置は、前記蓄電池の残容量に基づいて前記上乗せ内燃機関回転数を設定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項9に記載された発明によれば、請求項1〜請求項8の何れか1項の構成に加えて、前記制御装置は、車速に基づいて前記上乗せ内燃機関回転数を設定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項10に記載された発明によれば、請求項1〜請求項9の何れか1項の構成に加えて、車室内を空調する空調装置を備え、前記制御装置は、前記空調装置の稼働可否を判定し、前記空調装置が稼働しているときに、その要求温度に応じて前記上乗せ内燃機関回転数を設定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項11に記載された発明によれば、請求項1〜請求項10の何れか1項の構成に加えて、前記制御装置は、車速に応じて前記上乗せ内燃機関回転数を設定することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項12に記載された発明によれば、内燃機関で駆動される発電機と、前記発電機により発電した電力を蓄える蓄電池と、車室内を空調する空調装置と、前記空調装置、前記内燃機関および前記発電機を制御する制御装置とを備え、前記制御装置は、前記蓄電池の放電深度および残容量の少なくとも何れか一つのパラメータに基づいて発電の可否を判定し、発電を許可したときに、車速に基づいて走行時の空気抵抗および転がり抵抗の少なくとも何れか一つの抵抗を導出し、導出した抵抗に基づいて巡行に必要な出力相当の前記発電機による発電ができる内燃機関回転数を設定し、車両の勾配推定値、前記蓄電池の放電深度、前記蓄電池の残容量、車速および前記空調装置の要求温度の少なくとも何れか一つのパラメータに基づいて必要となる電力量に応じた前記発電機による発電ができる上乗せ内燃機関回転数を設定し、設定した前記内燃機関回転数および前記上乗せ内燃機関回転数から前記内燃機関および前記発電機を制御することを特徴とするハイブリッド自動車の発電制御装置が提案される。
また請求項13に記載された発明によれば、請求項1〜請求項12の何れか1項の構成に加えて、前記制御装置は、前記内燃機関回転数および前記上乗せ内燃機関回転数に応じて前記内燃機関および前記発電機を制御するとき、前記内燃機関の運転効率が最良となるように前記発電機の負荷トルクを制御することを特徴とするハイブリッド自動車の発電制御装置が提案される。
なお、実施の形態の電動コンプレッサ22および電動ヒータ23は本発明の空調装置に対応し、実施の形態の各車速における発電回転数上乗せ基本回転数DNGENBASEは本発明の上乗せ内燃機関回転数に対応し、実施の形態の各車速における発電機用内燃機関基本回転数NGENRLは本発明の内燃機関回転数に対応し、実施の形態の発電機発電出力PREQGENは本発明の発電量に対応する。
請求項1の構成によれば、ハイブリッド自動車の発電制御装置は、内燃機関で駆動される発電機と、発電機により発電した電力を蓄える蓄電池と、内燃機関および発電機を制御する制御装置とを備える。制御装置は、蓄電池の状態に応じて発電機の発電の可否を判定し、発電を許可したときに、走行状態に応じて巡行に必要な出力を賄うことができる発電機による発電が可能な内燃機関の回転数を設定するとともに、車両状態および走行状態により現状若しくは今後必要となる電力量を賄うことができる発電機による発電が可能な上乗せ内燃機関機回転数を設定し、内燃機関回転数および上乗せ内燃機関回転数に応じて内燃機関および発電機を制御するので、車両が巡行するのに必要な出力を賄うことができる電力を発電機による発電量で賄い、さらに所定の余裕分を上乗せ内燃機関回転数による発電量で補いながら、車両の一時的な加速やEV走行を行う際に必要な電力を蓄電池の電力で賄うことで、内燃機関を小型化しながら燃費最良点の近傍で運転することを可能にし、燃費の低減、CO2 排出量の低減、内燃機関の騒音の低減を達成するとともに、蓄電池が放電傾向になるのを防止して必要な残容量を確保することができる。また走行状態に応じて巡行に必要な出力を賄うことができる発電機による発電が可能な内燃機関の回転数を設定するので、下り坂や減速時に発電機の余剰出力で蓄電池を充電することが可能となり、内燃機関の効率を低下させるような大出力の発電を行うことなく、発電機の発電頻度が拡大されることで蓄電池の残容量を確保することができ、しかも車速の増加に応じて発電機の発電量、つまり内燃機関回転数が増加するため、アクセルペダルを操作したときの運転者の違和感を解消することができる。また車速や走行状態に応じた内燃機関の回転数を設定しているので、アクセルペダルを操作したときの違和感を解消することができる。
また請求項2の構成によれば、蓄電池の放電深度に基づいて発電の可否を判定するので、蓄電池の残容量が不足したときにEV走行を禁止して過放電を防止することができる。
また請求項3の構成によれば、蓄電池の残容量に基づいて発電の可否を判定するので、蓄電池の残容量が不足したときにEV走行を禁止して過放電を防止することができる。
また請求項4の構成によれば、車速に基づいて内燃機関回転数を設定するので、車速の増加に伴って増加する巡行に必要な出力を賄うことができる発電量を発電機によって確保することができる。
また請求項5の構成によれば、車速に基づいて走行時の転がり抵抗および空気抵抗を導出し、導出した転がり抵抗および空気抵抗に基づいて内燃機関回転数を設定するので、巡行に必要な出力を賄うことができる発電量を精度良く設定することができる。
また請求項6の構成によれば、路面の勾配推定値に基づいて前記上乗せ内燃機関回転数を設定するので、路面の勾配推定値により変化する現状若しくは今後必要となる出力を賄うための発電を最小限に抑えて内燃機関の燃費を更に節減することができる。
また請求項7の構成によれば、蓄電池の放電深度に基づいて上乗せ内燃機関回転数を設定するので、蓄電池の放電深度により変化する現状若しくは今後必要となる出力を賄うための発電を最小限に抑えて内燃機関の燃費を更に節減することができる。
また請求項8の構成によれば、制御装置は、蓄電池の残容量に基づいて上乗せ内燃機関回転数を設定するので、蓄電池の残容量により変化する現状若しくは今後必要となる出力を賄うための発電を最小限に抑えて内燃機関の燃費を更に節減することができる。
また請求項9の構成によれば、制御装置は、車速に基づいて上乗せ内燃機関回転数を設定するので、上乗せ内燃機関回転数を必要最小限に抑えて内燃機関の燃費を更に節減することができる。また車速から余剰な発電が可能か否かを判断することができるので、すなわち、最適な車速領域で余剰の発電をすることができるので、低速時の振動や高速時の過剰な運転による発電を抑制して商品性を向上することができる。
また請求項10の構成によれば、空調装置の稼働可否を判定し、空調装置が稼働しているときに、その要求温度に基づいて上乗せ内燃機関回転数を設定するので、空調装置の消費電力を上乗せ内燃機関回転数で賄うことができる。
また請求項11の構成によれば、車速に応じて上乗せ内燃機関回転数を補正するので、車速により変化する巡行に必要な出力を賄うことができる発電量を発電機によって確保することができる。
また請求項12の構成によれば、制御装置は、蓄電池の状態に応じて発電機の発電の可否を判定し、発電を許可したときに、車速に応じて巡行に必要な出力を賄うことができる発電機による発電が可能な内燃機関の回転数を設定するとともに、車両状態および走行状態により必要な出力を賄うことができる発電機による発電に応じて上乗せ内燃機関回転数を設定し、内燃機関回転数および上乗せ内燃機関回転数に基づいて内燃機関および発電機を制御するので、車両が巡行するのに必要な出力を内燃機関回転数による発電量で賄い、さらに所定の余裕分を上乗せ内燃機関回転数による発電量で補いながら、車両の一時的な加速やEV走行を行う際に必要な電力を蓄電池の電力で賄うことで、内燃機関を小型化しながら燃費最良点の近傍で運転することを可能にし、燃費の低減、CO2 排出量の低減、内燃機関の騒音の低減を達成するとともに、蓄電池が放電傾向になるのを防止して必要な残容量を確保することができる。また走行状態に応じて巡行に必要な出力を賄うことができる発電機による発電ができる内燃機関の回転数を設定するので、下り坂や減速時に発電機の余剰出力で蓄電池を充電することが可能となり、内燃機関の効率を低下させるような大出力の発電を行うことなく、発電機の発電頻度が拡大されることで蓄電池の残容量を確保することができる。さらに車速や走行状態に応じた内燃機関の回転数を設定しているので、アクセルペダルを操作したときの違和感を解消することができる。
また請求項13の構成によれば、制御装置は、内燃機関回転数および上乗せ内燃機関回転数に応じて内燃機関および発電機を制御するとき、巡行に必要な発電量を確保しながら内燃機関の運転効率が最良となるように発電機の負荷トルクを制御するので、内燃機関を高効率で運転して燃料消費量を節減することができる。
ハイブリッド自動車のパワーユニットの全体構成を示すブロック図。 オペレーション決定ルーチンのフローチャート。 放電深度算出ルーチンのフローチャート。 発電実施判断ルーチンのフローチャート。 発電機回転数算出ルーチンのフローチャート。 発電量算出ルーチンのフローチャート。 放電深度の算出手法の説明図。
以下、図1〜図7に基づいて本発明の実施の形態を説明する。
リチウムイオン(Li−ion)型などの蓄電池11を搭載したハイブリッド車両は、内燃機関12のクランクシャフトに発電機13が連結され、走行用の電動機14が駆動輪に連結されたシリーズ型のハイブリッド車両である。蓄電池11は、例えば外部の充電装置(図示略)などに接続可能な外部充電プラグ15を備え、この外部充電プラグ15を介して外部の充電装置16により充電可能とされている。
発電機13および電動機14は、例えば3相のDCブラシレス型のものであって、発電機13は第1パワードライブユニット17に接続され、電動機14は第2パワードライブユニット18に接続される。第1、第2パワードライブユニット17,18は、例えばトランジスタなどのスイッチング素子を複数用いてブリッジ接続してなるブリッジ回路を具備するパルス幅変調(PWM)によるPWMインバータを備えて構成され、第1コンバータ19を介して蓄電池11に接続される。
例えば内燃機関12の動力により発電機13が発電する場合には、発電機13から出力される交流の発電電力を第1パワードライブユニット17で直流電力に変換した後、更に第1コンバータ19で電圧変換して蓄電池11を充電したり、第2パワードライブユニット18で再び交流電力に変換して電動機14に電力供給したりする。また、例えば電動機14の駆動時には、蓄電池11から出力される直流電力あるいは発電機13から出力されて第2パワードライブユニット17で変換された直流電力を、第2パワードライブユニット18で交流電力に変換して電動機14に供給する。
一方、例えばハイブリッド車両の減速時などにおいて駆動輪側から電動機14側に駆動力が伝達されると、電動機14は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギーとして回収する。この電動機14の発電時には、第2パワードライブユニット18は電動機14から出力される交流の発電(回生)電力を直流電力に変換し、更に第1コンバータ19で電圧変換して蓄電池11を充電する。
また、各種補機類からなる電気負荷を駆動するための低圧の12V蓄電池20は第2コンバータ21を介して蓄電池11に接続されており、第2コンバータ21は蓄電池11のの端子間電圧あるいは更に第1コンバータ19の端子間電圧を所定の電圧値まで降圧して12V蓄電池20を充電可能である。
なお、例えば蓄電池11の残容量(SOC:State Of Charge )が低下している場合などにおいては、12V蓄電池20の端子間電圧を第2コンバータ21で昇圧して蓄電池11を充電可能にしてもよい。
また、車室を空調する電動コンプレッサ22および電動ヒータ23が蓄電池11に接続されている。
ハイブリッド車両の動力系統を制御する制御装置24は、例えばCPU(Central Processing Unit )などの電子回路により構成される各種のECU(Electronic Control Unit :電子制御ユニット)として、蓄電池ECU25、内燃機関ECU26、コンバータECU27、電動機ECU28、発電機ECU29および空調用ECU30に接続されて制御される
発電機ECU29は、第1パワードライブユニット17の電力変換動作を制御することで内燃機関12の動力による発電機13の発電を制御する。
電動機ECU28は、第2パワードライブユニット18の電力変換動作を制御することで電動機14の駆動および発電を制御する。
第1、第2パワードライブユニット17,18の電力変換動作は、例えばパルス幅変調(PWM)などにより第1、第2パワードライブユニット17,18のトランジスタをオン/オフ駆動させるためのパルスに応じて制御され、このパルスのデューティ、つまりオン/オフの比率によって、発電機13および電動機14の作動量が制御される。
蓄電池ECU25は、例えば蓄電池11を含む高圧電装系の監視および保護などの制御と、第2コンバータ21の電力変換動作の制御とを行なう。例えば、蓄電池ECU25は、蓄電池11の端子間電圧と電流と温度との各検出信号に基づき、残容量(SOC:State Of Charge )などの各種の状態量を算出する。なお、蓄電池ECU25は、蓄電池11の電圧を検出する電圧センサ、蓄電池11の電流を検出する電流センサ、蓄電池11の温度を検出する温度センサと接続され、これらセンサから出力される検出信号が入力される。
内燃機関ECU26は、例えば内燃機関12への燃料供給や点火タイミングなどを制御する。例えば、内燃機関ECU26は、スロットルバルブを駆動する電磁アクチュエータに制御電流を通電して、蓄電池ECU25の指示に応じたバルブ開度となるようにスロットルバルブを電子制御する。また、運転者からの要求出力に対して追従して制御する場合、内燃機関ECU26は、アクセルペダル開度に応じて、スロットルバルブを駆動する電磁アクチュエータに制御電流を通電して電子制御する。さらに、内燃機関ECU26は、他の全てのECUの管理および制御を行なう。このため、内燃機関ECU26には、ハイブリッド車両の状態量を検出する各種のセンサから出力される検出信号が入力されている。
各種のセンサは、例えば、車速を検出する車速センサ、内燃機関12の冷却水温度を検出する冷却水温度センサ、アクセルペダル開度を検出するアクセルペダル開度センサ等である。
なお、各ECUは、ハイブリッド車両の各種の状態を検出するセンサ類と共に、車両のCAN(Controller Area Network )通信第1ライン31に接続されている。
また、電動コンプレッサ22および電動ヒータ23は、ハイブリッド車両の各種の状態を表示する計器類からなるメータと共に、CAN(Controller Area Network )通信第1ライン31よりも通信速度の遅いCAN(Controller Area Network )通信第2ライン32に接続されている。
内燃機関12、発電機13および第1パワードライブユニット17は、内燃機関12の駆動力で電力を発生する補助動力部33を構成する。
次に、上記構成を備えたハイブリッド自動車の発電制御について説明する。
図2のフローチャートはオペレーション決定ルーチンを示すもので、本ルーチンにより、ハイブリッド自動車の6種類の運転モードが決定される。
先ずステップS1で運転者により選択されたセレクトレンジが「P」レンジ(パーキングレンジ)あるいは「N」レンジ(ニュートラルレンジ)であれば、ステップS2で発電機13の発電量である発電機発電出力PREQGENをアイドル時の発電機出力PREQGENIDLに設定し、ステップS3で内燃機関12の回転数である発電機用内燃機関回転数NGENをアイドル時の発電機用内燃機関回転数NGENIDLに設定する。続くステップS4で蓄電池11の残容量SOC(State of Charge )がアイドル発電実施上限残容量SOCIDLE以下であれば、ステップS5で運転モードを第1モード(REVアイドルモード)に設定し、オペレーション決定ルーチンを終了する。前記ステップS4で蓄電池11の残容量SOCがアイドル発電実施上限残容量SOCIDLEを超えていれば、ステップS6で運転モードを第2モード(アイドルストップモード)に設定し、オペレーション決定ルーチンを終了する。
蓄電池11の残容量SOCは、電流センサで検出した充放電電流を積算して積算充電量および積算放電量を算出し、積算充電量および積算放電量を初期状態あるいは充放電開始直前の残容量SOCに加算または減算することで算出可能である。また蓄電池11の開放電圧OCV(Open Circuit Voltage)は残容量SOCと相関関係にあるため、開放電圧OCVから残容量SOCを算出することも可能である。
第1モード(REVアイドルモード)は、蓄電池11の残容量SOCを増加させるべく、「P」レンジ(駐車レンジ)あるいは「N」レンジ(ニュートラルレンジ)で電動機14を停止させた状態で、内燃機関12をアイドリング運転して発電機13に発電を行わせ、発電機13の発電電力で蓄電池11を充電するモードである。
第2モード(アイドルストップモード)は、蓄電池11の残容量SOCが充分であるため、「P」レンジあるいは「N」レンジで電動機14を停止させた状態で、内燃機関12をアイドリングストップ制御して発電機13を停止させるモードである。
前記ステップS1で運転者により選択されたセレクトレンジが「P」レンジでも「N」レンジでもない場合、例えば、「D」レンジ(前進走行レンジ)あるいは「R」レンジ(後進走行レンジ)である場合、ステップS7で運転者がブレーキペダルを踏んでおり、かつステップS8で車速センサにより検出した車速VPがゼロのとき、つまり、車両が停止しているとき、前記ステップS2〜ステップS4に移行してステップS5の第1モードあるいはステップS6の第2モードを選択する。
前記ステップS7で運転者がブレーキペダルを踏んでいないとき、あるいはブレーキペダルを踏んでいても前記ステップS8で車速VPがゼロでないとき、例えば、車両が前進あるいは後進の減速走行の減速走行を行っているとき、ステップS9で車速VPおよびアクセルペダル開度センサで検出したアクセルペダル開度APをパラメータとして、運転者が電動機14に出力させることを要求している要求駆動力FREQFをマップ検索する。
続くステップS10で車速VPと、車速VPを時間微分して算出した加速度αと、要求駆動力FREQFの前回値FREQFBとから、車両が現在走行している路面の勾配推定値θを算出する。勾配推定値θは(1)式で算出される。
θ=[FREQFB−(Ra+Rr+Rc)]/(W*g) …(1)
ここで、(1)式中のRaは空気抵抗、Rrは転がり抵抗、Rcは加速抵抗、Wは車両重量、gは重力加速度である。Rrは(2)式、Rcは(3)式、Rcは(4)式で算出される。
Ra=λ*S*VP2 …(2)
Rr=W*μ …(3)
Rc=α*W …(4)
ここで、(2)〜(4)式中のλは空気抵抗係数、Sは前面投影面積、VPは車速、μは転がり抵抗係数、αは加速度である。
続くステップS11で蓄電池11の放電深度DODを算出する。その詳細は図3のフローチャートに基づいて後から詳述する。続くステップS12で内燃機関12を駆動して発電機13による発電を実施するか否か、つまり補助動力部33による発電を実施するか否かを判断する。その詳細は図4のフローチャートに基づいて後から詳述する。続くステップS13で発電機13の回転数、つまり発電機13に接続された内燃機関11の回転数である発電機用内燃機関回転数NGENを算出する。その詳細は図5のフローチャートに基づいて後から詳述する。続くステップS14で発電機13による発電量である発電機発電出力PREQGENを算出する。その詳細は図6のフローチャートに基づいて後から詳述する。
続くステップS16で、前記ステップS9で算出した要求駆動力FREQFがゼロ未満のとき、つまり電動機14が回生しているとき、ステップS17で発電実施フラグF_GEN=「0」(発電非実施)であれば、ステップS18で運転モードを第3モード(EV回生モード)に設定し、オペレーション決定ルーチンを終了する。前記ステップS17で発電実施フラグF_GEN=「1」(発電実施)であれば、ステップS19で運転モードを第4モード(REV回生モード)に設定し、オペレーション決定ルーチンを終了する。
第3モード(EV回生モード)は、車両の減速時に駆動輪から逆伝達される駆動力で電動機14を発電機として機能させて蓄電池11を充電し、内燃機関12および発電機13は停止するモードである。
第4モード(REV回生モード)は、車両の減速時に駆動輪から逆伝達される駆動力で電動機14を発電機として機能させて蓄電池11を充電するとともに、内燃機関12で発電機13を駆動し、発電機13が発電した電力で蓄電池11を充電するモードである。このように、車両の減速時に電動機14の回生発電による蓄電池11の充電だけでなく、補助動力部33の駆動による蓄電池11の充電を並行して行うことで、回生発電による充電では不充分である場合でも、蓄電池11の効率的に充電することができる。
前記ステップS16で要求駆動力FREQFがゼロ以上のとき、つまり電動機14が駆動されるとき、ステップS20で発電実施フラグF_GEN=「1」(発電実施)であれば、ステップS21で運転モードを第5モード(REV走行モード)に設定し、オペレーション決定ルーチンを終了する。前記ステップS20で発電実施フラグF_GEN=「0」(発電非実施)であれば、ステップS22で運転モードを第6モード(EV走行モード)に設定し、オペレーション決定ルーチンを終了する。
第5モード(REV走行モード)は、補助動力部33が発電した電力および/または蓄電池11に蓄えた電力で電動機14を駆動して走行するモードであり、内燃機関12、発電機13および電動機14は全て駆動される。
第6モード(EV走行モード)は、補助動力部33を停止し、蓄電池11に蓄えた電力で電動機14を駆動して走行するモードであり、内燃機関12および発電機13は停止して電動機14は駆動される。
次に、前記ステップS11のサブルーチンである放電深度算出ルーチンを、図3のフローチャートおよび図7の説明図に基づいて説明する。
先ずステップS101でスタータスイッチがオンされたとき、ステップS102でそのときの残容量SOCを放電深度算出基準残容量SOCINTに設定する。続くステップS103で放電深度算出基準残容量SOCINTが放電深度算出基準残容量下限値SOCINTL未満か否かを判断し、放電深度算出基準残容量SOCINTが放電深度算出基準残容量下限値SOCINTL未満と判定したとき、ステップS104で放電深度算出基準残容量下限値SOCINTLを放電深度算出基準残容量SOCINTに設定する。なお、放電深度算出基準残容量SOCINTが放電深度算出基準残容量下限値SOCINTL以上と判定したとき、放電深度算出基準残容量下限値SOCINTLをステップS102で設定した値で維持する。
続くステップS105で放電深度算出基準残容量SOCINTから放電深度算出実施判断放電量DODLMTを減算した値を放電深度算出実施下限閾値SOCLMTLに設定する。続くステップS106で放電深度算出基準残容量SOCINTに放電深度算出実施判断充電量SOCUPを加算した値を放電深度算出実施上限閾値SOCLMTHに設定する。そしてステップS107で放電深度算出実施フラグF_DODLMTを「0」(不実施)に設定するとともに、ステップS108で放電深度DODを初期値である「0」に設定し、放電深度算出ルーチンを終了する。
前記ステップS101でスタータスイッチがオフされたとき、あるいはオンされなかったとき、ステップS109で残容量SOCが放電深度算出実施上限残容量SOCUPHを超えているか否かを判断し、残容量SOCが放電深度算出実施上限残容量SOCUPHを超えていると判定したとき、前記ステップS107および前記ステップS108に移行して放電深度算出を実行しない。前記ステップS109で残容量SOCが放電深度算出実施上限残容量SOCUPH以下と判定したとき、ステップS110に進む。
続くステップS110で残容量SOCが前記放電深度算出実施下限閾値SOCLMTL以下か否かを判断し、残容量SOCが前記放電深度算出実施下限閾値SOCLMTL以下になれば(図7のA点参照)、ステップS111で放電深度算出実施フラグF_DODLMTを「1」(実施)に設定するとともに、ステップS112で放電深度算出基準残容量SOCINTから残容量SOCを減算した値を電深度DODに設定し、放電深度算出ルーチンを終了する。前記ステップS110で残容量SOCが前記放電深度算出実施下限閾値SOCLMTLを超えていると判定したとき、ステップS113に進む。
そして、ステップS113で放電深度算出実施フラグF_DODLMTが「1」(実施)に設定されているとき、即ち放電深度DODの算出が実施されているとき、ステップS114で残容量SOCが放電深度算出実施上限閾値SOCLMTHを超えているか否かを判定し、残容量SOCが放電深度算出実施上限閾値SOCLMTHを超えていれば(図7のB点参照)、前記ステップS102〜ステップS108に移行して処理を実行し、放電深度算出ルーチンを終了する。なお、ステップS102では、ステップ114から移行したときの残容量SOCで藻放電深度算出基準残容量SOCINTを更新して処理を実行する。
前記ステップS113で放電深度算出実施フラグF_DODLMTが「0」(不実施)に設定されているとき、ステップS114で残容量SOCが放電深度算出実施上限残容量SOCUPH以下と判定したとき、放電深度算出ルーチンを終了する。
次に、前記ステップS12のサブルーチンである発電実施判断ルーチンを、図4のフローチャートに基づいて説明する。
先ずステップS201で蓄電池11の残容量SOCがREVモード発電実施上限残容量SOCREV未満であるか否かを判定し、蓄電池11の残容量SOCがREVモード発電実施上限残容量SOCREV以上と判定したときには、ステップS202で発電実施フラグF_GEN=「0」にして補助動力部33による発電を停止し、発電実施判断ルーチンを終了する。前記ステップS201で蓄電池11の残容量SOCがREVモード発電実施上限残容量SOCREV未満と判定したときであっても、続くステップS203で、冷却水温度センサで検出した内燃機関12の冷却水温度TWがEVモード実施上限水温TWEV以下と判定されたときは、内燃機関12の暖機が完了していないため、ステップS202で発電実施フラグF_GEN=「0」にして補助動力部33による発電を停止し、発電実施判断ルーチンを終了する。
前記ステップS201で蓄電池11の残容量SOCがREVモード発電実施上限残容量SOCREV未満と判定し、前記ステップS203で冷却水温度センサで検出した内燃機関11の冷却水温度TWがEVモード実施上限水温TWEVを超えていると判定したとき、ステップS204で放電深度DODをパラメータとして放電深度による発電実施下限車速VPGENDODをテーブル検索する。なお、放電深度による発電実施下限車速VPGENDODは、放電深度DODの増加に伴って減少する。即ち、蓄電池11の容量が減少すると、補助動力部33を低車速で作動させることで、EV走行の頻度が減少して蓄電池11の過放電が抑制される。
続くステップS205で残容量SOCをパラメータとして残容量による発電実施下限車速VPGENSOCをテーブル検索する。なお、残容量による発電実施下限車速VPGENSOCは、残容量SOCの減少に伴って減少する。即ち、蓄電池11の容量が減少すると、補助動力部33を低車速で作動させることで、EV走行の頻度が減少して蓄電池11の過放電が抑制される。
続くステップS206で車速VPが放電深度による発電実施下限車速VPGENDODを上回るか否かを判定し、車速VPが放電深度による発電実施下限車速VPGENDOD以下のとき、ステップS207で車速VPが残容量による発電実施下限車速VPGENSOCを上回るか否かを判定する。車速VPが残容量による発電実施下限車速VPGENSOC以下のとき、ステップS202で発電実施フラグF_GEN=「0」にして補助動力部33による発電を停止し、発電実施判断ルーチンを終了する。
ステップS206で車速VPが放電深度による発電実施下限車速VPGENDODを上回ると判定したとき、ステップS207で車速VPが残容量による発電実施下限車速VPGENSOCを上回ると判定したとき、ステップS208で発電実施フラグF_GEN=「1」にして補助動力部33による発電を開始し、発電実施判断ルーチンを終了する。
その結果、蓄電池11の放電深度DODが増加したとき、あるいは蓄電池11の残容量SOCが減少したとき、つまり蓄電池11が過放電になる可能性があるとき、補助動力部33が作動して発電を開始する車速VPを低下させることで、蓄電池11の過放電を未然に防止することができる。
次に、前記ステップS13のサブルーチンである発電機回転数算出ルーチンを、図5のフローチャートに基づいて説明する。
先ずステップS301で車速VPをパラメータとして各車速における発電機用内燃機関基本回転数NGENRLをテーブル検索する。各車速における発電機用内燃機関基本回転数NGENRLは、電動機14が車両の転がり抵抗および空気抵抗に打ち勝つだけの駆動力を発生し得る発電量が得られる内燃機関11の回転数であり、車速VPの増加に応じて増加する。
続くステップS302で車速VPと前記ステップS10で算出した路面の勾配推定値θとをパラメータとして各車速と勾配の発電回転数補正量DNGENSLPをマップ検索する。路面が登り勾配のときは車両の巡行に必要な発電量が増加し、路面が下り勾配のときは車両の巡行に必要な発電量が減少するため、各車速と勾配の発電回転数補正量DNGENSLPによって各車速における発電機用内燃機関基本回転数NGENRLが補正される。
続くステップS303で車速VPをパラメータとして各車速における発電回転数上乗せ基本回転数DNGENBASEをテーブル検索する。各車速における発電回転数上乗せ基本回転数DNGENBASEは、車速VPの増加に伴って減少する。
続くステップS304で車速VPおよび放電深度DODをパラメータとして各車速と放電深度の発電回転数上乗せ量DNGENDODをマップ検索し、ステップS305で車速VPおよび残容量SOCをパラメータとして各車速と残容量の発電回転数上乗せ量DNGENSOCをマップ検索する。放電深度DODが大きくなると、あるいは残容量SOCが小さくなると各車速における発電回転数上乗せ基本回転数DNGENBASEが不足する可能性があるため、各車速と放電深度の発電回転数上乗せ量DNGENDODおよび各車速と残容量の発電回転数上乗せ量DNGENSOCによって各車速における発電回転数上乗せ基本回転数DNGENBASEが補正される。
続くステップS306で車速VPをパラメータとして各車速の空調使用時の発電上乗せ量PGENACをテーブル検索する。
そして、ステップS307で空調使用フラグF_AC=「1」(空調使用)であるか否かを判定する。空調使用フラグF_AC=「0」(空調使用なし)であって電動コンプレッサ22も電動ヒータ23も使用されていなければ、ステップS308で各車速における発電機用内燃機関基本回転数NGENRL、各車速と勾配の発電回転数補正量DNGENSLP、各車速における発電回転数上乗せ基本回転数DNGENBASE、各車速と放電深度の発電回転数上乗せ量DNGENDODおよび各車速と残容量の発電回転数上乗せ量DNGENSOCを加算して発電機用内燃機関回転数NGENを算出し、発電機回転数算出ルーチンを終了する。
また、ステップS307で空調使用フラグF_AC=「1」であって電動コンプレッサ22か電動ヒータ23が使用されていれば、ステップS309で各車速における発電機用内燃機関基本回転数NGENRL、各車速と勾配の発電回転数補正量DNGENSLP、各車速における発電回転数上乗せ基本回転数DNGENBASE、各車速と放電深度の発電回転数上乗せ量DNGENDOD、各車速と残容量の発電回転数上乗せ量DNGENSOCおよび各車速の空調使用時の発電回転数上乗せ量DNGENACを加算して発電機用内燃機関回転数NGENを算出し、発電機回転数算出ルーチンを終了する。
次に、前記ステップS14のサブルーチンである発電量算出ルーチンを、図6のフローチャートに基づいて説明する。
ステップS401で発電機用内燃機関回転数NGENをパラメータとして発電機発電出力PREQGENをテーブル検索し、発電量算出ルーチンを終了する。発電機13を所定の回転数で駆動するとき、その発電量は負荷トルクを変化させることで調整可能である。発電機発電出力PREQGENは、発電機用内燃機関回転数NGENで内燃機関12を運転したときに、内燃機関12の運転効率が最良となる負荷トルクが発生するように設定される。図6のテーブルから明らかなように、発電機発電出力PREQGENは発電機用内燃機関回転数NGENに概ね比例する。
本実施の形態では、車両が走行するときに必ず発生する転がり抵抗および空気抵抗に相当する発電量を得るための「各車速における発電機用内燃機関基本回転数NGENRL」と、所定の余裕量として設定した「各車速における発電回転数上乗せ基本回転数DNGENBASE」とを加算した回転数で内燃機関12を運転して発電し、それ以外に加速等により一時的に必要となる出力と、低車速時のEV走行に必要となる出力とは、蓄電池11に蓄えた電力で賄われる。「各車速における発電機用内燃機関基本回転数NGENRL」と、「各車速における発電回転数上乗せ基本回転数DNGENBASE」とを加算した回転数で内燃機関12を運転したときの発電量は、車両の巡行出力に厳密に一致しているわけではないが、概ね一致しているため、本実施の形態による補助動力部33の制御は、「巡航出力追従型発電」に準ずる制御であると言える。
この「巡航出力追従型制御」に準ずる制御より、従来の「要求出力追従型発電制御」の課題である、電動機が必要とする要求発電量が大きい場合に内燃機関の回転数が大きくなるために燃費最良点から大きく外れてしまい、補助動力部の出力により走行する際に燃費が大幅に悪化するという問題や、要求発電量が大きい場合に内燃機関の回転数増加によって振動や騒音が増加するという問題が解消される。また従来の「定点運転型発電制御」の課題である、燃費やCO2 排出量を低減すべく内燃機関を小型化して燃費最良点で運転すると、発電機の発電量が電動機の要求駆動力を満たすことができず、蓄電池が放電傾向となってエネルギーの維持が困難になるという問題が解消される。
しかも「各車速における発電機用内燃機関基本回転数NGENRL」は車速VPに応じて設定されるので、下り坂や減速時に発電機13の余剰出力で蓄電池11を充電することが可能となる。よって内燃機関12の効率を低下させるような大出力発電を行うことなく、下り坂や減速時に発電機13の発電頻度が拡大されることで、蓄電池11のエネルギーの維持が一層容易になる。
また発電機用内燃機関回転数NGENをパラメータとして発電機発電出力PREQGENを検索するテーブル(図6参照)は、内燃機関12の運転効率が最良となる負荷トルクを発電機13が発生するように設定されるので、車両の巡行に必要な発電量を確保しながら内燃機関12を高効率で運転して燃料消費量を節減することができる。
また、本実施の形態では、EV走行からREV走行(即ち、補助動力部33で発電した電力による走行)に切り換わる車速である「放電深度による発電実施下限車速VPGENDOD」および「残容量による発電実施下限車速VPGENSOC」を、蓄電池11の残容量SOCや放電深度DODに応じて変化させるので、低車速・低出力時におけるエネルギー制御を的確に行うことが可能になる。
更に、REV走行時における「各車速における発電機用内燃機関基本回転数NGENRL」を「各車速と勾配の発電回転数補正量DNGENSLP」によって補正するので、路面の勾配による影響を補償して補助動力部33の発電量を適切に制御することができるだけでなく、「各車速における発電回転数上乗せ基本回転数DNGENBASE」を「各車速と放電深度の発電回転数上乗せ量DNGENDOD」、「各車速と残容量の発電回転数上乗せ量DNGENSOC」および「各車速の空調使用時の発電回転数上乗せ量DGGENAC」で補正するので、残容量SOC、放電深度DODおよび空調の負荷による影響を補償して補助動力部33の発電量を適切に制御することができ、中高車速・中高出力時におけるエネルギー制御を的確に行うことが可能になる。
以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
例えば、実施の形態ではプラグイン型のハイブリッド自動車について説明したが、本発明はシリーズ型のハイブリッド自動車、あるいはシリーズ走行が可能なパラレル型のハイブリッド自動車に対しても適用することができる。
また放電深度DODの算出手法は実施の形態に限定されず、任意の手法を採用することができる。
11 蓄電池
12 内燃機関
13 発電機
14 電動機
22 電動コンプレッサ(空調装置)
23 電動ヒータ(空調装置)
24 制御装置
DNGENBASE 各車速における発電回転数上乗せ基本回転数(上乗せ内燃機関回転数)
DOD 放電深度
NGENRL 各車速における発電機用内燃機関基本回転数(内燃機関回転数)PREQGEN 発電機発電出力(発電量)
SOC 残容量
VP 車速
θ 路面の勾配推定値

Claims (13)

  1. 内燃機関で駆動される発電機と、前記発電機により発電した電力を蓄える蓄電池と、前記内燃機関および前記発電機を制御する制御装置とを備え、
    前記制御装置は、前記蓄電池の状態に応じて前記発電機の発電の可否を判定し、発電を許可したときに、走行状態に応じて巡行に必要な出力相当の前記発電機による発電ができる内燃機関回転数を設定するとともに、車両状態および走行状態により必要となる電力量に応じた前記発電機による発電ができる上乗せ内燃機関回転数を設定し、前記内燃機関回転数および前記上乗せ内燃機関回転数に応じて前記内燃機関および前記発電機を制御することを特徴とするハイブリッド自動車の発電制御装置。
  2. 前記制御装置は、前記蓄電池の放電深度に基づいて発電の可否を判定することを特徴とする、請求項1に記載のハイブリッド自動車の発電制御装置。
  3. 前記制御装置は、前記蓄電池の残容量に基づいて発電の可否を判定することを特徴とする、請求項1または請求項2に記載のハイブリッド自動車の発電制御装置。
  4. 前記制御装置は、車速に基づいて前記内燃機関回転数を設定することを特徴とする、請求項1〜請求項3の何れか1項に記載のハイブリッド自動車の発電制御装置。
  5. 前記制御装置は、車速に基づいて走行時の転がり抵抗および空気抵抗を導出し、導出した転がり抵抗および空気抵抗に基づいて前記内燃機関回転数を設定することを特徴とする、請求項4に記載のハイブリッド自動車の発電制御装置。
  6. 前記制御装置は、路面の勾配推定値に基づいて前記上乗せ内燃機関回転数を設定することを特徴とする、請求項1〜請求項5の何れか1項に記載のハイブリッド自動車の発電制御装置。
  7. 前記制御装置は、前記蓄電池の放電深度に基づいて前記上乗せ内燃機関回転数を設定することを特徴とする、請求項1〜請求項6の何れか1項に記載のハイブリッド自動車の発電制御装置。
  8. 前記制御装置は、前記蓄電池の残容量に基づいて前記上乗せ内燃機関回転数を設定することを特徴とする、請求項1〜請求項7の何れか1項に記載のハイブリッド自動車の発電制御装置。
  9. 前記制御装置は、車速に基づいて前記上乗せ内燃機関回転数を設定することを特徴とする、請求項1〜請求項8の何れか1項に記載のハイブリッド自動車の発電制御装置。
  10. 車室内を空調する空調装置を備え、前記制御装置は、前記空調装置の稼働可否を判定し、前記空調装置が稼働しているときに、その要求温度に応じて前記上乗せ内燃機関回転数を設定することを特徴とする、請求項1〜請求項9の何れか1項に記載のハイブリッド自動車の発電制御装置。
  11. 前記制御装置は、車速に応じて前記上乗せ内燃機関回転数を設定することを特徴とする、請求項1〜請求項10の何れか1項に記載のハイブリッド自動車の発電制御装置。
  12. 内燃機関で駆動される発電機と、前記発電機により発電した電力を蓄える蓄電池と、車室内を空調する空調装置と、前記空調装置、前記内燃機関および前記発電機を制御する制御装置とを備え、前記制御装置は、前記蓄電池の放電深度および残容量の少なくとも何れか一つのパラメータに基づいて発電の可否を判定し、発電を許可したときに、車速に基づいて走行時の空気抵抗および転がり抵抗の少なくとも何れか一つの抵抗を導出し、導出した抵抗に基づいて巡行に必要な出力相当の前記発電機による発電ができる内燃機関回転数を設定し、車両の勾配推定値、前記蓄電池の放電深度、前記蓄電池の残容量、車速および前記空調装置の要求温度の少なくとも何れか一つのパラメータに基づいて必要となる電力量に応じた前記発電機による発電ができる上乗せ内燃機関回転数を設定し、設定した前記内燃機関回転数および前記上乗せ内燃機関回転数から前記内燃機関および前記発電機を制御することを特徴とするハイブリッド自動車の発電制御装置。
  13. 前記制御装置は、前記内燃機関回転数および前記上乗せ内燃機関回転数に応じて前記内燃機関および前記発電機を制御するとき、前記内燃機関の運転効率が最良となるように前記発電機の負荷トルクを制御することを特徴とする、請求項1〜請求項12の何れか1項に記載のハイブリッド自動車の発電制御装置。
JP2012116341A 2012-04-11 2012-05-22 ハイブリッド自動車の発電制御装置 Pending JP2013241129A (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2012116341A JP2013241129A (ja) 2012-05-22 2012-05-22 ハイブリッド自動車の発電制御装置
EP13724893.6A EP2836407A1 (en) 2012-04-11 2013-04-09 Electric power generation control system for hybrid automobile
KR1020147028665A KR20140135246A (ko) 2012-04-11 2013-04-09 하이브리드 자동차의 발전 제어 시스템
CA2866818A CA2866818A1 (en) 2012-04-11 2013-04-09 Electric power generation control system for hybrid automobile
CN201380016604.9A CN104220316A (zh) 2012-04-11 2013-04-09 用于混合动力汽车的发电控制系统
PCT/JP2013/061341 WO2013154207A1 (en) 2012-04-11 2013-04-09 Electric power generation control system for hybrid automobile
PCT/JP2013/061138 WO2013154198A1 (en) 2012-04-11 2013-04-09 Electric power generation control system for hybrid automobile
KR20147028663A KR20140135245A (ko) 2012-04-11 2013-04-09 하이브리드 자동차의 발전 제어 시스템
US14/385,552 US20150046007A1 (en) 2012-04-11 2013-04-09 Electric power generation control system for hybrid automobile
CA2866827A CA2866827A1 (en) 2012-04-11 2013-04-09 Electric power generation control system for hybrid automobile
EP13724894.4A EP2836408A1 (en) 2012-04-11 2013-04-09 Electric power generation control system for hybrid automobile
CN201380017325.4A CN104203701A (zh) 2012-04-11 2013-04-09 用于混合动力汽车的发电控制系统
US14/385,837 US20150046010A1 (en) 2012-04-11 2013-04-09 Electric power generation control system for hybrid automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116341A JP2013241129A (ja) 2012-05-22 2012-05-22 ハイブリッド自動車の発電制御装置

Publications (1)

Publication Number Publication Date
JP2013241129A true JP2013241129A (ja) 2013-12-05

Family

ID=49842483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116341A Pending JP2013241129A (ja) 2012-04-11 2012-05-22 ハイブリッド自動車の発電制御装置

Country Status (1)

Country Link
JP (1) JP2013241129A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199227A1 (ja) * 2015-06-09 2016-12-15 日産自動車株式会社 ハイブリッド車両のモード遷移制御装置
JP2017048727A (ja) * 2015-09-02 2017-03-09 マツダ株式会社 シリーズハイブリッド車両のエンジン制御装置
CN107351838A (zh) * 2017-07-27 2017-11-17 清华大学 电动化车辆巡航控制的周期性动力分配方法、装置及车辆
CN109624962A (zh) * 2017-10-06 2019-04-16 本田技研工业株式会社 混合动力车辆
CN115320363A (zh) * 2022-08-02 2022-11-11 东莞叁壹半导体科技有限公司 一种串联式混合动力汽车系统及动力控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308016A (ja) * 1995-05-10 1996-11-22 Honda Motor Co Ltd ハイブリッド車の発電装置
JPH0998513A (ja) * 1995-10-03 1997-04-08 Mitsubishi Motors Corp ハイブリッド電気自動車の充放電制御装置
JPH09224304A (ja) * 1996-02-19 1997-08-26 Hitachi Ltd ハイブリッド自動車
JPH1118203A (ja) * 1997-06-18 1999-01-22 Nissan Motor Co Ltd ハイブリット車両の発電機制御装置
JPH11103505A (ja) * 1997-09-29 1999-04-13 Nissan Motor Co Ltd ハイブリッド車両のバッテリー充電量演算装置
JP2001103606A (ja) * 1999-09-28 2001-04-13 Yamaha Motor Co Ltd シリーズハイブリッド式電動車両
JP2002171604A (ja) * 2000-09-22 2002-06-14 Nissan Motor Co Ltd ハイブリッド車の制御装置
US6484830B1 (en) * 2000-04-26 2002-11-26 Bowling Green State University Hybrid electric vehicle
JP2009504469A (ja) * 2005-08-10 2009-02-05 ダイムラー・アクチェンゲゼルシャフト 自動車用ドライブトレイン及びドライブトレインの運転方法
WO2011078189A1 (ja) * 2009-12-22 2011-06-30 本田技研工業株式会社 ハイブリッド車両の制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308016A (ja) * 1995-05-10 1996-11-22 Honda Motor Co Ltd ハイブリッド車の発電装置
JPH0998513A (ja) * 1995-10-03 1997-04-08 Mitsubishi Motors Corp ハイブリッド電気自動車の充放電制御装置
JPH09224304A (ja) * 1996-02-19 1997-08-26 Hitachi Ltd ハイブリッド自動車
JPH1118203A (ja) * 1997-06-18 1999-01-22 Nissan Motor Co Ltd ハイブリット車両の発電機制御装置
JPH11103505A (ja) * 1997-09-29 1999-04-13 Nissan Motor Co Ltd ハイブリッド車両のバッテリー充電量演算装置
JP2001103606A (ja) * 1999-09-28 2001-04-13 Yamaha Motor Co Ltd シリーズハイブリッド式電動車両
US6484830B1 (en) * 2000-04-26 2002-11-26 Bowling Green State University Hybrid electric vehicle
JP2002171604A (ja) * 2000-09-22 2002-06-14 Nissan Motor Co Ltd ハイブリッド車の制御装置
JP2009504469A (ja) * 2005-08-10 2009-02-05 ダイムラー・アクチェンゲゼルシャフト 自動車用ドライブトレイン及びドライブトレインの運転方法
WO2011078189A1 (ja) * 2009-12-22 2011-06-30 本田技研工業株式会社 ハイブリッド車両の制御装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199227A1 (ja) * 2015-06-09 2016-12-15 日産自動車株式会社 ハイブリッド車両のモード遷移制御装置
KR101834144B1 (ko) 2015-06-09 2018-04-13 닛산 지도우샤 가부시키가이샤 하이브리드 차량의 모드 천이 제어 장치
RU2653944C1 (ru) * 2015-06-09 2018-05-15 Ниссан Мотор Ко., Лтд. Устройство управления изменением режима для гибридного транспортного средства
US10232698B2 (en) 2015-06-09 2019-03-19 Nissan Motor Co., Ltd. Mode transition control device for hybrid vehicle
JP2017048727A (ja) * 2015-09-02 2017-03-09 マツダ株式会社 シリーズハイブリッド車両のエンジン制御装置
CN107351838A (zh) * 2017-07-27 2017-11-17 清华大学 电动化车辆巡航控制的周期性动力分配方法、装置及车辆
CN109624962A (zh) * 2017-10-06 2019-04-16 本田技研工业株式会社 混合动力车辆
US10875400B2 (en) 2017-10-06 2020-12-29 Honda Motor Co., Ltd. Hybrid vehicle
CN109624962B (zh) * 2017-10-06 2022-05-10 本田技研工业株式会社 混合动力车辆
CN115320363A (zh) * 2022-08-02 2022-11-11 东莞叁壹半导体科技有限公司 一种串联式混合动力汽车系统及动力控制方法
CN115320363B (zh) * 2022-08-02 2024-01-30 东莞叁壹半导体科技有限公司 一种串联式混合动力汽车系统及动力控制方法

Similar Documents

Publication Publication Date Title
JP5799127B2 (ja) ハイブリッド車両の制御装置
US20150046010A1 (en) Electric power generation control system for hybrid automobile
US9266527B2 (en) Method and system for setting motor torque for hybrid vehicle
JP5958868B2 (ja) 発電制御装置
US8570000B2 (en) Vehicle power-generation control apparatus
JP2013042621A (ja) 車両の駆動装置
US10322714B2 (en) Hybrid vehicle and control method for same
US20160167637A1 (en) Hybrid Electric Vehicle Controller and Method
JP2004328906A (ja) ハイブリッド車両の充電制御装置
JP2013241129A (ja) ハイブリッド自動車の発電制御装置
JP2004060526A (ja) 車両の制御装置、制御方法、その制御方法を実現するプログラムおよびそのプログラムを記録した記録媒体
JP2014004912A (ja) ハイブリッド自動車の制御装置
JP6582928B2 (ja) ハイブリッド車両の変速制御装置
JP2013216264A (ja) ハイブリッド自動車の発電制御装置
JP6447473B2 (ja) ハイブリッド車両
JP2023119119A (ja) 電動車両の制御システム
JP2017100473A (ja) ハイブリッド車両のモータアシスト制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160921