JP2007263335A - Vacuum insulating material, hot water supply device using vacuum insulating material, and electric water heater - Google Patents

Vacuum insulating material, hot water supply device using vacuum insulating material, and electric water heater Download PDF

Info

Publication number
JP2007263335A
JP2007263335A JP2006092748A JP2006092748A JP2007263335A JP 2007263335 A JP2007263335 A JP 2007263335A JP 2006092748 A JP2006092748 A JP 2006092748A JP 2006092748 A JP2006092748 A JP 2006092748A JP 2007263335 A JP2007263335 A JP 2007263335A
Authority
JP
Japan
Prior art keywords
layer
gas barrier
resin film
insulating material
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006092748A
Other languages
Japanese (ja)
Other versions
JP4671897B2 (en
Inventor
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Katsumi Fukuda
克美 福田
Toshimitsu Tsuruga
俊光 鶴賀
Daigoro Kamoto
大五郎 嘉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006092748A priority Critical patent/JP4671897B2/en
Priority to CN200710078801XA priority patent/CN101046271B/en
Priority to KR1020070016488A priority patent/KR100950834B1/en
Publication of JP2007263335A publication Critical patent/JP2007263335A/en
Application granted granted Critical
Publication of JP4671897B2 publication Critical patent/JP4671897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/12Arrangements of means for transmitting pneumatic, hydraulic, or electric power to movable parts of devices
    • B66C13/14Arrangements of means for transmitting pneumatic, hydraulic, or electric power to movable parts of devices to load-engaging elements or motors associated therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Thermally Insulated Containers For Foods (AREA)
  • Cookers (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum insulating material capable of maintaining high heat insulation performance even in a high temperature environment, and to provide a hot water supply device having high heat insulation performance. <P>SOLUTION: The vacuum insulating material has a core material 51 comprising an inorganic fiber aggregate, an outer wrapping material 52 having a surface protective layer, a gas barrier layer, and a fusion bonding layer, and an adsorbent 53 for adsorbing moisture and gas components of the core material 51 and the outer wrapping material 52. The gas barrier layer of the outer wrapping material 52 has at least two layers of metal layers laminated so that the metal surfaces face each other as a first gas barrier layer and a second gas barrier layer. A resin film having a fusion point of 150°C or higher is used as the fusion bonding layer. Thereby, heat insulating performance can be maintained over a long period of time even in a high temperature environment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、真空断熱材,真空断熱材を用いた給湯機器及び電気式湯沸し機器に関する。   The present invention relates to a vacuum heat insulating material, a hot water supply device using the vacuum heat insulating material, and an electric water heater.

近年、地球温暖化に対する観点から、家電機器において消費電力量削減の必要性が叫ばれている。例えば冷蔵庫は家電品の中で消費電力量を費やす製品であり、冷蔵庫の消費電力量削減は地球温暖化対策として必要不可欠な状況にある。このような状況の下、真空断熱材を採用した冷蔵庫が製品化され、外部との無駄な熱の授受を抑制して断熱効率を著しく向上させている。   In recent years, from the viewpoint of global warming, the necessity of reducing the amount of power consumption in home appliances has been screamed. For example, refrigerators are products that consume power consumption among household electrical appliances, and reducing the power consumption of refrigerators is indispensable as a measure against global warming. Under such circumstances, refrigerators employing vacuum heat insulating materials have been commercialized, and the heat transfer efficiency is remarkably improved by suppressing useless heat exchange with the outside.

現在の真空断熱材の主な適用分野としては、冷蔵庫をはじめ、極低温フリーザー,輸送用保冷箱,保冷コンテナなどの比較的温度帯が低い製品が中心となっている。しかし、真空断熱材は断熱性能が良好なゆえ、最近は浴槽や自動販売機などの比較的温度帯の高い製品への適用も検討され始めている。   The main application fields of the current vacuum insulation material are products with relatively low temperature zones such as refrigerators, cryogenic freezers, transport cool boxes, and cool containers. However, vacuum insulation materials have good heat insulation performance, and recently, application to products with relatively high temperature zones such as bathtubs and vending machines has begun to be examined.

このような比較的温度の高い製品分野への適用のためには、真空断熱材を構成する材料がその温度帯において十分耐えられることが求められる。真空断熱材に使用されている外包材の耐熱温度もその一例であり、従来例としては、特許文献1及び2に示すものがある。   In order to be applied to such a relatively high temperature product field, it is required that the material constituting the vacuum heat insulating material can sufficiently withstand the temperature range. The heat resistance temperature of the outer packaging material used for the vacuum heat insulating material is one example, and conventional examples include those shown in Patent Documents 1 and 2.

(従来技術1)
特許文献1に示される真空断熱材は、電気湯沸かし器に真空断熱材を適用した例であるが、芯材を配置した耐熱性のラミネートフィルムの間を真空に封止した真空断熱材のラミネートフィルムが、シール層とガスバリヤ層と保護層よりなり、ヒートシール部分を電気湯沸し器の外側近くになるように折って配置したものである。電気湯沸かし器は100℃程度まで温度が上がるため、従来からあるウレタンなどの有機系断熱材は劣化し、断熱性が非常に悪くなるという問題がある。特許文献1の真空断熱材はこれらを解決するために、上記構成の外包材でシール層に無延伸ポリプロピレンを用いている。これを用いることで耐熱性を有するように構成され、ヒートシール部分を湯沸かし器の外側近くなるようにしてヒートシール部からの劣化を抑制する構成としている。
(Prior art 1)
Although the vacuum heat insulating material shown by patent document 1 is an example which applied the vacuum heat insulating material to the electric water heater, the laminated film of the vacuum heat insulating material which sealed the space between the heat resistant laminated films which have arrange | positioned the core material in vacuum. The seal layer, the gas barrier layer, and the protective layer are arranged so that the heat seal portion is folded near the outside of the electric water heater. Since the temperature of the electric water heater rises to about 100 ° C., conventional organic heat insulating materials such as urethane are deteriorated, and there is a problem that the heat insulating property is extremely deteriorated. In order to solve these problems, the vacuum heat insulating material of Patent Literature 1 uses unstretched polypropylene as the sealing layer with the outer packaging material having the above-described configuration. By using this, it is configured to have heat resistance, and the heat seal portion is located near the outside of the water heater to suppress deterioration from the heat seal portion.

(従来技術2)
また、特許文献2に示される電気湯沸かし器の例は、貯水容器外周に真空断熱材を設けて保温電力を非常に少なくしたものである。これは、真空断熱材を構成する積層フィルム中のガスバリヤ層において、高温にさらされる側に金属箔を用い、低温側は蒸着層を用いるもので、高温側は100℃程度の温度において、ガスバリヤ性が良好で真空状態を保持することができ、断熱性が長期間保つことができる。また、低温側では蒸着層を用いることにより、金属箔を伝って流れ込む熱を抑え、真空断熱材全体の性能を向上させたもので、消費電力量を低くしている。
(Prior art 2)
Moreover, the example of the electric water heater shown by patent document 2 provides a vacuum heat insulating material in the outer periphery of a water storage container, and heat insulation power is reduced very much. This is because the gas barrier layer in the laminated film constituting the vacuum heat insulating material uses a metal foil on the side exposed to a high temperature, uses a vapor deposition layer on the low temperature side, and has a gas barrier property at a temperature of about 100 ° C. on the high temperature side. Is good and can maintain a vacuum state, and heat insulation can be maintained for a long time. Further, by using a vapor deposition layer on the low temperature side, the heat flowing in through the metal foil is suppressed and the performance of the entire vacuum heat insulating material is improved, and the power consumption is reduced.

特開平11−309069号公報JP-A-11-309069 特開2001−8828号公報JP 2001-8828 A

特許文献1に示される真空断熱材は、ガスバリヤ性と耐熱性の向上のため、それぞれアルミ箔と無延伸ポロプロピレンを用いるが、6μm等の厚みが薄いアルミ箔にはピンホールが見られ、これによるガスバリヤ性の悪化が懸念される。また、無延伸ポロプロピレンを用いたことによるガスバリヤ性の悪化について具体的な対処方法の提示がなく、信頼性の面で問題がある構成となっている。   The vacuum heat insulating material shown in Patent Document 1 uses aluminum foil and unstretched polypropylene for improving gas barrier properties and heat resistance, respectively, but pinholes are seen in thin aluminum foils such as 6 μm. There is concern about the deterioration of gas barrier properties. Moreover, there is no presentation of a specific countermeasure for the deterioration of gas barrier properties due to the use of unstretched polypropylene, and there is a problem in terms of reliability.

また、特許文献2に示される真空断熱材は、高温側に金属箔層、低温側に蒸着層を用いることにより、蒸着層を伝って流れ込む熱(ヒートブリッジ)を抑えているが、蒸着層は金属箔に比較しガスバリヤ性に劣るため、低温側の蒸着層からのガス侵入量が大きくなってしまう。すなわち、信頼性の面で課題があった。   Moreover, although the vacuum heat insulating material shown by patent document 2 has suppressed the heat | fever (heat bridge) which flows in along a vapor deposition layer by using a metal foil layer on the high temperature side and a vapor deposition layer on the low temperature side, Since the gas barrier property is inferior to that of the metal foil, the gas intrusion amount from the low temperature side vapor deposition layer is increased. That is, there was a problem in terms of reliability.

また、高温環境下での使用における新たな問題として、ラミネートフィルムから発生する有機系ガスの影響がある。発明者らの実験によれば、2液硬化型のウレタン系などの接着剤を使用してラミネートされたフィルムは、80℃程度に昇温したあたりから、メチルアルコール,エチルアセテート,トルエン,スチレン等の溶剤系のガスが脱離することを確認した。これにより、成分や分解により生成される成分等の有機ガス成分が脱離する現象が起こる。アルミニウム箔などのガスバリヤ性が高い材料がある場合、内側層で発生したガスが外層側に抜けにくいため、内装側である熱溶着層を透過してしまう。冷蔵庫など、低温環境下で従来から一般に使用されている水分・ガス吸着剤はこれらの有機溶剤系ガスを吸着できないため、真空断熱材の真空度を維持することができない。したがって、結果的に断熱性能の劣化を招いてしまう。   Further, as a new problem in use in a high temperature environment, there is an influence of an organic gas generated from the laminate film. According to the experiments by the inventors, the film laminated using an adhesive such as a two-component curable urethane is heated to about 80 ° C., and then methyl alcohol, ethyl acetate, toluene, styrene, etc. It was confirmed that the solvent-based gas was desorbed. This causes a phenomenon in which organic gas components such as components and components generated by decomposition are desorbed. When there is a material having a high gas barrier property such as an aluminum foil, the gas generated in the inner layer is difficult to escape to the outer layer side, and thus passes through the heat welding layer on the interior side. Moisture / gas adsorbents that have been conventionally used in low-temperature environments such as refrigerators cannot adsorb these organic solvent gases, and therefore cannot maintain the vacuum degree of the vacuum heat insulating material. Therefore, as a result, the heat insulation performance is deteriorated.

吸着剤については、特許文献1及び2に記載が無く、これらの問題に対しては考慮されていない。   The adsorbent is not described in Patent Documents 1 and 2, and is not considered for these problems.

以下に従来の真空断熱材の一例を図9,図10により説明する。   An example of a conventional vacuum heat insulating material will be described below with reference to FIGS.

図9は真空断熱材を適用した製品の真空断熱材配置部の断面図で、図中では便宜上「高温側」と「低温側」の表現で温度差を記載している。図10,図11はそれぞれ高温側に配置するフィルム12aの構成断面、低温側に配置するフィルム12bの構成断面の一例を示す。   FIG. 9 is a cross-sectional view of a vacuum heat insulating material arrangement portion of a product to which a vacuum heat insulating material is applied. In the drawing, the temperature difference is described in terms of “high temperature side” and “low temperature side” for convenience. FIGS. 10 and 11 show examples of the cross section of the film 12a disposed on the high temperature side and the cross section of the film 12b disposed on the low temperature side, respectively.

図9に示すように、一般的に真空断熱材10は芯材11と外包材12から構成され、高温側の壁材20に接着剤(図示せず)等で貼付けられ、空間25を挟んで低温側の壁材
21とで断熱部分を構成している。また、内部の真空度の保持のため、吸着剤が用いられる。空間25は硬質ウレタンフォームや他の断熱材の場合もある。
As shown in FIG. 9, the vacuum heat insulating material 10 generally includes a core material 11 and an outer packaging material 12, and is attached to a wall material 20 on the high temperature side with an adhesive (not shown) or the like, with a space 25 interposed therebetween. A heat insulating portion is constituted by the wall material 21 on the low temperature side. Also, an adsorbent is used to maintain the internal vacuum. The space 25 may be a hard urethane foam or other heat insulating material.

この中で外包材12の高温側に配置するフィルムの構成は、図10に示すように表面保護層14とガスバリヤ層15及び16と熱溶着層17とを備えて構成され、一般に高温環境下でガスバリヤ性が悪化しないようガスバリヤ層16にアルミ箔を用いるケースが多い。   Among these, the structure of the film disposed on the high temperature side of the outer packaging material 12 includes a surface protective layer 14, gas barrier layers 15 and 16, and a heat welding layer 17, as shown in FIG. In many cases, an aluminum foil is used for the gas barrier layer 16 so as not to deteriorate the gas barrier property.

また、外包材12の低温側に配置するフィルムの構成としては、図11に示すように、ガスバリヤ層18として樹脂フィルムを基材にアルミニウム蒸着をする場合がある他は図10の高温側と同じ構成である。   Moreover, as a structure of the film arrange | positioned at the low temperature side of the outer packaging material 12, as shown in FIG. 11, it is the same as the high temperature side of FIG. 10 except that the resin film may be deposited on the substrate as the gas barrier layer 18. It is a configuration.

高温側においては、アルミニウム箔のピンホールの影響が懸念され、低温側においてはアルミニウム蒸着層が元来アルミニウム箔よりもガスバリヤ性が劣り、いずれの構成においてもガスバリヤ性が低下しやすいものであった。また、高温側の影響により、外包材
12のラミネート部分から接着剤や溶剤等から有機ガス成分が発生するが、これを考慮したものではなかった。
On the high temperature side, there is concern about the effects of aluminum foil pinholes, and on the low temperature side, the aluminum vapor deposited layer is inherently inferior to the aluminum foil in gas barrier properties, and in any configuration, the gas barrier properties tend to decrease. . In addition, due to the influence of the high temperature side, an organic gas component is generated from an adhesive, a solvent, or the like from the laminate portion of the outer packaging material 12, but this was not considered.

本発明は上記課題に鑑みてなされたものであり、高温環境下においても高い断熱性能を維持可能な真空断熱材を提供すること、または、高い断熱性能を有する給湯機器を提供することを目的としている。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide a vacuum heat insulating material capable of maintaining high heat insulation performance even in a high temperature environment, or to provide a hot water supply device having high heat insulation performance. Yes.

従って、本発明はこのような従来の構成が有していた問題と、高温下で起こる新たな問題について解決しようとするものであり、少なくとも無機繊維重合体からなる芯材と、表面保護層とガスバリヤ層と熱溶着層を有する外包材と、前記芯材及び前記外包材の水分やガス成分を吸着する吸着剤とを備えた真空断熱材において、前記外包材のガスバリヤ層が少なくとも2層の金属層の金属面が向かい合うようにラミネートされ、熱溶着層として融点150℃以上の樹脂フィルムをラミネートしたことを特徴とする真空断熱材としたことで、外包材のガスバリヤ層を構成する金属層が互いのピンホールによるガスバリヤ性悪化要因を補う構成と、熱溶着層の高融点化により、110℃程度までの高温下で使用が可能で、使用温度域とガスバリヤ性を大幅に改善することができる。   Accordingly, the present invention seeks to solve the problems of such a conventional configuration and new problems that occur at high temperatures, and includes at least a core made of an inorganic fiber polymer, a surface protective layer, A vacuum heat insulating material comprising an outer packaging material having a gas barrier layer and a heat-welding layer, and an adsorbent that adsorbs moisture and gas components of the core material and the outer packaging material, wherein the gas barrier layer of the outer packaging material is at least two layers of metal The metal layers constituting the gas barrier layer of the outer packaging material are mutually laminated by forming a vacuum heat insulating material characterized by laminating so that the metal surfaces of the layers face each other and laminating a resin film having a melting point of 150 ° C. or higher as a heat welding layer. It can be used at high temperatures up to around 110 ° C due to the structure that compensates for the factors that deteriorate the gas barrier properties due to pinholes and the high melting point of the heat-welded layer. It can be greatly improved.

また、本発明の真空断熱材は、無機繊維重合体からなる芯材と、表面保護層とガスバリヤ層及び熱溶着層を有する外包材と、前記芯材を厚み方向に圧縮状態に保持する内包材と、前記芯材や外包材及び内包材の水分やガス成分を吸着する吸着剤とを備えた真空断熱材において、前記外包材のガスバリヤ層が、接着層を挟み少なくとも2層の金属部を有する第1及び第2のガスバリヤ層を有し、前記第1のガスバリヤ層が樹脂フィルム基材の片面に金属膜を成膜したフィルムからなり、前記第2のガスバリヤ層が金属箔か、樹脂フィルム基材の片面に金属膜を成膜したフィルムに、金属膜上にガスバリヤ性の樹脂をコーティングしたフィルムとし、それぞれ、樹脂フィルム層/金属膜/接着層/金属箔、樹脂フィルム層/金属膜/ガスバリヤ性樹脂コーティング層/接着層/金属膜/樹脂フィルム層の組合せでラミネートしたもので、前記ガスバリヤ層の最内層となる側に熱溶着層として融点150℃以上の樹脂フィルムを、前記ガスバリヤ層の外層となる側に前記熱溶着層よりも融点が高い樹脂フィルムを表面保護層としてラミネートしたものを外包材とし、且つ、前記芯材がバインダーを含まず厚み方向に復元性を有し、前記吸着剤が芯材の表面又は厚み方向に対して斜めに切り込まれて設けた収納部に収納され、前記収納部の開口が重ね合わされて狭められることを特徴としているので、外部からのガスや水分の浸入を防止できる。   The vacuum heat insulating material of the present invention includes a core material made of an inorganic fiber polymer, an outer packaging material having a surface protective layer, a gas barrier layer, and a heat welding layer, and an inner packaging material that holds the core material in a compressed state in the thickness direction. And a vacuum heat insulating material including an adsorbent that adsorbs moisture and gas components of the core material, the outer packaging material, and the inner packaging material, and the gas barrier layer of the outer packaging material has at least two metal parts sandwiching the adhesive layer A first and second gas barrier layers, wherein the first gas barrier layer is a film having a metal film formed on one side of a resin film substrate, and the second gas barrier layer is a metal foil or a resin film base; A film in which a metal film is formed on one side of a material and a film in which a gas barrier resin is coated on the metal film are formed, and a resin film layer / metal film / adhesive layer / metal foil and a resin film layer / metal film / gas barrier, respectively. sex Laminated with a combination of a grease coating layer / adhesive layer / metal film / resin film layer, a resin film having a melting point of 150 ° C. or more as a heat welding layer on the innermost side of the gas barrier layer, and an outer layer of the gas barrier layer The outer layer is a laminate of a resin film having a melting point higher than that of the heat-welded layer on the side as a surface protective layer, and the core material does not contain a binder and has resilience in the thickness direction, and the adsorbent is Since it is housed in a housing part that is cut obliquely with respect to the surface of the core material or in the thickness direction, the openings of the housing part are overlapped and narrowed, so that ingress of gas and moisture from the outside Can be prevented.

また、前記吸着剤として少なくとも疎水性吸着剤を用いたことで、高温雰囲気下においても有機系ガスを吸着できるため、断熱性能の劣化を抑え、長期に亘り真空度を維持できる。   In addition, since at least a hydrophobic adsorbent is used as the adsorbent, the organic gas can be adsorbed even in a high-temperature atmosphere, so that deterioration of the heat insulation performance can be suppressed and the degree of vacuum can be maintained for a long time.

また、本発明の真空断熱材は、上記いずれかの構成を備えた真空断熱材において、前記外包材が、第1及び第2のガスバリヤ層からなり、前記第1のガスバリヤ層として、ポリアミド樹脂フィルム(PA),エチレンビニルアルコール共重合体樹脂フィルム(EVOH),ポリビニルアルコール樹脂フィルム(PVA),ポリエチレンテレフタレート樹脂フィルム(PET)のいずれかの樹脂フィルムを基材として、その片面にアルミニウム(AL),ステンレス(SUS)のいずれかの金属を成膜したものを、前記第2のガスバリヤ層として、アルミニウム箔(AL),ステンレス箔(SUS),鉄箔(Fe)のいずれかの金属箔を用い、前記第1及び第2のガスバリヤ層の金属層同士が互いに向かい合うように貼り合せたラミネートフィルムと、熱溶着層として無延伸ポリプロピレン樹脂フィルム
(CPP)やポリブチレンテレフタレート樹脂フィルム(PBT)のいずれかを用い、且つ、表面保護層が熱溶着層よりも融点が高い樹脂フィルムとした多層ラミネート構成としたことで、金属箔特有のピンホールを金属膜が直接塞ぐ構成としたため、ガスバリヤ性が高く、外部からのガスや水分の侵入を抑制することができる。
Further, the vacuum heat insulating material of the present invention is the vacuum heat insulating material having any one of the above-described structures, wherein the outer packaging material is composed of first and second gas barrier layers, and the first gas barrier layer is a polyamide resin film. (PA), ethylene vinyl alcohol copolymer resin film (EVOH), polyvinyl alcohol resin film (PVA), polyethylene terephthalate resin film (PET) as a base material, aluminum (AL) on one side, A metal film of any one of stainless steel (SUS) is used as the second gas barrier layer, using a metal foil of any of aluminum foil (AL), stainless steel foil (SUS), and iron foil (Fe), A laminated film bonded so that the metal layers of the first and second gas barrier layers face each other; A multilayer laminate structure in which either an unstretched polypropylene resin film (CPP) or a polybutylene terephthalate resin film (PBT) is used as the welding layer, and the surface protective layer has a higher melting point than the thermal welding layer. Since the metal film directly closes the pinhole peculiar to the metal foil, the gas barrier property is high, and the intrusion of gas and moisture from the outside can be suppressed.

また、本発明の真空断熱材は、上記いずれかの構成を備えた真空断熱材において、前記外包材が、第1及び第2のガスバリヤ層からなり、前記第1のガスバリヤ層として、ポリアミド樹脂フィルム(PA),エチレンビニルアルコール共重合体樹脂フィルム(EVOH),ポリビニルアルコール樹脂フィルム(PVA),ポリエチレンテレフタレート樹脂フィルム(PET)のいずれかの樹脂フィルムを基材として、その片面にアルミニウム(AL),ステンレス(SUS)のいずれかの金属を成膜したものを、前記第2のガスバリヤ層として、エチレンビニルアルコール共重合体樹脂フィルム(EVOH),ポリビニルアルコール樹脂フィルム(PVA),ポリエチレンテレフタレート樹脂フィルム(PET)のいずれかの樹脂フィルムを基材として、その片面にアルミニウム(AL),ステンレス
(SUS)のいずれかの金属を成膜した上に樹脂系のコーティング層を設け、この樹脂系コーティング層を挟んで2層の金属膜が互いに向かい合うように貼り合せたラミネートフィルムであり、熱溶着層として無延伸ポリプロピレン樹脂フィルム(CPP),ポリブチレンテレフタレート樹脂フィルム(PBT)のいずれかを用い、且つ、表面保護層が熱溶着層よりも融点が高い樹脂フィルムとした多層ラミネート構成としたことで、外包材のヒートブリッジの低減と、樹脂コーティング層を2つの金属膜でサンドイッチした構成によるガスバリヤ性の向上と、高性能と長期信頼性を両立できる。
Further, the vacuum heat insulating material of the present invention is the vacuum heat insulating material having any one of the above-described structures, wherein the outer packaging material is composed of first and second gas barrier layers, and the first gas barrier layer is a polyamide resin film. (PA), ethylene vinyl alcohol copolymer resin film (EVOH), polyvinyl alcohol resin film (PVA), polyethylene terephthalate resin film (PET) as a base material, aluminum (AL) on one side, A stainless steel (SUS) metal film is used as the second gas barrier layer as an ethylene vinyl alcohol copolymer resin film (EVOH), polyvinyl alcohol resin film (PVA), polyethylene terephthalate resin film (PET). ) Any one of the resin films as a base material The resin coating layer is provided on one surface of the metal film of aluminum (AL) or stainless steel (SUS), and the two metal films face each other with the resin coating layer interposed therebetween. A laminated film that is laminated and uses either a non-stretched polypropylene resin film (CPP) or a polybutylene terephthalate resin film (PBT) as a heat-welding layer, and the surface protective layer has a higher melting point than the heat-welding layer By adopting a multilayer laminate structure as a film, it is possible to achieve both high performance and long-term reliability by reducing the heat bridge of the outer packaging material, improving the gas barrier property by sandwiching the resin coating layer with two metal films.

また、本発明は、上記いずれかの構成を備えた真空断熱材において、前記疎水性吸着剤として、SiO2/Al23 比が20以上で、不燃性であるハイシリカゼオライトを用いたことで、トルエン、メタノールなどの分子径が小さく、沸点が比較的低い有機溶剤系のガスを優先的に吸着できる。 Further, the present invention uses a high-silica zeolite having a SiO 2 / Al 2 O 3 ratio of 20 or more and incombustible as the hydrophobic adsorbent in the vacuum heat insulating material having any one of the above-described configurations. Therefore, it is possible to preferentially adsorb organic solvent gases such as toluene and methanol having a small molecular diameter and a relatively low boiling point.

また、給湯機器における本発明は、上記いずれかの真空断熱材を、少なくとも貯湯タンクを備えた電気式、ヒートポンプ式等の給湯機器において、前記貯湯タンクの外周に沿うように円弧状に曲げて配設し、前記円弧端部の断熱が少なくとも2重に配置されたことを特徴としており、耐熱性とガスバリヤ性を向上させた真空断熱材を隙間無く配設することで熱漏洩量を低減し、長期間断熱性能を維持できる。   Further, the present invention in a hot water supply device is arranged such that any one of the above vacuum insulation materials is bent in an arc shape along the outer periphery of the hot water storage tank in an electric or heat pump type hot water supply device including at least a hot water storage tank. It is characterized in that the heat insulation at the end of the arc is arranged at least twice, and the amount of heat leakage is reduced by arranging the vacuum heat insulating material with improved heat resistance and gas barrier properties without gaps, Long-term insulation performance can be maintained.

また、少なくとも湯沸し機能と保温機能を持ち、外郭容器と貯水用容器及びフタ部で構成された電気式湯沸し機器における本発明は、上記いずれかの真空断熱材を、前記貯水用容器の外周に沿うように曲げて配設し、前記真空断熱材の曲げ方向の端部が2重に配置されたことを特徴とし、貯水容器からの熱漏洩を低減している。   Further, the present invention in an electric water heater having at least a hot water heating function and a heat retaining function, and comprising an outer container, a water storage container, and a lid portion, is provided with any one of the above vacuum insulation materials along the outer periphery of the water storage container. The end of the vacuum heat insulating material in the bending direction is doubly arranged, and heat leakage from the water storage container is reduced.

本発明によれば、高温環境下においても高い断熱性能を維持可能な真空断熱材を提供することができる。また、高温環境下でも真空断熱材を用いることができるため、高い断熱性能を有する給湯機器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material which can maintain a high heat insulation performance also in a high temperature environment can be provided. Moreover, since a vacuum heat insulating material can be used even in a high temperature environment, a hot water supply device having high heat insulating performance can be provided.

以下、本発明の複数の実施例について以下、図1〜図3を用いて説明する。図1は本発明の実施例における真空断熱材の断面図であり、図2と図3は図1における外包材52のフィルム積層構成の違いを説明するための拡大断面図である。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a vacuum heat insulating material according to an embodiment of the present invention, and FIGS. 2 and 3 are enlarged cross-sectional views for explaining a difference in film stacking structure of an outer packaging material 52 in FIG.

図1,図2において、真空断熱材50は、無機繊維重合体からなる芯材51と、表面保護層55,第1のガスバリヤ層56,第2のガスバリヤ層57及び熱溶着層58の4層を2液硬化型ウレタン系等の接着剤(図示せず)によりドライラミネートして構成された外包材52、吸着剤53及び芯材51と吸着剤53を内包する内包材54で構成するものである。   1 and 2, the vacuum heat insulating material 50 includes four layers of a core material 51 made of an inorganic fiber polymer, a surface protective layer 55, a first gas barrier layer 56, a second gas barrier layer 57, and a heat welding layer 58. Is composed of an outer packaging material 52, an adsorbent 53, a core material 51 and an inner packaging material 54 that encloses the adsorbent 53. is there.

ここで用いる無機繊維重合体からなる芯材51はガラス繊維(グラスウール,グラスファイバー),シリカ繊維,アルミナ繊維,シリカアルミナ繊維,セラミック繊維など、無機繊維重合体が好適であるが、特に限定するものではない。   The core material 51 made of the inorganic fiber polymer used here is preferably an inorganic fiber polymer such as glass fiber (glass wool, glass fiber), silica fiber, alumina fiber, silica alumina fiber, ceramic fiber, but is particularly limited. is not.

また、外包材52のガスバリヤ性は、ガスバリヤ層56、57を組み合わせて確保されるが、ここではガスバリヤ性を強化するために、第1のガスバリヤ層56と第2のガスバリヤ層57の両方に金属層を設けた。これらのガスバリヤ層の金属層は、金属箔や樹脂フィルムを基材に金属膜を成膜したものを用いている。金属箔はアルミニウム箔,ステンレス箔,鉄箔,銅箔,チタニウム箔等、特に限定するものではない。   In addition, the gas barrier property of the outer packaging material 52 is ensured by combining the gas barrier layers 56 and 57. Here, in order to enhance the gas barrier property, a metal is used for both the first gas barrier layer 56 and the second gas barrier layer 57. A layer was provided. As the metal layers of these gas barrier layers, those obtained by forming a metal film using a metal foil or a resin film as a base material are used. The metal foil is not particularly limited, such as aluminum foil, stainless steel foil, iron foil, copper foil, titanium foil and the like.

金属膜の成膜方法は、真空蒸着,スパッタリング,イオンプレーティング等、膜厚が
300〜1,000Å の範囲内であれば特に限定するものではない。また、接着剤(図示せず)についても特定の部位を除いて特に限定するものでなく、押出しラミネートや、熱ラミネート等の接着剤レスも使用できる。
The method for forming the metal film is not particularly limited as long as the film thickness is in the range of 300 to 1,000 mm, such as vacuum deposition, sputtering, and ion plating. Further, the adhesive (not shown) is not particularly limited except for a specific portion, and an adhesiveless material such as extrusion lamination or heat lamination can be used.

吸着剤53については、真空断熱材50が高温雰囲気で使用される場合は、疎水性吸着剤を用いることで、外包材52のラミネートフィルムやラミネート用接着剤及びラミネート時に使用した溶剤系の残留物などから発生する有機ガス成分を優先的に吸着できるため、より長期間断熱性能を維持できるものである。   As for the adsorbent 53, when the vacuum heat insulating material 50 is used in a high-temperature atmosphere, a hydrophobic adsorbent is used so that the laminate film of the outer packaging material 52, the adhesive for laminating, and the solvent-based residue used at the time of laminating are used. Since the organic gas component generated from the above can be preferentially adsorbed, the heat insulating performance can be maintained for a longer period.

図3は、図2と異なる外包材の構成であり、第2のガスバリヤ層59の金属蒸着層の蒸着面上に樹脂材をコーティングしている。具体的には各実施例の記載において説明する。   FIG. 3 shows a configuration of an outer packaging material different from that in FIG. 2, and a resin material is coated on the vapor deposition surface of the metal vapor deposition layer of the second gas barrier layer 59. Specifically, it will be described in the description of each embodiment.

以下、本発明における実施例を詳細に説明するが、各実施例における同一符号は同一物または相当物を示し、各実施例の説明で述べる点以外については実施例1と基本的には同一であるので重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail. The same reference numerals in the respective embodiments indicate the same or equivalent components, and are basically the same as those in the first embodiment except for the points described in the description of each embodiment. Because of this, redundant explanation is omitted.

Figure 2007263335
Figure 2007263335

表1は、最初に説明する実施例1〜6と比較例1〜4の概要を示したものである。各例において、それぞれの外包材のフィルム構成及び吸着剤について初期の熱伝導率及び5年相当経過後の熱伝導率を測定し、また、外観等の変形状態について観察した。   Table 1 shows an outline of Examples 1 to 6 and Comparative Examples 1 to 4 described first. In each example, the initial thermal conductivity and the thermal conductivity after the lapse of five years were measured for the film structure and adsorbent of each outer packaging material, and the deformation state such as appearance was observed.

第1の実施例は、図1に示す真空断熱材50において、外包材52のフィルム構成を図2に示すように構成したものである。芯材51には、平均繊維径4μmのバインダーを含まないグラスウール積層体を用いた。   In the first embodiment, the film configuration of the outer packaging material 52 in the vacuum heat insulating material 50 shown in FIG. 1 is configured as shown in FIG. As the core material 51, a glass wool laminate not containing a binder having an average fiber diameter of 4 μm was used.

実施例1の外包材52の具体的構成を示す。最外層である表面保護層55にはポリアミドフィルム(ONY)を用い、表面保護層55より内側に設けられる第1のガスバリヤ層56は、樹脂フィルム56aとしてポリエチレンテレフタレート(PET),金属蒸着層56bとしてアルミニウムを400〜500Åの厚さで蒸着したものとした。また、第2のガスバリヤ層57は、厚さ6μmの鉄入りアルミニウム箔(AL)とした。そして、第1のガスバリヤ層56のアルミニウム蒸着面と第2のガスバリヤ層57のアルミニウム箔とを向かい合わせて貼り合せる構成とした。金属蒸着層と金属箔層との貼り合わせには、熱溶着層58よりも融点の高い接着剤を用いることとした。熱溶着層58には、無延伸ポリプロピレンフィルムを用い、外包材52全体としての耐熱温度を向上させた。   The specific structure of the outer packaging material 52 of Example 1 is shown. A polyamide film (ONY) is used for the outermost surface protective layer 55, and the first gas barrier layer 56 provided inside the surface protective layer 55 is made of polyethylene terephthalate (PET) as a resin film 56a and a metal vapor-deposited layer 56b. Aluminum was vapor-deposited with a thickness of 400 to 500 mm. The second gas barrier layer 57 was made of iron-containing aluminum foil (AL) having a thickness of 6 μm. The aluminum vapor deposition surface of the first gas barrier layer 56 and the aluminum foil of the second gas barrier layer 57 are bonded to face each other. An adhesive having a melting point higher than that of the heat welding layer 58 was used for bonding the metal vapor deposition layer and the metal foil layer. An unstretched polypropylene film was used for the heat welding layer 58, and the heat resistance temperature of the outer packaging material 52 as a whole was improved.

芯材51の内部に収納される吸着剤53には、平均細孔径9Åの親水性合成ゼオライトを用いた。親水性合成ゼオライトは、物理吸着剤で細孔径よりも小さい分子径のガスを吸着する。また、外包材52と芯材51との間には内包材54を備え、外包材52より内側で芯材51を包んでいるが、内包材54は用いなくても差し支えない。外包材52は、芯材51と吸着剤53を内包材54に内包された状態で外側から覆っている。   For the adsorbent 53 accommodated in the core material 51, hydrophilic synthetic zeolite having an average pore diameter of 9 mm was used. The hydrophilic synthetic zeolite is a physical adsorbent and adsorbs a gas having a molecular diameter smaller than the pore diameter. Further, the inner packaging material 54 is provided between the outer packaging material 52 and the core material 51, and the core material 51 is wrapped inside the outer packaging material 52. However, the inner packaging material 54 may not be used. The outer packaging material 52 covers the core material 51 and the adsorbent 53 from the outside while being encapsulated in the inner packaging material 54.

外包材52のガスバリヤ性は、アルミニウム箔による金属箔層とアルミニウム蒸着による金属蒸着層とを組み合わせて用いたことにより、金属蒸着層が金属箔に特有のピンホールを塞ぎ、結果としてガスバリヤ性を強化することができる。外包材52のフィルム各層間の接着は2液硬化タイプのポリエステル型ウレタン系接着剤を用いたが、蒸着層と箔層からなる2つの金属層間を接着するものを除き、特に限定するものではない。なお、接着剤については後に説明を加える。   The gas barrier property of the outer packaging material 52 is a combination of a metal foil layer made of aluminum foil and a metal vapor deposited layer formed by aluminum vapor deposition, so that the metal vapor deposited layer closes pinholes unique to the metal foil, resulting in enhanced gas barrier properties. can do. The adhesion between the layers of the film of the outer packaging material 52 uses a two-component curing type polyester-type urethane adhesive, but is not particularly limited except for bonding two metal layers composed of a vapor deposition layer and a foil layer. . The adhesive will be described later.

真空断熱材50は、グラスウール積層体からなる芯材51を230℃で一定時間乾燥させ、芯材51の厚み方向に対して斜めの切り込みを入れて吸着剤53を投入し、これを内包材54に入れ、内包材54と共に芯材51の厚み方向に圧縮して内部を脱気して一旦密封する。これを乾燥処理した外包材52に投入し、内包材54の一端を切断して開放した状態で、真空度2.2Pa以下に一定時間保持後、外包材52の一端を熱溶着して得ることができる。   The vacuum heat insulating material 50 is obtained by drying a core material 51 made of a glass wool laminate at 230 ° C. for a predetermined time, making an oblique cut with respect to the thickness direction of the core material 51, and introducing an adsorbent 53. , Compressed in the thickness direction of the core material 51 together with the inner packaging material 54, deaerated inside, and once sealed. This is put into the outer packaging material 52 which has been subjected to a drying treatment, and is obtained by heat-welding one end of the outer packaging material 52 after maintaining one end of the inner packaging material 54 at a vacuum degree of 2.2 Pa or less for a certain period of time in an open state. Can do.

吸着剤53は復元性を有する芯材51に設けられた斜めの切り込み内に収められることから、真空引き後は開口が重ね合わされて狭められ、芯材51内部で散乱等することがない。また、芯材51にバインダーを用いていないため、外包材52の内部のガス成分や水分を吸着する際に芯材51の存在が吸着の抵抗となることもない。   Since the adsorbent 53 is housed in an oblique cut provided in the restoring core material 51, the openings are overlapped and narrowed after evacuation, and the core material 51 does not scatter. Further, since no binder is used for the core material 51, the presence of the core material 51 does not serve as an adsorption resistance when adsorbing gas components and moisture inside the outer packaging material 52.

接着剤について、さらに付け加える。本実施例では、熱溶着層58が溶着することで外包材52内部の真空度を保持しており、熱溶着層58の融点は、当然に真空断熱材が使用される温度(例えば、給湯器では110℃)よりも高い。また、熱溶着層58を溶着するための熱源の温度は、熱溶着層58の融点よりも当然に高い。   Add more about the adhesive. In this embodiment, the degree of vacuum inside the outer packaging material 52 is maintained by welding the heat welding layer 58, and the melting point of the heat welding layer 58 is naturally the temperature at which the vacuum heat insulating material is used (for example, a water heater). Higher than 110 ° C.). Further, the temperature of the heat source for welding the heat welding layer 58 is naturally higher than the melting point of the heat welding layer 58.

金属層間を貼り合わせるための接着剤は、上述のように熱溶着層58の融点よりも高いだけではなく、溶着温度よりも高いものを用いることが必要となる。このとき、製造工程において熱溶着層58を熱溶着する際にも金属層間の接着が外れることはなく、高いガスバリヤ性を保持することができる。   As described above, it is necessary to use an adhesive for bonding the metal layers that is not only higher than the melting point of the heat welding layer 58 but also higher than the welding temperature. At this time, even when the heat-welding layer 58 is heat-welded in the manufacturing process, the adhesion between the metal layers is not released, and high gas barrier properties can be maintained.

本実施例において、金属箔層と金属蒸着層との間の接着には、熱硬化性樹脂からなる接着剤を用いた。熱硬化性樹脂とは、加熱すると固まる樹脂であり、熱硬化性の材料は一度硬化すると再加熱しても柔らかくならず、高い温度環境で使用される場合に適している。具体的には、ポリエステルポリオール系/ポリイソシアネートのウレタン系接着剤である。この接着剤は、ポリエステルポリオールとポリイソシアネートを反応させることでウレタン結合を生成して接着を行う。すなわち、生成された接着膜はウレタン結合が形成される。したがって、ポリウレタン系接着剤タイプポリエステル系の接着剤といえる。   In this embodiment, an adhesive made of a thermosetting resin was used for adhesion between the metal foil layer and the metal vapor deposition layer. A thermosetting resin is a resin that hardens when heated, and a thermosetting material is suitable when it is used in a high temperature environment because it does not become soft even after being reheated once cured. Specifically, it is a polyester polyol-based / polyisocyanate urethane-based adhesive. This adhesive performs adhesion by generating a urethane bond by reacting a polyester polyol and a polyisocyanate. That is, a urethane bond is formed in the produced adhesive film. Therefore, it can be said that it is a polyurethane adhesive type polyester adhesive.

このような接着剤はある温度でウレタン結合が切れる場合がある。本実施例における接着剤は、微視的には200℃程度から一部のウレタン結合が切れ始めるとされているが、接着が剥がれるほどではない。実際の熱溶着に要する時間は1〜2秒程度であり、また、熱溶着層の融点は約160℃であるため、外包材52を熱溶着しても接着が剥がれることはない。   Such an adhesive may break the urethane bond at a certain temperature. Microscopically, the adhesive in the present example is said to partially break the urethane bond from about 200 ° C., but the adhesive is not peeled off. The actual time required for heat welding is about 1 to 2 seconds, and the melting point of the heat welding layer is about 160 ° C. Therefore, even if the outer packaging material 52 is heat welded, the adhesion is not peeled off.

実際、熱溶着時の熱源の温度を180〜200℃として外包材52を熱溶着した場合でも、接着が剥がれることはなかった。さらに、200℃以上の熱源温度に対して、1分間の熱溶着動作を実施した場合でも、接着層に劣化は観測されなかった。   Actually, even when the temperature of the heat source at the time of heat welding was 180 to 200 ° C. and the outer packaging material 52 was heat welded, the adhesion was not peeled off. Furthermore, no deterioration was observed in the adhesive layer even when a 1-minute heat welding operation was performed at a heat source temperature of 200 ° C. or higher.

また、いわゆるヒートブリッジは、外包材52の各構成の中でも、特に金属層が有する高い熱伝導率に起因している。すなわち、実際の使用態様においては、金属層(実施例1ではアルミニウム箔とアルミニウム蒸着膜)の温度が高くなりやすい傾向にある。したがって、両金属層間の接着は、他層間の接着と比較して外れやすくなる。   Also, the so-called heat bridge is caused by the high thermal conductivity of the metal layer, among the components of the outer packaging material 52. That is, in an actual usage mode, the temperature of the metal layer (in Example 1, the aluminum foil and the aluminum deposited film) tends to be high. Therefore, the adhesion between the two metal layers is easily removed as compared with the adhesion between the other layers.

本実施例では上述の熱硬化性樹脂からなる接着剤を使用しているため、使用が長期にわたっても高いガスバリヤ性を保持することができる。また、熱硬化性樹脂からなる接着剤を用いなくとも、熱溶着層の融点及び熱溶着温度(熱源温度)よりも高い融点を有する接着剤を用いても同様の効果が期待できる。   In this embodiment, since the adhesive made of the above-mentioned thermosetting resin is used, high gas barrier properties can be maintained even when used for a long time. Even if an adhesive made of a thermosetting resin is not used, the same effect can be expected even if an adhesive having a melting point higher than the melting point and the heat welding temperature (heat source temperature) of the heat welding layer is used.

このようにして得られた真空断熱材50の断熱性能を示す熱伝導率は、英弘精機(株)製の熱伝導率測定装置AUTO−Λにて、平均温度24℃で測定した。測定対象の真空断熱材50について図4を用いて説明する。図4は熱伝導率を測定する真空断熱材50を示す断面図である。図1に示した例と同様に、芯材51を外包材52で覆い、内部を減圧した状態で密封したものとしている。破線で囲まれた部分は外包材52の耳部52aである。このように、外包材52の周縁部には耳部52aが存在しており、実際の使用態様においては折り曲げられて使用されることが多いが(図1参照)、図4に示すように耳部52aを折り曲げない状態で熱伝導率を測定した。   The heat conductivity indicating the heat insulating performance of the vacuum heat insulating material 50 thus obtained was measured at an average temperature of 24 ° C. with a heat conductivity measuring device AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The vacuum heat insulating material 50 to be measured will be described with reference to FIG. FIG. 4 is a cross-sectional view showing a vacuum heat insulating material 50 for measuring thermal conductivity. As in the example shown in FIG. 1, the core material 51 is covered with the outer packaging material 52, and the inside is sealed in a decompressed state. A portion surrounded by a broken line is an ear portion 52 a of the outer packaging material 52. In this way, the ear 52a is present at the peripheral edge of the outer packaging material 52, and in many cases it is used by being bent in an actual use mode (see FIG. 1), but as shown in FIG. The thermal conductivity was measured without bending the part 52a.

熱伝導率を測定したところ、初期値で0.0022 (W/m・K)と良好な値を示した。また、高温環境下での使用における断熱性能の劣化については、最高使用温度を110℃として、一定の使用条件を考慮した5年相当経過後の熱伝導率値で比較した。本実施例における5年相当経過後の熱伝導率値は0.0064 (W/m・K)であり、十分な断熱性能が保持されることが確認できた。また、真空断熱材50の外観的変化は特に無かった。   When the thermal conductivity was measured, the initial value was as good as 0.0022 (W / m · K). Moreover, about the deterioration of the heat insulation performance in the use in a high temperature environment, the maximum use temperature was 110 degreeC, and it compared by the thermal conductivity value after progress for five years which considered fixed use conditions. The thermal conductivity value after the lapse of 5 years in this example was 0.0063 (W / m · K), and it was confirmed that sufficient heat insulating performance was maintained. Further, there was no particular change in the appearance of the vacuum heat insulating material 50.

第2の実施例は、吸着剤53を酸化カルシウムとした以外は実施例1と同じ条件で真空断熱材50を製作した。酸化カルシウムは親水性の化学吸着剤であり、水分を吸着して水酸化カルシウムとなるものである。   In the second example, the vacuum heat insulating material 50 was manufactured under the same conditions as in Example 1 except that the adsorbent 53 was calcium oxide. Calcium oxide is a hydrophilic chemical adsorbent and adsorbs moisture to form calcium hydroxide.

このようにして得られた真空断熱材50の断熱性能を示す熱伝導率を、実施例1と同様に測定したところ、初期値で0.0021 (W/m・K)、5年相当経過後の熱伝導率値は0.0068 (W/m・K)であり、十分な断熱性能が保持されることが確認できた。また、真空断熱材50の外観的変化は特に無かった。   The heat conductivity indicating the heat insulating performance of the vacuum heat insulating material 50 thus obtained was measured in the same manner as in Example 1. As a result, the initial value was 0.0021 (W / m · K) after 5 years. The thermal conductivity value was 0.0065 (W / m · K), and it was confirmed that sufficient heat insulation performance was maintained. Further, there was no particular change in the appearance of the vacuum heat insulating material 50.

第3の実施例は、吸着剤53を平均細孔径6Å以上の疎水性合成ゼオライトと平均細孔径9Åの親水性合成ゼオライトを併用した以外は実施例1と同じ条件で真空断熱材50を製作した。疎水性合成ゼオライトは、物理吸着剤であり、SiO2/Al23 比が20以上で、かつ不燃性であるハイシリカゼオライトである。 In the third example, the vacuum heat insulating material 50 was manufactured under the same conditions as in Example 1 except that the adsorbent 53 was used in combination with a hydrophobic synthetic zeolite having an average pore diameter of 6 mm or more and a hydrophilic synthetic zeolite having an average pore diameter of 9 mm. . The hydrophobic synthetic zeolite is a high-silica zeolite that is a physical adsorbent, has a SiO 2 / Al 2 O 3 ratio of 20 or more, and is nonflammable.

このようにして得られた真空断熱材50の断熱性を示す熱伝導率を、実施例1と同様に測定したところ、初期値で0.0022 (W/m・K)、5年相当経過後の熱伝導率値は
0.0059 (W/m・K)と良好であった。また、真空断熱材50の外観的変化は特に無かった。
The heat conductivity indicating the heat insulating property of the vacuum heat insulating material 50 thus obtained was measured in the same manner as in Example 1. As a result, the initial value was 0.0022 (W / m · K), after 5 years. The thermal conductivity value of was good at 0.0059 (W / m · K). Further, there was no particular change in the appearance of the vacuum heat insulating material 50.

実施例3は、親水性吸着剤と疎水性吸着剤とを併用することで、親水性吸着剤が水分を優先的に吸着するとともに、疎水性吸着剤が外包材52のラミネートフィルムやラミネート用接着剤及びラミネート時に使用した溶剤系の残留物などから発生する有機ガス成分を優先的に吸着するため、実施例1と比較して長期間断熱性能を高く維持できると考えられる。特に、有機ガスが発生しやすい高温環境下では、両吸着剤を併用することが有効であることがわかった。   In Example 3, a hydrophilic adsorbent and a hydrophobic adsorbent are used in combination, so that the hydrophilic adsorbent preferentially adsorbs moisture, and the hydrophobic adsorbent adheres to the laminate film or laminate for the outer packaging material 52. Since the organic gas components generated from the solvent and the solvent-based residue used at the time of lamination are preferentially adsorbed, it is considered that the heat insulation performance can be maintained high for a long period of time as compared with Example 1. In particular, it has been found that it is effective to use both adsorbents in a high temperature environment where organic gas is easily generated.

第4の実施例は、吸着剤53を平均細孔径6Å以上の疎水性合成ゼオライトと酸化カルシウムを併用した以外は実施例1と同じ条件で真空断熱材50を製作した。   In the fourth example, the vacuum heat insulating material 50 was manufactured under the same conditions as in Example 1, except that the adsorbent 53 was used in combination with a hydrophobic synthetic zeolite having an average pore diameter of 6 mm or more and calcium oxide.

このようにして得られた真空断熱材50の断熱性を示す熱伝導率を、実施例1と同様に測定したところ、初期値で0.0020 (W/m・K)、5年相当経過後の熱伝導率値は
0.0059 (W/m・K)と良好であった。また、真空断熱材50の外観的変化は特に無かった。
The heat conductivity indicating the heat insulating property of the vacuum heat insulating material 50 thus obtained was measured in the same manner as in Example 1. As a result, the initial value was 0.000020 (W / m · K) after 5 years. The thermal conductivity value of was good at 0.0059 (W / m · K). Further, there was no particular change in the appearance of the vacuum heat insulating material 50.

実施例4は、実施例3と同様に親水性吸着剤と疎水性吸着剤とを併用することが有効であることを示している。この効果は、親水性吸着剤が化学吸着剤であっても有効であることがわかった。なお、酸化カルシウムは水分のみを吸着する化学吸着剤であり、一旦水分を吸着すると、通常の環境下で放出することはない。   Example 4 shows that it is effective to use a hydrophilic adsorbent and a hydrophobic adsorbent in the same manner as in Example 3. This effect was found to be effective even when the hydrophilic adsorbent is a chemical adsorbent. Calcium oxide is a chemical adsorbent that adsorbs only moisture, and once it adsorbs moisture, it is not released in a normal environment.

このような化学吸着剤を用いた場合でも、5年相当経過後で実施例3と同程度の断熱性能を保持している結果から、
(1)長期信頼性の確保に際しては有機ガスの吸着が必要であること
(2)有機ガスを長期にわたって吸着するには、有機ガスをも吸着可能な親水性吸着剤ではなく、有機ガスを吸着可能な疎水性吸着剤の使用が有効であること
の(1),(2)がわかった。
Even when such a chemical adsorbent is used, from the result of maintaining the same thermal insulation performance as Example 3 after 5 years,
(1) Adsorption of organic gas is necessary to ensure long-term reliability. (2) To adsorb organic gas over a long period of time, adsorb organic gas, not a hydrophilic adsorbent that can also adsorb organic gas. It was found that (1) and (2) that the use of a possible hydrophobic adsorbent is effective.

第5の実施例は、図1に示す真空断熱材50において、外包材52のフィルム構成を図3に示すように構成したもので、第2のガスバリヤ層59をエチレンビニルアルコール共重合体樹脂フィルム59aを基材に、アルミニウムを400〜500Åの厚さで蒸着して蒸着層を形成し、その蒸着面上に樹脂材をコーティングした(金属蒸着層と樹脂コーティング層からなる層59b)。吸着剤53は実施例3と同じく平均細孔径6Å以上の疎水性合成ゼオライトと平均細孔径9Åの親水性合成ゼオライトを使用した。他の条件は実施例1と同じ条件である。   In the fifth embodiment, in the vacuum heat insulating material 50 shown in FIG. 1, the film structure of the outer packaging material 52 is configured as shown in FIG. 3, and the second gas barrier layer 59 is made of an ethylene vinyl alcohol copolymer resin film. 59a was used as a base material, and aluminum was deposited in a thickness of 400 to 500 mm to form a vapor deposition layer, and a resin material was coated on the vapor deposition surface (layer 59b composed of a metal vapor deposition layer and a resin coating layer). As in Example 3, the adsorbent 53 used was a hydrophobic synthetic zeolite having an average pore diameter of 6 mm or more and a hydrophilic synthetic zeolite having an average pore diameter of 9 mm. Other conditions are the same as those in the first embodiment.

外包材52の第2のガスバリヤ層59をアルミニウム蒸着にしたのは、アルミニウム箔よりもヒートブリッジを低減させるためであり、また、ガスバリヤ性を補うべくアルミニウム箔に近いガスバリヤ性を実現するために樹脂材をコーティングしたものである。この樹脂材のコーティングに用いる材料は、柔軟性を有するものであればよく、例えば、ポリアクリル酸系、エポキシ系等が挙げられるが、これらに限定されるものではない。   The reason why the second gas barrier layer 59 of the outer packaging material 52 is vapor-deposited with aluminum is to reduce the heat bridge as compared with the aluminum foil, and to realize a gas barrier property close to that of the aluminum foil in order to supplement the gas barrier property. The material is coated. The material used for coating the resin material only needs to be flexible, and examples thereof include, but are not limited to, polyacrylic acid type and epoxy type.

このようにして得られた真空断熱材50の断熱性能を示す熱伝導率を、実施例1と同じ方法で測定したところ、初期値で0.0022 (W/m・K)、5年相当経過後の熱伝導率値は0.0079 (W/m・K)であった。また、真空断熱材50の外観的変化は特に無かった。   When the thermal conductivity indicating the heat insulation performance of the vacuum heat insulating material 50 obtained in this way was measured by the same method as in Example 1, the initial value was 0.0022 (W / m · K), the equivalent of 5 years. The later thermal conductivity value was 0.0079 (W / m · K). Further, there was no particular change in the appearance of the vacuum heat insulating material 50.

第6の実施例は、図2に示す外包材フィルム構成において、耐熱性の向上とガスバリヤ性の強化を目的として、熱溶着層58にポリブチレンテレフタレート(PBT)を用いた。ポリブチレンテレフタレート(PBT)は融点が無延伸ポリプロピレンフィルム(CPP)よりも高く、耐熱性の向上が図れる。また、それに合わせて、表面保護層55にもポリアミドフィルム(ONY)よりも融点の高いポリエチレンテレフタレート(PET)を用いた。   In the sixth example, polybutylene terephthalate (PBT) was used for the heat-welded layer 58 in the outer packaging material film configuration shown in FIG. 2 for the purpose of improving heat resistance and enhancing gas barrier properties. Polybutylene terephthalate (PBT) has a higher melting point than unstretched polypropylene film (CPP), and can improve heat resistance. In accordance with this, polyethylene terephthalate (PET) having a melting point higher than that of the polyamide film (ONY) was also used for the surface protective layer 55.

ポリブチレンテレフタレート(PBT)は、熱溶着部の溶着強度を確保するためには
200〜220℃程度に加熱する必要があるため、表面保護層55をポリエチレンテレフタレート(PET),第1のガスバリヤ層56をポリアミドフィルム(ONY)にアルミニウムを400〜500Åの厚さで蒸着したものとした。また、吸着剤53には、実施例3と同じく平均細孔径6Å以上の疎水性合成ゼオライトと平均細孔径9Åの親水性合成ゼオライトとを使用した。他の条件は実施例1と同じとした。
Since polybutylene terephthalate (PBT) needs to be heated to about 200 to 220 ° C. in order to ensure the welding strength of the heat-welded portion, the surface protective layer 55 is made of polyethylene terephthalate (PET) and the first gas barrier layer 56. Was deposited on a polyamide film (ONY) with a thickness of 400 to 500 mm. As the adsorbent 53, a hydrophobic synthetic zeolite having an average pore diameter of 6 mm or more and a hydrophilic synthetic zeolite having an average pore diameter of 9 mm were used as in Example 3. Other conditions were the same as in Example 1.

このようにして得られた真空断熱材50の断熱性能を示す熱伝導率を、実施例1と同様に測定したところ、初期値で0.0023(W/m・K)、5年相当経過後の熱伝導率値は0.0053(W/m・K)と良好であった。また、真空断熱材50の外観的変化は特に無かった。   The heat conductivity indicating the heat insulating performance of the vacuum heat insulating material 50 obtained in this manner was measured in the same manner as in Example 1. As a result, the initial value was 0.0023 (W / m · K), after 5 years. The thermal conductivity value of was good at 0.0053 (W / m · K). Further, there was no particular change in the appearance of the vacuum heat insulating material 50.

(比較例1)
性能比較のため実施例1と同様の方法で真空断熱材50を作製した。図1に示す真空断熱材50において、外包材52のフィルムを一般に冷蔵庫用途で使用されている構成として比較した。図2において表面保護層55をポリアミドフィルム(ONY),第1のガスバリヤ層56をポリエチレンテレフタレート(PET),第2のガスバリヤ層57を厚さ6μmの鉄入りアルミニウム箔(AL)とし、熱溶着層58として高密度ポリエチレンを用いた外包材52とし、吸着剤53は親水性合成ゼオライトを用いた。その他の条件は実施例1と同じとした。
(Comparative Example 1)
The vacuum heat insulating material 50 was produced by the same method as Example 1 for performance comparison. In the vacuum heat insulating material 50 shown in FIG. 1, the film of the outer packaging material 52 was compared as a configuration generally used for refrigerator applications. In FIG. 2, the surface protective layer 55 is a polyamide film (ONY), the first gas barrier layer 56 is polyethylene terephthalate (PET), and the second gas barrier layer 57 is an aluminum-containing aluminum foil (AL) having a thickness of 6 μm. 58 is an outer packaging material 52 using high-density polyethylene, and the adsorbent 53 is hydrophilic synthetic zeolite. Other conditions were the same as in Example 1.

このようにして得られた真空断熱材50の断熱性を示す熱伝導率を、実施例1と同様に測定したところ、初期値で0.0020 (W/m・K)、5年相当経過後の熱伝導率値は
0.0098 (W/m・K)で劣化度合いが大きい結果となった。また、真空断熱材50の外観的変化として、熱溶着層58が軽溶着している状態となっていることが観察された。
The heat conductivity indicating the heat insulating property of the vacuum heat insulating material 50 thus obtained was measured in the same manner as in Example 1. As a result, the initial value was 0.000020 (W / m · K) after 5 years. The thermal conductivity value of was 0.00098 (W / m · K), indicating a large degree of deterioration. Moreover, it was observed that the heat welding layer 58 is in a lightly welded state as an external change of the vacuum heat insulating material 50.

(比較例2)
比較例2として比較例1と同様の方法で真空断熱材50を作製した。図1に示す真空断熱材50において、外包材52のガスバリヤ性の強化とヒートブリッジの低減をしたフィルムとして一般に冷蔵庫用途で使用されている構成を比較した。図2において表面保護層55をポリアミドフィルム(ONY),第1のガスバリヤ層56をポリエチレンテレフタレート(PET)を基材とし、アルミニウムを400〜500Åの厚さで蒸着したもの、第2のガスバリヤ層57をエチレンビニルアルコール共重合体樹脂フィルムを基材に、アルミニウムを400〜500Åの厚さで蒸着したものとし、熱溶着層58として高密度ポリエチレンを用いた。吸着剤53は親水性合成ゼオライトを用いた。その他の条件は実施例1と同じとした。
(Comparative Example 2)
As a comparative example 2, a vacuum heat insulating material 50 was produced in the same manner as in the comparative example 1. In the vacuum heat insulating material 50 shown in FIG. 1, the structure generally used for the refrigerator use was compared as the film which strengthened the gas barrier property of the outer packaging material 52, and reduced the heat bridge. In FIG. 2, the surface protective layer 55 is made of polyamide film (ONY), the first gas barrier layer 56 is made of polyethylene terephthalate (PET), and aluminum is deposited in a thickness of 400 to 500 mm. The second gas barrier layer 57 Was formed by depositing aluminum in a thickness of 400 to 500 mm using an ethylene vinyl alcohol copolymer resin film as a base material, and high-density polyethylene was used as the heat welding layer 58. As the adsorbent 53, hydrophilic synthetic zeolite was used. Other conditions were the same as in Example 1.

このようにして得られた真空断熱材50の断熱性を示す熱伝導率を、実施例1と同様に測定したところ、初期値で0.0018 (W/m・K)、5年相当経過後の熱伝導率値は
0.0152 (W/m・K)で劣化度合いが大きい結果となった。また、真空断熱材50の外観的変化として、比較例1と同様、熱溶着層58が軽溶着している状態となっていることが観察された。
The heat conductivity indicating the heat insulating property of the vacuum heat insulating material 50 thus obtained was measured in the same manner as in Example 1. As a result, the initial value was 0.0019 (W / m · K), after 5 years. The thermal conductivity value was 0.0152 (W / m · K), and the degree of deterioration was large. Further, as an external change of the vacuum heat insulating material 50, it was observed that the heat-welded layer 58 was lightly welded as in Comparative Example 1.

(比較例3)
比較例3として、図1に示す真空断熱材50において、外包材52の熱溶着層58を無延伸ポリプロピレンフィルムとした以外は比較例1と同じとした。
(Comparative Example 3)
As Comparative Example 3, the vacuum heat insulating material 50 shown in FIG. 1 was the same as Comparative Example 1 except that the heat-welding layer 58 of the outer packaging material 52 was an unstretched polypropylene film.

このようにして得られた真空断熱材50の断熱性を示す熱伝導率を、実施例1と同様に測定したところ、初期値で0.0026 (W/m・K)、5年相当経過後の熱伝導率値は
0.0109 (W/m・K)で劣化度合いが大きい結果となった。なお、真空断熱材50の外観的変化は特に観察されなかった。
The heat conductivity indicating the heat insulating property of the vacuum heat insulating material 50 thus obtained was measured in the same manner as in Example 1. As a result, the initial value was 0.0026 (W / m · K), after 5 years. The thermal conductivity value was 0.0109 (W / m · K), indicating a large degree of deterioration. In addition, the external appearance change of the vacuum heat insulating material 50 was not observed in particular.

(比較例4)
比較例4として、実施例1の構成において、第1のガスバリヤ層56の樹脂フィルム
56aと金属蒸着層56bを逆にして、金属蒸着層56bを表面保護55層側とした以外は実施例1と同じとした。
(Comparative Example 4)
As Comparative Example 4, in the configuration of Example 1, except that the resin film 56a of the first gas barrier layer 56 and the metal vapor deposition layer 56b are reversed and the metal vapor deposition layer 56b is on the surface protection 55 layer side. Same as above.

このようにして得られた真空断熱材50の断熱性能を示す熱伝導率を、実施例1と同様に測定したところ、初期値で0.0021 (W/m・K)、5年相当経過後の熱伝導率値は0.0074 (W/m・K)で実施例1よりも劣化度合いが大きい結果となった。なお、真空断熱材50の外観的変化は特に観察されなかった。   The heat conductivity indicating the heat insulating performance of the vacuum heat insulating material 50 thus obtained was measured in the same manner as in Example 1. As a result, the initial value was 0.0021 (W / m · K) after 5 years. The thermal conductivity value of the sample was 0.0074 (W / m · K), and the degree of deterioration was greater than that of Example 1. In addition, the external appearance change of the vacuum heat insulating material 50 was not observed in particular.

ここで、実施例5と比較例4との関係について考察する。既述したように、両例の熱伝導率は、それぞれ初期値で0.0022(W/m・K),0.0021(W/m・K)であり、5年相当経過後で0.0079(W/m・K),0.0074(W/m・K)となっている。すなわち、実施例5は比較例4よりも熱伝導率で劣る結果となった。   Here, the relationship between Example 5 and Comparative Example 4 will be considered. As described above, the thermal conductivities of both examples are 0.0022 (W / m · K) and 0.0021 (W / m · K) as initial values, respectively, and are 0. 0079 (W / m · K), 0.0074 (W / m · K). That is, Example 5 was inferior in thermal conductivity to Comparative Example 4.

ところで、真空断熱材における熱伝導の形態は大きく2つの態様があることが知られている。第1の態様は、外包材52内部の芯材51を介する熱伝導であり、第2の態様は、外包材52における主として金属層を介する熱伝導である。この第2の態様はヒートブリッジと呼ばれている。真空断熱材の熱伝導の全体においてヒートブリッジの影響が大きいことはよく知られている。したがって、ヒートブリッジを低減することによって、真空断熱材全体としての断熱性能の向上が図られる。   By the way, it is known that there are two main modes of heat conduction in the vacuum heat insulating material. The first mode is heat conduction through the core material 51 inside the outer packaging material 52, and the second mode is heat conduction mainly through the metal layer in the outer packaging material 52. This second aspect is called a heat bridge. It is well known that the influence of the heat bridge is large in the overall heat conduction of the vacuum heat insulating material. Therefore, the heat insulation performance as the whole vacuum heat insulating material can be improved by reducing the heat bridge.

また、ヒートブリッジの影響は、その性質上、外包材52内の金属層が厚いほど大きくなり、図1の破線で示すように外包材52の耳部が折り曲げられると、その部分に熱を持ちやすく、ヒートブリッジの影響が大きくなってしまう。   In addition, due to its nature, the influence of the heat bridge becomes larger as the metal layer in the outer packaging material 52 becomes thicker, and when the ear portion of the outer packaging material 52 is bent as shown by the broken line in FIG. It is easy to increase the influence of the heat bridge.

実施例1〜6及び比較例1〜4において、熱伝導率の計測は、図4に示すように耳部
52aを折り曲げずに行った。実施例5と比較例4の構成を対比すると、アルミ箔による金属層を有する比較例4に対し、実施例5はアルミニウムの蒸着層間に樹脂層を介在させる構成である。すなわち、計測値としては、ほぼ同程度の熱伝導率となっているが、その中でヒートブリッジの影響(上記の第2の態様)の割合が大きく異なっていることが考えられる。
In Examples 1 to 6 and Comparative Examples 1 to 4, the thermal conductivity was measured without bending the ear 52a as shown in FIG. When the configurations of Example 5 and Comparative Example 4 are compared, Example 5 has a configuration in which a resin layer is interposed between aluminum deposition layers, compared to Comparative Example 4 having a metal layer made of aluminum foil. That is, the measured values have substantially the same thermal conductivity, but it is considered that the ratio of the influence of the heat bridge (the second aspect) is greatly different.

一般に、金属箔層は厚みがマイクロメートルオーダーであるのに対し、金属蒸着層では厚みがオングストロームオーダーであり、ヒートブリッジによる熱伝導の影響は大きく異なる。これらの考察から、実施例5に挙げた構成の真空断熱材を耳部52aを折り曲げて使用する場合には、比較例4を含む各比較例の構成よりも有利である。   In general, the thickness of the metal foil layer is on the order of micrometers, whereas the thickness of the metal vapor deposition layer is on the order of angstroms, and the influence of heat conduction by the heat bridge is greatly different. From these considerations, when the vacuum heat insulating material having the configuration described in Example 5 is used by bending the ear portion 52a, it is more advantageous than the configurations of the comparative examples including the comparative example 4.

したがって、実際の使用態様において、耳部を折り曲げて使用する場合、例えば、冷蔵庫の断熱箱体に用いる場合や後述する給湯機器(ヒートポンプ給湯器や電気ポット)に用いる場合には、実施例5の構成が比較例4の構成よりも有利となる。   Therefore, in an actual usage mode, when the ear portion is bent and used, for example, when used for a heat insulating box of a refrigerator or when used for a hot water supply device (a heat pump water heater or an electric pot) described later, The configuration is more advantageous than the configuration of Comparative Example 4.

以上、説明した実施例1〜6と比較例1〜4とを対比すると、金属蒸着層と金属箔層を貼り合わせた外包材を用いれば、長期信頼性に優れた真空断熱材の提供が可能であることがわかった。また、金属蒸着層の間に樹脂コーティングを施した外包材を用いる場合は、耳部を折り曲げて使用する際に高い断熱性能を確保することができることがわかった。また、吸着剤として疎水性合成ゼオライトを併用することで、真空断熱材の長期信頼性の向上が図れることが判明した。また、両金属層間を貼り合わせる接着剤についても、劣化が認められなかった。   As described above, comparing Examples 1 to 6 and Comparative Examples 1 to 4 can provide a vacuum heat insulating material excellent in long-term reliability by using an outer packaging material obtained by bonding a metal vapor deposition layer and a metal foil layer. I found out that Moreover, when using the outer packaging material which gave the resin coating between the metal vapor deposition layers, it turned out that a high heat insulation performance can be ensured when bending and using an ear | edge part. It was also found that long-term reliability of the vacuum heat insulating material can be improved by using a hydrophobic synthetic zeolite as an adsorbent. In addition, no deterioration was observed in the adhesive that bonds the two metal layers.

次に、真空断熱材を用いた給湯機器について説明する。   Next, a hot water supply device using a vacuum heat insulating material will be described.

Figure 2007263335
Figure 2007263335

表2は、ヒートポンプ給湯器に真空断熱材を適用した実施例7〜9の概要を示したものである。各例においては同構成の真空断熱材を使用して、熱漏洩量を計測し、それぞれ比較、検討を行った。以下、詳述する。   Table 2 shows an outline of Examples 7 to 9 in which a vacuum heat insulating material is applied to the heat pump water heater. In each example, the amount of heat leakage was measured using a vacuum heat insulating material having the same configuration, and comparison and examination were performed. Details will be described below.

真空断熱材のヒートポンプ給湯機への適用検討例として、図5,図6を用いて説明する。図5はヒートポンプ給湯機の貯湯タンク200と冷媒対熱交換器201を示している。また、図6は図5における断面A−A部を示したものである。   An example of studying application of a vacuum heat insulating material to a heat pump water heater will be described with reference to FIGS. FIG. 5 shows a hot water storage tank 200 and a refrigerant-to-heat exchanger 201 of a heat pump water heater. FIG. 6 shows a section AA in FIG.

第7の実施例は、図5に示す貯湯タンク200の外周と、凝縮器201aと給水伝熱管201bからなる冷媒対熱交換器201の外周に真空断熱材301,302を備えたものである。真空断熱材301,302は、実施例3と同じ仕様の真空断熱材を用いている。   In the seventh embodiment, vacuum heat insulating materials 301 and 302 are provided on the outer periphery of the hot water storage tank 200 shown in FIG. 5 and on the outer periphery of the refrigerant-to-heat exchanger 201 including the condenser 201a and the feed water heat transfer tube 201b. As the vacuum heat insulating materials 301 and 302, vacuum heat insulating materials having the same specifications as those in the third embodiment are used.

実施例7では、図6(a)に示すよう、真空断熱材301を貯湯タンク200の外周の円弧に沿わせて曲げて貼り付け、真空断熱材301の曲げ方向長さの端部310同士が重なり合うように配置した。また、真空断熱材302を冷媒対熱交換器201の外周の円弧に沿わせて曲げて貼り付け、真空断熱材301の曲げ方向長さの端部同士が重なり合うように配置した。このとき、端部310の形状は図6(d)に示すよう板厚方向に段付き形状として、端部310同士の重なり部の厚み分がでっぱらないようにしてもよい。   In Example 7, as shown in FIG. 6A, the vacuum heat insulating material 301 is bent and attached along the outer peripheral arc of the hot water storage tank 200, and the end portions 310 of the vacuum heat insulating material 301 in the bending direction are connected to each other. Arranged to overlap. Moreover, the vacuum heat insulating material 302 was bent and affixed along the circular arc of the outer periphery of the refrigerant | coolant anti-heat exchanger 201, and it arrange | positioned so that the edge parts of the bending direction length of the vacuum heat insulating material 301 may overlap. At this time, the shape of the end portion 310 may be a stepped shape in the plate thickness direction as shown in FIG. 6D so that the thickness of the overlapping portion between the end portions 310 does not protrude.

本実施例における貯湯タンク部の熱漏洩量を、住宅等の建材に一般に用いられる断熱材(グラスウール単独、あるいはフェノールフォームなど;以下、「従来断熱材」という。)と比較した。その結果、29%の熱漏洩量低減効果が得られた。   The amount of heat leakage in the hot water storage tank section in this example was compared with a heat insulating material (glass wool alone or phenol foam, etc .; hereinafter referred to as “conventional heat insulating material”) generally used for building materials such as houses. As a result, a 29% heat leakage reduction effect was obtained.

本発明における第8の実施例は、図5に示す貯湯タンク200外周と凝縮器201aと給水伝熱管201bからなる冷媒対熱交換器201外周に実施例3と同じ仕様の真空断熱材301〜304を、図6(b)に示すよう、真空断熱材301を貯湯タンク200の外周の円弧に沿わせて曲げて貼り付け、前記真空断熱材301の曲げ方向長さの端部同士が重ならないように配置した。この真空断熱材301の上に別の真空断熱材303を真空断熱材301と円周方向に180°回転させた状態にして同様の方法で貼り付けた。   In an eighth embodiment of the present invention, vacuum heat insulating materials 301 to 304 having the same specifications as those of the third embodiment are provided on the outer periphery of the hot water storage tank 200 shown in FIG. As shown in FIG. 6 (b), the vacuum heat insulating material 301 is bent and pasted along the arc of the outer periphery of the hot water storage tank 200 so that the ends of the vacuum heat insulating material 301 in the bending direction do not overlap each other. Arranged. On this vacuum heat insulating material 301, another vacuum heat insulating material 303 was attached to the vacuum heat insulating material 301 in a state rotated 180 ° in the circumferential direction by the same method.

また、真空断熱材302を冷媒対熱交換器201の外周の円弧に沿わせて曲げて貼り付け、前記真空断熱材301の曲げ方向長さの端部同士が重ならないように配置した。この真空断熱材302の上に別の真空断熱材304を真空断熱材302と円周方向に180°回転させた状態にして同様の方法で貼り付けた。このとき、各真空断熱材の端部310の形状は図6(d)に示すよう板厚方向に段付き形状として、端部310同士の重なり部の厚み分がでっぱらないようにしてもよい。   Further, the vacuum heat insulating material 302 was bent and pasted along the outer peripheral arc of the refrigerant-to-heat exchanger 201, and arranged so that the ends of the vacuum heat insulating material 301 in the bending direction did not overlap each other. On this vacuum heat insulating material 302, another vacuum heat insulating material 304 was attached to the vacuum heat insulating material 302 in a state rotated 180 ° in the circumferential direction by the same method. At this time, the shape of the end portion 310 of each vacuum heat insulating material may be a stepped shape in the plate thickness direction as shown in FIG. 6D so that the thickness of the overlapping portion between the end portions 310 does not protrude.

本実施例における貯湯タンク部の熱漏洩量は、従来の断熱材を使用した場合と比較し、35%の低減効果が得られた。   The amount of heat leakage in the hot water storage tank section in this example was 35% lower than when a conventional heat insulating material was used.

実施例9として、図5に示す貯湯タンク200外周と凝縮器201aと給水伝熱管201bからなる冷媒対熱交換器201外周に実施例3と同じ仕様の真空断熱材301,302を、図6(c)に示すように、真空断熱材301を貯湯タンク200の外周の円弧に沿わせて曲げて貼り付け、前記真空断熱材301の曲げ方向長さの端部同士が重ならないように配置した。また、真空断熱材302を冷媒対熱交換器201の外周の円弧に沿わせて曲げて貼り付け、前記真空断熱材301の曲げ方向長さの端部同士が重ならないように配置した。   As Example 9, vacuum heat insulating materials 301 and 302 having the same specifications as those of Example 3 are provided on the outer periphery of the hot water storage tank 200 shown in FIG. 5, the outer periphery of the refrigerant-to-heat exchanger 201 including the condenser 201a and the feed water heat transfer pipe 201b, as shown in FIG. As shown in c), the vacuum heat insulating material 301 was bent and attached along the arc of the outer periphery of the hot water storage tank 200, and the ends of the vacuum heat insulating material 301 in the bending direction were arranged so as not to overlap each other. Further, the vacuum heat insulating material 302 was bent and pasted along the outer peripheral arc of the refrigerant-to-heat exchanger 201, and arranged so that the ends of the vacuum heat insulating material 301 in the bending direction did not overlap each other.

本実施例における貯湯タンク部の熱漏洩量は、従来の断熱材を使用した場合と比較し、22%の低減効果が得られた。   The amount of heat leakage in the hot water storage tank portion in this example was 22% lower than when a conventional heat insulating material was used.

上記の実施例7〜9を考察すると、いずれも、高温環境下においても十分に断熱性能を発揮できる結果が確認できた。また、実施例7,8に比べ、実施例9は熱漏洩量低減効果が低い結果となった。これらの結果から、
(1)本実施例の真空断熱材は80℃以上に達する高温環境下においても十分に使用に耐え得ること(実施例7〜9)
(2)断熱層を厚く形成すると断熱性能が向上すること(実施例8と実施例9との比較)
(3)使用する真空断熱材の端部同士を重なり合うように配設すると断熱性能が向上すること(実施例7と実施例9との比較)
(4)段付き形状の真空断熱材を用いることも有効であること(実施例8)
という(1)〜(4)がわかった。
In consideration of the above Examples 7 to 9, it was confirmed that all of them could exhibit sufficient heat insulation performance even in a high temperature environment. Moreover, compared with Examples 7 and 8, Example 9 resulted in a low heat leakage reduction effect. From these results,
(1) The vacuum heat insulating material of this example can sufficiently withstand use even in a high temperature environment reaching 80 ° C. or more (Examples 7 to 9).
(2) The heat insulation performance is improved when the heat insulation layer is formed thick (comparison between Example 8 and Example 9).
(3) When the end portions of the vacuum heat insulating material to be used are arranged so as to overlap each other, the heat insulating performance is improved (comparison between Example 7 and Example 9).
(4) It is also effective to use a stepped vacuum heat insulating material (Example 8).
(1) to (4) were found.

次に、真空断熱材を用いた給湯機器のさらなる一例について説明する。   Next, a further example of a hot water supply device using a vacuum heat insulating material will be described.

Figure 2007263335
Figure 2007263335

表3は、電気ポットに真空断熱材を適用した実施例10,11の概要を示したものである。各例においては同構成の真空断熱材を使用して、熱漏洩量を計測し、それぞれ比較、検討を行った。以下、詳述する。   Table 3 shows an outline of Examples 10 and 11 in which a vacuum heat insulating material is applied to the electric pot. In each example, the amount of heat leakage was measured using a vacuum heat insulating material having the same configuration, and comparison and examination were performed. Details will be described below.

本発明における真空断熱材の電気ポットへの適用検討例として、図7,図8を用いて説明する。図7は電気ポット400を示し、貯水容器401とフタ部402を備えている。また、図8は図7における断面B−B部を示したものである。本発明における第10の実施例は、図7において、貯水容器401の外周に実施例5と同じ仕様の真空断熱材501を、図8(a)に示すように貼り付けて、お湯が沸騰した後に電源を切り、その後湯温が80℃まで冷めるまでの時間で保温時間を比較した。真空断熱材501を貯水容器401の外周の円弧に沿わせて曲げて貼り付け、前記真空断熱材501の曲げ方向長さの端部同士が重なり合うように配置した。また、フタ部402の断熱強化として、適用できる真空断熱材503のサイズが小さいため、外包材のヒートブリッジ影響が大きくなることから、耳部を折らずに配置した。   Examples of studying application of the vacuum heat insulating material to the electric pot according to the present invention will be described with reference to FIGS. FIG. 7 shows an electric pot 400 that includes a water storage container 401 and a lid portion 402. FIG. 8 shows a section BB in FIG. In the tenth embodiment of the present invention, in FIG. 7, a vacuum heat insulating material 501 having the same specification as that of the fifth embodiment is attached to the outer periphery of the water storage container 401 as shown in FIG. The power retention time was compared by the time until the power was turned off later and the hot water temperature cooled to 80 ° C. The vacuum heat insulating material 501 was bent and attached along the outer peripheral arc of the water storage container 401, and the vacuum heat insulating material 501 was arranged so that the ends of the bending direction length overlap each other. Moreover, since the size of the applicable vacuum heat insulating material 503 is small as heat insulation reinforcement | strengthening of the cover part 402, since the influence of the heat bridge of an outer packaging material becomes large, it has arrange | positioned without bending an ear | edge part.

本実施例における保温時間は、真空断熱材が無い場合を100とした場合、217となり、断熱性能が良くなることを確認した。   The heat retention time in this example was 217 when the case where there was no vacuum heat insulating material was 100, and it was confirmed that the heat insulating performance was improved.

実施例11として、図7において、貯水容器401の外周に実施例5と同じ仕様の真空断熱材501を、図8(b)に示すよう、真空断熱材501を貯水容器401の外周の円弧に沿わせて曲げて貼り付け、前記真空断熱材501の曲げ方向長さの端部同士が重ならないように配置した。   As Example 11, in FIG. 7, the vacuum heat insulating material 501 having the same specifications as in Example 5 is arranged on the outer periphery of the water storage container 401, and the vacuum heat insulating material 501 is arranged on the outer periphery of the water storage container 401 as shown in FIG. Bending along and pasting, the end portions of the vacuum heat insulating material 501 in the bending direction were arranged so as not to overlap each other.

本実施例における保温時間は、真空断熱材が無い場合を100とした場合、193となり、真空断熱材端部のヒートブリッジ影響によりその効果は実施例10よりも約11%低い結果となった。   The heat retention time in this example was 193 when the case where there was no vacuum heat insulating material was 100, and the effect was about 11% lower than that in Example 10 due to the heat bridge effect at the end of the vacuum heat insulating material.

以上のように、本発明にかかる真空断熱材は、80℃以上の高温域においても断熱性能の劣化を抑制でき、長期に亘りその断熱性能を維持するものである。上記の各実施例から、少なくとも110℃程度の高温域までの使用が問題ないことを確認することができた。   As described above, the vacuum heat insulating material according to the present invention can suppress the deterioration of the heat insulating performance even in a high temperature region of 80 ° C. or higher, and maintains the heat insulating performance for a long time. From each of the above examples, it was confirmed that there was no problem in use up to a high temperature range of at least about 110 ° C.

その結果、断熱効果を発揮可能な適用分野としては少なくとも上記の温度帯を上限として、実施例で述べた給湯機器に限らず、冷蔵庫,保冷箱はもちろん、浴槽,自動車や電車等の車両、住宅,住宅設備機器など、断熱を必要とする機器、設備等に広く適用することができる。   As a result, the field of application capable of exhibiting a heat insulating effect is not limited to the hot water supply equipment described in the embodiments, with the upper limit being the above temperature range, as well as refrigerators, cold boxes, bathtubs, vehicles such as cars and trains, and houses , It can be widely applied to equipment and facilities that require heat insulation, such as housing equipment.

また、第1のガスバリヤ層として、ポリアミド樹脂フィルム(PA),エチレンビニルアルコール共重合体樹脂フィルム(EVOH),ポリビニルアルコール樹脂フィルム
(PVA),ポリエチレンテレフタレート樹脂フィルム(PET)のいずれかの樹脂フィルムを基材として、その片面にアルミニウム(AL),ステンレス(SUS)のいずれかの金属を成膜したものを用い、第2のガスバリヤ層として、アルミニウム箔(AL),ステンレス箔(SUS),鉄箔(Fe)のいずれかの金属箔を用い、第1及び第2のガスバリヤ層の金属層同士が互いに向かい合うように貼り合せたラミネートフィルムと、熱溶着層として無延伸ポリプロピレン樹脂フィルム(CPP)やポリブチレンテレフタレート樹脂フィルム(PBT)のいずれかを用い、かつ、表面保護層が熱溶着層よりも融点が高い樹脂フィルムとした多層ラミネート構成としたことで、金属箔特有のピンホールを金属膜が直接塞ぐ構成としたため、ガスバリヤ性が高く、外部からのガスや水分の侵入を抑制することができる。
Also, as the first gas barrier layer, any one of a polyamide resin film (PA), an ethylene vinyl alcohol copolymer resin film (EVOH), a polyvinyl alcohol resin film (PVA), and a polyethylene terephthalate resin film (PET) is used. As the base material, a metal film of either aluminum (AL) or stainless steel (SUS) is used on one side, and as the second gas barrier layer, aluminum foil (AL), stainless steel foil (SUS), iron foil is used. A laminate film in which any of the metal foils of (Fe) is used and the metal layers of the first and second gas barrier layers are bonded to each other, and a non-stretched polypropylene resin film (CPP) or poly (polypropylene resin film) is used as a heat welding layer. One of the butylene terephthalate resin film (PBT) In addition, since the surface protective layer has a multilayer laminate structure with a resin film having a melting point higher than that of the heat-welded layer, the metal film directly closes the pinhole peculiar to the metal foil. Gas and moisture can be prevented from entering.

この効果は、樹脂コーティング層を2つの金属蒸着膜でサンドイッチした構成によっても保持でき、特に耳部を折り曲げて使用する真空断熱材においては、ガスバリヤ性の向上と、ヒートブリッジの低減による高い断熱性能とを長期にわたって維持することができる。   This effect can be maintained even when the resin coating layer is sandwiched between two metallized films, especially in the case of vacuum insulation materials that are used with bent ears, with high gas barrier properties and high heat insulation performance by reducing heat bridges. Can be maintained over a long period of time.

真空断熱材の断面図。Sectional drawing of a vacuum heat insulating material. 外包材フィルムの拡大説明図。Expansion explanatory drawing of an outer packaging material film. 外包材フィルムの拡大説明図。Expansion explanatory drawing of an outer packaging material film. 熱伝導率を測定する真空断熱材を示す断面図。Sectional drawing which shows the vacuum heat insulating material which measures heat conductivity. 真空断熱材を備えたヒートポンプ給湯機の貯湯タンク部の説明図。Explanatory drawing of the hot water storage tank part of the heat pump water heater provided with the vacuum heat insulating material. 図5のA−A断面図。AA sectional drawing of FIG. 真空断熱材を備えた電気ポットの説明図。Explanatory drawing of the electric pot provided with the vacuum heat insulating material. 図7のB−B断面図。BB sectional drawing of FIG. 従来の真空断熱材適用製品の真空断熱材配置部の断面図。Sectional drawing of the vacuum heat insulating material arrangement | positioning part of the conventional vacuum heat insulating material application product. 図9における高温側フィルムの一般的な構成を示す断面図。Sectional drawing which shows the general structure of the high temperature side film in FIG. 図9における低温側フィルムの一般的な構成を示す断面図。Sectional drawing which shows the general structure of the low temperature side film in FIG.

符号の説明Explanation of symbols

50…真空断熱材、52…外包材、53…吸着剤、56…第1のガスバリヤ層、56a…樹脂フィルム、56b…金属蒸着層、57,59…第2のガスバリヤ層、58…熱溶着層、59a…樹脂フィルム、59b…金属蒸着層と樹脂コーティング層からなる層、200…貯湯タンク、201…熱交換器、301〜304,501,502…真空断熱材、310…真空断熱材端部、400…電気ポット、401…貯水容器、402…フタ部。
DESCRIPTION OF SYMBOLS 50 ... Vacuum heat insulating material, 52 ... Outer packaging material, 53 ... Adsorbent, 56 ... 1st gas barrier layer, 56a ... Resin film, 56b ... Metal vapor deposition layer, 57, 59 ... 2nd gas barrier layer, 58 ... Thermal welding layer , 59a ... resin film, 59b ... layer consisting of a metal vapor deposition layer and a resin coating layer, 200 ... hot water storage tank, 201 ... heat exchanger, 301-304, 501,502 ... vacuum insulation, 310 ... vacuum insulation end, 400 ... electric pot, 401 ... water storage container, 402 ... lid part.

Claims (9)

無機繊維集合体からなる芯材と、表面保護層とガスバリヤ層と熱溶着層とを有する外包材と、前記芯材及び前記外包材の水分やガス成分を吸着する吸着剤とを備えた真空断熱材において、
前記外包材のガスバリヤ層が少なくとも2層の金属層の金属面が向かい合うように積層されて、第1のガスバリヤ層、第2のガスバリヤ層とし、熱溶着層として融点150℃以上の樹脂フィルムを使用した真空断熱材。
Vacuum insulation comprising: a core material made of an inorganic fiber aggregate; an outer packaging material having a surface protective layer, a gas barrier layer, and a heat welding layer; and an adsorbent that adsorbs moisture and gas components of the core material and the outer packaging material. In the material,
The gas barrier layer of the outer packaging material is laminated so that the metal surfaces of at least two metal layers face each other, and a first gas barrier layer and a second gas barrier layer are used, and a resin film having a melting point of 150 ° C. or more is used as a heat welding layer Vacuum insulation.
無機繊維集合体からなる芯材と、表面保護層とガスバリヤ層と熱溶着層を有する外包材と、前記芯材を厚み方向に圧縮状態に保持する内包材と、前記芯材、外包材及び内包材の水分やガス成分を吸着する吸着剤とを備えた真空断熱材において、
前記外包材のガスバリヤ層が、接着層を挟む2層の金属層を有する第1及び第2のガスバリヤ層を有し、
前記第1のガスバリヤ層は、樹脂フィルム基材の片面に金属膜を成膜したフィルムからなり、
前記第2のガスバリヤ層は、金属箔、または樹脂フィルム基材の片面に金属膜を成膜して、成膜された金属膜に樹脂をコーティングしたフィルムのいずれかであり、
前記外包材のガスバリヤ層は、樹脂フィルム層/金属膜/接着層/金属箔、または樹脂フィルム層/金属膜/樹脂コーティング層/接着層/金属膜/樹脂フィルム層の組合せで積層したもので、
前記ガスバリヤ層の最内層より前記芯材側に位置する熱溶着層として、融点150℃以上の樹脂フィルムを用い、前記ガスバリヤ層の最外層より外側に位置する表面保護層として、前記熱溶着層よりも融点が高い樹脂フィルムを用い、
前記芯材がバインダーを含まず厚み方向に復元性を有し、前記吸着剤が芯材の表面又は厚み方向に対して斜めに切り込まれて設けた収納部に収納され、前記収納部の開口が重ね合わされて狭められる構成とした真空断熱材。
A core material made of an inorganic fiber aggregate; an outer packaging material having a surface protective layer, a gas barrier layer, and a heat-welded layer; an inner packaging material that holds the core material in a compressed state in the thickness direction; and the core material, outer packaging material, and inner packaging In vacuum insulation material with adsorbent that adsorbs moisture and gas components of the material,
A gas barrier layer of the outer packaging material has first and second gas barrier layers having two metal layers sandwiching an adhesive layer;
The first gas barrier layer is a film in which a metal film is formed on one side of a resin film substrate,
The second gas barrier layer is either a metal foil or a film in which a metal film is formed on one surface of a resin film substrate, and the formed metal film is coated with a resin,
The gas barrier layer of the outer packaging material is a laminate of resin film layer / metal film / adhesive layer / metal foil or a combination of resin film layer / metal film / resin coating layer / adhesive layer / metal film / resin film layer,
A resin film having a melting point of 150 ° C. or higher is used as the heat welding layer located on the core material side from the innermost layer of the gas barrier layer, and the surface protective layer located outside the outermost layer of the gas barrier layer is from the heat welding layer. Also use a resin film with a high melting point,
The core material does not contain a binder and has resilience in the thickness direction, and the adsorbent is stored in a storage section provided by being cut obliquely with respect to the surface of the core material or the thickness direction, and the opening of the storage section Vacuum heat insulating material with a structure that can be overlapped and narrowed.
前記吸着剤として少なくとも疎水性吸着剤を含むことを特徴とする請求項1又は2に記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the adsorbent includes at least a hydrophobic adsorbent. 前記ガスバリヤ層が、前記第1のガスバリヤ層として、ポリアミド樹脂フィルム(ONY),エチレンビニルアルコール共重合体樹脂フィルム(EVOH),ポリビニルアルコール樹脂フィルム(PVA),ポリエチレンテレフタレート樹脂フィルム(PET)のいずれかの樹脂フィルムを基材として、その片面にアルミニウム(AL),ステンレス(SUS)のいずれかの金属膜を成膜したものを用い、前記第2のガスバリヤ層として、アルミニウム箔(AL),ステンレス箔(SUS),鉄箔(Fe)のいずれかの金属箔を用い、前記第1及び第2のガスバリヤ層の金属部同士が接着層を挟み、互いに向かい合わせて貼り合わせたラミネートフィルムとし、これに組合せる熱溶着層として無延伸ポリプロピレン樹脂フィルム(CPP)やポリブチレンテレフタレート樹脂フィルム(PBT)のいずれかを用い、且つ、前記表面保護層が前記熱溶着層よりも融点が高い樹脂フィルムとした多層ラミネートフィルムからなる外包材を用いた請求項1〜3のいずれかに記載の真空断熱材。   The gas barrier layer is any one of a polyamide resin film (ONY), an ethylene vinyl alcohol copolymer resin film (EVOH), a polyvinyl alcohol resin film (PVA), and a polyethylene terephthalate resin film (PET) as the first gas barrier layer. As a second gas barrier layer, an aluminum foil (AL) or stainless steel foil is used in which a resin film is used as a base and a metal film of either aluminum (AL) or stainless steel (SUS) is formed on one side. (SUS) or iron foil (Fe), using a metal foil, the metal parts of the first and second gas barrier layers sandwich the adhesive layer, and a laminated film is bonded to face each other. Non-stretched polypropylene resin film (CPP) or polybutylene as the heat welding layer to be combined Either of the terephthalate resin film (PBT), and the surface protective layer is an outer packaging material made of a multilayer laminate film in which the melting point is higher than that of the heat welding layer. The vacuum insulation material according to crab. 前記ガスバリヤ層が、第1及び第2のガスバリヤ層からなり、前記第1のガスバリヤ層として、ポリアミド樹脂フィルム(ONY),エチレンビニルアルコール共重合体樹脂フィルム(EVOH),ポリビニルアルコール樹脂フィルム(PVA),ポリエチレンテレフタレート樹脂フィルム(PET)のいずれかの樹脂フィルムを基材として、その片面にアルミニウム(AL),ステンレス(SUS)のいずれかの金属膜を成膜したものを用い、前記第2のガスバリヤ層として、エチレンビニルアルコール共重合体樹脂フィルム
(EVOH),ポリビニルアルコール樹脂フィルム(PVA),ポリエチレンテレフタレート樹脂フィルム(PET)のいずれかの樹脂フィルムを基材に、その片面にアルミニウム(AL),ステンレス(SUS)のいずれかの金属膜を成膜した上にガスバリヤ性の樹脂系コーティング層を設け、前記第1のガスバリヤ層の金属部と前記第2のガスバリヤ層の樹脂系コーティング層が接着層を挟み、互いを向かい合わせて貼り合わせたラミネートフィルムとしたもの、これに組合せる熱溶着層として、無延伸ポリプロピレン樹脂フィルム(CPP),ポリブチレンテレフタレート樹脂フィルム(PBT)のいずれかを用い、且つ、表面保護層が熱溶着層よりも融点が高い樹脂フィルムとした多層ラミネートフィルムからなる外包材を用いた請求項1〜3のいずれかに記載の真空断熱材。
The gas barrier layer includes first and second gas barrier layers, and the first gas barrier layer includes a polyamide resin film (ONY), an ethylene vinyl alcohol copolymer resin film (EVOH), and a polyvinyl alcohol resin film (PVA). , A polyethylene terephthalate resin film (PET) resin film as a base material and a metal film of either aluminum (AL) or stainless steel (SUS) formed on one side thereof, and the second gas barrier. As a layer, an ethylene vinyl alcohol copolymer resin film (EVOH), a polyvinyl alcohol resin film (PVA), or a polyethylene terephthalate resin film (PET) is used as a base material, and aluminum (AL), stainless steel is used on one side. (SUS) A gas barrier resin-based coating layer is provided on one of the metal films, and the metal portion of the first gas barrier layer and the resin-based coating layer of the second gas barrier layer sandwich the adhesive layer, and A laminate film facing each other and used as a heat-welding layer to be combined therewith is an unstretched polypropylene resin film (CPP) or a polybutylene terephthalate resin film (PBT). The vacuum heat insulating material in any one of Claims 1-3 using the outer packaging material which consists of a multilayer laminate film made into the resin film whose melting | fusing point is higher than a heat welding layer.
前記第1のガスバリヤ層と前記第2のガスバリヤ層との間を接着する接着剤として、熱硬化性樹脂、または前記熱溶着層よりも高い融点を有する接着剤を用いた請求項1〜5のいずれかに記載の真空断熱材。   The adhesive according to claim 1, wherein a thermosetting resin or an adhesive having a melting point higher than that of the heat welding layer is used as an adhesive for adhering between the first gas barrier layer and the second gas barrier layer. The vacuum heat insulating material in any one. 前記疎水性吸着剤がSiO2/Al23 比が20以上で、且つ不燃性であるハイシリカゼオライトとである請求項1〜6のいずれかに記載の真空断熱材。 The hydrophobic adsorbent In SiO 2 / Al 2 O 3 ratio of 20 or more, and the vacuum heat insulating material according to claim 1 which is a high-silica zeolite is non-flammable. 少なくとも貯湯タンクを備えたヒートポンプ式等の給湯機器において、請求項1〜7のいずれかに記載の真空断熱材を、前記貯湯タンクの外周に沿うように円弧状に曲げて配設し、前記円弧端部の断熱が2重に配置されたことを特徴とする給湯機器。   In a hot water supply apparatus such as a heat pump type provided with at least a hot water storage tank, the vacuum heat insulating material according to any one of claims 1 to 7 is arranged in an arc shape along the outer periphery of the hot water storage tank. A hot water supply apparatus characterized in that the heat insulation at the end is doubled. 少なくとも湯沸し機能と保温機能を持ち、外郭容器と貯水用容器及びフタ部で構成された電気式湯沸し機器において、請求項1〜7のいずれかに記載の真空断熱材を、前記貯水用容器の外周に沿うように曲げて配設し、前記真空断熱材の曲げ方向の端部が2重に配置されたことを特徴とする電気式湯沸し機器。
In an electric water heater having at least a water heating function and a heat retaining function, and comprising an outer container, a water storage container, and a lid part, the vacuum heat insulating material according to any one of claims 1 to 7, the outer periphery of the water storage container The electric water heater is arranged so as to be bent along the end of the vacuum heat insulating material in the bending direction.
JP2006092748A 2006-03-30 2006-03-30 Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation Expired - Fee Related JP4671897B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006092748A JP4671897B2 (en) 2006-03-30 2006-03-30 Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation
CN200710078801XA CN101046271B (en) 2006-03-30 2007-02-15 Vacuum insulating material, hot water supplying device using the same and electric drive type hot water device
KR1020070016488A KR100950834B1 (en) 2006-03-30 2007-02-16 Vacuum heat insulating material, hot water supply apparatus using vacuum heat insulating material, and electric water heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092748A JP4671897B2 (en) 2006-03-30 2006-03-30 Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation

Publications (2)

Publication Number Publication Date
JP2007263335A true JP2007263335A (en) 2007-10-11
JP4671897B2 JP4671897B2 (en) 2011-04-20

Family

ID=38636517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092748A Expired - Fee Related JP4671897B2 (en) 2006-03-30 2006-03-30 Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation

Country Status (3)

Country Link
JP (1) JP4671897B2 (en)
KR (1) KR100950834B1 (en)
CN (1) CN101046271B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293708A (en) * 2008-06-05 2009-12-17 Hitachi Appliances Inc Vacuum heat insulating material, apparatus having the same and method of manufacturing vacuum heat insulating material
JP2010053977A (en) * 2008-08-28 2010-03-11 Hitachi Appliances Inc Vacuum heat insulation material
JP2010076799A (en) * 2008-09-25 2010-04-08 Geneq Corp Heat insulating method for steel plate container and highly-functional heat insulating sheet suitable for the method
JP2010117097A (en) * 2008-11-14 2010-05-27 Hitachi Appliances Inc Water heater
JP4653249B1 (en) * 2010-05-17 2011-03-16 久雄 泉 Eco water heater with hot water
JP2011143692A (en) * 2010-01-18 2011-07-28 Dainippon Printing Co Ltd Laminate for vacuum heat insulating material and vacuum heat insulating material
JP2012077864A (en) * 2010-10-04 2012-04-19 Mitsubishi Electric Corp Vacuum heat insulation material and heat insulation box using the same
JP2013134028A (en) * 2011-12-27 2013-07-08 Noritz Corp Hot water storage tank device of hot water supply system
KR101346444B1 (en) 2008-07-31 2014-01-02 히타치 어플라이언스 가부시키가이샤 Heat pump hot-water supply device
JP2014137136A (en) * 2013-01-18 2014-07-28 Dainippon Printing Co Ltd Sheath for vacuum heat insulation material, vacuum heat insulation material and equipment with vacuum heat insulation material
JP2014202467A (en) * 2013-04-10 2014-10-27 三菱電機株式会社 Storage water heater
JP2014228114A (en) * 2013-05-24 2014-12-08 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material
JP2015004368A (en) * 2013-06-19 2015-01-08 大倉工業株式会社 Manufacturing method of outer packing material for vacuum heat insulation material, manufacturing method of vacuum heat insulation material, and outer packing material for vacuum heat insulation material and vacuum heat insulation material
JP2016097976A (en) * 2014-11-18 2016-05-30 スタープラスチック工業株式会社 Package film and package
JP2016107226A (en) * 2014-12-09 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. Adsorbent and vacuum heat insulation material using the same
JP2016141443A (en) * 2015-02-02 2016-08-08 スタープラスチック工業株式会社 Film for package and method for producing the same, and package
CN106440370A (en) * 2016-09-30 2017-02-22 芜湖美的厨卫电器制造有限公司 Heat insulation sectional material and water heater
JP2018115010A (en) * 2017-01-18 2018-07-26 共同印刷株式会社 Film for moisture absorption and gas adsorption and packaging laminate
WO2019167666A1 (en) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 Vacuum heat insulating material, heat insulating structure using vacuum heat insulating material, and home electric appliance, house wall, and transport device using vacuum heat insulating material and heat insulating structure

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11786036B2 (en) 2008-06-27 2023-10-17 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly
US8286561B2 (en) 2008-06-27 2012-10-16 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US9103482B2 (en) * 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
MX343584B (en) 2009-11-04 2016-11-10 Ssw Holding Co Inc Cooking appliance surfaces having spill containment pattern and methods of making the same.
KR101260557B1 (en) * 2010-01-05 2013-05-06 엘지전자 주식회사 Vacuum insulation pannel and method for fabricating the same
KR101286342B1 (en) * 2010-08-17 2013-07-15 (주)엘지하우시스 Core material for vacuum insulation panel, method for fabricating the same and vacuum insulation panel using the same
DE102011085428A1 (en) 2011-10-28 2013-05-02 Schott Ag shelf
KR101447767B1 (en) * 2011-12-02 2014-10-07 (주)엘지하우시스 Vacuum insulation panel for high operating temperature
CN102494404B (en) * 2011-12-05 2013-12-11 重庆三温暖电气有限公司 Condensing efficient gas water heater
CN104108186A (en) * 2013-04-19 2014-10-22 (株)商道产业 Polyethylene pad and method for manufacturing same
KR101800047B1 (en) 2013-05-03 2017-12-20 (주)엘지하우시스 Envelope for vacuum insulation panel and high performance vacuum insulation panel applied the same
KR20150106306A (en) * 2014-03-11 2015-09-21 삼성전자주식회사 Vacuum heat insulating material and refrigerator including the same
KR101773230B1 (en) 2014-04-23 2017-09-13 (주)엘지하우시스 Envelope for vacuum insulation panel and vacuum insulation panel inculding the same
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
US10001320B2 (en) * 2014-12-26 2018-06-19 Samsung Electronics Co., Ltd. Laminated structure and vacuum insulating material including the same
US10029628B2 (en) 2015-12-09 2018-07-24 Hyundai Motor Company Insulation fiber composite with excellent formability and surface property, and manufacturing method for the same

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241064U (en) * 1975-09-17 1977-03-23
JPS62102093U (en) * 1985-12-17 1987-06-29
JPH04225775A (en) * 1990-12-27 1992-08-14 Sharp Corp Vacuum heat insulating panel
JPH07260259A (en) * 1994-03-25 1995-10-13 Kyushu Henatsuki Kk Heat storage type heating device
JPH07280169A (en) * 1994-04-01 1995-10-27 Kubota Corp Heat insulating material and manufacture of vacuum heat insulating product
JPH07301458A (en) * 1994-04-30 1995-11-14 Yupatsuku:Kk Instantaneous water heating storage type electric water heater
JPH09317986A (en) * 1996-05-24 1997-12-12 Toppan Printing Co Ltd Vacuum heat insulating material
JPH11304083A (en) * 1998-04-23 1999-11-05 Mitsubishi Electric Corp Vacuum insulating panel and its manufacture
JPH11309069A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Electric water heater
JP2004025132A (en) * 2002-06-28 2004-01-29 Seibu Giken Co Ltd Adsorption rotor
JP2004218746A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2005114014A (en) * 2003-10-07 2005-04-28 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and instrument using the same
JP2005132004A (en) * 2003-10-31 2005-05-26 Toppan Printing Co Ltd Barrier exterior material for thermal insulation panel and thermal insulation panel
JP2005193116A (en) * 2004-01-05 2005-07-21 National Institute Of Advanced Industrial & Technology Gas adsorbent
JP2005307995A (en) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd Vacuum heat insulation material, method for manufacturing same and apparatus using same
JP2006043604A (en) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd Gas adsorption material and heat-insulation body
JP2006064034A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, refrigerator, water heater and printer using vacuum heat insulating material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0136206Y1 (en) * 1995-02-24 1999-03-20 김광호 Vacuum adiabator
KR19980078092A (en) * 1997-04-25 1998-11-16 윤종용 Film composite for vacuum insulation
CN1157284C (en) * 1999-06-30 2004-07-14 松下电器产业株式会社 Vacuum thermal insulating material, insulated equipment and electric water heater using said material
TW470837B (en) * 2000-04-21 2002-01-01 Matsushita Refrigeration Vacuum heat insulator
KR20050029347A (en) * 2003-09-22 2005-03-28 (주)매직아트 Wall tapestry cool clean water of thermoelectric module
KR20060002453A (en) * 2004-07-02 2006-01-09 주식회사 디에프텍 Handheld rapid water-heater

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241064U (en) * 1975-09-17 1977-03-23
JPS62102093U (en) * 1985-12-17 1987-06-29
JPH04225775A (en) * 1990-12-27 1992-08-14 Sharp Corp Vacuum heat insulating panel
JPH07260259A (en) * 1994-03-25 1995-10-13 Kyushu Henatsuki Kk Heat storage type heating device
JPH07280169A (en) * 1994-04-01 1995-10-27 Kubota Corp Heat insulating material and manufacture of vacuum heat insulating product
JPH07301458A (en) * 1994-04-30 1995-11-14 Yupatsuku:Kk Instantaneous water heating storage type electric water heater
JPH09317986A (en) * 1996-05-24 1997-12-12 Toppan Printing Co Ltd Vacuum heat insulating material
JPH11304083A (en) * 1998-04-23 1999-11-05 Mitsubishi Electric Corp Vacuum insulating panel and its manufacture
JPH11309069A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Electric water heater
JP2004025132A (en) * 2002-06-28 2004-01-29 Seibu Giken Co Ltd Adsorption rotor
JP2004218746A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2005114014A (en) * 2003-10-07 2005-04-28 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and instrument using the same
JP2005132004A (en) * 2003-10-31 2005-05-26 Toppan Printing Co Ltd Barrier exterior material for thermal insulation panel and thermal insulation panel
JP2005193116A (en) * 2004-01-05 2005-07-21 National Institute Of Advanced Industrial & Technology Gas adsorbent
JP2005307995A (en) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd Vacuum heat insulation material, method for manufacturing same and apparatus using same
JP2006043604A (en) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd Gas adsorption material and heat-insulation body
JP2006064034A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, refrigerator, water heater and printer using vacuum heat insulating material

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293708A (en) * 2008-06-05 2009-12-17 Hitachi Appliances Inc Vacuum heat insulating material, apparatus having the same and method of manufacturing vacuum heat insulating material
KR101346444B1 (en) 2008-07-31 2014-01-02 히타치 어플라이언스 가부시키가이샤 Heat pump hot-water supply device
JP2010053977A (en) * 2008-08-28 2010-03-11 Hitachi Appliances Inc Vacuum heat insulation material
JP2010076799A (en) * 2008-09-25 2010-04-08 Geneq Corp Heat insulating method for steel plate container and highly-functional heat insulating sheet suitable for the method
JP2010117097A (en) * 2008-11-14 2010-05-27 Hitachi Appliances Inc Water heater
JP2011143692A (en) * 2010-01-18 2011-07-28 Dainippon Printing Co Ltd Laminate for vacuum heat insulating material and vacuum heat insulating material
JP4653249B1 (en) * 2010-05-17 2011-03-16 久雄 泉 Eco water heater with hot water
JP2011242022A (en) * 2010-05-17 2011-12-01 Hisao Izumi Ecological water heater with clean hot water
JP2012077864A (en) * 2010-10-04 2012-04-19 Mitsubishi Electric Corp Vacuum heat insulation material and heat insulation box using the same
JP2013134028A (en) * 2011-12-27 2013-07-08 Noritz Corp Hot water storage tank device of hot water supply system
JP2014137136A (en) * 2013-01-18 2014-07-28 Dainippon Printing Co Ltd Sheath for vacuum heat insulation material, vacuum heat insulation material and equipment with vacuum heat insulation material
JP2014202467A (en) * 2013-04-10 2014-10-27 三菱電機株式会社 Storage water heater
JP2014228114A (en) * 2013-05-24 2014-12-08 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material
JP2015004368A (en) * 2013-06-19 2015-01-08 大倉工業株式会社 Manufacturing method of outer packing material for vacuum heat insulation material, manufacturing method of vacuum heat insulation material, and outer packing material for vacuum heat insulation material and vacuum heat insulation material
JP2016097976A (en) * 2014-11-18 2016-05-30 スタープラスチック工業株式会社 Package film and package
JP2016107226A (en) * 2014-12-09 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. Adsorbent and vacuum heat insulation material using the same
JP2016141443A (en) * 2015-02-02 2016-08-08 スタープラスチック工業株式会社 Film for package and method for producing the same, and package
CN106440370A (en) * 2016-09-30 2017-02-22 芜湖美的厨卫电器制造有限公司 Heat insulation sectional material and water heater
JP2018115010A (en) * 2017-01-18 2018-07-26 共同印刷株式会社 Film for moisture absorption and gas adsorption and packaging laminate
WO2019167666A1 (en) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 Vacuum heat insulating material, heat insulating structure using vacuum heat insulating material, and home electric appliance, house wall, and transport device using vacuum heat insulating material and heat insulating structure
JPWO2019167666A1 (en) * 2018-02-27 2020-12-10 パナソニックIpマネジメント株式会社 Vacuum heat insulating materials, heat insulating structures using them, and home appliances, residential walls and transportation equipment using them.

Also Published As

Publication number Publication date
JP4671897B2 (en) 2011-04-20
CN101046271B (en) 2010-09-08
KR20070098486A (en) 2007-10-05
CN101046271A (en) 2007-10-03
KR100950834B1 (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP4671897B2 (en) Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation
JP5946150B2 (en) High temperature vacuum insulation
JP5689387B2 (en) Refrigerator and manufacturing method thereof
JP2008249003A (en) Vacuum insulation panel and appliance provided with it
JP2011153721A (en) Refrigerator
JP2006084077A (en) Vacuum heat insulating material and refrigerator using the same
JP6132826B2 (en) Vacuum insulation and insulation box
JP2015169372A (en) Heat insulation container, and method of manufacturing heat insulation container
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP6413309B2 (en) Vacuum heat insulating material and outer packaging material for vacuum heat insulating material
JP3856008B2 (en) Manufacturing method of vacuum insulation
JP6286900B2 (en) Insulation member and cold insulation box
JP2009024813A (en) Heat insulation material and heat insulation structure where heat insulation object is covered with heat insulation material
JP2009052680A (en) Vacuum heat insulation material
JP2012083068A (en) Refrigerator
JP2009092224A (en) Vacuum heat insulating material and building adopting vacuum heat insulation material
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP2004099060A (en) Method of manufacturing vacuum heat insulator packaging bag and the vacuum heat insulator using the bag
JP2017133568A (en) Vacuum heat insulation material and equipment with vacuum heat insulation material
WO2014122939A1 (en) Insulation panel
JP2002317897A (en) Vacuum heat insulation material, heat insulated container, refrigerator, and rice cooker
JP6212975B2 (en) Vacuum insulation material
WO2019171566A1 (en) Vacuum heat-insulation material and heat-insulating box
JP2006125527A (en) Vacuum thermal insulation panel
JP6098306B2 (en) Vacuum insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees