JP6098306B2 - Vacuum insulation material - Google Patents

Vacuum insulation material Download PDF

Info

Publication number
JP6098306B2
JP6098306B2 JP2013077604A JP2013077604A JP6098306B2 JP 6098306 B2 JP6098306 B2 JP 6098306B2 JP 2013077604 A JP2013077604 A JP 2013077604A JP 2013077604 A JP2013077604 A JP 2013077604A JP 6098306 B2 JP6098306 B2 JP 6098306B2
Authority
JP
Japan
Prior art keywords
film
vacuum
heat insulating
insulating material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013077604A
Other languages
Japanese (ja)
Other versions
JP2014200964A (en
Inventor
朋子 佐藤
朋子 佐藤
小河原 賢次
賢次 小河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013077604A priority Critical patent/JP6098306B2/en
Publication of JP2014200964A publication Critical patent/JP2014200964A/en
Application granted granted Critical
Publication of JP6098306B2 publication Critical patent/JP6098306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、真空断熱材の外装材に関するものである。   The present invention relates to an exterior material for a vacuum heat insulating material.

真空断熱材は、芯材を外装材で包み、芯材の周囲を真空状態にし、気体による熱伝導率を限りなくゼロに近づけることにより、断熱性能を高めた断熱材である。   The vacuum heat insulating material is a heat insulating material whose heat insulating performance is enhanced by wrapping the core material with an exterior material, making the periphery of the core material in a vacuum state, and bringing the thermal conductivity of the gas as close to zero as possible.

外装材は内部の真空度を保つため、ガスバリヤ性が要求される。しかしながら、以上のように構成された従来の真空断熱材は、ガスバリヤ性フィルムとしてアルミ箔を使用しているため、真空断熱材の外装材を伝わる熱伝導、いわゆるヒートブリッジ現象によって真空断熱材の断熱効果が小さくなる。   The exterior material is required to have a gas barrier property in order to maintain the degree of vacuum inside. However, since the conventional vacuum heat insulating material configured as described above uses aluminum foil as a gas barrier film, the heat insulation of the vacuum heat insulating material by the heat conduction that travels through the vacuum heat insulating material, the so-called heat bridge phenomenon. The effect is reduced.

そこで、ヒートブリッジ現象を解決するために、ガスバリヤ性フィルムを金属箔ではなく、蒸着膜を有するガスバリヤ性フィルムに変更した外装材を用いた真空断熱材がある(例えば、特許文献1)。   Therefore, in order to solve the heat bridge phenomenon, there is a vacuum heat insulating material using an exterior material in which a gas barrier film is changed to a gas barrier film having a vapor deposition film instead of a metal foil (for example, Patent Document 1).

この真空断熱材では、外装材(外被材)のガスバリヤ性を高めるために、ガスバリヤ性フィルムを複数積層することが望ましく、さらに、蒸着面における蒸着物の隙間や欠陥を補完するために、ガスバリヤ性フィルムの蒸着面が対向するように積層することが望ましいとされている。   In this vacuum heat insulating material, it is desirable to laminate a plurality of gas barrier films in order to improve the gas barrier property of the exterior material (cover material), and in order to complement gaps and defects in the deposited material on the vapor deposition surface, It is considered desirable to laminate so that the vapor deposition surfaces of the conductive film face each other.

しかしながら、この真空断熱材の外装材の端部のシール部分と、その近傍の真空にしたときに芯材がなくて外装材どうしが密着した部分とからなるヒレ部では、芯材が入っている部分に比べて断熱性能が低くなるので、断熱性能を保つためにヒレ部は折り曲げられている。この折り曲げの際にピンホールが発生し、真空断熱材としての機能が損なわれるという問題がある。   However, in the fin portion composed of the seal portion of the end portion of the exterior material of the vacuum heat insulating material and the portion where the core material does not exist and the exterior material is in close contact when the vacuum is applied in the vicinity thereof, the core material is contained. Since the heat insulation performance is lower than that of the portion, the fin portion is bent to maintain the heat insulation performance. There is a problem that pinholes are generated during the bending, and the function as a vacuum heat insulating material is impaired.

公知文献を以下に示す。   Known documents are shown below.

特開2010−138956号公報JP 2010-138956 A

本発明は上記した事情に鑑みてなされたもので、真空断熱材が長期間に渡って使用されも、高い真空状態を保持することのできるように、耐屈曲性の高い真空断熱材の外装材を提供することを課題としている。   The present invention has been made in view of the above-described circumstances, and the vacuum insulation material is highly flexible so that it can maintain a high vacuum state even if the vacuum insulation material is used for a long period of time. It is an issue to provide.

本発明の請求項1に係る発明は、外側から順に、基材層、バリヤ層、シーラント層からなる真空断熱材の外装材であって、
前記基材層に、延伸ポリプロピレンフィルムと延伸ナイロンフィルムを積層して用い、かつ、前記延伸ポリプロピレンフィルムを外表面側に配置し、前記バリヤ層に、金属または金属酸化物の蒸着フィルムを用いたことを特徴とする真空断熱材の外装材である。
The invention according to claim 1 of the present invention is, in order from the outside, a vacuum heat insulating material exterior material comprising a base material layer, a barrier layer, and a sealant layer,
A stretched polypropylene film and a stretched nylon film were laminated on the base material layer, the stretched polypropylene film was disposed on the outer surface side, and a vapor deposition film of metal or metal oxide was used for the barrier layer. It is the exterior material of the vacuum heat insulating material characterized by these.

本発明の真空断熱材の外装材は、以上のような構成であって、基材層に、延伸ポリプロピレンフィルムと延伸ナイロンフィルムを用いており、しかも、前記延伸ポリプロピレンフィルムを外表面側に配置しているので耐屈曲性が高く、長期間に渡って使用されても、
真空断熱材を高い真空状態に保持することができる。
The vacuum insulation material of the present invention has the above-described configuration, and uses a stretched polypropylene film and a stretched nylon film for the base material layer, and the stretched polypropylene film is disposed on the outer surface side. Because it is highly flexible, even if it is used for a long time,
The vacuum heat insulating material can be maintained in a high vacuum state.

本発明の請求項2に係る発明は、前記バリヤ層に、アルミ蒸着ポリエチレンテレフタレートフィルムとアルミ蒸着エチレン−ビニルアルコール共重合体フィルムを積層して用いたことを特徴とする請求項1に記載の真空断熱材の外装材である。   The invention according to claim 2 of the present invention is characterized in that an aluminum-deposited polyethylene terephthalate film and an aluminum-deposited ethylene-vinyl alcohol copolymer film are laminated on the barrier layer. It is an exterior material for a heat insulating material.

本発明の真空断熱材の外装材は、バリヤ層に、アルミ蒸着ポリエチレンテレフタレートフィルムとアルミ蒸着エチレン−ビニルアルコール共重合体フィルムを用いているので、バリヤ性が極めて高く、真空断熱材の真空状態を高く保つことが出来、また、金属箔を使用しないのでピンホールも発生しにくい。また、ヒートブリッジ現象が起きることもない。   The exterior packaging material of the vacuum heat insulating material of the present invention uses an aluminum vapor-deposited polyethylene terephthalate film and an aluminum vapor-deposited ethylene-vinyl alcohol copolymer film for the barrier layer. Therefore, the barrier property is extremely high, and the vacuum state of the vacuum heat insulating material is reduced. It can be kept high and pinholes are less likely to occur because no metal foil is used. Moreover, the heat bridge phenomenon does not occur.

本発明の請求項3に係る発明は、前記シーラント層に、密度が0.935g/cm以下の直鎖状低密度ポリエチレンフィルムを用いたことを特徴とする請求項1または2に記載の真空断熱材の外装材である。 The invention according to claim 3 of the present invention is the vacuum according to claim 1 or 2, wherein a linear low density polyethylene film having a density of 0.935 g / cm 3 or less is used for the sealant layer. It is an exterior material for a heat insulating material.

本発明の真空断熱材の外装材は、シーラント層に、密度が0.935g/cm以下の直鎖状低密度ポリエチレンフィルムを用いているので、シーラント層も耐屈曲性があり、真空断熱材の外装材としての耐屈曲性も向上する。 Since the vacuum insulating material of the present invention uses a linear low-density polyethylene film having a density of 0.935 g / cm 3 or less for the sealant layer, the sealant layer is also flexible, and the vacuum heat insulating material. The bending resistance as an exterior material is also improved.

本発明の真空断熱材の外装材は、耐屈曲性に優れているので、当該真空断熱材の外装材を用いた真空断熱材は長期間に渡って使用しても高い真空状態を保持することができ、断熱性能を維持することが可能となる。   Since the vacuum insulation material of the present invention is excellent in bending resistance, the vacuum insulation material using the vacuum insulation material can maintain a high vacuum state even when used for a long period of time. And heat insulation performance can be maintained.

本発明の真空断熱材の外装材の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の一例を用いた真空断熱材を模式的に示した断面図である。It is sectional drawing which showed typically the vacuum heat insulating material using an example of the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の一例を用いた真空断熱材の折り曲げ部分を説明する断面図である。It is sectional drawing explaining the bending part of the vacuum heat insulating material which used an example of the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の一例を用いた真空断熱材を模式的に示した平面図である。It is the top view which showed typically the vacuum heat insulating material using an example of the exterior material of the vacuum heat insulating material of this invention.

以下、本発明を実施するための形態につき説明する。
図1は、本発明の真空断熱材の外装材の一例を模式的に示した断面図である。
Hereinafter, embodiments for carrying out the present invention will be described.
FIG. 1 is a cross-sectional view schematically showing an example of the vacuum insulation material of the present invention.

本例の真空断熱材の外装材1は、外側から順に、基材層10、バリヤ層20、シーラント層30とからなっている。基材層10は、外表面の延伸ポリプロピレンフィルム11とその内側の延伸ナイロンフィルム12とからなっている。このような2層の基材層10にすることによって、高い耐屈曲性が得られえる。延伸ポリプロピレンフィルム11は耐屈曲性が高いが、外表面を延伸ポリプロピレンフィルム11とすることによって、耐摩耗性も向上される。延伸ナイロンフィルム12を用いることで強靭性が高まり、耐屈曲性が向上する。   The vacuum insulation material 1 of this example is composed of a base material layer 10, a barrier layer 20, and a sealant layer 30 in this order from the outside. The base material layer 10 is composed of a stretched polypropylene film 11 on the outer surface and a stretched nylon film 12 on the inside. By using such a two-layer base material layer 10, high bending resistance can be obtained. Although the stretched polypropylene film 11 has high bending resistance, the abrasion resistance is also improved by forming the stretched polypropylene film 11 on the outer surface. By using the stretched nylon film 12, the toughness is increased and the bending resistance is improved.

バリヤ層20には、金属箔ではなく、金属蒸着フィルムや無機酸化物蒸着フィルムを使用することができる。これにより、ヒートブリッジ現象が解決できる。また、ピンホールの発生を抑えることができる。蒸着フィルムに用いるフィルムの厚みは9〜25μmが好
ましい。特に、バリヤ層20に2枚のアルミ蒸着フィルムを使用して、外側から、アルミ蒸着ポリエチレンテレフタレートフィルム21とアルミ蒸着エチレン−ビニルアルコール共重合体フィルム22となっている2層構造のバリヤ層20にすることによって、極めて、高いバリヤ性を得ることが出来る。
For the barrier layer 20, not a metal foil but a metal vapor-deposited film or an inorganic oxide vapor-deposited film can be used. Thereby, the heat bridge phenomenon can be solved. Moreover, the generation of pinholes can be suppressed. As for the thickness of the film used for a vapor deposition film, 9-25 micrometers is preferable. In particular, using two aluminum vapor deposition films for the barrier layer 20, the barrier layer 20 having a two-layer structure consisting of an aluminum vapor deposition polyethylene terephthalate film 21 and an aluminum vapor deposition ethylene-vinyl alcohol copolymer film 22 is formed from the outside. By doing so, an extremely high barrier property can be obtained.

シーラント層30には、各種のポリエチレン系の樹脂やポリプロピレンなどが使用することができる。特に、密度が0.935g/cm以下の直鎖状低密度ポリエチレンフィルムを用いることが好ましい。厚みは30〜80μmが好ましい。密度が0.935g/cmより高く、例えば、密度が0.94g/cmと高ければ、耐屈曲性が悪くなり、好ましくない。 For the sealant layer 30, various polyethylene resins, polypropylene, and the like can be used. In particular, it is preferable to use a linear low density polyethylene film having a density of 0.935 g / cm 3 or less. The thickness is preferably 30 to 80 μm. If the density is higher than 0.935 g / cm 3 , for example, if the density is as high as 0.94 g / cm 3 , the bending resistance is deteriorated, which is not preferable.

本例の真空断熱材の外装材1を構成する各層の積層方法は、2液硬化型ウレタン系接着剤を用いたドライラミネーションによる方法と、押出ラミネーションによる方法が採用できる。   As a method of laminating each layer constituting the vacuum heat insulating material exterior material 1 of this example, a method by dry lamination using a two-component curable urethane adhesive and a method by extrusion lamination can be adopted.

以下、本例の真空断熱材の外装材1を用いて、真空断熱材2を作成する方法について説明する。   Hereinafter, a method of creating the vacuum heat insulating material 2 using the vacuum heat insulating material 1 of this example will be described.

先ず、2枚の方形の真空断熱材の外装材1を、シーラント層30面を対向させ、袋状に3辺をヒートシールし、中に芯材3を挿入し、真空引きして開口部をヒートシールし、周縁に熱融着部4を設ける。   First, the two rectangular vacuum insulation materials 1 are sealed with the sealant layer 30 faced, three sides are heat-sealed in a bag shape, the core material 3 is inserted therein, and the vacuum is drawn to open the opening. It heat-seals and the heat sealing | fusion part 4 is provided in a periphery.

芯材3としては、ガラス繊維などの無機系繊維やポリスチレン繊維などの有機系繊維を用いることが出来る。また、粉末を固めてボード化したものや、発泡樹脂を用いることも出来る。   As the core material 3, an inorganic fiber such as glass fiber or an organic fiber such as polystyrene fiber can be used. Moreover, what solidified powder and made into a board and a foamed resin can also be used.

芯材3を挿入して、真空引きして、熱融着部4を設けると、図2の断面図のように、熱融着部4と芯材3が離れていて芯材3がなく、表裏の外装材1が直接接触している密着部5ができる。この密着部5と熱融着部4では、断熱性が期待できない。   When the core material 3 is inserted and evacuated to provide the heat fusion part 4, the heat fusion part 4 and the core material 3 are separated as shown in the cross-sectional view of FIG. A close contact portion 5 in which the front and back exterior materials 1 are in direct contact is formed. In the close contact part 5 and the heat fusion part 4, heat insulation cannot be expected.

このため、図3の断面図のように、密着部5と熱融着部4を、外気側に折り曲げて、保冷や保温側にこないようにする。この密着部5と熱融着部4を、折り曲げた部分は、図4のように、難燃性テープ6で止める。このようにして、真空断熱材が出来上がる。   Therefore, as shown in the cross-sectional view of FIG. 3, the close contact portion 5 and the heat fusion portion 4 are bent to the outside air side so as not to come to the cold insulation or heat insulation side. A portion where the close contact portion 5 and the heat fusion portion 4 are bent is stopped with a flame retardant tape 6 as shown in FIG. Thus, a vacuum heat insulating material is completed.

このように折り曲げた部分を作っても、本例の真空断熱材の外装材1を用いているので、耐屈曲性が高く、長期間にわたって使用されても、真空断熱材を高い真空状態に保持することができる。   Even if the bent portion is made in this way, the vacuum insulation material 1 of the vacuum insulation material of this example is used, so the bending insulation is high and the vacuum insulation material is kept in a high vacuum state even when used for a long period of time. can do.

以下に、本発明の具体的実施例について説明する。   Specific examples of the present invention will be described below.

<実施例1>
基材層10として厚さ20μmの延伸ポリプロピレンフィルム11と厚さ15μmの延伸ナイロンフィルム12、バリヤ層20として厚さ12μmのアルミ蒸着ポリエチレンテレフタレートフィルム21と厚さ15μmのアルミ蒸着エチレン−ビニルアルコール共重合体フィルム22をこの順に、2液硬化型ウレタン系接着剤を用いて、ドライラミネーション法により、積層、接着した。
<Example 1>
Stretched polypropylene film 11 having a thickness of 20 μm and stretched nylon film 12 having a thickness of 15 μm as the base material layer 10, an aluminum-deposited polyethylene terephthalate film 21 having a thickness of 12 μm and an aluminum-deposited ethylene-vinyl alcohol copolymer having a thickness of 15 μm as the barrier layer 20. The united film 22 was laminated and bonded in this order by a dry lamination method using a two-component curable urethane adhesive.

次いで、シーラント層30である厚さ50μm、密度0.923g/cmの直鎖状低密度ポリエチレンフィルムと、上記積層体のアルミ蒸着エチレン−ビニルアルコール共重
合体フィルム面とを、2液硬化型ウレタン系接着剤を用いて、ドライラミネーション法により、貼り合わせて、基材層10、バリヤ層20、シーラント層30からなる真空断熱材の外装材1を作成し、実施例1の真空断熱材の外装材を得た。
Subsequently, the sealant layer 30 having a thickness of 50 μm and a linear low density polyethylene film having a density of 0.923 g / cm 3 and an aluminum-deposited ethylene-vinyl alcohol copolymer film surface of the laminate are two-component curable. Using a urethane-based adhesive, bonding is performed by a dry lamination method to produce a vacuum heat insulating material exterior material 1 composed of a base material layer 10, a barrier layer 20, and a sealant layer 30, and the vacuum heat insulating material of Example 1 An exterior material was obtained.

以下に、本発明の比較例について説明する。   Below, the comparative example of this invention is demonstrated.

<比較例1>
基材層に延伸ポリプロピレンフィルム11を用いず、延伸ナイロンフィルム12のみを用いた以外は、実施例1と同様にして、比較例1の真空断熱材の外装材を製造した。
<Comparative Example 1>
A vacuum heat insulating outer packaging material of Comparative Example 1 was produced in the same manner as in Example 1 except that the stretched polypropylene film 11 was not used for the base material layer and only the stretched nylon film 12 was used.

<比較例2>
基材層に延伸ナイロンフィルム12を用いず、延伸ポリプロピレンフィルム11のみを用いた以外は、実施例1と同様にして、比較例2の真空断熱材の外装材を製造した。
<Comparative example 2>
A vacuum heat insulating material exterior material of Comparative Example 2 was produced in the same manner as in Example 1 except that the stretched nylon film 12 was not used for the base material layer and only the stretched polypropylene film 11 was used.

<比較例3>
バリヤ層20として、アルミ蒸着ポリエチレンテレフタレートフィルム21とアルミ蒸着エチレン−ビニルアルコール共重合体フィルム22の代わりに、厚さ7μmのアルミニウム箔を用いた以外は、実施例1と同様にして、比較例3の真空断熱材の外装材を製造した。
<Comparative Example 3>
Comparative Example 3 was performed in the same manner as in Example 1 except that an aluminum foil having a thickness of 7 μm was used instead of the aluminum-deposited polyethylene terephthalate film 21 and the aluminum-deposited ethylene-vinyl alcohol copolymer film 22 as the barrier layer 20. The vacuum insulation material was manufactured.

<比較例4>
基材層に延伸ポリプロピレンフィルム11を用いず、延伸ナイロンフィルム12のみを用い、バリヤ層20として、アルミ蒸着エチレン−ビニルアルコール共重合体フィルム22の代わりに、厚さ7μmのアルミニウム箔を用いて、厚さ12μmのアルミ蒸着ポリエチレンテレフタレートフィルム21とアルミ蒸着ポリエチレンテレフタレートフィルム21の2層のバリヤ層とした以外は、実施例1と同様にして、比較例4の真空断熱材の外装材を製造した。
<Comparative example 4>
Instead of using the stretched polypropylene film 11 as the base material layer, only the stretched nylon film 12 is used, and as the barrier layer 20, instead of the aluminum-deposited ethylene-vinyl alcohol copolymer film 22, a 7 μm thick aluminum foil is used. A packaging material for a vacuum heat insulating material of Comparative Example 4 was produced in the same manner as in Example 1 except that a 12-μm thick aluminum-deposited polyethylene terephthalate film 21 and an aluminum-deposited polyethylene terephthalate film 21 were used as two barrier layers.

<比較例5>
更に、比較例4の真空断熱材の外装材で、密度が0.935g/cm以下の直鎖状低密度ポリエチレンフィルムに代えて、密度が0.940g/cmの直鎖状低密度ポリエチレンフィルムを用いた以外は、比較例4と同様にして、比較例5の真空断熱材の外装材を製造した。
<Comparative Example 5>
Furthermore, in the vacuum insulating material exterior material of Comparative Example 4, instead of the linear low density polyethylene film having a density of 0.935 g / cm 3 or less, the linear low density polyethylene having a density of 0.940 g / cm 3. A vacuum insulating material exterior material of Comparative Example 5 was produced in the same manner as Comparative Example 4 except that the film was used.

<試験方法>
実施例と比較例の真空断熱材の外装材の耐屈曲性の評価として、ゲルボフレックステスターにかけた後のピンホール数を測定し、耐屈曲性の指標として比較評価した。
<Test method>
As an evaluation of the bending resistance of the vacuum insulation materials of the examples and the comparative examples, the number of pinholes after being applied to the gelbo flex tester was measured and compared as an index of bending resistance.

<ピンホール数>
実施例と比較例の真空断熱材の外装材をそれぞれ210mm×297mmにカットし、その297mmの両端を貼り合わせて円筒状に丸め、筒状にした試験片を作成した。
<Number of pinholes>
The outer packaging materials of the vacuum heat insulating materials of the example and the comparative example were each cut into 210 mm × 297 mm, and both ends of the 297 mm were bonded together and rounded into a cylindrical shape to prepare a cylindrical test piece.

この試験片の両端をゲルボフレックステスターの固定ヘッドと駆動ヘッドで保持し、440度のひねりを加えながら固定ヘッドと駆動ヘッドの間隔を7インチから3.5インチに狭めて、さらにひねりを加えた状態を維持したままヘッドの間隔を1インチまで狭め、その後、ヘッドの間隔を3.5インチまで広げて、さらにひねりを戻しながらヘッドの間隔を7インチまで広げるという往復運動を40回/minの速さで、25℃で300回行った。   Hold both ends of this test piece with the fixed head and drive head of the Gelboflex tester, and while adding a 440 degree twist, narrow the distance between the fixed head and the drive head from 7 inches to 3.5 inches, and add a twist. While maintaining the state, the head interval is reduced to 1 inch, then the head interval is increased to 3.5 inches, and the head interval is increased to 7 inches while returning the twist. The test was performed 300 times at 25 ° C.

その後、この試験片に浸透探傷液をつけてチェックし、ピンホール数を確認した。試験
片は10個用いて、その平均のピンホール数を表1にまとめた。
Thereafter, a penetrant flaw detection liquid was applied to the test piece and checked to confirm the number of pinholes. Ten test pieces were used, and the average number of pinholes is summarized in Table 1.

Figure 0006098306
以下に、実施例と比較例との比較結果について説明する。
Figure 0006098306
Below, the comparison result of an Example and a comparative example is demonstrated.

<比較結果>
表1に示すように、本発明にかかる実施例1の真空断熱材の外装材は、ピンホールの発生がほとんどなく、耐屈曲性が良好であった。
<Comparison result>
As shown in Table 1, the vacuum insulation material of Example 1 according to the present invention had almost no pinholes and good bending resistance.

一方、比較例の真空断熱材の外装材は、ピンホールの発生が明らかに認められ、耐屈曲性が劣っていた。又、シーラント層に密度が0.940g/cmの直鎖状低密度ポリエチレンフィルムを用いた実施例5の真空断熱材の外装材は、密度が0.935g/cm以下の直鎖状低密度ポリエチレンフィルムを用いた比較例4の真空断熱材の外装材より、ピンホールが多く、耐屈曲性が大きく劣っていた。 On the other hand, in the vacuum insulation material of the comparative example, the occurrence of pinholes was clearly recognized and the bending resistance was inferior. Moreover, the vacuum insulation material of Example 5 using a linear low-density polyethylene film having a density of 0.940 g / cm 3 for the sealant layer has a linear low density of 0.935 g / cm 3 or less. There were many pinholes and the bending resistance was greatly inferior to the vacuum insulation material of the comparative example 4 using a density polyethylene film.

以上のように、本発明にかかる真空断熱材の外装材は、耐屈曲性に優れ、製造による折れを起因として生じるピンホールを抑制することで、高品質な真空断熱材を提供することができる。   As described above, the vacuum insulating material exterior material according to the present invention is excellent in bending resistance and can provide a high-quality vacuum heat insulating material by suppressing pinholes caused by manufacturing breakage. .

よって、本発明の真空断熱材の外装材を用いた真空断熱材は、冷凍冷蔵庫、冷凍機器、または給湯器や自動販売機など、保冷や保温を必要とするあらゆる機器や設備に適用することが可能である。そして、本発明の真空断熱材の外装材を用いることにより、大幅な省エネルギー化や省スペース化に貢献できる。   Therefore, the vacuum heat insulating material using the vacuum heat insulating material of the present invention can be applied to any device or facility that needs to be kept cold or warm, such as a refrigerator, a freezer, a water heater, or a vending machine. Is possible. And it can contribute to a significant energy-saving and space-saving by using the exterior material of the vacuum heat insulating material of this invention.

1・・・・外装材
2・・・・真空断熱材
3・・・・芯材
4・・・・熱融着部
5・・・・密着部
6・・・・難燃性テープ
10・・・基材層
20・・・バリヤ層
30・・・シーラント層
11・・・延伸ポリプロピレンフィルム
12・・・延伸ナイロンフィルム
21・・・アルミ蒸着ポリエチレンテレフタレートフィルム
22・・・アルミ蒸着エチレン−ビニルアルコール共重合体フィルム
DESCRIPTION OF SYMBOLS 1 ... exterior material 2 ... vacuum heat insulating material 3 ... core material 4 ... heat fusion part 5 ... adhesion part 6 ... flame-retardant tape 10 ... -Base material layer 20 ... Barrier layer 30 ... Sealant layer 11 ... Stretched polypropylene film 12 ... Stretched nylon film 21 ... Aluminum vapor-deposited polyethylene terephthalate film 22 ... Aluminum vapor-deposited ethylene-vinyl alcohol Polymer film

Claims (3)

外側から順に、基材層、バリヤ層、シーラント層からなる真空断熱材の外装材であって、
前記基材層に、延伸ポリプロピレンフィルムと延伸ナイロンフィルムを積層して用い、かつ、前記延伸ポリプロピレンフィルムを外表面側に配置し、前記バリヤ層に、金属または金属酸化物の蒸着フィルムを用いたことを特徴とする真空断熱材の外装材。
In order from the outside, a vacuum insulation material consisting of a base material layer, a barrier layer, and a sealant layer,
A stretched polypropylene film and a stretched nylon film were laminated on the base material layer, the stretched polypropylene film was disposed on the outer surface side, and a vapor deposition film of metal or metal oxide was used for the barrier layer. A vacuum insulation exterior material.
前記バリヤ層に、アルミ蒸着ポリエチレンテレフタレートフィルムとアルミ蒸着エチレン−ビニルアルコール共重合体フィルムを積層して用いたことを特徴とする請求項1に記載の真空断熱材の外装材。   The vacuum insulating material exterior material according to claim 1, wherein an aluminum-deposited polyethylene terephthalate film and an aluminum-deposited ethylene-vinyl alcohol copolymer film are laminated on the barrier layer. 前記シーラント層に、密度が0.935g/cm以下の直鎖状低密度ポリエチレンフィルムを用いたことを特徴とする請求項1または2に記載の真空断熱材の外装材。 The exterior material for a vacuum heat insulating material according to claim 1 or 2, wherein a linear low density polyethylene film having a density of 0.935 g / cm 3 or less is used for the sealant layer.
JP2013077604A 2013-04-03 2013-04-03 Vacuum insulation material Expired - Fee Related JP6098306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077604A JP6098306B2 (en) 2013-04-03 2013-04-03 Vacuum insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077604A JP6098306B2 (en) 2013-04-03 2013-04-03 Vacuum insulation material

Publications (2)

Publication Number Publication Date
JP2014200964A JP2014200964A (en) 2014-10-27
JP6098306B2 true JP6098306B2 (en) 2017-03-22

Family

ID=52351854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077604A Expired - Fee Related JP6098306B2 (en) 2013-04-03 2013-04-03 Vacuum insulation material

Country Status (1)

Country Link
JP (1) JP6098306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623563B2 (en) * 2015-06-01 2019-12-25 凸版印刷株式会社 Laminated body for vacuum heat insulating material and vacuum heat insulating material using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534638B2 (en) * 2004-07-08 2010-09-01 パナソニック株式会社 Vacuum insulation
JP4835014B2 (en) * 2005-03-23 2011-12-14 凸版印刷株式会社 Vacuum insulation
JP5089317B2 (en) * 2006-10-06 2012-12-05 日本合成化学工業株式会社 Vacuum insulation structure
JP5608472B2 (en) * 2010-08-25 2014-10-15 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator using the same
JP6191100B2 (en) * 2012-08-08 2017-09-06 大日本印刷株式会社 Laminate for vacuum insulation

Also Published As

Publication number Publication date
JP2014200964A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5691112B2 (en) Groove type vacuum heat insulating material and method for manufacturing the same
US20120164365A1 (en) Vacuum insulation panel and method for manufacturing the same
US20160230918A1 (en) Vacuum insulation panel and method for manufacturing the same
JP2007263335A (en) Vacuum insulating material, hot water supply device using vacuum insulating material, and electric water heater
JP2015068484A (en) Laminate sheet for vacuum heat insulation material and vacuum heat insulation material
KR101863381B1 (en) Vacuum insulation panel
KR20110133384A (en) Core material for vacuum insulation panel and vacuum insulation panel using the same
JP6098306B2 (en) Vacuum insulation material
JP6212975B2 (en) Vacuum insulation material
JP2017210986A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material
JP6255735B2 (en) Vacuum insulation material
JP2018059524A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP6201494B2 (en) Gas barrier laminate and vacuum insulation exterior material
JP2014035011A (en) Laminate for vacuum heat insulation material
JP6245332B1 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
JPWO2014122939A1 (en) Thermal insulation panel
KR102317718B1 (en) Laminated Structure and Vacuum Insulating Material Including Laminated Structure
JP2019135094A (en) Laminate for vacuum heat insulation material, and vacuum heat insulation material
JP2018053949A (en) Sheathing material for vacuum heat insulation material
JP5600469B2 (en) Vacuum insulation film and vacuum insulation film
JP6094088B2 (en) Laminate for vacuum insulation
JP6511719B2 (en) Vacuum insulation covering material and heat insulation container using the same
JP2016011697A (en) Packaging material for vacuum heat insulation material and vacuum heat insulation material with packaging material
WO2021054395A1 (en) Vacuum heat-insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees