JP2013228016A - Vacuum heat insulating material, method of manufacturing the same, and heat insulated device - Google Patents

Vacuum heat insulating material, method of manufacturing the same, and heat insulated device Download PDF

Info

Publication number
JP2013228016A
JP2013228016A JP2012099326A JP2012099326A JP2013228016A JP 2013228016 A JP2013228016 A JP 2013228016A JP 2012099326 A JP2012099326 A JP 2012099326A JP 2012099326 A JP2012099326 A JP 2012099326A JP 2013228016 A JP2013228016 A JP 2013228016A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
packaging
packaging part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012099326A
Other languages
Japanese (ja)
Inventor
Yuto Kutsuma
勇人 久津摩
Hideo Noda
秀夫 野田
Koji Saito
浩二 斉藤
Masaru Imaizumi
賢 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012099326A priority Critical patent/JP2013228016A/en
Publication of JP2013228016A publication Critical patent/JP2013228016A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material allowing molding into a three-dimensional desired shape, increasing a coverage rate of a heat insulated part to improve heat insulation performance, a method of manufacturing the vacuum heat insulating material, and a heat insulated device.SOLUTION: A vacuum heat insulating material includes: a core part 2; and a packing part 3 having a molded packing part 31 of a portion molded by three-dimensional molding and covering the core part 2 to hold the inside in a depressurized state. In the packing part 3, the thickness of the molded packing part 31 molded by the three-dimensional molding is larger than the thickness of the other portions of the packing part 31.

Description

この発明は、3次元の所望形状へ成形を可能とし、被断熱部への被覆率を高め、保温性能を向上させることができる真空断熱材および真空断熱材の製造方法および被断熱装置に関するものである。   The present invention relates to a vacuum heat insulating material, a vacuum heat insulating material manufacturing method, and a heat insulating device that can be molded into a desired three-dimensional shape, increase the coverage of the heat insulating portion, and improve the heat insulation performance. is there.

近年、環境保護が大きく叫ばれており、家電製品、住宅および、車両などの省エネルギー化はますます重要視されてきている。一例として給湯機においても貯湯タンクの保温効率を向上させることで消費電力量低減を図る動きがあり、高断熱構造が強く求められている。そして、断熱性能の優れた真空断熱材と発泡性樹脂となどを複合構成した断熱体を該当箇所へ被覆する断熱構造により、これを実現している。貯湯タンクのさらなる保温効率向上には、貯湯タンク外周および、上下鏡板の3次元曲面部へ真空断熱材を積極的に配設し、被覆率を高める断熱構造が必須とされているが、現状適用されている真空断熱材は製造上の問題から平板形状に真空成形されたものが一般的に多く採用され装置に組み込まれているが、断熱を必要とする部位は平面部ばかりではなく、断熱構造に要求される形状に適したものとなっていない。平板形状の真空断熱材の使用方法としては、平板形状の断熱材をそのままの形状で使用する方法の他、真空成形された断熱材をプレスなどの後加工により形状変形させ使用したもの、例えば、真空断熱材の平面部へ溝を形成し、平板形状の断熱材に可撓性をもたせたものを対象断熱部へ適用している(例えば、特許文献1参照)のが一般的である。   In recent years, environmental protection has been greatly screamed, and energy saving of home appliances, homes, vehicles, and the like has become increasingly important. As an example, even in a water heater, there is a movement to reduce power consumption by improving the heat retention efficiency of a hot water storage tank, and a highly heat-insulating structure is strongly demanded. And this is realized by the heat insulation structure which coat | covers the heat insulation body which comprised the vacuum heat insulating material excellent in heat insulation performance, foamable resin, etc. to the applicable location. In order to further improve the heat insulation efficiency of the hot water storage tank, a vacuum heat insulating material is actively disposed on the outer periphery of the hot water storage tank and the three-dimensional curved surface part of the upper and lower end panels to increase the coverage. The vacuum insulation material that has been vacuum-formed into a flat plate shape is generally adopted because of manufacturing problems and is incorporated in the equipment, but the part that requires heat insulation is not only a flat part, but also a heat insulation structure It is not suitable for the shape required for the above. As a method of using a flat plate-shaped vacuum heat insulating material, in addition to a method of using a flat plate-shaped heat insulating material as it is, a vacuum-formed heat insulating material whose shape is deformed by post-processing such as a press, for example, It is common to form a groove in the flat surface portion of the vacuum heat insulating material and apply a flat plate heat insulating material with flexibility to the target heat insulating portion (for example, see Patent Document 1).

特許第3478780号(2頁78〜99行、図1)Japanese Patent No. 3478780 (page 2, lines 78-99, FIG. 1)

従来の真空断熱材は、平板形状の真空断熱材を安易に所望形状へ後加工すると、真空断熱材が包装部内部を減圧した非常に硬直な断熱体であるために、包装部へのシワや亀裂および、破れを招き、真空断熱体としての断熱性能を著しく損なう原因となっているという問題点があった。また、特許文献1にあるような真空断熱材に収納する芯部の積層量をあらかじめ調整し厚み方向に垂直な平面部へ溝を形成することで、平板形状断熱材の可撓性を向上させた断熱材の例もあるが、この場合、折り曲げが必要な形状部位への断熱体としては有用であるが、給湯機タンク円周部のような3次元的な曲面を有する形状に対し、所望形状へ加工し被覆率を高めるための断熱構造としては十分に適応してはいないという問題点があった。   The conventional vacuum heat insulating material is a very rigid heat insulating material in which the inside of the packaging part is decompressed when the plate-shaped vacuum heat insulating material is easily post-processed into a desired shape. There was a problem that it caused cracks and tears and caused a significant deterioration in heat insulation performance as a vacuum heat insulator. Moreover, the flexibility of the flat plate-shaped heat insulating material can be improved by adjusting the stacking amount of the core portion housed in the vacuum heat insulating material as in Patent Document 1 in advance and forming a groove in the plane portion perpendicular to the thickness direction. However, in this case, it is useful as a heat insulator for a shape part that needs to be bent, but it is desirable for a shape having a three-dimensional curved surface such as a water heater tank circumference. There is a problem that it is not sufficiently adapted as a heat insulating structure for processing into a shape and increasing the coverage.

この発明は上記のような課題を解決するためになされたものであり、3次元の所望形状へ成形を可能とし、被断熱部への被覆率を高め、保温性能を向上させることができる真空断熱材および真空断熱材の製造方法および被断熱装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can be formed into a three-dimensional desired shape, can increase the coverage of the heat-insulated part, and can improve the heat retention performance. It aims at providing the manufacturing method and heat-insulated apparatus of a material and a vacuum heat insulating material.

この発明の真空断熱材は、
芯部と、立体成型にて成形されている部分を有するとともに上記芯部を覆い内部を減圧状態に保持する包装部とを備えるものである。
The vacuum heat insulating material of this invention is
It has a core part and a packaging part which has the part currently shape | molded by three-dimensional molding, covers the said core part, and hold | maintains the inside in a pressure reduction state.

また、この発明の真空断熱材の製造方法は、
上記真空断熱材において、
上記包装部を、低熱伝導性の最外層と、ガスの透過を阻止する金属蒸着フィルム、金属箔のラミネート、または、それら複合材の中間層と、低熱伝導性の最内層とを有するように形成し、
上記最外層を、上記立体成型となるように真空成型、プレス成形により成型加工した後、上記中間層および、上記最内層を順次積層して形成するものである。
Moreover, the manufacturing method of the vacuum heat insulating material of this invention is as follows.
In the vacuum heat insulating material,
The packaging part is formed so as to have an outermost layer having a low thermal conductivity, a metal vapor-deposited film that blocks gas permeation, a laminate of metal foil, or an intermediate layer of these composite materials, and an innermost layer having a low thermal conductivity. And
The outermost layer is formed by vacuum molding and press molding so as to be the three-dimensional molding, and then the intermediate layer and the innermost layer are sequentially laminated.

また、この発明の真空断熱材の製造方法は、
上記真空断熱材において、
上記包装部の上記芯部を覆い内部を減圧状態に保持する工程において、
上記包装部が上記芯部を覆った状態にて減圧雰囲気に配設して、上記包装部内部を減圧状態にするとともに上記包装部の全周を熱融着するものである。
Moreover, the manufacturing method of the vacuum heat insulating material of this invention is as follows.
In the vacuum heat insulating material,
In the step of covering the core part of the packaging part and maintaining the inside in a reduced pressure state,
The wrapping part is disposed in a reduced-pressure atmosphere with the core part covered so that the inside of the wrapping part is in a reduced-pressure state and the entire circumference of the wrapping part is heat-sealed.

また、この発明の真空断熱材の製造方法は、
上記真空断熱材において、
上記包装部の上記芯部を覆い内部を減圧状態に保持する工程において、
上記包装部の周囲の一部を熱融着した後に当該包装部に上記芯部を挿入して覆うか、または、上記包装部に上記芯部を挿入して覆った後に当該包装部の周囲の一部を熱融着し、
上記包装部が上記芯部を覆った状態にて減圧雰囲気に配設して、上記包装部内を減圧するとともに上記包装部の周囲の一部以外を熱融着するものである。
Moreover, the manufacturing method of the vacuum heat insulating material of this invention is as follows.
In the vacuum heat insulating material,
In the step of covering the core part of the packaging part and maintaining the inside in a reduced pressure state,
After heat-sealing a part of the periphery of the packaging part, the core part is inserted and covered in the packaging part, or after the core part is inserted and covered in the packaging part, Some parts are heat-sealed,
The wrapping part is disposed in a reduced-pressure atmosphere in a state of covering the core part, and the inside of the wrapping part is decompressed and heat-sealed except for a part around the wrapping part.

また、この発明の被断熱装置は、
被断熱部を備え、
上記被断熱部の外周形状に沿うように上記記載の真空断熱材の上記立体成型が形成され配設されているものである。
Moreover, the heat-insulated device of this invention is
With heat insulation,
The three-dimensional molding of the vacuum heat insulating material described above is formed and disposed so as to follow the outer peripheral shape of the heat-insulated portion.

また、この発明の被断熱装置は、
被断熱部と、上記被断熱部に配設された配管とを備え、
上記被断熱部の外周形状に沿うように上記記載の真空断熱材の上記立体成型が形成され配設されるとともに、上記配管が上記開口部または切り欠き部に配設するものである。
Moreover, the heat-insulated device of this invention is
A heat-insulated portion, and a pipe disposed in the heat-insulated portion,
The three-dimensional molding of the vacuum heat insulating material described above is formed and disposed along the outer peripheral shape of the heat-insulated portion, and the pipe is disposed in the opening or the notch.

この発明の真空断熱材は、
芯部と、立体成型にて成形されている部分を有するとともに上記芯部を覆い内部を減圧状態に保持する包装部とを備えるので、
3次元の所望形状へ成形を可能とし、被断熱部への被覆率を高め、保温性能を向上させることができる。
The vacuum heat insulating material of this invention is
Since it has a core part and a packaging part that has a part molded by three-dimensional molding and covers the core part and holds the inside in a reduced pressure state,
Molding to a desired three-dimensional shape is possible, the coverage of the heat-insulated part can be increased, and the heat retention performance can be improved.

また、この発明の真空断熱材の製造方法は、
上記真空断熱材において、
上記包装部を、低熱伝導性の最外層と、ガスの透過を阻止する金属蒸着フィルム、金属箔のラミネート、または、それら複合材の中間層と、低熱伝導性の最内層とを有するように形成し、
上記最外層を、上記立体成型となるように真空成型、プレス成形により成型加工した後、上記中間層および、上記最内層を順次積層して形成するので、
3次元の所望形状へ成形を可能とし、被断熱部への被覆率を高め、保温性能を向上させることができる。
Moreover, the manufacturing method of the vacuum heat insulating material of this invention is as follows.
In the vacuum heat insulating material,
The packaging part is formed so as to have an outermost layer having a low thermal conductivity, a metal vapor-deposited film that blocks gas permeation, a laminate of metal foil, or an intermediate layer of these composite materials, and an innermost layer having a low thermal conductivity. And
Since the outermost layer is formed by vacuum molding and press molding so as to be the three-dimensional molding, the intermediate layer and the innermost layer are sequentially laminated,
Molding to a desired three-dimensional shape is possible, the coverage of the heat-insulated part can be increased, and the heat retention performance can be improved.

また、この発明の真空断熱材の製造方法は、
上記真空断熱材において、
上記包装部の上記芯部を覆い内部を減圧状態に保持する工程において、
上記包装部が上記芯部を覆った状態にて減圧雰囲気に配設して、上記包装部内部を減圧状態にするとともに上記包装部の全周を熱融着するので、
3次元の所望形状へ成形を可能とし、被断熱部への被覆率を高め、保温性能を向上させることができる。
Moreover, the manufacturing method of the vacuum heat insulating material of this invention is as follows.
In the vacuum heat insulating material,
In the step of covering the core part of the packaging part and maintaining the inside in a reduced pressure state,
Since the packaging part is disposed in a reduced pressure atmosphere in a state of covering the core part, the inside of the packaging part is brought into a decompressed state and the entire circumference of the packaging part is heat-sealed.
Molding to a desired three-dimensional shape is possible, the coverage of the heat-insulated part can be increased, and the heat retention performance can be improved.

また、この発明の真空断熱材の製造方法は、
上記真空断熱材において、
上記包装部の上記芯部を覆い内部を減圧状態に保持する工程において、
上記包装部の周囲の一部を熱融着した後に当該包装部に上記芯部を挿入して覆うか、または、上記包装部に上記芯部を挿入して覆った後に当該包装部の周囲の一部を熱融着し、
上記包装部が上記芯部を覆った状態にて減圧雰囲気に配設して、上記包装部内を減圧するとともに上記包装部の周囲の一部以外を熱融着するので、
3次元の所望形状へ成形を可能とし、被断熱部への被覆率を高め、保温性能を向上させることができる。
Moreover, the manufacturing method of the vacuum heat insulating material of this invention is as follows.
In the vacuum heat insulating material,
In the step of covering the core part of the packaging part and maintaining the inside in a reduced pressure state,
After heat-sealing a part of the periphery of the packaging part, the core part is inserted and covered in the packaging part, or after the core part is inserted and covered in the packaging part, Some parts are heat-sealed,
Since the packaging part is disposed in a reduced pressure atmosphere in a state of covering the core part, and the inside of the packaging part is decompressed and heat-sealed except for a part around the packaging part,
Molding to a desired three-dimensional shape is possible, the coverage of the heat-insulated part can be increased, and the heat retention performance can be improved.

また、この発明の被断熱装置は、
被断熱部を備え、
上記被断熱部の外周形状に沿うように上記記載の真空断熱材の上記立体成型が形成され配設されているので、
3次元の所望形状へ成形を可能とし、被断熱部への被覆率を高め、保温性能を向上させることができる。
Moreover, the heat-insulated device of this invention is
With heat insulation,
Since the three-dimensional molding of the vacuum heat insulating material described above is formed and arranged along the outer peripheral shape of the heat-insulated part,
Molding to a desired three-dimensional shape is possible, the coverage of the heat-insulated part can be increased, and the heat retention performance can be improved.

また、この発明の被断熱装置は、
被断熱部と、上記被断熱部に配設された配管とを備え、
上記被断熱部の外周形状に沿うように上記記載の真空断熱材の上記立体成型が形成され配設されるとともに、上記配管が上記開口部または切り欠き部に配設するので、
3次元の所望形状へ成形を可能とし、被断熱部への被覆率を高め、保温性能を向上させることができる。
Moreover, the heat-insulated device of this invention is
A heat-insulated portion, and a pipe disposed in the heat-insulated portion,
Since the three-dimensional molding of the vacuum heat insulating material described above is formed and disposed so as to follow the outer peripheral shape of the heat-insulated portion, and the pipe is disposed in the opening or notch,
Molding to a desired three-dimensional shape is possible, the coverage of the heat-insulated part can be increased, and the heat retention performance can be improved.

この発明の実施の形態1の真空断熱材の構成を示す斜視図である。It is a perspective view which shows the structure of the vacuum heat insulating material of Embodiment 1 of this invention. 図1に示した真空断熱材の構成を示す分解断面図および断面図である。It is the decomposition | disassembly sectional drawing and sectional drawing which show the structure of the vacuum heat insulating material shown in FIG. 図1に示した真空断熱材の包装部の構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the packaging part of the vacuum heat insulating material shown in FIG. 図1に示した真空断熱材の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the vacuum heat insulating material shown in FIG. 図1に示した真空断熱材の周縁部の構成を示す図である。It is a figure which shows the structure of the peripheral part of the vacuum heat insulating material shown in FIG. この発明の実施の形態2の真空断熱材の構成を示す斜視図および断面図である。It is the perspective view and sectional drawing which show the structure of the vacuum heat insulating material of Embodiment 2 of this invention. この発明の実施の形態2の真空断熱材の他の構成を示す斜視図および断面図である。It is the perspective view and sectional drawing which show the other structure of the vacuum heat insulating material of Embodiment 2 of this invention. この発明の実施の形態3の真空断熱材の構成を示す分解断面図および断面図である。It is the decomposition | disassembly sectional drawing and sectional drawing which show the structure of the vacuum heat insulating material of Embodiment 3 of this invention. この発明の実施の形態4の真空断熱材の構成を示す図である。It is a figure which shows the structure of the vacuum heat insulating material of Embodiment 4 of this invention. この発明の実施の形態4の真空断熱材の他の構成を示す図である。It is a figure which shows the other structure of the vacuum heat insulating material of Embodiment 4 of this invention. 図9および図10に示した真空断熱材を給湯タンクに使用する際の構成を示す分解図である。It is an exploded view which shows the structure at the time of using the vacuum heat insulating material shown in FIG. 9 and FIG. 10 for a hot water supply tank. 図11に示した給湯タンクの構成を示す縦断面図および横断面図である。It is the longitudinal cross-sectional view and cross-sectional view which show the structure of the hot water supply tank shown in FIG. この発明の実施の形態5の図9および図10に示した真空断熱材を給湯タンクに使用する際の構成を示す分解図である。It is an exploded view which shows the structure at the time of using the vacuum heat insulating material shown in FIG. 9 and FIG. 10 of Embodiment 5 of this invention for a hot water supply tank. 図13に示した給湯タンクの構成を示す縦断面図および横断面図である。It is the longitudinal cross-sectional view and cross-sectional view which show the structure of the hot water supply tank shown in FIG.

実施の形態1.
以下、本願発明の実施の形態について説明する。本発明の真空断熱材は、高断熱材の芯部とそれを収納する2枚のガスバリア性の包装部、ガス吸着剤で構成され、芯部および、ガス吸着剤を包装部に収納した後に内部を減圧して真空状態とし、包装部の周縁部を熱溶着により封止した高断熱体である。本真空断熱材の使用により包装部に収納された芯部自体の熱伝導率を低くできる他、包装部内部を減圧することにより、内部対流による熱伝達が抑制されるものである。
Embodiment 1 FIG.
Embodiments of the present invention will be described below. The vacuum heat insulating material of the present invention is composed of a core portion of a high heat insulating material and two gas-barrier packaging portions that contain the core portion, and a gas adsorbent. Is a highly heat insulating body in which the peripheral portion of the packaging portion is sealed by heat welding. The use of this vacuum heat insulating material can lower the thermal conductivity of the core part itself housed in the packaging part, and the heat transfer by internal convection is suppressed by reducing the pressure inside the packaging part.

図1はこの発明の実施の形態1における真空断熱材の構成を示す斜視図、図2は図1に示した真空断熱材の構成を示す分解断面図および断面図、図3は図1に示した真空断熱材の包装部の構成を示す部分断面図、図4は図1に示した真空断熱材の製造方法を説明するための図、図5は図1に示した真空断熱材の周縁部の構成を示す図である。図において、真空断熱材1は、芯部2と、包装部3と、ガス吸着剤4とで構成されている。   1 is a perspective view showing the configuration of a vacuum heat insulating material according to Embodiment 1 of the present invention, FIG. 2 is an exploded cross-sectional view and a cross-sectional view showing the configuration of the vacuum heat insulating material shown in FIG. 1, and FIG. 3 is shown in FIG. FIG. 4 is a diagram for explaining a method of manufacturing the vacuum heat insulating material shown in FIG. 1, and FIG. 5 is a peripheral portion of the vacuum heat insulating material shown in FIG. FIG. In the figure, the vacuum heat insulating material 1 includes a core portion 2, a packaging portion 3, and a gas adsorbent 4.

包装部3は、立体成型にて成形されている部分を有する成型包装部31と、立体成型されていない包装部32とにて構成される。また、芯部2は、無機質繊維、有機質繊維、または、これらの混合材を用いる。無機質繊維としては、例えば、ガラス繊維、ロックウール繊維、アルミナ繊維、シリカ繊維、スラグウール繊維などが挙げられる。有機質繊維としては、例えば、アクリル繊維、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン樹脂、ポリウレタン繊維、ポリノジック繊維、ポリビニルアルコール繊維、ナイロン繊維、レーヨン繊維などの合成繊維ほか、綿、絹、麻などの天然繊維がある。断熱性の観点から、好ましくは無機質繊維のガラス繊維を用いるのが良い。但し、ここに例示した材料例に限定されるものではない。   The packaging unit 3 includes a molded packaging unit 31 having a portion molded by three-dimensional molding and a packaging unit 32 that is not three-dimensionally molded. Moreover, the core part 2 uses inorganic fiber, organic fiber, or these mixed materials. Examples of inorganic fibers include glass fibers, rock wool fibers, alumina fibers, silica fibers, and slag wool fibers. Examples of organic fibers include synthetic fibers such as acrylic fiber, polyester fiber, polyethylene fiber, polypropylene resin, polyurethane fiber, polynosic fiber, polyvinyl alcohol fiber, nylon fiber, and rayon fiber, as well as natural fibers such as cotton, silk, and hemp. is there. From the viewpoint of heat insulation, it is preferable to use glass fibers of inorganic fibers. However, it is not limited to the material examples illustrated here.

芯部2を収納する包装部3としては、ガスバリア性を有し、外部衝撃から内部の減圧状態を長期に亘り保持でき、かつ高断熱素材(低熱伝導の材料)が良いものである。例えば、図3に示すように、包装部3は最外層3a、中間層3b、最内層3cにて形成する。そして、最外層3aおよび最内層3cには、ナイロン、ポリエチレンテレフタレート樹脂、ポリエチレン樹脂、ポリスチレン樹脂などの材料にて成型またはラミネートにて形成する。また、中間層3bは、アルミニウムなどのガスバリア性の高い材料を金属蒸着、金属箔により構成するのが好適である。   The packaging part 3 for storing the core part 2 has a gas barrier property, can hold the internal pressure-reduced state from an external impact for a long period of time, and has a high thermal insulation material (low thermal conductivity material). For example, as shown in FIG. 3, the packaging part 3 is formed of the outermost layer 3a, the intermediate layer 3b, and the innermost layer 3c. The outermost layer 3a and the innermost layer 3c are formed by molding or laminating a material such as nylon, polyethylene terephthalate resin, polyethylene resin, or polystyrene resin. The intermediate layer 3b is preferably made of a material having a high gas barrier property such as aluminum by metal vapor deposition or metal foil.

また、一般的に使用されている平板状の真空断熱材などを所望形状に成型するために後加工すると、包装部へのシワや亀裂および、破れを招き包装部内部の真空が壊れる恐れがある他、ガスバリア性を有する中間層へ引っ張り、圧縮の荷重負荷が掛かることで経年的な劣化を促進させ信頼性の欠如を伴う。そこで、成形加工する際に包装部3、特に中間層3bを形成するガスバリア層に対して過剰ストレスを与えないために、包装部3は、立体成型されている成型包装部31の厚さが、立体成型されていない平面の包装部32の厚さより厚く形成されている。ここでは、最外層3aの厚さを厚くすることにより対応している。   In addition, when post-processing is performed to form a flat plate-shaped vacuum heat insulating material or the like that is generally used into a desired shape, there is a possibility that the vacuum inside the packaging part may be broken by causing wrinkles, cracks, and tearing to the packaging part. In addition, pulling to an intermediate layer having gas barrier properties and applying a compressive load load promotes deterioration over time, resulting in lack of reliability. Therefore, in order not to give excessive stress to the packaging part 3, especially the gas barrier layer that forms the intermediate layer 3b when molding, the packaging part 3 has a thickness of the molded packaging part 31 that is three-dimensionally molded. It is formed thicker than the thickness of the flat packaging portion 32 that is not three-dimensionally molded. Here, this is dealt with by increasing the thickness of the outermost layer 3a.

また、最外層3aを形成する層は、包装部3の内部減圧時にその圧力に耐え、事前に加工した形状が変形しない厚さを有し、材料は外部衝撃に優れ、高断熱素材であるとより良い。包装部3を事前加工する際に成形を容易とするため、立体成型する部分の全域に渡るもの、部分的領域のものの形状に応じて、包装部3に厚さの厚い最外層3aを全域的、部分的に厚さ制御して用いても良い。但し、ここに例示した材料例および厚みに限定されるものではない。   Further, the layer forming the outermost layer 3a has a thickness that withstands the pressure during the internal decompression of the packaging part 3 and has a thickness that does not deform the shape processed in advance, and the material is excellent in external impact and is a highly heat insulating material. Better. In order to facilitate molding when the packaging part 3 is pre-processed, a thick outermost layer 3a is applied to the packaging part 3 over the entire area of the part to be three-dimensionally molded or according to the shape of the partial area. Alternatively, the thickness may be partially controlled. However, it is not limited to the material examples and thicknesses exemplified here.

ガス吸着剤4は、包装部3に芯部2とともに酸素、二酸化炭素、窒素などのガスと水蒸気を吸収するものであり、包装部3減圧処理後、経時的に包装部3内部で発生する、ガス、水分および、外部より浸入するガス、水分を吸着することができ、長期に亘り包装部3内部の高い断熱効果が期待できる。ガス吸着剤4としては、シリカゲル、活性炭などが好適である。そして、包装部3の製造工程としては、まず、包装部3の最外層3aを断熱対象部と接触可能となる所望の形状の立体成型にて真空成型、プレス成型等の成型方法により加工する。その上からガス透過を阻止する中間層3b、最内層3cを順次積層してラミネート形成する。   The gas adsorbent 4 absorbs gas such as oxygen, carbon dioxide, nitrogen and water vapor together with the core portion 2 in the packaging portion 3, and is generated inside the packaging portion 3 over time after the decompression treatment of the packaging portion 3. Gas, moisture, gas entering from the outside, and moisture can be adsorbed, and a high heat insulating effect inside the packaging part 3 can be expected for a long time. As the gas adsorbent 4, silica gel, activated carbon and the like are suitable. And as a manufacturing process of the packaging part 3, the outermost layer 3a of the packaging part 3 is first processed by molding methods, such as vacuum molding and press molding, by the three-dimensional molding of the desired shape which can contact a heat insulation object part. Then, an intermediate layer 3b and an innermost layer 3c for blocking gas permeation are sequentially laminated to form a laminate.

尚、ここでは包装部3には、最外層3a、中間層3b、最内層3cの3層にて構成する例を示したが3層以上で構成するものであれば同様に構成することが可能である。この層数は、使用用途、目的に応じて、外部衝撃からの本真空断熱材保護を強化するために最外層の部分を増やしたり、また、包装部内部減圧状態の保持を強化して経時的な信頼性を向上する目的で中間層の層数を増やしたりすることが考えられる。   In this example, the packaging part 3 is composed of the outermost layer 3a, the intermediate layer 3b, and the innermost layer 3c. However, the packaging part 3 can be constructed in the same manner as long as it is composed of three or more layers. It is. Depending on the application and purpose of use, the number of layers can be increased over time by increasing the outermost layer in order to strengthen the protection of the vacuum insulation from external impacts, In order to improve the reliability, it is conceivable to increase the number of intermediate layers.

次に、この発明の実施の形態1における真空断熱材の製造方法について説明する。上記に示したように、立体成型された部分を有する成型包装部36を、図4に示すように、その立体成型を保持することができる保持体50の上に載置する。次に、芯部2を載置し、ガス吸着剤4を載置し、包装部32を載置する。この際は、従来のような袋状の包装部に芯部を挿入し、内部減圧処理時に最後の1辺を熱融着する方法では、芯部収納時の挿入箇所および、挿入する形状が限定されるため内部に収納する芯部形状によっては作業性が悪くなる。そこで、本実施の形態1においては、芯部2の形状、大きさ、および、収納作業が容易な開口領域を確保するために、包装部3を成型包装部31および包装部32にて形成し、芯部2を載置した後に、減圧雰囲気に配設して、包装部3内部を減圧状態にするとともに包装部3の全周を熱融着する。   Next, the manufacturing method of the vacuum heat insulating material in Embodiment 1 of this invention is demonstrated. As shown above, as shown in FIG. 4, the molding packaging part 36 having a three-dimensionally molded portion is placed on a holding body 50 that can hold the three-dimensional molding. Next, the core part 2 is placed, the gas adsorbent 4 is placed, and the packaging part 32 is placed. In this case, in the conventional method in which the core is inserted into the bag-shaped packaging portion and the last one side is heat-sealed during the internal decompression process, the insertion location and the shape to be inserted are limited when the core is stored. Therefore, workability is deteriorated depending on the shape of the core portion housed inside. Therefore, in the first embodiment, the packaging portion 3 is formed by the molded packaging portion 31 and the packaging portion 32 in order to ensure the shape and size of the core portion 2 and the opening area where the storing operation is easy. After the core part 2 is placed, the core part 2 is disposed in a reduced-pressure atmosphere so that the inside of the packaging part 3 is brought into a decompressed state and the entire circumference of the packaging part 3 is heat-sealed.

また、これ以外の方法としては、包装部3の周囲の一部を、内部に芯部2が挿入しやすい状態となる程度に熱融着した後に、包装部3内に芯部2を挿入して覆う。そして、包装部3が芯部2を覆った状態にて減圧雰囲気に配設して、包装部3内を減圧するとともに包装部3の周囲の一部以外を熱融着する。または、包装部3に芯部2を挿入して覆った後に包装部3の包装部3内が減圧可能な程度の部分を残して他の周囲の一部を熱融着する。そして、包装部3が芯部2を覆った状態にて減圧雰囲気に配設して、包装部3内を減圧するとともに包装部3の周囲の一部以外を熱融着する。いずれの方法を用いたとしても、芯部2の挿入の作業性が容易となり、包装部3内部の芯部2密度を均一化でき、内部減圧時に包装部3表面に生じるシワが抑制することができる。   As another method, after a part of the periphery of the packaging part 3 is heat-sealed to such an extent that the core part 2 can be easily inserted, the core part 2 is inserted into the packaging part 3. Cover. And it arrange | positions in a pressure-reduced atmosphere in the state which the packaging part 3 covered the core part 2, and it heat-fuses except a part around the packaging part 3 while decompressing the inside of the packaging part 3. FIG. Or after inserting the core part 2 in the packaging part 3 and covering it, the part of the packaging part 3 of the packaging part 3 is heat-sealed, leaving a part of the packaging part 3 that can be depressurized. And it arrange | positions in a pressure-reduced atmosphere in the state which the packaging part 3 covered the core part 2, and it heat-fuses except a part around the packaging part 3 while decompressing the inside of the packaging part 3. FIG. Whichever method is used, the workability of insertion of the core part 2 becomes easy, the density of the core part 2 inside the packaging part 3 can be made uniform, and wrinkles generated on the surface of the packaging part 3 during internal decompression can be suppressed. it can.

そして、このように形成された真空断熱材1は、被断熱部に、例えば、セロハンテープ、クラフトテープ、両面テープなどの接着テープにて固定する方法、また、接着剤を塗布し接着する方法などにて行うことができる。また他の方法であっても、真空断熱材と被断熱部との間に隙間が生じない状態で配設でき、その後も剥がれ、脱落等のないものであれば良い。   And the vacuum heat insulating material 1 formed in this way is a method of fixing to a to-be-insulated part with adhesive tapes, such as a cellophane tape, a craft tape, a double-sided tape, the method of apply | coating an adhesive agent, etc. Can be done. Also, other methods may be used as long as they can be disposed in a state where no gap is generated between the vacuum heat insulating material and the heat-insulated portion, and are not peeled off or dropped off after that.

また、このように形成された真空断熱材1は、図5(a)に示すように、包装部3の周縁部に、例えばミシン目にてなる折り曲げ部37を熱融着部38より外周側に形成する。このように形成すれば、図5(b)に示すように、真空断熱材1を使用する場合に、余分になる包装部3の外周部分を折り曲げ部37により折り曲げることにより対応することができる。   In addition, the vacuum heat insulating material 1 formed in this way has, as shown in FIG. 5A, a peripheral portion of the packaging portion 3, for example, a bent portion 37 having a perforation, on the outer peripheral side from the heat fusion portion 38. To form. If formed in this way, as shown in FIG. 5 (b), when using the vacuum heat insulating material 1, it is possible to cope by bending the outer peripheral portion of the packaging portion 3 which is redundant by the bending portion 37.

上記のように構成された実施の形態1の真空断熱材によれば、真空断熱材の形状を被断熱部に沿うように立体成型して形成しているため、包装部の内部を減圧した際も形状変形が軽減し成形した形状を保持できる。また、従来のように被断熱部の形状に沿わせるために、真空断熱材を後加工した場合に、加工前形状へ経年的な形状の復元が生じ、貼り付け断熱対象部から剥れ、脱落し本来の断熱効果を発揮できない事象が発生していたが、本実施の形態においては、被断熱部に沿うように立体成型されているため、これ点を抑制することができる。   According to the vacuum heat insulating material of Embodiment 1 configured as described above, since the shape of the vacuum heat insulating material is three-dimensionally molded along the heat-insulated portion, when the inside of the packaging portion is decompressed In addition, shape deformation is reduced and the molded shape can be maintained. In addition, when the vacuum heat insulating material is post-processed to conform to the shape of the heat-insulated part as in the past, the shape of the aged shape is restored to the pre-processed shape, and it is peeled off from the part to be heat-insulated and dropped off. However, although an event in which the original heat insulating effect cannot be exhibited has occurred, in the present embodiment, since it is three-dimensionally molded along the heat insulating portion, this point can be suppressed.

また、立体成型する包装部の厚みを他の部分の厚みより厚く形成しているため、耐衝撃性にも優れる。さらに、包装部の加工ストレスがなく、シワや亀裂および、破れの発生が抑制され所望形状への成型が容易かつ成型不良が改善される。特にガスバリア性を有する中間層へ引っ張り、圧縮の荷重負荷が掛かり経年劣化を促進させてしまう恐れが改善できる。   Moreover, since the thickness of the packaging part to be three-dimensionally formed is thicker than the thickness of other parts, the impact resistance is also excellent. Further, there is no processing stress on the packaging part, and generation of wrinkles, cracks, and tears is suppressed, and molding into a desired shape is facilitated and molding defects are improved. In particular, it is possible to improve the possibility of pulling to an intermediate layer having a gas barrier property and accelerating deterioration over time due to compression load.

また、被断熱部に沿うように立体成型されているため、真空断熱材を後加工する製造工数の削減および、不良リスクを大幅に軽減できる。また、包装部を事前成型するため、従来のような袋状の包装部に芯部を挿入し、最後に1辺を熱融着する方法では、芯部挿入時の作業性が悪いため、本実施の形態1に示したように行うことにより、芯部の挿入作業性が改善され、芯部の調整が容易となり、包装部の内部減圧時に生じる包装部に生じるシワが抑制される。   Moreover, since it is three-dimensionally molded along the heat-insulated part, the number of manufacturing steps for post-processing the vacuum heat insulating material and the risk of defects can be greatly reduced. In addition, in order to pre-mold the packaging part, the core part is inserted into a conventional bag-like packaging part, and finally one side is heat-sealed. By performing as shown in Embodiment 1, the insertion workability of the core part is improved, the adjustment of the core part is facilitated, and wrinkles generated in the packaging part during the internal decompression of the packaging part are suppressed.

また、包装部の内部減圧状態を保持するため、熱融着により封止する周縁部は不可欠である。本実施の形態1では、周縁部を有する包装部は、ガスバリア性には優れているものの、アルミニウム等の金属蒸着、金属箔の高熱伝導性の金属で構成されていることから、断熱対象部と面接触する表面より裏側の面へ熱量を伝える熱架橋となり、熱漏洩を起こしてしまうため、その部分を折り曲げる必要があった。そこで、本実施の形態1においては、包装部の周縁部に折り曲げ部を構成することにより、折り畳み作業性が向上する。   Moreover, in order to hold | maintain the internal pressure reduction state of a packaging part, the peripheral part sealed by heat sealing | fusion is indispensable. In this Embodiment 1, although the packaging part which has a peripheral part is excellent in gas-barrier property, since it is comprised with metal vapor deposition, such as aluminum, and the metal of high thermal conductivity of metal foil, Since it becomes thermal bridge | crosslinking which conveys heat quantity to the surface of the back side from the surface which carries out a surface contact, it will cause a heat leak, Therefore It was necessary to bend the part. Therefore, in the first embodiment, folding workability is improved by forming a bent portion at the peripheral edge of the packaging portion.

実施の形態2.
図6はこの発明の実施の形態2における真空断熱材の構成を示す斜視図、および断面図である。図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。本実施の形態2においては、上記各実施の形態と異なる部分は、切り欠き部8を備えている点である。切り欠き部8は、包装部3にあらかじめ切り欠き部8を形成する場合や、複数枚の包装部3を組み合わせて熱融着した際に切り欠き部8を形成する場合などいずれの方法でも形成することができる。
Embodiment 2. FIG.
6 is a perspective view and a cross-sectional view showing the configuration of the vacuum heat insulating material according to Embodiment 2 of the present invention. In the figure, the same parts as those in the above embodiments are denoted by the same reference numerals, and description thereof is omitted. The second embodiment is different from the above embodiments in that a notch portion 8 is provided. The notch portion 8 is formed by any method, such as when the notch portion 8 is formed in the packaging portion 3 in advance or when the notch portion 8 is formed when the plurality of packaging portions 3 are combined and heat-sealed. can do.

また、他の例として、図7はこの発明の実施の形態2における他の真空断熱材の構成を示す斜視図、および断面図である。図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。本実施の形態2においては、上記各実施の形態と異なる部分は、開口部9を備えている点である。開口部9は、包装部3にあらかじめ開口部9を形成する場合や、複数枚の包装部3を組み合わせて熱融着した際に開口部9を形成する場合などいずれの方法でも形成することができる。   As another example, FIG. 7 is a perspective view and a cross-sectional view showing the configuration of another vacuum heat insulating material in Embodiment 2 of the present invention. In the figure, the same parts as those in the above embodiments are denoted by the same reference numerals, and description thereof is omitted. The second embodiment is different from the above embodiments in that an opening 9 is provided. The opening 9 can be formed by any method such as forming the opening 9 in the packaging unit 3 in advance, or forming the opening 9 when the plurality of packaging units 3 are combined and heat-sealed. it can.

上記のように構成された実施の形態2によれば、上記実施の形態1と同様の効果を奏するのはもちろんのこと、被断熱部と、被断熱部に配設された配管とを備えた被断熱装置に適応する場合、当該配管を開口部または切り欠き部を介して配設することができるため、被断熱部に密接に配設することが可能となり、断熱性に優れた真空断熱材を得ることができる。さらに、切り欠き部を備えた場合であれば、真空断熱材の着脱が容易となり、部品交換、点検等のメンテナンスの際、真空断熱材、配管の脱着をそれぞれ独立した状態で可能となり作業性に優れる。   According to the second embodiment configured as described above, the same effect as that of the first embodiment is obtained, and the heat-insulated portion and the pipe disposed on the heat-insulated portion are provided. When adapting to a heat-insulated device, the pipe can be arranged through an opening or a notch, so that it can be closely arranged in the heat-insulated part, and a vacuum heat insulating material with excellent heat insulation properties. Can be obtained. Furthermore, if a notch is provided, the vacuum insulation material can be easily attached and detached, and the vacuum insulation material and piping can be attached and detached independently during maintenance such as component replacement and inspection. Excellent.

実施の形態3.
図8はこの発明の実施の形態3における真空断熱材の構成を示した分解断面図、および断面図である。図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。本実施の形態3においては、上記各実施の形態と異なり、成型芯部20がその形状を成型包装部31の立体成型された3次元面と沿うように類似して形成されているものである。そして、成型芯部20の形成方法としては、シート状に加工した繊維材を所望の形状に積層して成形されている場合、または、繊維材を積層して形成されている場合などが考えられる。またこの際、繊維材の配向が真空断熱材1の性能を大きく左右するため、成型芯部20の繊維方向を断熱対象面と平行となる方向へ配向するように形成することが望ましい。また、成形した形状を長期保持するためにバインダ材を添付しても良い。そして、上記各実施の形態と同様に、成型芯部20をガス吸着剤4とともに包装部3内へ収納した後、図8(b)に示すように真空断熱材1を形成する。
Embodiment 3 FIG.
8 is an exploded cross-sectional view and a cross-sectional view showing the configuration of the vacuum heat insulating material according to Embodiment 3 of the present invention. In the figure, the same parts as those in the above embodiments are denoted by the same reference numerals, and description thereof is omitted. In the third embodiment, unlike the above-described embodiments, the molding core portion 20 is formed in a similar manner so that its shape follows the three-dimensionally molded three-dimensional surface of the molding packaging portion 31. . And as the formation method of the molding core part 20, the case where the fiber material processed into the sheet form is laminated | stacked and shape | molded in the desired shape, or the case where it forms by laminating | stacking a fiber material etc. can be considered. . At this time, since the orientation of the fiber material greatly affects the performance of the vacuum heat insulating material 1, it is desirable that the fiber direction of the molded core portion 20 be oriented in a direction parallel to the surface to be insulated. Further, a binder material may be attached in order to maintain the molded shape for a long period of time. And like the above-mentioned each embodiment, after accommodating the shaping | molding core part 20 in the packaging part 3 with the gas adsorbent 4, the vacuum heat insulating material 1 is formed as shown in FIG.8 (b).

上記のように構成された実施の形態3によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、成型芯部は所望形状へ事前に成形しているので、上記各実施の形態の場合より、包装部の内部の減圧処理において、包装部の内部での成型芯部の収納偏りがなく容易形成することができる。さらに、収納する成型芯部の余剰部が内部減圧時に無理やり収納されることはなく、その結果、包装部へ過剰なストレスが生じることが抑制される。   According to the third embodiment configured as described above, the molding core is pre-shaped into a desired shape, as well as the same effects as the above-described embodiments. From the case of this form, in the decompression process inside the packaging part, the molding core part can be easily formed without being biased inside the packaging part. Furthermore, the excessive part of the molding core part to be stored is not forcibly stored during the internal pressure reduction, and as a result, the occurrence of excessive stress on the packaging part is suppressed.

実施の形態4.
図9はこの発明の実施の形態4における真空断熱材1の構成を示す分解斜視図(a)および側面図(b)および部分構成図(c)、図10はこの発明の実施の形態4における真空断熱材の他の構成を示す分解斜視図(a)および側面図(b)、図11は図9および図10に示した真空断熱材を給湯タンクに使用する際の構成を示す分解図、図12は図11に示した給湯タンクの構成を示す縦断面図および横断面図である。
Embodiment 4 FIG.
FIG. 9 is an exploded perspective view (a), a side view (b) and a partial configuration diagram (c) showing the configuration of the vacuum heat insulating material 1 according to the fourth embodiment of the present invention, and FIG. 10 is the fourth embodiment according to the present invention. FIG. 11 is an exploded perspective view showing another configuration of the vacuum heat insulating material (a) and a side view (b), and FIG. 11 is an exploded view showing the configuration when the vacuum heat insulating material shown in FIG. 9 and FIG. 12 is a longitudinal sectional view and a transverse sectional view showing the configuration of the hot water supply tank shown in FIG.

図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。本実施の形態4においては、上記各実施の形態と異なり、包装部3の全てが立体成型されているものである。また、本実施の形態4においては、被断熱装置としての給湯機の断熱部としての給湯タンク5に真空断熱材13、14を設置する場合について説明する。給湯タンク5は、筒状の側面の外周部5bおよび、上下の鏡板5aにて形成されている。   In the figure, the same parts as those in the above embodiments are denoted by the same reference numerals, and description thereof is omitted. In this Embodiment 4, unlike the said each embodiment, all the packaging parts 3 are three-dimensionally molded. Moreover, in this Embodiment 4, the case where the vacuum heat insulating materials 13 and 14 are installed in the hot water supply tank 5 as a heat insulation part of the water heater as a to-be-insulated apparatus is demonstrated. The hot water supply tank 5 is formed of an outer peripheral portion 5b having a cylindrical side surface and upper and lower end plates 5a.

一方の真空断熱材13は、包装部3が給湯タンク5の外周部5bの形状に沿うような3次元面が立体成型された成型包装部33と、成型包装部34とにて形成されている。そして、成型包装部33、34の立体成型に沿うように立体成型された成型芯部23とにて形成されている。そして、包装部3の周縁には、連結部3dが形成されている。これは、成型包装部33と成型包装部34との曲率の異なる撓み余剰部を加工して形成されたフレキシブル構造である。そして、3つの真空断熱材13を給湯タンク5の外周部5bに配設し、連結部3dにて連結させている。   One vacuum heat insulating material 13 is formed by a molded packaging part 33 in which a three-dimensional surface is three-dimensionally molded and a molded packaging part 34 such that the packaging part 3 follows the shape of the outer peripheral part 5 b of the hot water supply tank 5. . And it is formed with the molding core part 23 three-dimensionally molded so that the three-dimensional molding of the shaping | molding packaging parts 33 and 34 may be followed. A connecting portion 3 d is formed on the periphery of the packaging portion 3. This is a flexible structure formed by processing the bending surplus portions having different curvatures between the molded packaging portion 33 and the molded packaging portion 34. And the three vacuum heat insulating materials 13 are arrange | positioned in the outer peripheral part 5b of the hot water supply tank 5, and are connected with the connection part 3d.

また、他方の真空断熱材14は、給湯タンク5の上下の鏡板5aの形状に沿うような3次元面が立体成型された成型包装部35と、成型包装部36とにて形成されている。そして、成型包装部35、36の立体成型に沿うように立体成型された成型芯部24とにて形成されている。そして、上下の鏡板5aにそれぞれ真空断熱材14を配設し、先に配設した真空断熱材13に固定する。そして、包装部3の外面側を覆うように発泡樹脂から構成される発泡断熱部6を備えている。ここでは、発泡断熱部6も含めて真空断熱材とする。そして、この発泡断熱部6は例えば、セロハンテープ、クラフトテープ、両面テープなどの接着テープ7にて簡便に固定することができる。また、真空断熱材13の継ぎ目を覆うように発泡断熱部6をずらして配設している。   Further, the other vacuum heat insulating material 14 is formed by a molded packaging portion 35 and a molded packaging portion 36 in which a three-dimensional surface that conforms to the shape of the upper and lower end plates 5 a of the hot water supply tank 5 is three-dimensionally molded. And it forms with the shaping | molding core part 24 solid-molded so that the three-dimensional shaping | molding of the shaping | molding packaging parts 35 and 36 may be followed. And the vacuum heat insulating material 14 is each arrange | positioned to the upper and lower endplates 5a, and it fixes to the vacuum heat insulating material 13 arrange | positioned previously. And the foaming heat insulation part 6 comprised from foaming resin is provided so that the outer surface side of the packaging part 3 may be covered. Here, a vacuum heat insulating material including the foam heat insulating portion 6 is used. And this foam heat insulation part 6 can be simply fixed with adhesive tapes 7, such as a cellophane tape, a craft tape, a double-sided tape, for example. Moreover, the foam heat insulation part 6 is shifted and arranged so as to cover the joint of the vacuum heat insulating material 13.

上記のように構成された実施の形態4によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、真空断熱材の継ぎ目を安価な低断熱材となる発泡断熱部にて覆うことにより、真空断熱材の継ぎ目からの熱漏洩を低減できる効果が期待できる。さらに、発泡断熱部による外部衝撃保護の役割を果たす。よって、断熱における全体の低コスト化に繋がる。   According to the fourth embodiment configured as described above, in addition to the same effects as those of the above-described embodiments, in the foam heat insulating portion serving as an inexpensive low heat insulating material, the seam of the vacuum heat insulating material is used. By covering, an effect of reducing heat leakage from the joint of the vacuum heat insulating material can be expected. Furthermore, it plays the role of external impact protection by the foam insulation. Therefore, it leads to the cost reduction of the whole in heat insulation.

実施の形態5.
図13はこの発明の実施の形態5における真空断熱材(図9および図10参照)を給湯タンクに採用した場合の構成を示す分解斜視図、図14は図15に示した給湯タンクの構成を示す縦断面図および横断面図である。図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。上記実施の形態4においては、真空断熱材13および14の外面側を覆うように発泡断熱部6を配設する例を示したが、本実施の形態5においては、この発泡断熱部6に加えて、給湯タンク5と真空断熱材13および14との間、すなわち、真空断熱材13および14の内面側に発泡断熱部61を配設する。ここでは、発泡断熱部6および61も含めて真空断熱材とする。そして、この発泡断熱部61の継ぎ目が、真空断熱材13の継ぎ目と重ならないように真空断熱材13の配置と発泡断熱部61をずらして配設している。
Embodiment 5 FIG.
FIG. 13 is an exploded perspective view showing the configuration when the vacuum heat insulating material (see FIGS. 9 and 10) according to Embodiment 5 of the present invention is adopted in the hot water supply tank, and FIG. 14 shows the configuration of the hot water supply tank shown in FIG. It is the longitudinal cross-sectional view and transverse cross-sectional view which show. In the figure, the same parts as those in the above embodiments are denoted by the same reference numerals, and description thereof is omitted. In the fourth embodiment, the example in which the foam heat insulating portion 6 is disposed so as to cover the outer surface side of the vacuum heat insulating materials 13 and 14 has been shown. In the fifth embodiment, in addition to the foam heat insulating portion 6, Thus, the foam heat insulating portion 61 is disposed between the hot water tank 5 and the vacuum heat insulating materials 13 and 14, that is, on the inner surface side of the vacuum heat insulating materials 13 and 14. Here, a vacuum heat insulating material including the foam heat insulating portions 6 and 61 is used. Then, the arrangement of the vacuum heat insulating material 13 and the foam heat insulating portion 61 are shifted so that the joint of the foam heat insulating portion 61 does not overlap the joint of the vacuum heat insulating material 13.

上記のように構成された実施の形態5によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、高温となる給湯タンクの熱が包装部に直接伝わらないため、包装部の断熱グレードが低くとも対応することができ、低コストに抑えることができる。さらに、包装部の全面に発泡断熱部が配設されているため、高効率にて断熱を行うことができる。   According to the fifth embodiment configured as described above, since the heat of the hot water supply tank that is at a high temperature is not directly transmitted to the packaging unit, it is possible to obtain the same effect as each of the above embodiments. Even if the heat insulation grade is low, it can be coped with, and the cost can be reduced. Furthermore, since the foam heat insulation part is arrange | positioned in the whole surface of a packaging part, heat insulation can be performed with high efficiency.

尚、上記各実施の形態においては、被断熱装置として給湯機を例に示したが、これに限られることはなく、例えば温熱および冷熱機器への使用することができ、自動販売機、保温保冷容器、冷蔵庫、温水器、家庭用あるいは業務用の給湯装置(給湯機)、家庭用あるいは業務用の冷凍・空調装置、ジャーポットなどに上記各実施の形態と同様に使用することが考えられ、同様の効果を奏することができる。   In each of the above-described embodiments, a water heater is shown as an example of a heat-insulated device. However, the present invention is not limited to this, and can be used for, for example, heat and cold equipment. It can be used in the same manner as in the above embodiments for containers, refrigerators, water heaters, household or commercial water heaters (hot water heaters), domestic or commercial refrigeration and air conditioners, jar pots, etc. Similar effects can be achieved.

尚、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1 真空断熱材、13 真空断熱材、14 真空断熱材、2 芯部、20 成型芯部、
23 成型芯部、24 成型芯部、3 包装部、31 成型包装部、32 包装部、
33 成型包装部、34 成型包装部、35 成型包装部、36 成型包装部、
37 折り曲げ部、38 熱融着部、3a 最外層、3b 中間層、3c 最内層、
3d 連結部、4 ガス吸着剤、5 給湯タンク、50 保持体、5a 鏡板、
5b 外周部、6 発泡断熱部、61 発泡断熱部、7 接着テープ、8 切り欠き部、
9 開口部。
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material, 13 Vacuum heat insulating material, 14 Vacuum heat insulating material, 2 core part, 20 Molding core part,
23 molding core part, 24 molding core part, 3 packaging part, 31 molding packaging part, 32 packaging part,
33 molded packaging part, 34 molded packaging part, 35 molded packaging part, 36 molded packaging part,
37 bent portion, 38 heat-sealed portion, 3a outermost layer, 3b intermediate layer, 3c innermost layer,
3d connecting portion, 4 gas adsorbent, 5 hot water supply tank, 50 holder, 5a end plate,
5b outer periphery, 6 foam insulation, 61 foam insulation, 7 adhesive tape, 8 notch,
9 Opening.

Claims (13)

芯部と、立体成型にて成形されている部分を有するとともに上記芯部を覆い内部を減圧状態に保持する包装部とを備える真空断熱材。 A vacuum heat insulating material provided with a core part and a packaging part which has the part currently shape | molded by three-dimensional molding, and covers the said core part and hold | maintains the inside in a pressure reduction state. 上記包装部は、上記立体成型にて成形されている部分の厚みの全てまたは一部が、他の部分の厚みより厚く形成されている請求項1に記載の真空断熱材。 2. The vacuum heat insulating material according to claim 1, wherein the packaging portion is formed such that all or part of the thickness of the portion molded by the three-dimensional molding is thicker than the thickness of the other portion. 上記芯部は、上記立体成型の形状に沿うように、
シート状に加工した繊維材を所望の形状に積層して成形されているか、または、繊維材を積層して形成されている請求項1または請求項2に記載の真空断熱材。
The core part follows the shape of the three-dimensional molding,
The vacuum heat insulating material according to claim 1 or 2, which is formed by laminating a fiber material processed into a sheet shape into a desired shape, or by laminating fiber materials.
開口部または切り欠き部の少なくともいずれか一方を備えている請求項1ないし請求項3のいずれか1項に記載の真空断熱材。 The vacuum heat insulating material of any one of Claim 1 thru | or 3 provided with at least any one of an opening part or a notch. 上記包装部は、当該包装部の周縁部に、折り曲げ部が形成されている請求項1ないし請求項4のいずれか1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4, wherein the packaging part has a bent part formed at a peripheral part of the packaging part. 上記包装部は、当該包装部の周縁部に、連結部または固定部の少なくともいずれか一方が形成されている請求項1ないし請求項5のいずれか1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 5, wherein at least one of the connecting portion and the fixing portion is formed on the peripheral portion of the packaging portion. 上記包装部の一部または全てを覆うように発泡樹脂から構成される発泡断熱部を備えている請求項1ないし請求項6のいずれか1項に記載の真空断熱材。 The vacuum heat insulating material of any one of Claim 1 thru | or 6 provided with the foam heat insulation part comprised from a foamed resin so that a part or all of the said packaging part may be covered. 請求項1ないし請求項7のいずれか1項に記載の真空断熱材の製造方法において、
上記包装部を、低熱伝導性の最外層と、ガスの透過を阻止する金属蒸着フィルム、金属箔のラミネート、または、それら複合材の中間層と、低熱伝導性の最内層とを有するように形成し、
上記最外層を、上記立体成型となるように真空成型、プレス成形により成型加工した後、上記中間層および、上記最内層を順次積層して形成する真空断熱材の製造方法。
In the manufacturing method of the vacuum heat insulating material of any one of Claims 1 thru | or 7,
The packaging part is formed so as to have an outermost layer having a low thermal conductivity, a metal vapor-deposited film that blocks gas permeation, a laminate of metal foil, or an intermediate layer of these composite materials, and an innermost layer having a low thermal conductivity. And
A method for producing a vacuum heat insulating material, wherein the outermost layer is formed by vacuum molding and press molding so as to be the three-dimensional molding, and then the intermediate layer and the innermost layer are sequentially laminated.
請求項1ないし請求項7のいずれか1項に記載の真空断熱材の製造方法において、
上記包装部の上記芯部を覆い内部を減圧状態に保持する工程において、
上記包装部が上記芯部を覆った状態にて減圧雰囲気に配設して、上記包装部内部を減圧状態にするとともに上記包装部の全周を熱融着する真空断熱材の製造方法。
In the manufacturing method of the vacuum heat insulating material of any one of Claims 1 thru | or 7,
In the step of covering the core part of the packaging part and maintaining the inside in a reduced pressure state,
A method for producing a vacuum heat insulating material, wherein the packaging part is disposed in a reduced pressure atmosphere in a state of covering the core part, the inside of the packaging part is brought into a reduced pressure state, and the entire circumference of the packaging part is thermally fused.
請求項1ないし請求項7のいずれか1項に記載の真空断熱材の製造方法において、
上記包装部の上記芯部を覆い内部を減圧状態に保持する工程において、
上記包装部の周囲の一部を熱融着した後に当該包装部に上記芯部を挿入して覆うか、または、上記包装部に上記芯部を挿入して覆った後に当該包装部の周囲の一部を熱融着し、
上記包装部が上記芯部を覆った状態にて減圧雰囲気に配設して、上記包装部内を減圧するとともに上記包装部の周囲の一部以外を熱融着する真空断熱材の製造方法。
In the manufacturing method of the vacuum heat insulating material of any one of Claims 1 thru | or 7,
In the step of covering the core part of the packaging part and maintaining the inside in a reduced pressure state,
After heat-sealing a part of the periphery of the packaging part, the core part is inserted and covered in the packaging part, or after the core part is inserted and covered in the packaging part, Some parts are heat-sealed,
A method for producing a vacuum heat insulating material, wherein the packaging part is disposed in a reduced pressure atmosphere in a state of covering the core part, and the inside of the packaging part is decompressed and heat fusion is performed except for a part around the packaging part.
請求項8ないし請求項10のいずれか1項に記載の真空断熱材の製造方法において、
上記包装部の上記芯部を覆い内部を減圧状態に保持する工程において、
上記包装部の立体成型部分を保持する保持体を配置して行う真空断熱材の製造方法。
In the manufacturing method of the vacuum heat insulating material according to any one of claims 8 to 10,
In the step of covering the core part of the packaging part and maintaining the inside in a reduced pressure state,
The manufacturing method of the vacuum heat insulating material performed by arrange | positioning the holding body which hold | maintains the three-dimensional molded part of the said packaging part.
被断熱部を備えた被断熱装置において、
上記被断熱部の外周形状に沿うように請求項1ないし請求項7のいずれか1項に記載の真空断熱材の上記立体成型が形成され配設されている被断熱装置。
In a heat-insulated device including a heat-insulated part,
The heat insulating apparatus in which the three-dimensional molding of the vacuum heat insulating material according to any one of claims 1 to 7 is formed and disposed so as to follow an outer peripheral shape of the heat insulating part.
被断熱部と、上記被断熱部に配設された配管とを備えた被断熱装置において、
上記被断熱部の外周形状に沿うように請求項4に記載の真空断熱材の上記立体成型が形成され配設されるとともに、上記配管が上記開口部または切り欠き部に配設する被断熱装置。
In a heat-insulated device including a heat-insulated portion and a pipe disposed in the heat-insulated portion,
The heat-insulated device in which the three-dimensional molding of the vacuum heat insulating material according to claim 4 is formed and disposed so as to follow the outer peripheral shape of the heat-insulated portion, and the pipe is disposed in the opening or the notch. .
JP2012099326A 2012-04-25 2012-04-25 Vacuum heat insulating material, method of manufacturing the same, and heat insulated device Pending JP2013228016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099326A JP2013228016A (en) 2012-04-25 2012-04-25 Vacuum heat insulating material, method of manufacturing the same, and heat insulated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099326A JP2013228016A (en) 2012-04-25 2012-04-25 Vacuum heat insulating material, method of manufacturing the same, and heat insulated device

Publications (1)

Publication Number Publication Date
JP2013228016A true JP2013228016A (en) 2013-11-07

Family

ID=49675838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099326A Pending JP2013228016A (en) 2012-04-25 2012-04-25 Vacuum heat insulating material, method of manufacturing the same, and heat insulated device

Country Status (1)

Country Link
JP (1) JP2013228016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173232A (en) * 2017-03-31 2018-11-08 三菱電機株式会社 Hot water storage type water heater
WO2021070933A1 (en) * 2019-10-11 2021-04-15 イビデン株式会社 Heat insulation sheet for battery packs, and battery pack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215293A (en) * 1992-02-03 1993-08-24 Matsushita Refrig Co Ltd Manufacture of vacuum heat insulating pack
JPH07167377A (en) * 1993-12-14 1995-07-04 Sharp Corp Vacuum heat insulating material
JPH0882474A (en) * 1994-09-12 1996-03-26 Toshiba Corp Vacuum heat insulating material
JP2004132438A (en) * 2002-10-09 2004-04-30 Nisshinbo Ind Inc Compound vacuum heat insulating material and method of manufacturing the same
JP2007198717A (en) * 2006-01-30 2007-08-09 Denso Corp Hot water storage tank
JP2007313652A (en) * 2006-05-23 2007-12-06 Toppan Printing Co Ltd Barrier facing material for vacuum heat insulating material and vacuum heat insulating material
JP2011038594A (en) * 2009-08-11 2011-02-24 Zojirushi Corp Using method of vacuum heat insulating material and the vacuum heat insulating material
JP2011190925A (en) * 2010-02-16 2011-09-29 Tokyo Electron Ltd Heat insulator and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215293A (en) * 1992-02-03 1993-08-24 Matsushita Refrig Co Ltd Manufacture of vacuum heat insulating pack
JPH07167377A (en) * 1993-12-14 1995-07-04 Sharp Corp Vacuum heat insulating material
JPH0882474A (en) * 1994-09-12 1996-03-26 Toshiba Corp Vacuum heat insulating material
JP2004132438A (en) * 2002-10-09 2004-04-30 Nisshinbo Ind Inc Compound vacuum heat insulating material and method of manufacturing the same
JP2007198717A (en) * 2006-01-30 2007-08-09 Denso Corp Hot water storage tank
JP2007313652A (en) * 2006-05-23 2007-12-06 Toppan Printing Co Ltd Barrier facing material for vacuum heat insulating material and vacuum heat insulating material
JP2011038594A (en) * 2009-08-11 2011-02-24 Zojirushi Corp Using method of vacuum heat insulating material and the vacuum heat insulating material
JP2011190925A (en) * 2010-02-16 2011-09-29 Tokyo Electron Ltd Heat insulator and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173232A (en) * 2017-03-31 2018-11-08 三菱電機株式会社 Hot water storage type water heater
WO2021070933A1 (en) * 2019-10-11 2021-04-15 イビデン株式会社 Heat insulation sheet for battery packs, and battery pack
JP2021064510A (en) * 2019-10-11 2021-04-22 イビデン株式会社 Heat insulation sheet for battery pack, and battery pack
CN114556669A (en) * 2019-10-11 2022-05-27 揖斐电株式会社 Heat insulating sheet for battery pack and battery pack
JP7088892B2 (en) 2019-10-11 2022-06-21 イビデン株式会社 Insulation sheet for assembled battery and assembled battery

Similar Documents

Publication Publication Date Title
KR101260557B1 (en) Vacuum insulation pannel and method for fabricating the same
US6938968B2 (en) Vacuum insulating material and device using the same
JP4186835B2 (en) Hot water storage tank
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
US9527653B2 (en) Insulation housing and method for the production of an insulation housing
TWI607883B (en) Vacuum insulation material, heat insulation box, and vacuum insulation material manufacturing method
KR20110028423A (en) Vacuum insulation panel
JP2007263335A (en) Vacuum insulating material, hot water supply device using vacuum insulating material, and electric water heater
JP2001336691A (en) Vacuum insulation material and refrigerator using vacuum insulation material
KR20110044699A (en) Vacuum insulation panel
CN205173861U (en) High vacuum insulation spare and adiabatic case
WO2014023324A1 (en) Method for manufacturing thermal isolation panels
TWI599737B (en) Vacuum thermal insulator,thermal insulating box,and method for manufacturing vacuum thermal insulator
JP5907204B2 (en) Manufacturing method of vacuum insulation
CN210733468U (en) Vacuum heat-insulating plate
JP4969436B2 (en) Vacuum insulation material and equipment using the same
JP2013228016A (en) Vacuum heat insulating material, method of manufacturing the same, and heat insulated device
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JP6486079B2 (en) Method for maintaining heat insulation performance of vacuum insulation panel and method for maintaining heat insulation performance of refrigerator
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JPWO2014122939A1 (en) Thermal insulation panel
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
JP4944567B2 (en) Vacuum insulation article and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104