JP2014035011A - Laminate for vacuum heat insulation material - Google Patents

Laminate for vacuum heat insulation material Download PDF

Info

Publication number
JP2014035011A
JP2014035011A JP2012175809A JP2012175809A JP2014035011A JP 2014035011 A JP2014035011 A JP 2014035011A JP 2012175809 A JP2012175809 A JP 2012175809A JP 2012175809 A JP2012175809 A JP 2012175809A JP 2014035011 A JP2014035011 A JP 2014035011A
Authority
JP
Japan
Prior art keywords
layer
adhesive
laminate
gas barrier
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012175809A
Other languages
Japanese (ja)
Other versions
JP6191100B2 (en
Inventor
Hironori Hagio
宏徳 萩尾
Kazunori Ochiai
和典 落合
Hiromitsu Nobu
弘光 延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012175809A priority Critical patent/JP6191100B2/en
Publication of JP2014035011A publication Critical patent/JP2014035011A/en
Application granted granted Critical
Publication of JP6191100B2 publication Critical patent/JP6191100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a laminate for vacuum heat insulation material which has no defective quality such as defective appearance due to "heat shrinkage wrinkle" and "slack" and defective oxygen gas barrier property, and has a new constitution excellent in heat insulation performance, and to provide a vacuum heat insulation material using the laminate for vacuum heat insulation material.SOLUTION: A laminate 1 for vacuum heat insulation material which is used for vacuum heat insulation material made by enclosing heat insulation core material with jacketing wrapping material made of a laminated body and degassing an internal part enclosed by the jacketing wrapping material to make a vacuum state is produced by configuring at least a substrate layer 11, an adhesive layer 10, an oxygen gas barrier layer 12 made of biaxially stretched polyester film which has a vapor deposition layer of an inorganic substance or a metal oxide, on one-side surface, an adhesive layer 10 and a heat-adhesive resin layer 13, in this order. Therein, the adhesive layer 10 on the side contacting with the vapor deposition layer is formed with an adhesive which has a coating amount of 4 g/m. dry thickness and has oxygen gas barrier performance when being measured in measurement conditions of 23°C60%RH, of 90 ml/m.day.MPa or less.

Description

本発明は、真空断熱材用積層体およびこれを用いる真空断熱材に関し、さらに詳しくは、冷蔵庫、保温庫、給湯器、自動販売機、輸送用コンテナ、システムバス、住宅壁などに使用される断熱壁、あるいは、車や飛行機、船舶、列車、OA機器などの発熱体周りに使用される断熱壁に用いられる真空断熱材用積層体およびこれに用いる真空断熱材に関するものである。   The present invention relates to a laminate for a vacuum heat insulating material and a vacuum heat insulating material using the same, and more specifically, heat insulation used for a refrigerator, a heat storage, a water heater, a vending machine, a transport container, a system bath, a housing wall, and the like. The present invention relates to a laminate for a vacuum heat insulating material used for a wall or a heat insulating wall used around a heating element such as a car, an airplane, a ship, a train, and an OA device, and a vacuum heat insulating material used therefor.

従来から、真空断熱材は、冷蔵庫や給湯器、自動販売機等の断熱層として用いられている。このような真空断熱材は、通常、外被包材に断熱芯材を封入し、外被包材の内部を脱気して真空にした状態で熱接着することにより密封した状態で包装されている。   Conventionally, vacuum heat insulating materials have been used as heat insulating layers in refrigerators, water heaters, vending machines, and the like. Such a vacuum heat insulating material is usually packaged in a sealed state by encapsulating a heat insulating core material in the outer covering material, degassing the inside of the outer covering material and thermally bonding in a vacuum state. Yes.

真空断熱材の断熱性能を長期に亘って維持するためには、外被包材の内部を長期に亘って真空の状態に保持する必要がある。そのため、外被包材に用いられる真空断熱材用積層体には、外部からガスが透過することを防止するための優れたガスバリア性や、断熱芯材を覆って密着封止するための熱接着性等の種々の機能が要求される。したがって、真空断熱材用積層体は、通常、これらの各種機能を有するフィルムを複数にて積層した積層体として構成されている。   In order to maintain the heat insulating performance of the vacuum heat insulating material for a long period of time, it is necessary to maintain the inside of the outer covering material in a vacuum state for a long period of time. Therefore, the laminated body for vacuum heat insulating material used for the envelope material has excellent gas barrier property for preventing gas from permeating from the outside, and heat bonding for covering and sealing the heat insulating core material. Various functions such as sex are required. Therefore, the laminate for a vacuum heat insulating material is usually configured as a laminate in which a plurality of films having these various functions are laminated.

具体的には、二軸延伸ポリプロピレン層又はポリアミド層からなる最外層、アルミニウムを蒸着したポリエチレンテレフタレート樹脂層からなる第二層、アルミニウムを蒸着したエチレンビニルアルコール共重合体フィルム層、直鎖状低密度ポリエチレン樹脂層又は高密度ポリエチレン樹脂層からなる溶着層を順に積層した外包材が用いられている(たとえば、特許文献1参照)。   Specifically, an outermost layer composed of a biaxially oriented polypropylene layer or a polyamide layer, a second layer composed of a polyethylene terephthalate resin layer deposited with aluminum, an ethylene vinyl alcohol copolymer film layer deposited with aluminum, a linear low density An outer packaging material in which a welding layer made of a polyethylene resin layer or a high-density polyethylene resin layer is sequentially laminated is used (for example, see Patent Document 1).

特許文献1に開示された技術は、断熱性能を向上させることができる外包材とすることができ、信頼性を確保した真空断熱材を提供することができるものであるが、アルミニウムを蒸着したエチレンビニルアルコール共重合体フィルム層には、アルミニウム蒸着加工時にエチレンビニルアルコール共重合体フィルムが熱収縮するために、「熱収縮シワ」や「たるみ」が発生するという問題、また、これに起因する問題として、外包材とする際の積層工程において、「熱収縮シワ」はシワの跡が残り、「たるみ」は折れシワとなり、いずれも外観不良や酸素ガスバリア性不良等の品質不良になるという問題があると共に、不良箇所は取り除く必要があり、生産性の悪化、さらには、これら種々の問題から結果としてコスト高になるという問題があり、また別の問題として、アルミニウムを蒸着したエチレンビニルアルコール共重合体フィルム層が存在する構成であるため、エチレンビニルアルコール共重合体フィルム層のガスバリア性能を最大限発揮させるために、エチレンビニルアルコール共重合体フィルム層の相対湿度を低く保持する必要性から、外部環境からの水蒸気ガスの透過を抑制する必要があり、最外層とアルミニウムを蒸着したエチレンビニルアルコール共重合体フィルム層の間に、アルミニウムを蒸着したポリエチレンテレフタレート樹脂層からなる第二層を必要悪として使用せざるを得ず、結果として、コスト高になるという問題もあり、これらの解決が要望されていた。   The technique disclosed in Patent Document 1 can be used as an outer packaging material that can improve heat insulation performance, and can provide a vacuum heat insulating material that ensures reliability. The vinyl alcohol copolymer film layer is subject to heat shrinkage and sagging due to heat shrinkage of the ethylene vinyl alcohol copolymer film during aluminum deposition, and problems caused by this. In the laminating process when making the outer packaging material, the “heat shrinkage wrinkles” remain wrinkle marks and the “sagging” becomes broken wrinkles, both of which have poor appearance such as poor appearance and oxygen gas barrier property. In addition, there is a problem that it is necessary to remove defective parts, which deteriorates productivity and further increases costs as a result of these various problems. Another problem is that an ethylene vinyl alcohol copolymer film layer on which aluminum is deposited is present. Therefore, in order to maximize the gas barrier performance of the ethylene vinyl alcohol copolymer film layer, ethylene vinyl alcohol is used. From the need to keep the relative humidity of the copolymer film layer low, it is necessary to suppress the permeation of water vapor gas from the external environment, between the outermost layer and the ethylene vinyl alcohol copolymer film layer on which aluminum is deposited, A second layer made of a polyethylene terephthalate resin layer deposited with aluminum must be used as a necessary evil. As a result, there is a problem that the cost increases, and these solutions have been desired.

特開2012−47210号公報JP 2012-47210 A

そこで本発明は、「熱収縮シワ」や「たるみ」による外観不良や酸素ガスバリア性不良等の品質不良がなく、アルミニウムを蒸着したエチレンビニルアルコール共重合体フィルム層を有する構成と遜色のない断熱性能を有する新たな構成の真空断熱材用積層体およびこれを用いる真空断熱材を提供することである。   Therefore, the present invention is free from quality defects such as appearance defects and oxygen gas barrier properties due to “heat shrinkage wrinkles” and “sagging”, and has a structure having an ethylene vinyl alcohol copolymer film layer on which aluminum is deposited, and heat insulation performance comparable to It is providing the laminated body for vacuum heat insulating materials of the new structure which has these, and a vacuum heat insulating material using the same.

本発明者は、上記課題を達成するために、請求項1記載の本発明は、断熱芯材を積層体からなる外被包材で封入し、該外被包材で封入された内部を脱気して真空状態としてなる真空断熱材に用いられる真空断熱用積層体において、少なくとも基材層、接着層、酸素ガスバリア層、接着層、熱接着性樹脂層がこの順に構成されてなり、前記酸素ガスバリア層が一方の面に無機物または金属酸化物の蒸着層を有する二軸延伸ポリエステルフィルムからなると共に前記蒸着層と接する側の前記接着層は塗布量が4g/m2・ドライの厚さ以上であって、かつ、塗布量が4g/m2・ドライの厚さで23℃60%RHの測定条件で測定したときの酸素ガスバリア性能が90ml/m2・day・MPa以下の接着剤で形成されていることを特徴とするものである。なお、前記酸素ガスバリア性能(酸素ガス透過度)は、20μm厚さの二軸延伸ポリプロピレンフィルム(以下、OPP20と呼称する)に接着剤を4g/m2・ドライとなるように塗布・乾燥した後に接着剤面に40μm厚さの未延伸ポリプロピレンフィルム(以下、CPP40と呼称する)を積層して積層体となし、40℃で2日間熱乾熟成後に、この積層体を用いて23℃60%RHの測定条件でMOCON社製OX−TRAN MODEL2/21で測定すると共に、同様にして測定したOPP20とCPP40のそれぞれの酸素ガス透過度を差し引いて算出した数値である。 In order to achieve the above-mentioned object, the inventor of the present invention described in claim 1 encloses a heat insulating core material with an outer envelope material made of a laminate, and removes the interior enclosed with the outer envelope material. In a laminate for vacuum heat insulation used for a vacuum heat insulating material that is in a vacuum state by gas, at least a base material layer, an adhesive layer, an oxygen gas barrier layer, an adhesive layer, and a thermal adhesive resin layer are configured in this order, and the oxygen The gas barrier layer is made of a biaxially stretched polyester film having an inorganic or metal oxide vapor-deposited layer on one surface, and the adhesive layer on the side in contact with the vapor-deposited layer has a coating amount of 4 g / m 2 · dry thickness or more. In addition, it is formed of an adhesive having an application amount of 4 g / m 2 · dry thickness and an oxygen gas barrier performance of 90 ml / m 2 · day · MPa or less when measured at a measurement temperature of 23 ° C. and 60% RH. Also characterized by It is. The oxygen gas barrier performance (oxygen gas permeability) is obtained by applying and drying an adhesive to a 20 μm-thick biaxially stretched polypropylene film (hereinafter referred to as OPP20) to 4 g / m 2 · dry. An unstretched polypropylene film (hereinafter referred to as CPP40) having a thickness of 40 μm is laminated on the adhesive surface to form a laminate. After heat drying at 40 ° C. for 2 days, the laminate is used at 23 ° C. and 60% RH. It is a numerical value calculated by subtracting the oxygen gas permeability of each of OPP20 and CPP40 measured in the same manner while measuring with OX-TRAN MODEL 2/21 manufactured by MOCON under the measurement conditions described above.

また、請求項2記載の本発明の真空断熱材は、請求項1記載の真空断熱材用積層体を用いた外被包材内に、断熱芯材が封入され、該外被包材内部が脱気されて真空状態に密封包装されてなることを特徴とするものである。   Further, in the vacuum heat insulating material of the present invention described in claim 2, the heat insulating core material is enclosed in the outer cover material using the laminate for vacuum heat insulating material described in claim 1, and the inside of the outer cover material is It is degassed and sealed and packaged in a vacuum state.

本発明によれば、従来の真空断熱材用積層体におけるアルミニウムを蒸着したエチレンビニルアルコール共重合体フィルムを用いることに起因する外観不良や酸素ガスバリア性不良等の品質不良を無くすことができると共に、断熱性能においては、従来の真空断熱材用積層体と遜色のない性能を有する真空断熱材用積層体およびこれを用いる真空断熱材を提供することができるという効果を奏するものである。   According to the present invention, it is possible to eliminate quality defects such as poor appearance and oxygen gas barrier property caused by using an ethylene vinyl alcohol copolymer film deposited with aluminum in a conventional laminate for vacuum heat insulating material, In the heat insulation performance, there is an effect that it is possible to provide a laminated body for vacuum heat insulating material having performance comparable to that of a conventional laminated body for vacuum heat insulating material and a vacuum heat insulating material using the same.

本発明にかかる真空断熱材用積層体の一実施例の層構成を図解的に示す図である。It is a figure which shows the layer structure of one Example of the laminated body for vacuum heat insulating materials concerning this invention schematically. 本発明にかかる真空断熱材の一実施例を図解的に示す断面図である。It is sectional drawing which shows schematically one Example of the vacuum heat insulating material concerning this invention.

上記の本発明について、図面等を用いて以下に詳しく説明する。
図1は本発明にかかる真空断熱材用積層体の一実施例の層構成を図解的に示す図、図2は本発明にかかる真空断熱材の一実施例を図解的に示す断面図であり、図中の1は真空断熱材用積層体、1’は外被包材、2は真空断熱材、11は基材層、12は酸素ガスバリア層、13は熱接着性樹脂層、20は断熱芯材、Aは熱接着部をそれぞれ示す。
The present invention will be described in detail below with reference to the drawings.
FIG. 1 is a diagram schematically showing a layer configuration of one embodiment of a laminate for a vacuum heat insulating material according to the present invention, and FIG. 2 is a cross-sectional view schematically showing one embodiment of a vacuum heat insulating material according to the present invention. In the figure, 1 is a laminate for a vacuum heat insulating material, 1 ′ is an outer covering material, 2 is a vacuum heat insulating material, 11 is a base material layer, 12 is an oxygen gas barrier layer, 13 is a heat-adhesive resin layer, and 20 is heat insulating material. A core material and A each indicate a thermal bonding portion.

図1は本発明にかかる真空断熱材用積層体の一実施例の層構成を図解的に示す図であって、真空断熱材用積層体1は基材層11、接着層10、酸素ガスバリア層12、接着層10、熱接着性樹脂層13を順に積層したものである。   FIG. 1 is a diagram schematically showing a layer structure of one embodiment of a laminate for a vacuum heat insulating material according to the present invention. The laminate for a vacuum heat insulating material 1 includes a base material layer 11, an adhesive layer 10, an oxygen gas barrier layer. 12, the adhesive layer 10, and the thermoadhesive resin layer 13 are laminated | stacked in order.

最初に、前記基材層11について説明する。前記基材層11としては、真空断熱材用積層体を構成する基本素材となることから、機械的、物理的、化学的等において優れた性質を有する合成樹脂からなるプラスチックフィルムを用いることができ、たとえば、ポリエステル系、ポリアミド系、ポリプロピレン系、ポリカーボネート系、ポリアセタール系等の樹脂からなるフィルムを用いることができる。これらのプラスチックフィルムは、未延伸フィルムあるいは一軸方向または二軸方向に延伸した延伸フィルムのいずれのものも使用することができるが、機械的、物理的に優れるといった面から、二軸延伸フィルムが好ましい。前記基材層11の厚さとしては、9〜30μmが適当である。     First, the base material layer 11 will be described. Since the base material layer 11 is a basic material constituting a laminate for a vacuum heat insulating material, a plastic film made of a synthetic resin having excellent properties in mechanical, physical, chemical and the like can be used. For example, a film made of a resin such as polyester, polyamide, polypropylene, polycarbonate, or polyacetal can be used. As these plastic films, any of an unstretched film or a stretched film stretched in a uniaxial direction or a biaxial direction can be used, but a biaxially stretched film is preferable in terms of mechanical and physical superiority. . The thickness of the base material layer 11 is suitably 9 to 30 μm.

図1においては、前記基材層11を前記真空断熱材用積層体1の一方の外面に位置するように外層とし、かつ、単層構成で示したが、要求品質によっては、複層構成にしてもよいものであるし、また、前記酸素ガスバリア層と前記熱接着性樹脂層14の間に、必要に応じてさらに前記基材層11を介在させる構成としてもよいものである。   In FIG. 1, the base material layer 11 is an outer layer so as to be positioned on one outer surface of the laminate 1 for vacuum heat insulating material, and is shown as a single layer configuration. The base material layer 11 may be further interposed between the oxygen gas barrier layer and the thermal adhesive resin layer 14 as necessary.

次に、前記酸素ガスバリア層12について説明する。前記酸素ガスバリア層12としては、本発明においてはアルミニウムに代表される金属を一方の面に蒸着したプラスチックフィルムよりも酸化珪素に代表される無機物や酸化アルミニウムに代表される金属酸化物を一方の面に蒸着したプラスチックフィルムが適当である。この理由としては、経時劣化が少なく、折り曲げてもクラックの発生が少なく、かつ、真空断熱材用積層体を真空断熱材の外被包材として用いた際に、外被包材を通しての熱の伝導性が少なく、十分な断熱性能が得られるためである。   Next, the oxygen gas barrier layer 12 will be described. As the oxygen gas barrier layer 12, in the present invention, an inorganic substance typified by silicon oxide or a metal oxide typified by aluminum oxide is used on one side rather than a plastic film in which a metal typified by aluminum is deposited on one side. A plastic film deposited on is suitable. The reason for this is that there is little deterioration over time, there are few cracks even when bent, and when the laminate for vacuum heat insulating material is used as the outer covering material of the vacuum heat insulating material, the heat through the outer covering material is reduced. It is because there is little conductivity and sufficient heat insulation performance is obtained.

また、前記酸素ガスバリア層12を構成する前記プラスチックフィルムとしては、酸素ガスバリア性を付与するための加工適性に優れると共に、酸素ガスバリア性を損なうことなく良好に保持でき、真空断熱材用積層体1の外被包材としての製袋時の加工適性や耐熱性等の諸物性に優れることが求められ、これらを満足するものであればよいのであって、たとえば、前記基材層11として説明したものを用いることができるが、中でも特に、ポリエステル系、ポリアミド系、ポリプロピレン系のプラスチックフィルムが好ましく、その厚さとしては、9〜30μmが適当である。   In addition, the plastic film constituting the oxygen gas barrier layer 12 is excellent in processability for imparting oxygen gas barrier properties and can be well maintained without impairing the oxygen gas barrier properties. It is required to be excellent in various physical properties such as processability and heat resistance at the time of bag making as an outer packaging material, and any material that satisfies these requirements may be used. For example, the base material layer 11 described above Among them, polyester-based, polyamide-based, and polypropylene-based plastic films are particularly preferable, and the thickness is suitably 9 to 30 μm.

次に、前記熱接着性樹脂層13について説明する。前記熱接着性樹脂層13としては、熱によって溶融して相互に融着し得る熱可塑性樹脂であればよいのであって、たとえば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレンとアクリル酸との酸コポリマー、エチレンとアクリル酸エステルとのエステルコポリマー等の酸変性ポリオレフィン系樹脂、ポリプロピレン、エチレン−プロピレン共重合体、メチルペンテンポリマー等を用いることができる。前記接着性樹脂層14の厚さとしては10μm以上あればよく、求められる物性やコスト等を勘案して決めればよいものである。   Next, the thermal adhesive resin layer 13 will be described. The heat-adhesive resin layer 13 may be any thermoplastic resin that can be melted by heat and fused to each other. For example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear ( Linear) low-density polyethylene, ethylene-vinyl acetate copolymer, acid copolymer of ethylene and acrylic acid, ester copolymer of ethylene and acrylic acid ester, etc., polypropylene, ethylene-propylene copolymer, A methylpentene polymer or the like can be used. The thickness of the adhesive resin layer 14 may be 10 μm or more, and may be determined in consideration of required physical properties and costs.

なお、上記したように、前記酸素ガスバリア層12は一方の面に蒸着層を形成したプラスチックフィルムからなるものであるが、前記真空断熱材用積層体1における前記酸素ガスバリア層12の蒸着層の位置は、前記熱接着性樹脂層13から遠い位置、すなわち、蒸着層が基材層11側に位置することが好ましい。この理由としては、蒸着層が前記熱接着性樹脂層13側に位置すると、基材層11側に位置する場合に比べて、後述する真空断熱材2とする際に、前記真空断熱材用積層体1同士を熱接着することになるが、この加工時に前記熱接着性樹脂層13は溶融と固化(膨張と収縮)という過程を踏むことになり、この過程において、蒸着層がひび割れを起こす可能性がより高いためである。   As described above, the oxygen gas barrier layer 12 is made of a plastic film having a vapor deposition layer formed on one surface, but the position of the vapor deposition layer of the oxygen gas barrier layer 12 in the laminate 1 for vacuum heat insulating material. Is preferably located far from the heat-adhesive resin layer 13, that is, the vapor deposition layer is located on the substrate layer 11 side. The reason for this is that when the vapor-deposited layer is positioned on the thermal adhesive resin layer 13 side, the vacuum heat insulating material laminate is used when the vacuum heat insulating material 2 described later is used, compared to the case where the deposited layer is positioned on the base material layer 11 side. Although the bodies 1 are thermally bonded to each other, the heat-adhesive resin layer 13 undergoes a process of melting and solidifying (expanding and shrinking) during this processing, and in this process, the vapor deposition layer may crack. This is because the sex is higher.

次に、前記接着層10について説明する。前記接着層10としては、前記酸素ガスバリア層12の蒸着層が位置する側の接着層、図1においては前記基材層11側の前記接着層10(前記基材層11と前記酸素ガスバリア層12との間の前記接着層10)を塗布量が4g/m2・ドライの厚さ以上で形成し、かつ、塗布量が4g/m2・ドライの厚さで23℃60%RHの測定条件で測定したときの酸素ガス透過度が90ml/m2・day・MPa以下である接着剤(以下、酸素ガスバリア性能に優れる接着剤と呼称します)で形成するものである。 Next, the adhesive layer 10 will be described. As the adhesive layer 10, the adhesive layer on the side where the vapor deposition layer of the oxygen gas barrier layer 12 is located, and in FIG. 1, the adhesive layer 10 (the base material layer 11 and the oxygen gas barrier layer 12 on the base material layer 11 side). The adhesive layer 10) is formed at a coating amount of 4 g / m 2 · dry thickness or more, and the coating amount is 4 g / m 2 · dry thickness and the measurement condition is 23 ° C. and 60% RH It is formed with an adhesive having an oxygen gas permeability of 90 ml / m 2 · day · MPa or less (hereinafter referred to as an adhesive excellent in oxygen gas barrier performance) as measured by (1).

前記接着層10を形成する酸素ガスバリア性能に優れる接着剤は、特開2003−300271号公報および特開平2010−012769号公報に開示され、非ビスフェノールA系ポリエポキシ樹脂を主剤とし、ポリアミン樹脂を硬化剤とする接着剤であって、三菱ガス化学株式会社からガスバリア性接着剤として上市されている「マクシーブ(登録商標)」を好適に用いることができ、周知のドライラミネーション法で積層される。前記ガスバリア性接着剤「マクシーブ(登録商標)」は、接着剤としてのバリア性能を付与すると共に、屈曲による蒸着層の膜割れを防止してガスバリア性能の低下を防ぐという効果も奏する。   An adhesive having excellent oxygen gas barrier performance for forming the adhesive layer 10 is disclosed in Japanese Patent Application Laid-Open No. 2003-300201 and Japanese Patent Application Laid-Open No. 2010-012769. A non-bisphenol A-based polyepoxy resin is used as a main agent and a polyamine resin is cured. It is an adhesive used as an agent, and “MAXIVE (registered trademark)” marketed as a gas barrier adhesive by Mitsubishi Gas Chemical Co., Ltd. can be suitably used, and is laminated by a well-known dry lamination method. The gas barrier adhesive “MAXIVE (registered trademark)” provides the barrier performance as an adhesive, and also has the effect of preventing the gas barrier performance from being deteriorated by preventing the deposition layer from cracking due to bending.

図1における蒸着層と接する前記接着層10(前記基材層11と前記酸素ガスバリア層12との間の前記接着層10)をガスバリア性接着剤で形成することで、必要とするガスバリア性能、ひいては、断熱性能を備えることができるものであるが、さらなるガスバリア性能が要求される場合は、図1における前記酸素ガスバリア層12と前記熱接着性樹脂層13との間の前記接着層10も前記基材層11と前記酸素ガスバリア層12との間の前記接着層10と同様に上記したガスバリア性接着剤「マクシーブ(登録商標)」を用いて形成してもよいものである。   By forming the adhesive layer 10 (the adhesive layer 10 between the base material layer 11 and the oxygen gas barrier layer 12) in contact with the vapor deposition layer in FIG. 1 with a gas barrier adhesive, the required gas barrier performance, and consequently When the gas barrier performance is required, the adhesive layer 10 between the oxygen gas barrier layer 12 and the thermal adhesive resin layer 13 in FIG. Similarly to the adhesive layer 10 between the material layer 11 and the oxygen gas barrier layer 12, the gas barrier adhesive “MAXIVE (registered trademark)” described above may be used.

そして、通常は、前記酸素ガスバリア層12と前記熱接着性樹脂層13との間の前記接着層10は、ポリエステルポリオールとイソシアネートとからなるウレタン系2液硬化型接着剤を用いて周知のドライラミネーション法、あるいは、溶融押出し樹脂からなる接着層を介するサンドイッチラミネーション法等で積層すればよいものである。また、いずれの積層方法においても、必要な面にコロナ放電処理、プラズマ処理、あるいは、アンカー剤の塗布処理等のいずれか、あるいは、いずれもの易接着処理を必要に応じて施して層間の接着強度を確保するのは当然のことである。   In general, the adhesive layer 10 between the oxygen gas barrier layer 12 and the thermal adhesive resin layer 13 is a well-known dry lamination using a urethane two-component curable adhesive composed of polyester polyol and isocyanate. It may be laminated by a method such as a sandwich lamination method through an adhesive layer made of melt-extruded resin. In any of the lamination methods, the necessary surface is subjected to corona discharge treatment, plasma treatment, anchor agent coating treatment, etc., or any easy adhesion treatment as necessary, and the adhesion strength between the layers. It is natural to secure this.

また、図示はしないが、更なる酸素ガスバリア性能の向上のために、図1に示す真空断熱材用積層体1の前記基材層11と前記酸素ガスバリア層12との間、あるいは、前記酸素ガスバリア層12と前記熱接着性樹脂層13との間に、アルミニウムに代表される金属を蒸着したプラスチックフィルム、酸化珪素に代表される無機物や酸化アルミニウムに代表される金属酸化物を蒸着したプラスチックフィルム、あるいは、ポリビニルアルコールやポリ塩化ビニリデンに代表される酸素ガスバリア性組成物を塗布したプラスチックフィルム、あるいは、ポリ塩化ビニリデンフィルム、エチレン−ビニルアルコール共重合体フィルム(EVOH)、MXDナイロンフィルム〔東洋紡績(株)製〕、あるいは、一方の面にアルミニウム蒸着層を有する二軸延伸された3層共押出しフィルム(5.5μm厚さのポリアミド層/4.0μm厚さのEVOH層/5.5μm厚さのポリアミド層)などの酸素ガスバリア性能を有するフィルムを用いてもよいものであり、前記プラスチックフィルムとしては、酸素ガスバリア層12で説明したプラスチックフィルムと同じものを用いることができ、説明は省略する。   Further, although not shown, in order to further improve the oxygen gas barrier performance, or between the base material layer 11 and the oxygen gas barrier layer 12 of the laminate 1 for vacuum heat insulating material shown in FIG. A plastic film in which a metal typified by aluminum is vapor-deposited between the layer 12 and the heat-adhesive resin layer 13; a plastic film in which an inorganic material typified by silicon oxide or a metal oxide typified by aluminum oxide is vapor-deposited; Alternatively, a plastic film coated with an oxygen gas barrier composition typified by polyvinyl alcohol or polyvinylidene chloride, or a polyvinylidene chloride film, an ethylene-vinyl alcohol copolymer film (EVOH), an MXD nylon film [Toyobo Co., Ltd. )], Or has an aluminum deposition layer on one side A film having an oxygen gas barrier performance such as a biaxially stretched three-layer coextruded film (polyamide layer having a thickness of 5.5 μm / EVOH layer having a thickness of 4.0 μm / polyamide layer having a thickness of 5.5 μm) may be used. As the plastic film, the same plastic film as described for the oxygen gas barrier layer 12 can be used, and the description thereof is omitted.

図2は本発明にかかる真空断熱材の一実施例を図解的に示す断面図であって、真空断熱材2は前記真空断熱材用積層体1を用いた外被包材1’内に断熱芯材20が封入され、外被包材1’の内部が脱気されて真空状態とされてなるものである。前記真空断熱材2は、たとえば、以下のようにして製造することができる。すなわち、一対の矩形状の前記真空断熱材用積層体1を前記熱接着性樹脂層13を対向させて重ね合わせ、熱接着して三周縁辺に熱接着部Aを形成した一辺に開口部を有する外被包材1’を製袋し、この外被包材1’の開口部から断熱芯材20を収容した後に、外被包材1’の内部を脱気して真空状態とし、その状態で開口部を熱接着することにより、四方シールタイプの包装袋からなる真空断熱材2を得ることができる。包装袋の形態は、四方シールタイプに限ることなく、三方シールタイプであって、ガセットタイプ、ピロータイプ等の適宜の形態とすることができるものである。   FIG. 2 is a cross-sectional view schematically showing an embodiment of the vacuum heat insulating material according to the present invention. The vacuum heat insulating material 2 is heat-insulated in the envelope material 1 ′ using the laminate 1 for vacuum heat insulating material. The core material 20 is enclosed, and the inside of the outer covering material 1 ′ is deaerated to be in a vacuum state. The said vacuum heat insulating material 2 can be manufactured as follows, for example. That is, a pair of rectangular laminates for vacuum heat insulating material 1 are stacked with the heat-adhesive resin layer 13 facing each other and thermally bonded to form a heat-bonding portion A on three peripheral edges, and an opening is formed on one side. The outer covering material 1 ′ is made in a bag, and after the heat insulating core material 20 is received from the opening of the outer covering material 1 ′, the inside of the outer covering material 1 ′ is evacuated to a vacuum state, By thermally bonding the opening in the state, the vacuum heat insulating material 2 made of a four-side seal type packaging bag can be obtained. The form of the packaging bag is not limited to the four-side seal type, but is a three-side seal type, and can be an appropriate form such as a gusset type or a pillow type.

前記断熱芯材20としては、シリカ、パーライト、珪酸カルシウム等の無機材料、あるいは、ポリウレタンフォーム等の有機材料が用いられる。また、前記断熱芯材20の形態としては、微粉末、多孔質、繊維質等を挙げることができる。   As the heat insulating core material 20, an inorganic material such as silica, pearlite, calcium silicate, or an organic material such as polyurethane foam is used. Further, examples of the form of the heat insulating core material 20 include fine powder, porous material, and fibrous material.

前記真空断熱材2の内部は、通常、5Pa以下の真空状態とされ、対流による熱伝導が極力小さくなるよう構成される。真空度が5Paより大きいと、内部に残留する空気が対流して、断熱性能が低下するので好ましくない。   The inside of the vacuum heat insulating material 2 is normally in a vacuum state of 5 Pa or less, and is configured so that heat conduction by convection is minimized. If the degree of vacuum is higher than 5 Pa, the air remaining inside convects and the heat insulation performance deteriorates, which is not preferable.

以下に、本発明について、実施例を挙げてさらに詳しく説明する。
〔実施例1〕
25μm厚さの二軸延伸ポリアミドフィルム(以下、ON25と略す)のコロナ放電処理面に主剤および硬化剤からなる2液硬化型ガスバリア性接着剤「三菱ガス化学(株)製:マクシーブ(登録商標)」(4g/m2ドライ)を介して一方の面に酸化珪素蒸着層を有する12μm厚さの二軸延伸ポリエチレンテレフタレートフィルム(以下、PET12と略す)の一方の面を積層し、次に前記PET12の他方の面(コロナ放電処理面)に接着剤を介して50μm厚さの直鎖状低密度ポリエチレンフィルム(以下、LLDPE50と略す)のコロナ放電処理面を積層して本発明の積層体を得た。
積層体構成:ON25/ガスバリア性接着剤/酸化珪素蒸着層/PET12/接着剤/LLDPE50
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example 1]
A two-part curable gas barrier adhesive “Mitsubishi Gas Chemical Co., Ltd .: MAXIVE” (registered trademark) consisting of a main agent and a curing agent on the corona discharge treated surface of a 25 μm thick biaxially stretched polyamide film (hereinafter abbreviated as ON25) ”(4 g / m 2 dry), one side of a 12 μm thick biaxially stretched polyethylene terephthalate film (hereinafter abbreviated as PET12) having a silicon oxide vapor deposition layer on one side is laminated, and then the PET12 A laminate of the present invention is obtained by laminating a corona discharge-treated surface of a 50 μm-thick linear low-density polyethylene film (hereinafter abbreviated as LLDPE50) with an adhesive on the other surface (corona discharge-treated surface). It was.
Laminate structure: ON25 / gas barrier adhesive / silicon oxide deposited layer / PET12 / adhesive / LLDPE50

〔実施例2〕
25μm厚さの二軸延伸ポリアミドフィルム(以下、ON25と略す)のコロナ放電処理面に接着剤を介して一方の面にアルミニウム蒸着層を有する二軸延伸ポリエチレンテレフタレートフィルム(以下、PET12と略す)の一方の面を積層し、次に前記アルミニウム蒸着層を有するPET12の他方の面(コロナ放電処理面)にガスバリア性接着剤「マクシーブ(登録商標)」(4g/m2ドライ)を介して一方の面に酸化珪素蒸着層を有する12μm厚さの二軸延伸ポリエチレンテレフタレートフィルム(以下、PET12と略す)の一方の面を積層し、次に前記酸化珪素蒸着層を有するPET12の他方の面(コロナ放電処理面)に接着剤を介して30μm厚さの未延伸ポリプロピレンフィルム(以下、CPP30と略す)のコロナ放電処理面を積層して本発明の積層体を得た。
積層体構成:ON25/接着剤/アルミニウム蒸着層/PET12/ガスバリア性接着剤/酸化珪素蒸着層/PET12/接着剤/CPP30
[Example 2]
A biaxially stretched polyethylene terephthalate film (hereinafter abbreviated as PET12) having an aluminum vapor deposition layer on one surface via an adhesive on a corona discharge treated surface of a 25 μm thick biaxially stretched polyamide film (hereinafter abbreviated as ON25) One side is laminated, and then the other side (corona discharge treatment side) of PET 12 having the aluminum vapor deposition layer is placed on one side via a gas barrier adhesive “MAXIVE (registered trademark)” (4 g / m 2 dry). One surface of a 12 μm-thick biaxially stretched polyethylene terephthalate film (hereinafter abbreviated as PET12) having a silicon oxide vapor deposition layer on the surface is laminated, and then the other surface of the PET12 having the silicon oxide vapor deposition layer (corona discharge) Corona release of 30 μm-thick unstretched polypropylene film (hereinafter abbreviated as CPP30) via an adhesive on the treated surface) By laminating treated surface to obtain a laminate of the present invention.
Laminate structure: ON25 / adhesive / aluminum deposited layer / PET12 / gas barrier adhesive / silicon oxide deposited layer / PET12 / adhesive / CPP30

〔実施例3〕
20μm厚さの二軸延伸ポリプロピレンフィルム(以下、OPP20と略す)のコロナ放電処理面にガスバリア性接着剤「マクシーブ(登録商標)」(4g/m2ドライ)を介して一方の面に酸化珪素蒸着層を有する12μm厚さの二軸延伸ポリエチレンテレフタレートフィルム(以下、PET12と略す)の一方の面を積層し、次に前記酸化珪素蒸着層を有するPET12の他方の面(コロナ放電処理面)に接着剤を介して一方の面にアルミニウム蒸着層を有する15μm厚さの二軸延伸された3層共押出しフィルム(5.5μm厚さのポリアミド層/4.0μm厚さのEVOH層/5.5μm厚さのポリアミド層)(以下、ON5.5//EVOH4.0//ON5.5と略す)のアルミニウム蒸着層面を積層し、次に前記3層共押出しフィルムの他方の面(コロナ放電処理面)に接着剤を介して50μm厚さの未延伸高密度ポリエチレンフィルム(以下、HDPE50と略す)のコロナ放電処理面を積層して本発明の積層体を得た。
積層体構成:OPP20/ガスバリア性接着剤/酸化珪素蒸着層/PET12/接着剤/アルミニウム蒸着層/ON5.5//EVOH4.0//ON5.5/接着剤/HDPE50
(なお、//表示は共押出し法による積層部を示す)
Example 3
Silicon oxide is deposited on one surface of a 20 μm-thick biaxially stretched polypropylene film (hereinafter abbreviated as OPP20) via a gas barrier adhesive “MAXIVE®” (4 g / m 2 dry) on the corona discharge treated surface. Laminate one side of a 12 μm thick biaxially stretched polyethylene terephthalate film (hereinafter abbreviated as PET12) having a layer, and then adhere to the other side (corona discharge treated surface) of PET12 having the silicon oxide vapor deposition layer 15 μm-thick biaxially stretched three-layer coextruded film (5.5 μm-thick polyamide layer / 4.0 μm-thick EVOH layer / 5.5 μm-thick) Of the aluminum layer) (hereinafter abbreviated as ON5.5 // EVOH4.0 // ON5.5), and then the three-layer coextrusion film is laminated. A laminate of the present invention is obtained by laminating the corona discharge treated surface of an unstretched high-density polyethylene film (hereinafter abbreviated as HDPE50) having a thickness of 50 μm on the other surface (corona discharge treated surface) of the film with an adhesive. It was.
Laminate structure: OPP20 / gas barrier adhesive / silicon oxide vapor deposition layer / PET12 / adhesive / aluminum vapor deposition layer / ON5.5 // EVOH4.0 // ON5.5 / adhesive / HDPE50
(// indication indicates the laminated part by coextrusion method)

〔比較例1〕
25μm厚さの二軸延伸ポリアミドフィルム(以下、ON25と略す)のコロナ放電処理面に接着剤を介して一方の面にアルミニウム蒸着層を有する12μm厚さの二軸延伸ポリエチレンテレフタレートフィルム(以下、PET12と略す)の他方の面(コロナ放電処理面)を積層し、次に前記PET12の一方の面(アルミ蒸着層面)に接着剤を介して一方の面にアルミ蒸着層を有する12μm厚さのエチレン−ビニルアルコール共重合体フィルム(以下、EVOH12と略す)の一方の面(アルミ蒸着層面)を積層し、次に前記EVOH12の他方の面に接着剤を介して50μm厚さの直鎖状低密度ポリエチレンフィルム(以下、LLDPE50と略す)のコロナ放電処理面を積層して比較例とする積層体を得た。
積層体構成:ON25/接着剤/PET12/アルミニウム蒸着層/接着剤/アルミニウム蒸着層/EVOH12/接着剤/LLDPE50
[Comparative Example 1]
A 12 μm-thick biaxially stretched polyethylene terephthalate film (hereinafter referred to as PET12) having an aluminum deposited layer on one surface of the corona discharge treated surface of a 25 μm thick biaxially stretched polyamide film (hereinafter referred to as ON25) via an adhesive. The other surface (corona discharge treatment surface) is laminated, and then 12 μm-thick ethylene having an aluminum vapor deposition layer on one surface of the PET 12 with an adhesive on one surface (aluminum vapor deposition layer surface). -One surface (aluminum vapor deposition layer surface) of a vinyl alcohol copolymer film (hereinafter abbreviated as EVOH12) is laminated, and then the other surface of the EVOH12 is a linear low density of 50 μm thickness via an adhesive. A corona discharge treated surface of a polyethylene film (hereinafter abbreviated as LLDPE50) was laminated to obtain a laminate as a comparative example.
Laminate structure: ON25 / adhesive / PET12 / aluminum vapor deposition layer / adhesive / aluminum vapor deposition layer / EVOH12 / adhesive / LLDPE50

〔比較例2〕
25μm厚さの二軸延伸ポリアミドフィルム(以下、ON25と略す)のコロナ放電処理面に接着剤を介して一方の面に酸化珪素蒸着層を有する二軸延伸ポリエチレンテレフタレートフィルム(以下、PET12と略す)の他方の面(コロナ放電処理面)を積層し、前記PET12の一方の面(酸化珪素蒸着層面)に接着剤を介して一方の面にアルミニウム蒸着層を有する15μm厚さのエチレン−ビニルアルコール共重合体フィルム(以下、EVOH15と略す)の一方の面(アルミニウム蒸着層面)を積層し、次に前記EVOH15の他方に面に接着剤を介して30μm厚さの未延伸ポリプロピレンフィルム(以下、CPP30と略す)のコロナ放電処理面を積層して比較例とする積層体を得た。
積層体構成:ON25/接着剤/PET12/酸化珪素蒸着層/接着剤/アルミニウム蒸着層/EVOH15/接着剤/CPP30
[Comparative Example 2]
A biaxially stretched polyethylene terephthalate film (hereinafter abbreviated as PET12) having a silicon oxide vapor-deposited layer on one surface of a corona discharge treated surface of a 25 μm thick biaxially stretched polyamide film (hereinafter abbreviated as ON25) via an adhesive. The 15 μm-thick ethylene-vinyl alcohol copolymer having the other surface (corona discharge-treated surface) and an aluminum vapor-deposited layer on one surface of the PET 12 with an adhesive on one surface (silicon oxide vapor-deposited layer surface). One side (aluminum vapor deposition layer side) of a polymer film (hereinafter abbreviated as EVOH15) is laminated, and then an unstretched polypropylene film (hereinafter referred to as CPP30) having a thickness of 30 μm via an adhesive on the other side of the EVOH15. A laminated body as a comparative example was obtained by laminating the abbreviated corona discharge treated surfaces.
Laminate structure: ON25 / adhesive / PET12 / silicon oxide vapor deposition layer / adhesive / aluminum vapor deposition layer / EVOH15 / adhesive / CPP30

〔比較例3〕
20μm厚さの二軸延伸ポリプロピレンフィルム(以下、OPP20と略す)のコロナ放電処理面に接着剤を介して一方の面に酸化珪素蒸着層を有する12μm厚さの二軸延伸ポリエチレンテレフタレートフィルム(以下、PET12と略す)の他方の面(コロナ放電処理面)を積層し、次に前記PET12の酸化珪素蒸着面に接着剤を介して15μm厚さの二軸延伸ポリアミドフィルム(以下、ON15と略す)の一方のコロナ放電処理面を積層し、次に前記ON15の他方のコロナ放電処理面に接着剤を介して一方に面にアルミニウム蒸着層を有する12μm厚さのエチレン−ビニルアルコール共重合体フィルム(以下、EVOH12と略す)の一方の面(アルミニウム蒸着層面)を積層し、次に前記EVOH12の他方の面(コロナ放電処理面)に接着剤を介して50μm厚さの未延伸高密度ポリエチレンフィルム(以下、HDPE50と略す)のコロナ放電処理面を積層して比較例とする積層体を得た。
積層体構成:OPP20/接着剤/PET12/酸化珪素蒸着層/接着剤/ON15/接着剤/アルミニウム蒸着層/EVOH12/接着剤/HDPE50
[Comparative Example 3]
A 12 μm-thick biaxially stretched polyethylene terephthalate film (hereinafter, referred to as a 20 μm thick biaxially stretched polypropylene film (hereinafter abbreviated as OPP20) having a silicon oxide vapor-deposited layer on one surface via an adhesive on the corona discharge treated surface. The other surface (corona discharge treated surface) of PET12 is laminated, and then a 15 μm-thick biaxially stretched polyamide film (hereinafter abbreviated as ON15) is bonded to the silicon oxide deposition surface of PET12 via an adhesive. A 12 μm-thick ethylene-vinyl alcohol copolymer film (hereinafter referred to as “on”) having one corona discharge treatment surface laminated, and then having an aluminum vapor deposition layer on one surface through an adhesive on the other corona discharge treatment surface of the ON15. , EVOH12 is abbreviated as one surface (aluminum deposition layer surface), and then the other surface of the EVOH12 (corona discharge) Unstretched high density polyethylene film 50μm thick over the adhesive to bedding plane) (hereinafter, to obtain a laminate of the comparative example by laminating a corona discharge treated surface of the abbreviated HDPE50).
Laminate structure: OPP20 / adhesive / PET12 / silicon oxide vapor deposition layer / adhesive / ON15 / adhesive / aluminum vapor deposition layer / EVOH12 / adhesive / HDPE50

実施例1〜3は、比較例1〜3で用いた「アルミニウムを蒸着したエチレンビニルアルコール共重合体フィルム層」を用いない構成であり、「アルミニウムを蒸着したエチレンビニルアルコール共重合体フィルム層」に起因する「熱収縮シワ」や「たるみ」の発生がなく、これにより比較例1〜3において生じる品質不良(15.5%)を無くすことができ、結果として実施例1〜3は比較例1〜3に対して歩留まりをそれぞれ15.5%向上させることができた。   Examples 1-3 are the structures which do not use "the ethylene vinyl alcohol copolymer film layer which vapor-deposited aluminum" used in Comparative Examples 1-3, and "the ethylene vinyl alcohol copolymer film layer which vapor-deposited aluminum" The occurrence of “heat shrinkage wrinkles” and “sagging” due to the above-mentioned causes can be eliminated, so that quality defects (15.5%) occurring in Comparative Examples 1 to 3 can be eliminated. As a result, Examples 1 to 3 are comparative examples. The yield could be improved by 15.5% with respect to 1-3.

また、実施例1〜3および比較例1〜3の積層体の透湿度、酸素ガス透過度について、それぞれ評価し、その結果を表1〜3に示した。なお、透湿度試験は40℃、90%RHの環境下、また、酸素ガス透過度は23℃、60%RHの環境下で測定したものである。
透湿度:
JIS Z 0208〔透湿度試験(カップ法)〕に準拠して測定
単位はg/m2・day
酸素ガス透過度:
MOCON社製OX−TRAN MODEL2/21で測定
単位はml/m2・day・MPaです
Further, the moisture permeability and oxygen gas permeability of the laminates of Examples 1 to 3 and Comparative Examples 1 to 3 were evaluated, and the results are shown in Tables 1 to 3. The moisture permeability test was measured in an environment of 40 ° C. and 90% RH, and the oxygen gas permeability was measured in an environment of 23 ° C. and 60% RH.
Moisture permeability:
Measured according to JIS Z 0208 [moisture permeability test (cup method)] Unit: g / m 2 · day
Oxygen gas permeability:
Measured with MOCON OX-TRAN MODEL 2/21 Unit is ml / m 2 · day · MPa

Figure 2014035011
Figure 2014035011

Figure 2014035011
Figure 2014035011

Figure 2014035011
Figure 2014035011

表1〜3からも明らかなように、実施例1、2は、それぞれに対応する比較例1、2
に比べて透湿度は若干劣るものの、真空断熱材用積層体としては0.5g/m2・day以下の透湿度であれば問題ないレベルであり、また、酸素ガス透過度はいずれも同等レベルの結果となり、いずれも真空断熱材用積層体として好ましい結果となった。
As is clear from Tables 1 to 3, Examples 1 and 2 are Comparative Examples 1 and 2 corresponding to each.
Although the moisture permeability is slightly inferior to the above, the laminate for a vacuum heat insulating material is at a level where there is no problem if the moisture permeability is 0.5 g / m 2 · day or less, and the oxygen gas permeability is the same level. As a result, both were preferable results as a laminate for a vacuum heat insulating material.

1 真空断熱材用積層体
1’ 外被包材
2 真空断熱材
10 接着層
11 基材層
12 酸素ガスバリア層
13 熱接着性樹脂層
20 断熱芯材
A 熱接着部
DESCRIPTION OF SYMBOLS 1 Laminated body for vacuum heat insulating materials 1 'Outer covering material 2 Vacuum heat insulating material 10 Adhesive layer 11 Base material layer 12 Oxygen gas barrier layer 13 Thermal adhesive resin layer 20 Thermal insulation core material A Thermal bonding part

Claims (2)

断熱芯材を積層体からなる外被包材で封入し、該外被包材で封入された内部を脱気して真空状態としてなる真空断熱材に用いられる真空断熱用積層体において、少なくとも基材層、接着層、酸素ガスバリア層、接着層、熱接着性樹脂層がこの順に構成されてなり、前記酸素ガスバリア層が一方の面に無機物または金属酸化物の蒸着層を有する二軸延伸ポリエステルフィルムからなると共に前記蒸着層と接する側の前記接着層は塗布量が4g/m2・ドライの厚さ以上であって、かつ、塗布量が4g/m2・ドライの厚さで23℃60%RHの測定条件で測定したときの酸素ガスバリア性能が90ml/m2・day・MPa以下の接着剤で形成されていることを特徴とする真空断熱材用積層体。 In a laminated body for vacuum insulation used in a vacuum insulation material in which a heat insulation core material is enclosed by an outer envelope material made of a laminate, and the inside enclosed by the outer envelope material is evacuated to be in a vacuum state. A biaxially stretched polyester film comprising a material layer, an adhesive layer, an oxygen gas barrier layer, an adhesive layer, and a heat-adhesive resin layer in this order, and the oxygen gas barrier layer having an inorganic or metal oxide vapor deposition layer on one surface The adhesive layer on the side in contact with the vapor deposition layer has a coating amount of 4 g / m 2 · dry thickness or more and a coating amount of 4 g / m 2 · dry thickness at 23 ° C. and 60%. A laminate for a vacuum heat insulating material, characterized by being formed of an adhesive having an oxygen gas barrier performance of 90 ml / m 2 · day · MPa or less when measured under RH measurement conditions. 請求項1記載の真空断熱材用積層体を用いた外被包材内に、断熱芯材が封入され、該外被包材内部が脱気されて真空状態に密封包装されてなることを特徴とする真空断熱材。 A heat insulating core material is enclosed in an outer envelope material using the laminate for a vacuum heat insulating material according to claim 1, and the inner envelope material is degassed and hermetically packaged in a vacuum state. Vacuum insulation material.
JP2012175809A 2012-08-08 2012-08-08 Laminate for vacuum insulation Active JP6191100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012175809A JP6191100B2 (en) 2012-08-08 2012-08-08 Laminate for vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012175809A JP6191100B2 (en) 2012-08-08 2012-08-08 Laminate for vacuum insulation

Publications (2)

Publication Number Publication Date
JP2014035011A true JP2014035011A (en) 2014-02-24
JP6191100B2 JP6191100B2 (en) 2017-09-06

Family

ID=50284122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012175809A Active JP6191100B2 (en) 2012-08-08 2012-08-08 Laminate for vacuum insulation

Country Status (1)

Country Link
JP (1) JP6191100B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200964A (en) * 2013-04-03 2014-10-27 凸版印刷株式会社 Exterior material for a vacuum heat insulating material
JP2016223545A (en) * 2015-06-01 2016-12-28 凸版印刷株式会社 Laminate for vacuum heat insulation material and vacuum heat insulation material using the same
JP2017189879A (en) * 2016-04-11 2017-10-19 凸版印刷株式会社 Light-emitting body protective film, wavelength conversion sheet, and electroluminescent light-emitting unit
WO2021039337A1 (en) * 2019-08-26 2021-03-04 Dic株式会社 Gas barrier laminate and packaging material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305824A (en) * 2004-04-21 2005-11-04 Sekisui Film Kk Gas barrier laminated film
JP2008008315A (en) * 2006-06-27 2008-01-17 Toppan Printing Co Ltd Vacuum heat insulator
JP2009121671A (en) * 2007-10-23 2009-06-04 Panasonic Corp Vacuum heat insulation material
JP2011037156A (en) * 2009-08-12 2011-02-24 Gunze Ltd Gas-barrier shrinkable laminated film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305824A (en) * 2004-04-21 2005-11-04 Sekisui Film Kk Gas barrier laminated film
JP2008008315A (en) * 2006-06-27 2008-01-17 Toppan Printing Co Ltd Vacuum heat insulator
JP2009121671A (en) * 2007-10-23 2009-06-04 Panasonic Corp Vacuum heat insulation material
JP2011037156A (en) * 2009-08-12 2011-02-24 Gunze Ltd Gas-barrier shrinkable laminated film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200964A (en) * 2013-04-03 2014-10-27 凸版印刷株式会社 Exterior material for a vacuum heat insulating material
JP2016223545A (en) * 2015-06-01 2016-12-28 凸版印刷株式会社 Laminate for vacuum heat insulation material and vacuum heat insulation material using the same
JP2017189879A (en) * 2016-04-11 2017-10-19 凸版印刷株式会社 Light-emitting body protective film, wavelength conversion sheet, and electroluminescent light-emitting unit
WO2021039337A1 (en) * 2019-08-26 2021-03-04 Dic株式会社 Gas barrier laminate and packaging material

Also Published As

Publication number Publication date
JP6191100B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6191100B2 (en) Laminate for vacuum insulation
US10723530B2 (en) Outer packing material for vacuum insulation material, vacuum insulation material, and article provided with vacuum insulation material
JP2015169372A (en) Heat insulation container, and method of manufacturing heat insulation container
JP6776618B2 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and equipment with vacuum heat insulating material
KR20130095506A (en) A sealing member having good impact resistance and non-inflammability for vacuum insulation panel
JP2008114520A (en) Vacuum heat insulation material
JP7077642B2 (en) Laminated material for vacuum heat insulating material and vacuum heat insulating material
JP6094088B2 (en) Laminate for vacuum insulation
WO2017090240A1 (en) Vacuum heat insulator; and heat-insulating container, heat-insulating wall, and refrigerator using same
TWI604150B (en) Vacuum heat insulation material and heat insulation box
JP2016038013A (en) Vacuum heat insulation material, external capsule for vacuum heat insulation material and heat insulation item
JP2018059524A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP2000320786A (en) Vacuum thermal insulation material
JP6056169B2 (en) Vacuum insulation
CN111801525B (en) Vacuum heat insulating material and heat insulating box
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
JP6212975B2 (en) Vacuum insulation material
JP6255735B2 (en) Vacuum insulation material
JP7056029B2 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and articles with vacuum heat insulating material
JP2018053949A (en) Sheathing material for vacuum heat insulation material
JP2020008084A (en) Outer packaging material for vacuum insulation material, vacuum heat insulation material, and articles with vacuum insulation material
JP6775585B2 (en) Vacuum heat insulating material and heat insulating box
JP2011230300A (en) Film for vacuum heat insulating material, and vacuum heat insulating material
JP7305922B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP2017149475A (en) External package material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6191100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150