JP2013229769A - 温度補償型水晶発振器、温度補償型水晶発振器の製造方法及び調整方法 - Google Patents

温度補償型水晶発振器、温度補償型水晶発振器の製造方法及び調整方法 Download PDF

Info

Publication number
JP2013229769A
JP2013229769A JP2012100529A JP2012100529A JP2013229769A JP 2013229769 A JP2013229769 A JP 2013229769A JP 2012100529 A JP2012100529 A JP 2012100529A JP 2012100529 A JP2012100529 A JP 2012100529A JP 2013229769 A JP2013229769 A JP 2013229769A
Authority
JP
Japan
Prior art keywords
temperature
gain
voltage
compensation voltage
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012100529A
Other languages
English (en)
Inventor
Takaaki Ishikawa
貴章 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2012100529A priority Critical patent/JP2013229769A/ja
Publication of JP2013229769A publication Critical patent/JP2013229769A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

【課題】高温領域又は低温領域の補償電圧を調整する。
【解決手段】温度を示す温度情報を生成する温度情報生成部110と、温度に応じて出力電圧が変化する補償電圧を生成する補償電圧生成部120と、温度情報が示す温度が第1温度より高い高温領域における高温部ゲイン、及び、第1温度より低い第2温度よりも低い低温領域における低温部ゲインの少なくとも1つのゲインに基づいて補償電圧を調整する調整電圧生成部130と、調整電圧に基づいて発振する水晶振動子を有する発振部160とを備える。
【選択図】図1

Description

本発明は、発振周波数の温度補償機能を有する温度補償型水晶発振器、温度補償型水晶発振器の製造方法及び調整方法に関する。
水晶発振器の発振周波数は、発振に用いられる水晶振動子が有する温度特性に起因して、温度によって変動する。温度による発振周波数の変動を抑制する発振器として、温度センサから取得した温度情報に基づいて4次及び5次近似補償電圧を生成することにより、温度変化が生じた場合であっても安定した発振周波数の信号を出力することができる温度補償型水晶発振器が知られている(例えば、特許文献1を参照)。
従来の温度補償型水晶発振器は、近似4次5次関数生成回路、近似3次関数生成回路、1次関数生成回路及び0次関数生成回路を用いた補償電圧生成回路により、温度に応じて変化する補償電圧を生成し、生成された補償電圧により電圧制御発振回路を駆動することで、水晶振動子の発振周波数を制御していた。
特開2007−325033号公報
しかし、従来の補償電圧は発振させる水晶振動子のばらつきを考慮することなく決定されていたので、水晶振動子のうねり等が存在する場合には、高温領域又は低温領域において周波数変動を補償できない状態が生じていた。例えば、低温領域では高い精度で補償されているにもかかわらず、高温領域において適切に補償されていないという状態が生じていた。
このような場合に、従来の補償電圧生成回路においては、特定の温度領域における補償電圧の特性を変化させると、他の温度領域における補償電圧の特性が変化する場合があった。したがって、水晶振動子の特性のばらつきにより、十分な精度の補償電圧を得られないという問題があった。
図14は、従来の温度補償型水晶発振器における温度と補償電圧との関係を示す。同図における横軸は温度を示し、縦軸は補償電圧を示す。実線は、補償電圧生成回路が生成した補償電圧を示す。点線は、高温領域における補償電圧の特性を変化させた場合の補償電圧を示す。従来の補償電圧生成回路において高温部の特性を変化させると、特性を変化させるべきでない他の温度領域(図14においては低温領域)における特性も変化してしまうという問題が生じていた。
そこで、本発明はこれらの点を鑑みてなされたものであり、高温部及び低温部の少なくとも1つの温度領域において、他の温度領域の特性に影響を与えることなく容易に補償電圧の特性を調整することができる温度補償型水晶発振器を提供することを目的とする。
本発明の第1の態様においては、温度を示す温度情報を生成する温度情報生成部と、温度に応じて出力電圧が変化する補償電圧を生成する補償電圧生成部と、上記の温度が第1温度より高い高温領域における高温部ゲイン、及び、第1温度より低い第2温度よりも低い低温領域における低温部ゲインの少なくとも1つのゲインに基づいて補償電圧を調整する調整電圧生成部と、調整電圧に基づいて発振する水晶振動子を有する発振部とを備える温度補償型水晶発振器を提供する。
一例として、上記の調整電圧生成部は、高温部ゲイン及び低温部ゲインを決定するゲイン決定部と、温度情報に基づいて、高温領域において高温部ゲインを選択すると共に、低温領域において低温部ゲインを選択する選択部と、選択部が選択した高温部ゲイン及び低温部ゲインのいずれか1つに基づいて補償電圧を増幅して調整電圧を生成する電圧調整部とを有する。
ゲイン決定部は、高温部ゲイン及び低温部ゲインを決定する複数の抵抗値を有する抵抗部と、複数の抵抗から高温部ゲインを決定する第1抵抗値を選択すると共に複数の抵抗から低温部ゲインを決定する第2抵抗値を選択する抵抗選択部とを有してよい。ゲイン決定部は、第1温度及び第2温度を示す情報を記憶する温度閾値記憶部を有してもよい。ゲイン決定部は、低温領域及び高温領域以外の温度において、ゲインを1としてもよい。
上記の温度補償型水晶発振器は、複数の補償電圧生成部及び複数の補償電圧生成部に対応する複数の調整電圧生成部を有する複数の電圧発生部と、複数の電圧発生部が生成する複数の調整電圧を加算した加算調整電圧を生成する加算部とをさらに備え、水晶振動子は、加算調整電圧に基づいて発振してもよい。
本発明の第2の態様においては、温度を示す温度情報を生成する温度情報生成部と、温度に応じて出力電圧が変化する補償電圧を生成する補償電圧生成部と、補償電圧に基づいて発振する水晶振動子とを備える温度補償型水晶発振器を製造する方法であって、温度が第1温度より高い高温領域における補償電圧を調整する高温部ゲインを選択する工程、及び、第1温度より低い第2温度よりも低い低温領域における補償電圧を調整する低温部ゲインを選択する工程の少なくとも1つを備える温度補償型水晶発振器の製造方法を提供する。
本発明の第3の態様においては、温度を示す温度情報を生成する温度情報生成部と、温度に応じて出力電圧が変化する補償電圧を生成する補償電圧生成部と、補償電圧に基づいて発振する水晶振動子とを備える温度補償型水晶発振器を調整する方法であって、温度が第1温度より高い高温領域における補償電圧を調整する高温部ゲインを選択する工程、及び、第1温度より低い第2温度よりも低い低温領域における補償電圧を調整する低温部ゲインを選択する工程の少なくとも1つを備える温度補償型水晶発振器の調整方法を提供する。
本発明によれば、高温部及び低温部の少なくとも1つの温度領域において、他の温度領域の特性に影響を与えることなく、水晶振動子の発振周波数の制御に用いる補償電圧の特性を容易に調整できる温度補償型水晶発振器を提供することができるという効果を奏する。
第1の実施形態の温度補償型水晶発振器の構成例を示す。 第1の実施形態における発振部の構成例を示す。 第1の実施形態のゲイン決定部の構成例を示す。 第1の実施形態の温度補償型水晶発振器における温度と調整電圧との関係を示す。 第1の実施形態の温度補償型水晶発振器における温度と調整電圧との関係を示す。 第1の実施形態の調整電圧生成部の構成例を示す。 第1の実施形態の調整電圧生成部の他の構成例を示す。 第1の実施形態の調整電圧生成部の他の構成例を示す。 第1の実施形態の調整電圧生成部の他の構成例を示す。 図9に示した調整電圧生成部を有する温度補償型水晶発振器が搭載された電子機器の構成例を示す。 第1の実施形態の調整電圧生成部の他の構成例を示す。 第1の実施形態の調整電圧生成部の他の構成例を示す。 第2の実施形態の温度補償型水晶発振器の構成例を示す。 従来の温度補償型水晶発振器における温度と補償電圧との関係を示す。
<第1の実施形態>
図1は、第1の実施形態の温度補償型水晶発振器100の構成を示す。温度補償型水晶発振器100は、温度情報生成部110、補償電圧生成部120、調整電圧生成部130及び発振部160を備える。調整電圧生成部130は、ゲイン決定部132及び電圧調整部134を有する。
温度情報生成部110は、温度を示す温度情報を生成する。例えば、温度情報生成部110は、温度に応じて変化するアナログ信号を出力する温度センサである。温度情報生成部110は、温度に応じて変化するアナログ信号をデジタル変換したデジタル信号を出力してもよい。
補償電圧生成部120は、温度に応じて出力電圧が変化する補償電圧を生成する。例えば、補償電圧生成部120は、水晶振動子の温度特性を補償する近似4次5次関数電圧を生成する。近似4次5次関数電圧とは、温度の5次関数として表される電圧である。補償電圧生成部120は、3次関数電圧、1次関する電圧及び0次関数電圧を生成してもよい。補償電圧生成部120は、近似4次5次関数電圧、3次関数電圧、1次関する電圧及び0次関数電圧のいずれかを組み合わせることで補償電圧を生成してもよい。
一例として、補償電圧生成部120は、温度によって特性が変化するアナログ素子を組み合わせることにより補償電圧を生成する。補償電圧生成部120は、温度に対応づけて補償電圧値を記憶しているメモリを有し、温度情報生成部110から取得した温度情報に基づいてメモリから読み出した補償電圧値を示すデジタル信号をアナログ信号に変換することにより補償電圧を生成してもよい。
調整電圧生成部130は、第1温度より高い高温領域における高温部ゲイン、及び、第1温度より低い第2温度よりも低い低温領域における低温部ゲインの少なくとも1つに基づいて補償電圧を調整した調整電圧を生成する。ここで高温部ゲインは、高温領域において、補償電圧生成部120が生成した補償電圧を変化させる増幅率である。低温部ゲインは、低温領域において、補償電圧生成部120が生成した補償電圧を変化させる増幅率である。高温部ゲイン及び低温部ゲインは、それぞれ高温領域及び低温領域内の異なる温度領域において異なる増幅率であってもよい。
第1の温度は、例えば、水晶振動子を発振させる温度を上昇させた場合に水晶振動子の温度特性のばらつきが生じやすくなり始める温度である。第2の温度は、例えば、水晶振動子を発振させる温度を下降させた場合に水晶振動子の温度特性のばらつきが生じやすくなり始める温度である。
例えば、調整電圧生成部130においては、ゲイン決定部132が高温部ゲイン及び低温部ゲインの少なくとも1つのゲインを決定する。電圧調整部134は、高温部ゲイン及び低温部ゲインに基づいて補償電圧を増幅して調整電圧を生成する。具体的には、電圧調整部134は、第1の温度よりも高い高温領域において、補償電圧に高温部ゲインを乗じた調整電圧を生成する。電圧調整部134は、第2の温度よりも低い低温領域において、補償電圧に低温部ゲインを乗じた調整電圧を生成する。
調整電圧生成部130は、温度情報生成部110から温度情報を取得してもよい。調整電圧生成部130は、例えば、取得した温度情報が示す温度が第1の温度より高い場合に高温領域であると判断する。調整電圧生成部130は、温度情報生成部110から温度情報を取得し、取得した温度情報が示す温度が第2の温度より低い場合に低温領域であると判断する。調整電圧生成部130は、第1の温度及び第2の温度を予め記憶していてもよく、外部から取得してもよい。
調整電圧生成部130は、第1の温度より高い温度において第1の論理値の第1閾値信号を生成すると共に、第1の温度以下の温度において第2の論理値の第1閾値信号を生成する閾値信号生成部を有してもよい。調整電圧生成部130は、第1閾値信号が示す論理値に応じて、高温部ゲインに基づいて補償電圧を調整するか否かを切り替えてよい。
例えば、調整電圧生成部130は、第1閾値信号が第1の論理値を示している場合に、補償電圧を2倍に増幅させた調整電圧を出力する。調整電圧生成部130は、第1閾値信号が第2の論理値を示している場合に、補償電圧を増幅させることなく出力する。
上記の閾値信号生成部は、第2の温度より低い温度において第1の論理値の第2閾値信号を生成すると共に、第2の温度以上の温度において第2の論理値の第2閾値信号を生成してもよい。調整電圧生成部130は、第2閾値信号が示す論理値に応じて、低温部ゲインに基づいて補償電圧を調整するか否かを切り替えてもよい。
発振部160は、調整電圧に基づいて発振する水晶振動子を有する。図2は、本実施形態における発振部160の構成例を示す。発振部160は、水晶振動子161、バリキャップ162、バリキャップ163、能動素子164及び能動素子165を有する。
バリキャップ162及びバリキャップ163は、水晶振動子161の負荷容量として機能する。能動素子164は水晶振動子161を駆動するドライバとして機能し、能動素子165は出力バッファとして機能する。
バリキャップ162及びバリキャップ163は、ゲイン決定部132から入力される調整電圧に応じて容量が変化する。バリキャップ162及びバリキャップ163の容量が変化すると水晶振動子161の発振周波数が変化するので、調整電圧生成部130が調整電圧を変化させることにより、発振部160が出力する発振出力信号の周波数が変化する。
図3は、ゲイン決定部132の構成例を示す。ゲイン決定部132は、ゲイン生成部135及び選択部138を有する。ゲイン生成部135は、高温部ゲインを生成する高温部ゲイン生成部136及び低温部ゲインを生成する低温部ゲイン生成部137を有する。ゲイン決定部132は、第1温度及び第2温度を記憶する温度閾値記憶部139を有してもよい。
ゲイン生成部135は、高温部ゲイン生成部136が生成する複数の高温部ゲイン候補から選択したゲインを高温部ゲインとする。ゲイン生成部135は、低温部ゲイン生成部137が生成する複数の低温部ゲイン候補から選択したゲインを低温部ゲインとする。高温部ゲイン生成部136及び低温部ゲイン生成部137は、例えば、増幅回路の増幅率を決定する抵抗、キャパシタなどの電気素子を有する。高温部ゲイン生成部136及び低温部ゲイン生成部137は、複数の高温部ゲイン及び低温部ゲインに対応づけて、補償電圧生成部120が生成した補償電圧値と調整電圧との関係を記憶したメモリを有してもよい。
選択部138は、温度情報生成部110から取得した温度情報に基づいて、高温領域においてゲイン生成部135が生成した高温部ゲインを選択する。選択部138は、低温領域においてゲイン生成部135が生成した低温部ゲインを選択して電圧調整部134に対して出力する。
具体的には、選択部138は、温度情報生成部110から取得した温度情報を、温度閾値記憶部139が記憶している第1温度及び第2温度と比較することにより、高温部ゲインを選択するか低温部ゲインを選択するかを決定してもよい。選択部138は、第1温度及び第2温度を示す情報を温度補償型水晶発振器100の外部から取得し、取得した第1温度及び第2温度と温度情報生成部110から取得した温度情報とを比較することにより、高温部ゲインを選択するか低温部ゲインを選択するかを決定してもよい。
図4は、本実施形態の温度補償型水晶発振器100における温度と調整電圧との関係を示す。同図における横軸は温度を示し、縦軸は調整電圧を示す。第1温度に対応する80℃以下の温度領域においては、補償電圧生成部120が生成した補償電圧が調整電圧となっている。すなわち、80℃以下の温度領域において、調整電圧は補償電圧をゲイン1で増幅した電圧である。80℃より高い温度領域においては、高温部ゲイン生成部136において生成される複数のゲインに対応する調整電圧A、調整電圧B及び調整電圧Cが示されている。
調整電圧Bは、補償電圧生成部120が生成した補償電圧と同一の調整電圧である。調整電圧Aは、80℃より高い温度領域において補償電圧よりも高い電圧である。調整電圧Cは、80℃より高い温度領域において補償電圧よりも低い電圧である。このように、本実施形態においては、高温領域における補償電圧を他の温度領域の補償電圧に影響を与えることなく調整することができる。
図5は、本実施形態の温度補償型水晶発振器100における温度と調整電圧との関係を示す。同図における横軸は温度を示し、縦軸は調整電圧を示す。第2温度に対応する−20℃以上の温度領域においては、補償電圧生成部120が生成した補償電圧が調整電圧となっている。−20℃より低い温度領域においては、低温部ゲイン生成部137において生成される複数のゲインに対応する調整電圧D、調整電圧E及び調整電圧Fが示されている。
調整電圧Eは、補償電圧生成部120が生成した補償電圧と同一の調整電圧である。調整電圧Dは、−20℃より低い温度領域において補償電圧よりも高い電圧である。調整電圧Fは、−20℃より低い温度領域において補償電圧よりも低い電圧である。このように、本実施形態においては、低温領域における補償電圧を他の温度領域の補償電圧に影響を与えることなく調整することができる。
図6は、調整電圧生成部130の構成例を示す。同図において、ゲイン生成部135は、図3に示した高温部ゲイン生成部136として機能する抵抗141、抵抗142、抵抗143及び抵抗選択部144を有する。また、ゲイン生成部135は、図3に示した低温部ゲイン生成部137として機能する抵抗145、抵抗146、抵抗147及び抵抗選択部148を有する。ゲイン生成部135は、高温領域及び低温領域以外の温度領域におけるゲインを決定する抵抗149をさらに有する。電圧調整部134は、抵抗153及び増幅器154を有する。増幅器154は、演算増幅器であってもよく、複数のトランジスタであってもよい。
抵抗141、抵抗142及び抵抗143は、それぞれ異なる抵抗値を有する抵抗部として機能する。抵抗選択部144は、抵抗141、抵抗142及び抵抗143から高温部ゲインを決定する第1抵抗値を有する第1抵抗を選択する。同様に、抵抗145、抵抗146及び抵抗147は、それぞれ異なる抵抗値を有する。抵抗選択部148は、抵抗145、抵抗146及び抵抗147から低温部ゲインを決定する第2抵抗値を有する第2抵抗を選択する。
選択部138は、温度情報生成部110から取得した温度情報に基づいて、抵抗選択部144により選択された第1抵抗及び抵抗選択部148により選択された第2抵抗のいずれか1つをゲイン調整抵抗として増幅器154の出力端子に接続する。具体的には、選択部138は、温度情報が第1温度より高い温度を示している場合には第1抵抗を増幅器154に接続し、温度情報が第2温度より低い温度を示している場合には第2抵抗を増幅器154に接続する。選択部138は、温度情報が第1温度以上第2温度以下を示している場合には、抵抗149を増幅器154に接続する。
増幅器154が演算増幅器である場合、増幅器154の入力端子と出力端子との間に接続された第1抵抗、第2抵抗又は抵抗149と抵抗153とにより、反転増幅器が構成される。当該反転増幅器のゲインは、抵抗153と第1抵抗、第2抵抗又は抵抗149との比により決定される。
例えば、抵抗153が1kΩであり、第1抵抗又は第2抵抗が2kΩである場合にはゲインが2となり、電圧調整部134は、補償電圧の2倍の電圧の調整電圧を出力する。抵抗153が1kΩであり、第1抵抗又は第2抵抗が500Ωである場合にはゲインが0.5となり、電圧調整部134は、補償電圧の0.5倍の電圧の調整電圧を出力する。抵抗149は抵抗153と同じ抵抗値を有しており、調整電圧生成部130は、高温領域及び低温領域以外の温度領域においては、補償電圧をそのまま調整電圧として出力する。
ゲイン決定部132は、温度閾値記憶部139として機能するメモリを有し、温度情報生成部110から取得した温度情報を、温度閾値記憶部139が記憶している第1温度及び第2温度と比較することにより、増幅器154に接続する抵抗を決定してもよい。ゲイン決定部132は、第1温度及び第2温度を示す情報を取得し、取得した第1温度及び第2温度と温度情報生成部110から取得した温度情報とを比較することにより、増幅器154に接続する抵抗を決定してもよい。
図7は、調整電圧生成部130の他の構成例を示す。同図におけるゲイン決定部132は、温度情報生成部110から取得した温度情報に基づいて、抵抗141、抵抗142及び抵抗143から選択した抵抗をゲイン調整抵抗として増幅器154の出力端子に接続する。例えば、選択部138は、第1温度よりも高い温度において抵抗141を増幅器154の出力端子に接続する。選択部138は、第2温度よりも低い温度において抵抗142を増幅器154の出力端子に接続する。
選択部138は、高温領域及び低温領域のそれぞれにおいて選択すべき抵抗値を記憶させたメモリを有してもよい。選択部138は、温度情報生成部110から取得した温度情報に対応する抵抗値をメモリから読み出して、読み出した抵抗値に対応する抵抗を選択してよい。このように、ゲイン決定部132が温度情報に基づいてゲイン調整抵抗を選択することにより、抵抗及び選択回路の数を減らすことができる。
図8は、調整電圧生成部130の他の構成例を示す。同図におけるゲイン生成部135は、抵抗149、可変抵抗150及び可変抵抗151を有する。選択部138は、温度情報に基づいて抵抗149、可変抵抗150及び可変抵抗151のいずれかを選択する。可変抵抗150及び可変抵抗151の抵抗値は、製造工程において調整されてもよく、温度補償型水晶発振器100を使用するユーザにより調整されてもよい。可変抵抗150及び可変抵抗151自身が温度情報に基づいて抵抗値を変化させてもよい。
図9は、調整電圧生成部130の他の構成例を示す。同図におけるゲイン生成部135は、入力されるデジタルデータの値に応じて抵抗値が変化するデジタルポテンショメータ152を有する。デジタルポテンショメータ152は、図8に示した抵抗149、可変抵抗150及び可変抵抗151として機能すると共に、温度情報に基づいて抵抗値を決定する選択部138としても機能する。例えば、デジタルポテンショメータ152は、温度補償型水晶発振器100が搭載された電子機器のプロセッサによる制御に応じて抵抗値を変化させる。
調整電圧生成部130は、デジタルポテンショメータ152に入力するデジタルデータの値を抵抗値に対応づけて記憶するメモリを有してもよい。調整電圧生成部130は、温度情報に基づいてメモリから読み出したデジタルデータの値をデジタルポテンショメータ152に入力することで、高温領域及び低温領域においてデジタルポテンショメータ152の抵抗値を変化させてもよい。
一例として、調整電圧生成部130は、高温領域において、温度補償型水晶発振器100が搭載された電子機器のプロセッサから取得した制御信号に応じた第1のデジタルデータをデジタルポテンショメータ152に入力することで、デジタルポテンショメータ152の抵抗値を変化させて、高温領域の調整電圧を生成する。調整電圧生成部130は、低温領域において、温度補償型水晶発振器100が搭載された電子機器のプロセッサから取得した制御信号に応じた第2のデジタルデータをデジタルポテンショメータ152に入力することで、デジタルポテンショメータ152の抵抗値を変化させて、低温領域の調整電圧を生成する。
調整電圧生成部130は、温度補償型水晶発振器100の設計工程、調整工程又は製造工程においてメモリに書き込まれたデジタルデータの値に基づいて、デジタルポテンショメータ152の抵抗値を決定してもよい。調整電圧生成部130は、デジタルポテンショメータ152を高温部ゲインに対応する抵抗値に設定する高温部デジタルデータ、及び、デジタルポテンショメータ152を低温部ゲインに対応する抵抗値に設定する低温部デジタルデータをメモリに記憶してもよい。
図10は、図9に示した調整電圧生成部130を有する温度補償型水晶発振器100が搭載された電子機器500の構成例を示す。電子機器500は、操作部510、制御部520、通信部530及び温度補償型水晶発振器100を備える。電子機器500は、例えば携帯電話又はコンピュータである。制御部520は電子機器500の制御を司る。通信部530は、温度補償型水晶発振器100が生成するクロック信号に基づいて、通信信号を送受信する。
例えば、電子機器500のユーザ又は製造業者は、通信信号の周波数を測定した結果に問題がある場合には、操作部510を介して制御部520に対して周波数を微調整することができる。例えば、ユーザ又は製造業者は、操作部510において、周波数を変化させる温度領域、及び、当該温度領域におけるゲインの値を入力する。
制御部520は、操作部510において入力された指示に従って、高温領域におけるゲイン又は低温領域におけるゲインを温度補償型水晶発振器100に入力する。温度補償型水晶発振器100は、制御部520から入力されたゲインに基づいてデジタルポテンショメータ152の値を変化させることで、高温領域又は低温領域における周波数を変化させることができる。
一例として、電子機器500のユーザ又は製造業者は、周波数を微調整するべき温度領域を操作部510において入力する。電子機器500のユーザ又は製造業者は、第1温度及び第2温度を入力してもよい。制御部520は、操作部510を介して取得した第1温度及び第2温度を示す情報を温度補償型水晶発振器100に入力してもよい。温度補償型水晶発振器100は、入力された第1温度及び第2温度、及び、温度情報生成部110が取得した温度情報に基づいて、高温領域及び低温領域における周波数を調整する。
図11は、調整電圧生成部130の他の構成例を示す。同図におけるゲイン生成部135は、選択部138を介して増幅器154の出力端子に接続される抵抗142及び抵抗146を有する。選択部138は第1温度よりも高い温度において抵抗142を増幅器154の出力端子に接続すると共に、第2温度よりも低い温度において抵抗146を増幅器154の出力端子に接続する。
ゲイン生成部135は、抵抗142と並列に抵抗141及び抵抗143を実装するためのランド及び配線パターンを有してもよい。同様に、ゲイン生成部135は、抵抗146と並列に抵抗145及び抵抗147を実装するためのランド及び配線パターンを有してもよい。このように、ゲイン生成部135が高温部ゲインを決定する抵抗及び低温部ゲインを決定する抵抗を有することにより、高温部ゲイン及び低温部ゲインを設計段階や検査段階で調整して決定することができる。
図12は、調整電圧生成部130の他の構成例を示す。同図に示した調整電圧生成部130は、補償電圧生成部120が生成した補償電圧値を示すデジタルデータを変換した後に、変換後のデジタルデータをアナログ信号に変換することで、調整電圧を生成する。
具体的には、ゲイン決定部132は、補償電圧値を変換するゲインを温度に対応づけて記憶しているゲイン記憶部155を有する。ゲイン記憶部155は、温度情報生成部110から取得した温度情報に基づいて選択したゲインを電圧調整部134に出力する。
電圧調整部134は、ゲイン記憶部155から取得したゲインに基づいて、補償電圧値を変換するデータ変換部156と、データ変換部が変換したデータをアナログ信号に変換するデジタル/アナログ変換部157(以下、DA変換部157)を有する。例えば、データ変換部156は、補償電圧生成部120から入力された補償電圧値が1Vに対応するデジタルデータ「00001010」を取得すると共にゲイン記憶部155からゲイン2を取得すると、変換後のデジタルデータ「00010100」を生成してDA変換部157に入力する。DA変換部157は、「00010100」をアナログ変換して2Vの調整電圧を生成する。
<第2の実施形態>
図13は、第2の実施形態の温度補償型水晶発振器100の構成例を示す。同図に示す温度補償型水晶発振器100は、補償電圧生成部120及び調整電圧生成部130からなる電圧発生部170を複数有すると共に、複数の電圧発生部170から出力された複数の調整電圧を加算して加算調整電圧を生成する加算部180を有する点で図1に示した温度補償型水晶発振器100と異なる。
具体的には、電圧発生部170−1は、4次5次補償電圧を調整した4次5次調整電圧を生成する。電圧発生部170−2は、3次補償電圧を調整した3次調整電圧を生成する。電圧発生部170−3は、1次補償電圧を調整した1次調整電圧を生成する。電圧発生部170−4は、0次調整電圧を調整した0次調整電圧を生成する。
より具体的には、電圧発生部170−1は、温度情報生成部110から取得した温度情報に基づいて、第1温度よりも高い温度において4次5次補償電圧を4次5次高温部ゲインで増幅した4次5次調整電圧を生成する。電圧発生部170−2は、温度情報生成部110から取得した温度情報に基づいて、第2温度よりも低い温度において4次5次補償電圧を4次5次低温部ゲインで増幅した4次5次調整電圧を生成する。
同様に、電圧発生部170−2、電圧発生部170−3及び電圧発生部170−4のそれぞれは、温度情報に基づいて、3次補償電圧を3次高温部ゲイン又は3次低温部ゲインで増幅した3次調整電圧、1次補償を1次高温部ゲイン又は1次低温部ゲインで増幅した1次調整電圧、及び、0次補償を0次高温部ゲイン又は0次低温部ゲインで増幅した0次調整電圧を生成する。加算部180は、4次5次調整電圧、3次調整電圧、1次調整電圧及び0次調整電圧を加算することにより、第1温度よりも高い温度及び第2温度よりも低い温度において最適な加算調整電圧を発振部160に対して出力することができる。
なお、図13に示した温度補償型水晶発振器100における、それぞれの調整電圧生成部130は、第1の実施形態において示したいずれの構成の調整電圧生成部130であってもよい。それぞれの調整電圧生成部130が、異なる構成を有してもよい。
<第3の実施形態>
[温度補償型水晶発振器100の製造方法及び調整方法]
温度補償型水晶発振器100の設計工程又は製造工程においては、温度情報生成部110が取得した温度情報に対応する温度が第1温度より高い高温領域における補償電圧を調整する高温部ゲインを選択する工程、及び、上記の温度が第2温度よりも低い低温領域における補償電圧を調整する低温部ゲインを選択する工程の少なくとも1つを有してよい。例えば、高温部ゲインを選択する工程及び低温部ゲインを選択する工程においては、温度補償型水晶発振器100を動作させる環境の温度を変化させて発振周波数を測定し、測定した周波数と所望の周波数との差に基づいて、高温部ゲイン及び低温部ゲインを選択する。
例えば、設計工程又は製造工程においては、図6に示した抵抗選択部144及び抵抗選択部148を調整して、複数の抵抗から第1抵抗及び第2抵抗を選択することで、高温部ゲイン及び低温部ゲインを選択することができる。設計工程又は製造工程においては、図7に示した抵抗141、抵抗142及び抵抗143の抵抗値を決定してもよい。
設計工程又は製造工程においては、図8に示した可変抵抗150及び可変抵抗151を調整してもよい。設計工程又は製造工程においては、図9に示したデジタルポテンショメータ152に入力するデジタルデータを記憶するメモリに、高温部ゲインに対応するデータ及び低温部ゲインに対応するデータを書き込んでもよい。
設計工程又は製造工程においては、図11に示した複数の抵抗のランドに実装する抵抗の抵抗値を選択してもよい。設計工程又は製造工程においては、複数のランドのうち、どのランドに抵抗を実装するかを選択してもよい。設計工程又は製造工程において、抵抗を実装しないランド及び当該ランドに接続される配線を削除してもよい。設計工程又は製造工程においては、図12に示したゲイン記憶部155に記憶させるゲインを選択すると共に、選択したゲインをゲイン記憶部155に書き込んでもよい。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
100・・・温度補償型水晶発振器、110・・・温度情報生成部、120・・・補償電圧生成部、130・・・調整電圧生成部、132・・・ゲイン決定部、134・・・電圧調整部、135・・・ゲイン生成部、136・・・高温部ゲイン生成部、137・・・低温部ゲイン生成部、138・・・選択部、139・・・温度閾値記憶部、141・・・抵抗、142・・・抵抗、143・・・抵抗、144・・・抵抗選択部、145・・・抵抗、146・・・抵抗、147・・・抵抗、148・・・抵抗選択部、149・・・抵抗、150・・・可変抵抗、151・・・可変抵抗、152・・・デジタルポテンショメータ、153・・・抵抗、154・・・演算増幅器、155・・・ゲイン記憶部、156・・・データ変換部、157・・・DA変換部、160・・・発振部、161・・・水晶振動子、162・・・バリキャップ、163・・・バリキャップ、164・・・能動素子、165・・・能動素子、170・・・電圧発生部、180・・・加算部、500・・・電子機器、510・・・操作部、520・・・制御部、530・・・通信部

Claims (7)

  1. 温度を示す温度情報を生成する温度情報生成部と、
    前記温度に応じて出力電圧が変化する補償電圧を生成する補償電圧生成部と、
    前記温度が第1温度より高い高温領域における高温部ゲイン、及び、前記第1温度より低い第2温度よりも低い低温領域における低温部ゲインの少なくとも1つのゲインに基づいて前記補償電圧を調整した調整電圧を生成する調整電圧生成部と、
    前記調整電圧に基づいて発振する水晶振動子を有する発振部と
    を備える温度補償型水晶発振器。
  2. 前記調整電圧生成部は、
    前記高温部ゲイン及び前記低温部ゲインを決定するゲイン決定部と、
    前記温度情報に基づいて、前記高温領域において前記高温部ゲインを選択すると共に、前記低温領域において前記低温部ゲインを選択する選択部と、
    前記選択部が選択した前記高温部ゲイン及び前記低温部ゲインのいずれか1つに基づいて前記補償電圧を増幅して前記調整電圧を生成する電圧調整部と
    を有する請求項1に記載の温度補償型水晶発振器。
  3. 前記ゲイン決定部は、
    前記高温部ゲイン及び前記低温部ゲインを決定する複数の抵抗値を有する抵抗部と、
    前記複数の抵抗値から前記高温部ゲインを決定する第1抵抗値を選択すると共に、前記複数の抵抗値から前記低温部ゲインを決定する第2抵抗値を選択する抵抗選択部と
    を有する請求項2に記載の温度補償型水晶発振器。
  4. 前記ゲイン決定部は、前記第1温度及び前記第2温度を示す情報を記憶する温度閾値記憶部を有する請求項2又は3に記載の温度補償型水晶発振器。
  5. 複数の前記補償電圧生成部、及び、前記複数の補償電圧生成部に対応する複数の前記調整電圧生成部を有する複数の電圧発生部と、
    前記複数の電圧発生部が生成する複数の前記調整電圧を加算した加算調整電圧を生成する加算部と
    をさらに備え、
    前記水晶振動子は、前記加算調整電圧に基づいて発振する請求項1から4のいずれか一項に記載の温度補償型水晶発振器。
  6. 温度を示す温度情報を生成する温度情報生成部と、
    前記温度に応じて出力電圧が変化する補償電圧を生成する補償電圧生成部と、
    前記補償電圧に基づいて発振する水晶振動子と
    を備える温度補償型水晶発振器を製造する方法であって、
    前記温度が第1温度より高い高温領域における前記補償電圧を調整する高温部ゲインを選択する工程、及び、前記第1温度より低い第2温度よりも低い低温領域における前記補償電圧を調整する低温部ゲインを選択する工程の少なくとも1つを備える温度補償型水晶発振器の製造方法。
  7. 温度を示す温度情報を生成する温度情報生成部と、
    前記温度に応じて出力電圧が変化する補償電圧を生成する補償電圧生成部と、
    前記補償電圧に基づいて発振する水晶振動子と
    を備える温度補償型水晶発振器を調整する方法であって、
    前記温度が第1温度より高い高温領域における前記補償電圧を調整する高温部ゲインを選択する工程、及び、前記第1温度より低い第2温度よりも低い低温領域における前記補償電圧を調整する低温部ゲインを選択する工程の少なくとも1つを備える温度補償型水晶発振器の調整方法。
JP2012100529A 2012-04-26 2012-04-26 温度補償型水晶発振器、温度補償型水晶発振器の製造方法及び調整方法 Pending JP2013229769A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100529A JP2013229769A (ja) 2012-04-26 2012-04-26 温度補償型水晶発振器、温度補償型水晶発振器の製造方法及び調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100529A JP2013229769A (ja) 2012-04-26 2012-04-26 温度補償型水晶発振器、温度補償型水晶発振器の製造方法及び調整方法

Publications (1)

Publication Number Publication Date
JP2013229769A true JP2013229769A (ja) 2013-11-07

Family

ID=49676999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100529A Pending JP2013229769A (ja) 2012-04-26 2012-04-26 温度補償型水晶発振器、温度補償型水晶発振器の製造方法及び調整方法

Country Status (1)

Country Link
JP (1) JP2013229769A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600562A (zh) * 2020-05-19 2020-08-28 浙江威星智能仪表股份有限公司 一种放大增益连续可调控制电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600562A (zh) * 2020-05-19 2020-08-28 浙江威星智能仪表股份有限公司 一种放大增益连续可调控制电路

Similar Documents

Publication Publication Date Title
JP5533030B2 (ja) 発振回路及び周波数補正型発振回路
JP4895690B2 (ja) 関数生成回路
JP2001267847A (ja) 温度補償型水晶発振器及び水晶発振器の温度補償方法
JP2010130141A (ja) 電圧制御型温度補償圧電発振器
JP2008054134A (ja) リング発振器及びそれを備えた半導体集積回路及び電子機器
JP2011155489A (ja) 半導体集積回路装置および発振周波数較正方法
JPWO2003021765A1 (ja) 発振器及び通信機器
JP2011182154A5 (ja)
JP5863395B2 (ja) 発振器
JP2007208584A (ja) 周波数調整回路
JP2008228029A (ja) 半導体集積回路
JP2013229769A (ja) 温度補償型水晶発振器、温度補償型水晶発振器の製造方法及び調整方法
JP6298686B2 (ja) 発振器
JP5253318B2 (ja) 発振装置
JP5291564B2 (ja) 発振器
JP5311545B2 (ja) 発振器
JP5178457B2 (ja) 発振器
JP4771280B2 (ja) 温度補償方法、補正値決定回路および温度補償発振回路
JP3883411B2 (ja) 発振回路
JP2009141459A (ja) 圧電発振器
JP2002026658A (ja) 水晶発振回路
JP5424473B2 (ja) 発振回路
JP2002204127A (ja) 温度補償型水晶発振器の調整方法及び調整装置
JP2016082472A (ja) 発振器及びそのキャリブレーション方法
JP2002319846A (ja) 共振装置