JP2005114014A - Vacuum heat insulating material and instrument using the same - Google Patents
Vacuum heat insulating material and instrument using the same Download PDFInfo
- Publication number
- JP2005114014A JP2005114014A JP2003348218A JP2003348218A JP2005114014A JP 2005114014 A JP2005114014 A JP 2005114014A JP 2003348218 A JP2003348218 A JP 2003348218A JP 2003348218 A JP2003348218 A JP 2003348218A JP 2005114014 A JP2005114014 A JP 2005114014A
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- insulating material
- heat
- layer
- vacuum heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Thermal Insulation (AREA)
- Thermally Insulated Containers For Foods (AREA)
- Cookers (AREA)
Abstract
Description
本発明は、真空断熱材及びその真空断熱材を使用した機器に関するもので、複写機やレーザープリンタ等の印刷装置、更には給湯機器等、特に高温部分を有する機器の断熱及び保温に関するものである。 The present invention relates to a vacuum heat insulating material and a device using the vacuum heat insulating material, and more particularly to heat insulation and heat insulation of a printing apparatus such as a copying machine or a laser printer, and further a hot water supply device such as a device having a high temperature part. .
真空断熱材は、発泡樹脂や粉末、又は繊維材等を芯材として外被材内に入れ、外被材内部を真空にすることにより気体の熱伝導率を著しく低下させた断熱材であり、その断熱性能を長期間に渡って維持するために断熱材内部を真空に保ち続けている。 The vacuum heat insulating material is a heat insulating material in which the thermal conductivity of the gas is remarkably reduced by putting the foamed resin, powder, fiber material or the like into the outer cover material as a core material and making the inner surface of the outer cover material vacuum. In order to maintain the heat insulation performance over a long period of time, the inside of the heat insulating material is kept in a vacuum.
この真空断熱材を家電製品である電気湯沸し器の貯水容器外周に設けて断熱し、保温電力を非常に少なくしたものがある。これは、真空断熱材を構成する積層フィルム中のガスバリア層において、高温にさらされる側に金属箔を用い、低温側は蒸着層を用いるもので、高温側では100℃程度の温度において、ガスバリア性が良好で真空状態を保持することができ、断熱性が長期間保たれ、低温側では蒸着層を用いることにより金属箔を伝って流れ込む熱を抑えることができ、真空断熱材全体の断熱性能を向上させたものである(例えば、特許文献1参照)。 Some of these vacuum heat insulating materials are provided on the outer periphery of a water storage container of an electric water heater, which is a household electric appliance, to insulate them, thereby reducing heat insulation power. In the gas barrier layer in the laminated film constituting the vacuum heat insulating material, a metal foil is used on the side exposed to high temperature, and a vapor deposition layer is used on the low temperature side, and the gas barrier property at a temperature of about 100 ° C. on the high temperature side. Is good and can maintain a vacuum state, heat insulation can be maintained for a long time, and by using a vapor deposition layer on the low temperature side, heat flowing through the metal foil can be suppressed, and the heat insulation performance of the entire vacuum heat insulating material can be reduced. This is an improvement (see, for example, Patent Document 1).
反面、一般的な樹脂フィルムを外被材として構成する従来の真空断熱材は、100℃をわずかに上回る温度までしか使えず、たとえば複写機等の定着装置においては、断熱耐熱性を有するエンジニアリング樹脂を用いて、定着ローラ、排紙ローラ等の定着部を有する外枠部を設けている(例えば、特許文献2参照)。
しかしながら、このように従来の真空断熱材が高温で使用できなかった理由の一つとして、外被材フィルム間の接着に2液硬化型のウレタン系接着剤を使用していたことがある。電気湯沸し器のように使用部位の温度が100℃以下のときは、長期間に渡って充分に断熱性能を維持することができたが、電気湯沸し器でも、貯湯容器の底面のヒーターが配設された部位や、複写機やレーザープリンタに用いられる定着装置のように、使用部位の温度が150℃程度になるときには、外被材フィルム間に剥離やデラミが生じる可能性があり、その部分から少しずつ真空度が低下し、長期間に渡って所定の断熱性能を維持することができない可能性がある。 However, one of the reasons why the conventional vacuum heat insulating material cannot be used at a high temperature is that a two-component curable urethane adhesive is used for bonding between the covering material films. When the temperature at the site of use was 100 ° C or less, as in an electric water heater, the heat insulation performance could be maintained for a long period of time. However, the electric water heater also has a heater at the bottom of the hot water storage container. When the temperature of the part to be used is about 150 ° C., such as a fixing part used in a copying machine or a laser printer, there is a possibility that peeling or delamination may occur between the covering material films. The degree of vacuum gradually decreases, and there is a possibility that the predetermined heat insulation performance cannot be maintained over a long period of time.
また、従来の真空断熱材は、柔軟性とコスト安価という理由から外被材最外層にナイロンフィルムが使用されており、難燃の性質をもたないが、電子機器等への適用においては他の部品同様、真空断熱材にも難燃性が求められていた。特にノート型パソコン内部のような小スペースに配設する場合には、厚みを抑えた真空断熱材でもパソコン内部の精密部品と近接するため、難燃性が必要であった。 In addition, the conventional vacuum insulation material uses nylon film for the outermost layer of the jacket material because of its flexibility and low cost, and has no flame retardant properties. Like the above parts, the vacuum insulation was also required to be flame retardant. In particular, when it is arranged in a small space such as inside a notebook personal computer, even a vacuum insulation material with a reduced thickness is in close proximity to the precision components inside the personal computer, so flame retardancy is required.
本発明は、外被材フィルム間の接着剤を変化させることにより、150℃以上の高温領域においても長期間に渡って断熱性能を維持することができる真空断熱材を提供することを目的とする。 An object of this invention is to provide the vacuum heat insulating material which can maintain heat insulation performance over a long period of time also in the high temperature area | region of 150 degreeC or more by changing the adhesive agent between cover material films. .
また本発明は、ラミネート構造を有する外被材に難燃性を付与することにより、電子機器等の内部に真空断熱材を使用した時も安全性を確保することを目的とする。 Another object of the present invention is to ensure safety even when a vacuum heat insulating material is used inside an electronic device or the like by imparting flame retardancy to a jacket material having a laminate structure.
上記課題を解決するため、本発明は、芯材と、熱溶着層とガスバリア層と保護層とを有するラミネート構造の外被材とを備え、前記熱溶着層は融点200℃以上の樹脂フィルムからなり、前記ガスバリア層及び前記保護層の樹脂フィルムの融点が、前記熱溶着層の樹脂フィルムの融点よりも高く、フィルム間の接着剤がアクリル系又はポリエステル系の接着剤であることを特徴とする真空断熱材である。 In order to solve the above-mentioned problems, the present invention includes a core material, and a jacket material having a laminate structure having a heat welding layer, a gas barrier layer, and a protective layer, and the heat welding layer is made of a resin film having a melting point of 200 ° C. or higher. The melting point of the resin film of the gas barrier layer and the protective layer is higher than the melting point of the resin film of the heat welding layer, and the adhesive between the films is an acrylic or polyester adhesive. It is a vacuum insulation material.
アクリル系又はポリエステル系の接着剤は約160℃の耐熱性があるため、150℃程度の高温雰囲気においても、外被材フィルム間に剥離やデラミが生じる可能性を減少させる。そのため、150℃雰囲気においても相当期間、所定の断熱性能を維持することができる。また、フィルム間の接着強度が上昇するため、ラミネートフィルムとしての引張強度や突き刺し強度等の機械強度も上昇し、真空断熱材内部又は外部からの耐衝撃性も向上させることができる。 Since the acrylic or polyester adhesive has a heat resistance of about 160 ° C., it reduces the possibility of peeling or delamination between the covering material films even in a high temperature atmosphere of about 150 ° C. Therefore, predetermined heat insulation performance can be maintained for a considerable period even in an atmosphere of 150 ° C. Moreover, since the adhesive strength between films increases, mechanical strength such as tensile strength and puncture strength as a laminate film also increases, and impact resistance from inside or outside the vacuum heat insulating material can be improved.
また、真空断熱材が使用できる周囲温度を熱溶着層のフィルムの融点に対して50K低い温度とすると、融点200℃以上のフィルムであれば150℃程度の高温雰囲気においてもガスバリア性の低下を少なく抑えることができ、長期間真空断熱材の断熱性能を維持することができるとともに、ガスバリア層や保護層に熱溶着層のフィルムよりも融点が高いフィルムを使用しているため、外被材を熱溶着するときにも問題なく真空断熱材を作製することができる。 Also, assuming that the ambient temperature at which the vacuum heat insulating material can be used is 50K lower than the melting point of the film of the heat-welded layer, the deterioration of the gas barrier property is reduced even in a high temperature atmosphere of about 150 ° C if the film has a melting point of 200 ° C or higher. The heat insulation performance of the vacuum heat insulating material can be maintained for a long period of time, and a film having a melting point higher than that of the heat welding layer is used for the gas barrier layer and the protective layer. A vacuum heat insulating material can be produced without any problem even when welding.
本発明によれば、アクリル系又はポリエステル系の接着剤は約160℃の耐熱性があるため、150℃程度の高温雰囲気においても、外被材フィルム間に剥離やデラミが生じる可能性を減少させる。そのため、ガス侵入による断熱性能の低下を減らし、150℃雰囲気においても相当期間、所定の断熱性能を維持することができる。また、フィルム間の接着強度が上昇するため、ラミネートフィルムとしての引張強度や突き刺し強度等の機械強度も上昇し、真空断熱材内部又は外部からの耐衝撃性も向上させることができる。また、融点200℃以上のフィルムからなるため150℃程度の高温雰囲気においてもガスバリア性の低下を少なく抑えることができ、長期間真空断熱材の断熱性能を維持することができるとともに、ガスバリア層や保護層に熱溶着層のフィルムよりも融点が高いフィルムを使用しているため、外被材を熱溶着するときにも問題なく真空断熱材を作製することができる。 According to the present invention, since the acrylic or polyester adhesive has a heat resistance of about 160 ° C., it reduces the possibility of peeling or delamination between the outer cover material films even in a high temperature atmosphere of about 150 ° C. . Therefore, a decrease in heat insulation performance due to gas intrusion can be reduced, and predetermined heat insulation performance can be maintained for a considerable period even in an atmosphere at 150 ° C. Moreover, since the adhesive strength between films increases, mechanical strength such as tensile strength and puncture strength as a laminate film also increases, and impact resistance from inside or outside the vacuum heat insulating material can be improved. In addition, since it is made of a film having a melting point of 200 ° C. or higher, it is possible to suppress a decrease in gas barrier properties even in a high temperature atmosphere of about 150 ° C., and to maintain the heat insulating performance of the vacuum heat insulating material for a long period of time. Since a film having a melting point higher than that of the film of the heat welding layer is used for the layer, a vacuum heat insulating material can be produced without any problem even when the jacket material is heat welded.
芯材と、熱溶着層とガスバリア層と保護層とを有するラミネート構造の外被材とを備え、前記熱溶着層は融点200℃以上の樹脂フィルムからなり、前記ガスバリア層及び前記保護層の樹脂フィルムの融点が、前記熱溶着層の樹脂フィルムの融点よりも高く、フィルム間の接着剤がアクリル系又はポリエステル系の接着剤であることを特徴とする真空断熱材である。 A core material, and a cover material having a laminate structure having a heat-welding layer, a gas barrier layer, and a protective layer, wherein the heat-welding layer is made of a resin film having a melting point of 200 ° C. or more, and the resin for the gas barrier layer and the protective layer The vacuum heat insulating material is characterized in that the melting point of the film is higher than the melting point of the resin film of the heat welding layer, and the adhesive between the films is an acrylic or polyester adhesive.
アクリル系又はポリエステル系の接着剤は約160℃の耐熱性があるため、150℃程度の高温雰囲気においても、外被材フィルム間に剥離やデラミが生じる可能性を減少させる。そのため、ガス侵入による断熱性能の低下を減らし、150℃雰囲気においても相当期間、所定の断熱性能を維持することができる。また、フィルム間の接着強度が上昇するため、ラミネートフィルムとしての引張強度や突き刺し強度等の機械強度も上昇し、真空断熱材内部又は外部からの耐衝撃性も向上させることができる。 Since the acrylic or polyester adhesive has a heat resistance of about 160 ° C., it reduces the possibility of peeling or delamination between the covering material films even in a high temperature atmosphere of about 150 ° C. Therefore, a decrease in heat insulation performance due to gas intrusion can be reduced, and predetermined heat insulation performance can be maintained for a considerable period even in an atmosphere at 150 ° C. Moreover, since the adhesive strength between films increases, mechanical strength such as tensile strength and puncture strength as a laminate film also increases, and impact resistance from inside or outside the vacuum heat insulating material can be improved.
また、真空断熱材が使用できる周囲温度を熱溶着層のフィルムの融点に対して50K低い温度とすると、融点200℃以上のフィルムであれば150℃程度の高温雰囲気においてもガスバリア性の低下を少なく抑えることができ、長期間真空断熱材の断熱性能を維持することができるとともに、ガスバリア層や保護層に熱溶着層のフィルムよりも融点が高いフィルムを使用しているため、外被材を熱溶着するときにも問題なく真空断熱材を作製することができる。 Also, assuming that the ambient temperature at which the vacuum heat insulating material can be used is 50K lower than the melting point of the film of the heat-welded layer, the deterioration of the gas barrier property is reduced even in a high temperature atmosphere of about 150 ° C if the film has a melting point of 200 ° C or higher. The heat insulation performance of the vacuum heat insulating material can be maintained for a long period of time, and a film having a melting point higher than that of the heat welding layer is used for the gas barrier layer and the protective layer. A vacuum heat insulating material can be produced without any problem even when welding.
本発明の請求項2に記載の発明は、芯材と、熱溶着層とガスバリア層と保護層とを有するラミネート構造の外被材とを備え、前記熱溶着層は融点200℃以上の樹脂フィルムからなり、前記ガスバリア層及び前記保護層の樹脂フィルムの融点が、前記熱溶着層の樹脂フィルムの融点よりも高く、フィルム間の接着剤がエポキシ系の接着剤であることを特徴とする真空断熱材である。
The invention described in
エポキシ系の接着剤は約200℃の耐熱性があるため、150℃程度の高温雰囲気においても、外被材フィルム間に剥離やデラミが生じる可能性を請求項1の場合より更に減少させる。そのため、ガス侵入による断熱性能の低下を減らし、150℃雰囲気においてもより長い期間、所定の断熱性能を維持することができる。また、フィルム間の接着強度が上昇するため、ラミネートフィルムとしての引張強度や突き刺し強度等の機械強度も上昇し、真空断熱材内部又は外部からの耐衝撃性も請求項1の場合より更に向上させることができる。
Since the epoxy adhesive has a heat resistance of about 200 ° C., even in a high temperature atmosphere of about 150 ° C., the possibility of peeling or delamination between the outer cover material films is further reduced than in the case of
本発明の請求項3に記載の発明は、芯材と、熱溶着層とガスバリア層と保護層とを有するラミネート構造の外被材とを備え、前記熱溶着層は融点200℃以上の樹脂フィルムからなり、前記ガスバリア層及び前記保護層の樹脂フィルムの融点が、前記熱溶着層の樹脂フィルムの融点よりも高く、フィルム間の接着剤がシリコン系の接着剤であることを特徴とする真空断熱材である。
The invention according to
シリコン系の接着剤は約250℃の耐熱性があるため、150℃程度の高温雰囲気においても、外被材フィルム間に剥離やデラミが生じる可能性を請求項1及び請求項2の場合より更に減少させる。そのため、ガス侵入による断熱性能の低下を減らし、150℃雰囲気においても約10年間は所定の断熱性能を維持することができる。また、フィルム間の接着強度が上昇するため、ラミネートフィルムとしての引張強度や突き刺し強度等の機械強度も上昇し、真空断熱材内部又は外部からの耐衝撃性も請求項1又は請求項2の場合より更に向上させることができる。
Since the silicon-based adhesive has a heat resistance of about 250 ° C., even in a high temperature atmosphere of about 150 ° C., the possibility of delamination or delamination between the covering material films is further increased than in the case of
本発明の請求項4に記載の発明は、外被材の熱溶着層と、ガスバリア層と、保護層とが少なくともUL94規格でVTM−2以上の難燃性フィルムであることを特徴とする請求項1から請求項3のうちいずれか一項記載の発明において、ラミネート構造を有する外被材を難燃性とし、更には真空断熱材としても難燃性を付与することができる。従って、真空断熱材使用時の安全性を向上することができる。
The invention according to
本発明の請求項5に記載の発明は、請求項1から請求項4のうちいずれか一項記載の発明において、熱溶着層をフッ素系樹脂フィルムとしたもので、これらのフィルムは融点がかなり高く、難燃性も有している。
The invention according to
本発明の請求項6に記載の発明は、請求項1から請求項5のうちいずれか一項記載の発明において、熱溶着層をポリクロロ3フッ化エチレンフィルムとしたもので、フッ素系樹脂フィルムの中でも融点が低いため使いやすく経済的である。
The invention according to
本発明の請求項7に記載の発明は、芯材と、熱溶着層とガスバリア層と保護層とを有するラミネート構造の外被材とを備え、前記熱溶着層が融点200℃未満の樹脂フィルムからなり、前記保護層が融点200℃以上のフィルムからなるもので、前記芯材を前記外被材で覆って内部を減圧して芯材周囲を熱溶着により封止したときに形成される外被材のヒレ部を、相対する断熱面の低温側に折り曲げた真空断熱材で、フィルム間の接着剤がアクリル系又はポリエステル系の接着剤であることを特徴とする真空断熱材である。
The invention according to
アクリル系又はポリエステル系の接着剤は約160℃の耐熱性があるため、150℃程度の高温雰囲気においても、外被材フィルム間に剥離やデラミが生じる可能性を減少させる。そのため、ガス侵入による断熱性能の低下を減らし、150℃雰囲気においても相当期間、所定の断熱性能を維持することができる。また、フィルム間の接着強度が上昇するため、ラミネートフィルムとしての引張強度や突き刺し強度等の機械強度も上昇し、真空断熱材内部又は外部からの耐衝撃性も向上させることができる。 Since the acrylic or polyester adhesive has a heat resistance of about 160 ° C., it reduces the possibility of peeling or delamination between the covering material films even in a high temperature atmosphere of about 150 ° C. Therefore, a decrease in heat insulation performance due to gas intrusion can be reduced, and predetermined heat insulation performance can be maintained for a considerable period even in an atmosphere at 150 ° C. Moreover, since the adhesive strength between films increases, mechanical strength such as tensile strength and puncture strength as a laminate film also increases, and impact resistance from inside or outside the vacuum heat insulating material can be improved.
また、外被材のヒレ部を、相対する断熱面の低温側、換言すれば発熱部とは反対側に折り曲げているため、熱溶着部を高温から保護することができる。例えば、真空断熱材の高温部側面が150℃になっても、低温側断熱面に位置する熱溶着部は100℃以下に維持することができる。従って、熱溶着層には融点200℃以上のフィルムを用いなくても良く、安価な材料で真空断熱材を構成することができる。 Moreover, since the fin part of a jacket material is bend | folded to the low temperature side of the heat insulation surface which opposes, in other words, the opposite side to a heat-emitting part, a heat welding part can be protected from high temperature. For example, even if the high temperature side surface of the vacuum heat insulating material reaches 150 ° C., the heat welded portion located on the low temperature side heat insulating surface can be maintained at 100 ° C. or lower. Therefore, it is not necessary to use a film having a melting point of 200 ° C. or higher for the heat-welded layer, and the vacuum heat insulating material can be configured with an inexpensive material.
本発明の請求項8に記載の発明は、芯材と、熱溶着層とガスバリア層と保護層とを有するラミネート構造の外被材とを備え、前記熱溶着層が融点200℃未満の樹脂フィルムからなり、前記保護層が融点200℃以上のフィルムからなるもので、前記芯材を前記外被材で覆って内部を減圧して芯材周囲を熱溶着により封止したときに形成される外被材のヒレ部を、相対する断熱面の低温側に折り曲げた真空断熱材で、フィルム間の接着剤がエポキシ系の接着剤であることを特徴とする真空断熱材である。 According to an eighth aspect of the present invention, there is provided a resin film having a core material, a jacket material having a laminate structure having a heat welding layer, a gas barrier layer, and a protective layer, wherein the heat welding layer has a melting point of less than 200 ° C. And the protective layer is made of a film having a melting point of 200 ° C. or more, and is formed by covering the core material with the jacket material, reducing the inside, and sealing the periphery of the core material by heat welding. A vacuum heat insulating material in which a fin portion of a material is bent to a low temperature side of an opposing heat insulating surface, and an adhesive between films is an epoxy-based heat insulating material.
エポキシ系の接着剤は約200℃の耐熱性があるため、150℃程度の高温雰囲気においても、外被材フィルム間に剥離やデラミが生じる可能性を本発明の請求項7の場合より更に減少させる。そのため、ガス侵入による断熱性能の低下を減らし、150℃雰囲気においてもより長い期間、所定の断熱性能を維持することができる。また、フィルム間の接着強度が上昇するため、ラミネートフィルムとしての引張強度や突き刺し強度等の機械強度も上昇し、真空断熱材内部又は外部からの耐衝撃性も本発明の請求項7の場合より更に向上させることができる。
Since the epoxy-based adhesive has a heat resistance of about 200 ° C., the possibility of peeling or delamination between the outer coating films is further reduced even in a high temperature atmosphere of about 150 ° C. compared to the case of
また、外被材のヒレ部を、相対する断熱面の低温側、換言すれば発熱部とは反対側に折り曲げているため、熱溶着部を高温から保護することができる。例えば、真空断熱材の高温部側面が150℃になっても、低温側断熱面に位置する熱溶着部は100℃以下に維持することができる。従って、熱溶着層には融点200℃以上のフィルムを用いなくても良く、安価な材料で真空断熱材を構成することができる。 Moreover, since the fin part of a jacket material is bend | folded to the low temperature side of the heat insulation surface which opposes, in other words, the opposite side to a heat-emitting part, a heat welding part can be protected from high temperature. For example, even if the high temperature side surface of the vacuum heat insulating material reaches 150 ° C., the heat welded portion located on the low temperature side heat insulating surface can be maintained at 100 ° C. or lower. Therefore, it is not necessary to use a film having a melting point of 200 ° C. or higher for the heat-welded layer, and the vacuum heat insulating material can be configured with an inexpensive material.
本発明の請求項9に記載の発明は、芯材と、熱溶着層とガスバリア層と保護層とを有するラミネート構造の外被材とを備え、前記熱溶着層が融点200℃未満の樹脂フィルムからなり、前記保護層が融点200℃以上のフィルムからなるもので、前記芯材を前記外被材で覆って内部を減圧して芯材周囲を熱溶着により封止したときに形成される外被材のヒレ部を、相対する断熱面の低温側に折り曲げた真空断熱材で、フィルム間の接着剤がシリコン系の接着剤であることを特徴とする真空断熱材である。
The invention according to
シリコン系の接着剤は約250℃の耐熱性があるため、150℃程度の高温雰囲気においても、外被材フィルム間に剥離やデラミが生じる可能性を本発明の請求項7及び請求項8の場合より更に減少させる。そのため、ガス侵入による断熱性能の低下を減らし、150℃雰囲気においても約10年間は所定の断熱性能を維持することができる。また、フィルム間の接着強度が上昇するため、ラミネートフィルムとしての引張強度や突き刺し強度等の機械強度も上昇し、真空断熱材内部又は外部からの耐衝撃性も本発明の請求項7及び請求項8の場合より更に向上させることができる。
Since the silicon-based adhesive has a heat resistance of about 250 ° C., the possibility of delamination or delamination between the outer coating films even in a high temperature atmosphere of about 150 ° C. is as set forth in
また、外被材のヒレ部を、相対する断熱面の低温側、換言すれば発熱部とは反対側に折り曲げているため、熱溶着部を高温から保護することができる。例えば、真空断熱材の高温部側面が150℃になっても、低温側断熱面に位置する熱溶着部は100℃以下に維持することができる。従って、熱溶着層には融点200℃以上のフィルムを用いなくても良く、安価な材料で真空断熱材を構成することができる。 Moreover, since the fin part of a jacket material is bend | folded to the low temperature side of the heat insulation surface which opposes, in other words, the opposite side to a heat-emitting part, a heat welding part can be protected from high temperature. For example, even if the high temperature side surface of the vacuum heat insulating material reaches 150 ° C., the heat welded portion located on the low temperature side heat insulating surface can be maintained at 100 ° C. or lower. Therefore, it is not necessary to use a film having a melting point of 200 ° C. or higher for the heat-welded layer, and the vacuum heat insulating material can be configured with an inexpensive material.
本発明の請求項10に記載の発明は、請求項7から請求項9のうちいずれか一項記載の発明において外被材の熱溶着層を無延伸ポリプロピレンフィルムとしたもので、同じく一般的な高密度ポリエチレンフィルムや低密度ポリエチレンフィルムよりも融点が高いため、より高い温度まで使用することができる。
The invention according to claim 10 of the present invention is the invention according to any one of
本発明の請求項11に記載の発明は、請求項1から請求項10のうちいずれか一項記載の発明において、外被材の外層の樹脂フィルムをフッ素系樹脂又はイミド系樹脂のフィルムとしたもので、これらのフィルムは融点がより高いか或いは存在しないとともに、難燃性も有する。
The invention according to claim 11 of the present invention is the invention according to any one of
本発明の請求項12に記載の発明は、請求項1から請求項11のうちいずれか一項記載の発明において、外被材の少なくとも最外側の保護層が難燃性フィルムであり、かつ外被材の端面全体を覆うように難燃性部材を設けたことを特徴とする真空断熱材であり、最外層が難燃性フィルムで覆われている上に、外被材の端面でわずかに露出している熱溶着層などの非難燃性フィルムの断面部分まで難燃性部材で覆われることにより、真空断熱材の外表面全体を難燃性とすることができ、真空断熱材使用時の安全性を向上することができる。 According to a twelfth aspect of the present invention, in the invention according to any one of the first to eleventh aspects, at least the outermost protective layer of the jacket material is a flame retardant film, and It is a vacuum heat insulating material characterized in that a flame retardant member is provided so as to cover the entire end surface of the material, and the outermost layer is covered with a flame retardant film, and slightly on the end surface of the material. The entire outer surface of the vacuum heat insulating material can be made flame retardant by covering the cross section of the non-flame retardant film such as the exposed heat-welded layer with the flame retardant member. Safety can be improved.
本発明の請求項13に記載の発明は、本体又は本体の内部に、100℃を超える発熱体と、前記発熱体の温度により悪影響を受ける被保護部材と、前記発熱体からの熱影響を遮断する断熱部材とを有し、前記断熱部材が請求項1から請求項12のうちいずれか一項記載の真空断熱材であることを特徴とする真空断熱材を使用した機器である。
According to the thirteenth aspect of the present invention, the main body or the inside of the main body has a heating element exceeding 100 ° C., a protected member that is adversely affected by the temperature of the heating element, and a thermal effect from the heating element. An apparatus using a vacuum heat insulating material, wherein the heat insulating member is a vacuum heat insulating material according to any one of
発熱体の熱影響を遮断するために分厚い断熱材を配設したり、構造的に大きなスペースを設けたり、更には、風路を設けて送風を行ったりすることなく、薄いスペースで効果的に熱による悪影響を排除できる。 It is effective in a thin space without installing thick heat insulating material to block the heat influence of the heating element, providing a structurally large space, and further providing an air passage to blow air. The adverse effect of heat can be eliminated.
本発明の請求項14に記載の発明は、本体又は本体の内部に100℃を超えて加熱された被保温部と、前記被保温部の温度状態を保つための断熱部材とを有し、前記断熱部材が請求項1から請求項12のうちいずれか一項記載の真空断熱材であることを特徴とする真空断熱材を使用した機器である。
The invention according to claim 14 of the present invention comprises a main body or a heat-retained part heated to exceed 100 ° C. inside the main body, and a heat insulating member for maintaining the temperature state of the heat-retained part, It is an apparatus using the vacuum heat insulating material, wherein the heat insulating member is the vacuum heat insulating material according to any one of
高温に加熱された被保温部を保温するために、分厚い断熱材を配設したり、頻繁な加熱制御により大きなエネルギーを消費したりすることなく、薄いスペースで効果的に保温することができる。 In order to keep the heated portion heated to a high temperature, it is possible to effectively keep the heat in a thin space without disposing a thick heat insulating material or consuming a large amount of energy by frequent heating control.
本発明の請求項15に記載の発明は、本体は印刷装置で、本体の内部に加熱定着手段を有する定着装置と、前記定着装置により記録紙に溶融定着されるトナーを収容するトナー収容部と、印刷を制御する制御装置とを備え、少なくとも、前記定着装置、又は前記トナー収容部、又は前期制御装置のいずれかの外周近傍に設けられ、前記定着装置から前記トナー収容部又は前記制御装置への熱影響を遮断する真空断熱材を有することを特徴とする請求項13記載の真空断熱材を使用した機器である。 According to a fifteenth aspect of the present invention, the main body is a printing apparatus, a fixing device having a heat fixing means inside the main body, and a toner storage portion for storing toner melted and fixed on a recording paper by the fixing device; A control device that controls printing, and is provided at least near the outer periphery of either the fixing device, the toner storage unit, or the previous control device, and from the fixing device to the toner storage unit or the control device. The apparatus using a vacuum heat insulating material according to claim 13, further comprising a vacuum heat insulating material that blocks a thermal effect of the heat insulating material.
請求項1から請求項12に記載されている真空断熱材はいずれも所定の耐熱性を有するものであり、150℃程度になっている定着装置の断熱部材として貼りつけても熱溶着部の劣化は小さく、長期間断熱性能を維持することができる。これにより定着装置からの熱が遮断されるため、定着装置の周辺にトナー収容部や感光ドラム等のトナーを転写するための転写装置、及び制御装置などの外部からの熱により悪影響を受け易い部品や装置を近接して配設することが可能となり、この定着装置を使用した印刷装置の小型化や品質向上等に寄与することができる。
Any one of the vacuum heat insulating materials described in
本発明の請求項16に記載の発明は、本体は、印刷装置の内部に設けられた、記録紙にトナーを溶融定着するための定着装置で、前記定着装置は加熱手段により加熱される熱定着ローラーと、前記熱定着ローラーに記録紙を圧接する加圧ローラーと、少なくとも、前記熱定着ローラー又は前記加圧ローラーを囲むように配設された保温用真空断熱材とを有することを特徴とする請求項14記載の真空断熱材を使用した機器である。
According to a sixteenth aspect of the present invention, the main body is a fixing device provided in the inside of the printing apparatus for fusing and fixing the toner on the recording paper, and the fixing device is heated by heating means. It has a roller, a pressure roller that presses the recording paper against the heat fixing roller, and at least a heat insulating vacuum heat insulating material disposed so as to surround the heat fixing roller or the pressure roller. An apparatus using the vacuum heat insulating material according to
請求項1から請求項12に記載されている真空断熱材はいずれも所定の耐熱性を有するものであり、およそ200℃になっている熱定着ローラーを囲むように配設された断熱部材のうち、ほぼ150℃まで温度低下した外側部分に配設したり、およそ120℃になる加圧ローラーを囲むように配設すれば、真空断熱材の熱溶着部の劣化は小さく、長期間断熱性能を維持することができる。これにより、薄い断熱材で熱定着ローラーと加圧ローラーの温度を安定して保つことができて、熱定着ローラーを加熱するためのエネルギーが少なくて済み、印刷装置の小型化や品質向上、及び装置立ち上がりの時間短縮、並びに省エネルギー化等に寄与することができる。
Any one of the vacuum heat insulating materials described in
本発明の請求項17に記載の発明は、本体は給湯装置で、本体の内部に貯湯容器と、貯湯容器に近接した湯沸しヒーターと、前記貯湯容器を包むように配設した断熱材とを備え、少なくとも前記湯沸しヒーターに近接する部位に真空断熱材を配設したことを特徴とする請求項14記載の真空断熱材を使用した機器である。
The invention according to claim 17 of the present invention is that the main body is a hot water supply device, and includes a hot water storage container inside the main body, a hot water heater adjacent to the hot water storage container, and a heat insulating material disposed so as to wrap the hot water storage container, 15. The apparatus using a vacuum heat insulating material according to
貯湯容器の側面周囲は沸騰したお湯の温度でせいぜい100℃が最高使用温度であり、従来から真空断熱材が使用されてきたが、湯沸しヒーターが配設された底面には適用できなかった。請求項1から請求項12に記載されている真空断熱材は、いずれも所定の耐熱性を有するものであり、湯沸しヒーターの近傍でも150℃を越えないように配設すれば、お湯が冷めにくく消費電力を削減できるとともに、貯湯容器より下部の体積を小さくすることができ、給湯装置を小型化することができる。
The temperature around the side surface of the hot water storage container is the hot water temperature of 100 ° C., which is at most the maximum operating temperature. Conventionally, a vacuum heat insulating material has been used, but it cannot be applied to the bottom surface where the water heater is provided. Any one of the vacuum heat insulating materials described in
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
(実施の形態1)
図1は本発明の実施の形態1における真空断熱材の断面図、図2は真空断熱材のヒレ部を示す要部断面図である。 図1,図2において、真空断熱材1は2枚の外被材2を向かい合わせて芯材3を覆い、内部を真空まで減圧して周囲を熱溶着により封止したものである。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a vacuum heat insulating material according to
外被材2は2種類のラミネートフィルム2a,2bを組み合わせて用い、内側からそれぞれ熱溶着層4a,4b、ガスバリア層5a,5b、第一の保護層6a,6b、及び第二の保護層7a,7bの各4層により構成しており、また、いずれのフィルムも少なくともVTM−2以上の難燃性を有するものである。
The
ラミネートフィルム2aは断熱面の高温側として用い、熱溶着層4aに融点が210℃のポリクロロ3フッ化エチレン(厚さ50μm)、ガスバリア層5aには高温側に配設することを考慮して厚さ6μmのアルミ箔、第一の保護層6aには融点270℃のポリエチレンナフタレート(厚さ12μm)、第二の保護層7aには融点260℃の4フッ化エチレン−エチレン共重合体(厚さ25μm)とした。ポリクロロ3フッ化エチレンは、フッ素系樹脂フィルムの中でも融点が低く使いやすい上、ガスバリア性も優れるものである。 The laminate film 2a is used on the high temperature side of the heat insulating surface, the polychlorinated ethylene fluoride (thickness 50 μm) having a melting point of 210 ° C. is used for the heat welding layer 4a, and the gas barrier layer 5a is thick on the high temperature side. 6 μm thick aluminum foil, the first protective layer 6 a has a melting point of 270 ° C. polyethylene naphthalate (thickness 12 μm), the second protective layer 7 a has a melting point of 260 ° C. tetrafluoroethylene-ethylene copolymer (thickness) 25 μm). Polychlorotrifluoride ethylene has a low melting point among the fluororesin films and is easy to use, and also has excellent gas barrier properties.
また、ラミネートフィルム2bは断熱面の低温側として用い、熱溶着層4bにラミネートフィルム2aと同じポリクロロ3フッ化エチレン(厚さ50μm)、ガスバリア層5bには500Åの厚さにアルミニウムを蒸着した融点270℃のポリエチレンナフタレート(厚さ12μm)、第一の保護層6bにはガスバリア性の強化のために内側に500Åの厚さにアルミニウムを蒸着したポリエチレンナフタレート(厚さ12μm)、第二の保護層7bは融点260℃の4フッ化エチレン−エチレン共重合体(厚さ25μm)とした。 Also, the laminate film 2b is used as the low temperature side of the heat insulating surface, the melting point obtained by depositing polychlorotrifluoride ethylene (thickness 50 μm) same as the laminate film 2a on the heat welding layer 4b and aluminum having a thickness of 500 mm on the gas barrier layer 5b. Polyethylene naphthalate (thickness: 12 μm) at 270 ° C., polyethylene naphthalate (thickness: 12 μm) in which aluminum is vapor-deposited to a thickness of 500 mm on the inside for strengthening the gas barrier property on the first protective layer 6b, The protective layer 7b was a tetrafluoroethylene-ethylene copolymer (thickness 25 μm) having a melting point of 260 ° C.
真空断熱材1の作製にあたってはラミネートフィルム2a,2bを向かい合わせにして三辺を熱溶着し、芯材を挿入するための袋を作成しておく。
In producing the vacuum
芯材3は、平均一次粒子径7nmであるヒュームドシリカに粉体比抵抗値が0.6Ω/cmのカーボンブラックが均一分散され、充填されているものである。カーボンブラックの添加量は5wt%とした。
この芯材3を水分吸着剤である酸化カルシウムと共に外被材2の袋内に挿入し、内部を10Paまで減圧して残りの一辺を熱溶着により封止して厚さ6mmの真空断熱材1を作製し
た。
The
The
また、フィルム間の接着剤は約160℃の耐熱性を有するアクリル系又はポリエステル系の接着剤、約200℃の耐熱性を有するエポキシ系の接着剤、約250℃の耐熱性を有するエポキシ系の接着剤等が使用できる。 The adhesive between the films is an acrylic or polyester adhesive having a heat resistance of about 160 ° C., an epoxy adhesive having a heat resistance of about 200 ° C., and an epoxy adhesive having a heat resistance of about 250 ° C. An adhesive or the like can be used.
これら材料とフィルム間の接着剤に約160℃の耐熱性を有するアクリル系又はポリエステル系の接着剤を使用した真空断熱材1をサンプル数N=15作製し、150℃の雰囲気に3年間放置したと見込まれる加速試験を行うと、全てのサンプルにおいて外被材フィルム間に剥離やデラミがなく、所定の断熱性能を維持することができた。
A vacuum
また、これら材料とフィルム間の接着剤に約200℃の耐熱性を有するエポキシ系の接着剤を使用し、真空断熱材1をサンプル数N=15作製し、150℃の雰囲気に5年間放置したと見込まれる加速試験を行うと、全てのサンプルにおいて外被材フィルム間に剥離やデラミがなく、所定の断熱性能を維持することができた。
In addition, an epoxy adhesive having a heat resistance of about 200 ° C. was used as an adhesive between these materials and the film, and a vacuum
また、これら材料とフィルム間の接着剤に約250℃の耐熱性を有するシリコン系の接着剤を使用し、真空断熱材1をサンプル数N=15作製し、150℃の雰囲気に10年間放置したと見込まれる加速試験を行うと、全てのサンプルにおいて外被材フィルム間に剥離やデラミがなく、所定の断熱性能を維持することができた。
Further, a silicon-based adhesive having a heat resistance of about 250 ° C. was used as an adhesive between these materials and the film, and a vacuum
また、UL94安全規格の機器の部品用プラスチック材料の燃焼試験に準拠して燃焼性を確認したところ、ヒレ部端面においてもV−0相当の結果が得られた。 Further, when combustibility was confirmed in accordance with a combustion test of plastic materials for parts of UL94 safety standard equipment, a result equivalent to V-0 was also obtained at the end face of the fin portion.
このように、150℃の高温雰囲気においても熱溶着層のガスバリア性の低下を少なく抑えることができるため熱伝導率の劣化は小さく、長期間真空断熱材の断熱性能を維持することができる。また、ラミネート構造を有する外被材2として、更には真空断熱材1としても難燃性を付与することができ、真空断熱材使用時の安全性を向上することができる。
As described above, even in a high temperature atmosphere of 150 ° C., the deterioration of the gas barrier property of the heat-welded layer can be suppressed to a small extent, so that the thermal conductivity is hardly deteriorated and the heat insulating performance of the vacuum heat insulating material can be maintained for a long time. In addition, flame retardant properties can be imparted as the
なお、熱溶着層4a,4bに使用する樹脂フィルムは融点が200℃以上で熱溶着できる樹脂フィルムであれば特に指定するものではない。例えば、融点270℃のポリエチレンナフタレートやフッ素系樹脂フィルムである融点210℃のポリクロロ3フッ化エチレン、融点260℃の4フッ化エチレン−エチレン共重合体、融点285℃の4フッ化エチレン−6フッ化ポリプロピレン共重合体などが望ましい。 In addition, the resin film used for the heat welding layers 4a and 4b is not particularly specified as long as the resin film can be heat welded at a melting point of 200 ° C. or higher. For example, polyethylene naphthalate having a melting point of 270 ° C., polychloroethylene trifluoride having a melting point of 210 ° C., which is a fluororesin film, a tetrafluoroethylene-ethylene copolymer having a melting point of 260 ° C., and an ethylene tetrafluoride-6 having a melting point of 285 ° C. A fluorinated polypropylene copolymer is desirable.
ガスバリア層5a,5bは熱溶着層4a,4bで使用したフィルムよりも融点が高い、金属箔や金属蒸着又は無機酸化物蒸着を施したフィルム、又は樹脂フィルムでもガスバリア性の高いものであれば特に指定するものではない。 The gas barrier layers 5a and 5b have a higher melting point than the films used in the heat-welded layers 4a and 4b, particularly if the metal foil, the film subjected to metal vapor deposition or inorganic oxide vapor deposition, or the resin film has high gas barrier properties. Not specified.
例えば、金属箔としてはアルミニウム箔がよく使用され、他にも真空断熱材周囲の金属箔を伝って流れ込む熱量が少ない金属として、鉄,ニッケル,プラチナ,スズ,チタン,ステンレス及び炭素鋼が使用できる。また、金属蒸着の材料は、アルミニウム、コバルト、ニッケル、亜鉛、銅、銀、或いはそれらの混合物等が使用でき、無機酸化物蒸着の材料は、シリカ、アルミナ等が使用できる。蒸着を施す樹脂フィルムにはポリエチレンナフタレートのほか、ポリイミドフィルムなどが使用できる。 For example, aluminum foil is often used as the metal foil, and iron, nickel, platinum, tin, titanium, stainless steel, and carbon steel can be used as other metals that have less heat flowing along the metal foil around the vacuum insulation material. . Moreover, aluminum, cobalt, nickel, zinc, copper, silver, or a mixture thereof can be used as a material for metal deposition, and silica, alumina, or the like can be used as a material for inorganic oxide deposition. In addition to polyethylene naphthalate, polyimide film or the like can be used as the resin film to be deposited.
また、保護層6a,6b,7a,7bは熱溶着層4a,4bで使用したフィルムよりも融点が高いフィルムであれば良く、具体的には、熱溶着層4a,4bに融点が260℃の4フッ化エチレン−エチレン共重合体を使用した場合は、融点が310℃の4フッ化エチレン−パーフロロアルコキシエチレン共重合体、融点が330℃の4フッ化エチレン、融点が330℃のポリエーテルケトンなどが使用でき、他にもポリサルフォンやポリエーテルイミドなどが使用できる。 Further, the protective layers 6a, 6b, 7a and 7b may be films having a higher melting point than the films used in the heat-welded layers 4a and 4b. Specifically, the heat-melting layers 4a and 4b have a melting point of 260 ° C. When a tetrafluoroethylene-ethylene copolymer is used, a tetrafluoroethylene-perfluoroalkoxyethylene copolymer having a melting point of 310 ° C., a tetrafluoroethylene having a melting point of 330 ° C., and a polyether having a melting point of 330 ° C. Ketones can be used, and polysulfone and polyetherimide can also be used.
芯材3は、無機及び有機の粉末材料、無機及び有機の繊維材料などが利用でき、特に指定するものではないが、例えば、粉末材料としては凝集シリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレー及びタルクなどの無機粉末が使用でき、繊維材料としてはグラスウール、セラミックファイバーなどの無機繊維が好ましい。その中でも二次凝集粒子径が20μm以下の無機粉末が望ましく、これら粉末材料は粒子が非常に細かいため粒子間の接触熱抵抗が増加して固体熱伝導率が小さくなり、更に10Torr以下の圧力下では圧力に関係せずに非常に小さな熱伝導率を示すものである。このため、空気分子の運動の大きい高温条件での使用に最適な材料である。
The
(実施の形態2)
図3は本発明の実施の形態2における真空断熱材の断面図で、高温部である発熱体に接している状態を示す。 図3において、真空断熱材8の外被材9は、実施の形態1の構成に対して熱溶着層4a,4bを融点が160℃の無延伸ポリプロピレンフィルムとしたもので、外被材9の内部に芯材3が存在しない密着部10と熱溶着部11とからなるヒレ部12を高温である発熱体13とは反対側となる低温側断熱面8bに沿うように折り曲げ、熱溶着部11を保護するようにしている。外被材9のガスバリア層と保護層、及び芯材3の構成については実施の形態1と同様である。
(Embodiment 2)
FIG. 3 is a cross-sectional view of the vacuum heat insulating material according to
また、フィルム間の接着剤は約160℃の耐熱性を有するアクリル系又はポリエステル系の接着剤、約200℃の耐熱性を有するエポキシ系の接着剤、約250℃の耐熱性を有するエポキシ系の接着剤等が使用できる。 The adhesive between the films is an acrylic or polyester adhesive having a heat resistance of about 160 ° C., an epoxy adhesive having a heat resistance of about 200 ° C., and an epoxy adhesive having a heat resistance of about 250 ° C. An adhesive or the like can be used.
これら材料とフィルム間の接着剤に約160℃の耐熱性を有するアクリル系又はポリエステル系の接着剤を使用した真空断熱材1をサンプル数N=15作製し、150℃の雰囲気に3年間放置したと見込まれる加速試験を行うと、全てのサンプルにおいて外被材フィルム間に剥離やデラミがなく、所定の断熱性能を維持することができた。
A vacuum
また、これら材料とフィルム間の接着剤に約200℃の耐熱性を有するエポキシ系の接着剤を使用した真空断熱材1をサンプル数N=15作製し、150℃の雰囲気に5年間放置したと見込まれる加速試験を行うと、全てのサンプルにおいて外被材フィルム間に剥離やデラミがなく、所定の断熱性能を維持することができた。
In addition, the vacuum
また、これら材料とフィルム間の接着剤に約250℃の耐熱性を有するシリコン系の接着剤を使用し、真空断熱材1をサンプル数N=15作製し、150℃の雰囲気に8年間放置したと見込まれる加速試験を行うと、全てのサンプルにおいて外被材フィルム間に剥離やデラミがなく、所定の断熱性能を維持することができた。
Further, a silicon-based adhesive having a heat resistance of about 250 ° C. was used as an adhesive between these materials and the film, and a vacuum
また、ここで発熱体13の温度を150℃としたときでも、低温側断熱面8bに沿う熱溶着部11の温度は80℃以下を維持することができた。すなわち、熱溶着層に融点200℃以上の樹脂フィルムを使用せずに従来の融点200℃未満の安価な樹脂フィルムを使用しても劣化することがなく、熱溶着部11からガスが浸入して真空断熱材の断熱性能が低下することなく、150℃の発熱体13から断熱することができる。 In addition, even when the temperature of the heating element 13 was set to 150 ° C., the temperature of the heat welded portion 11 along the low-temperature side heat insulating surface 8b could be maintained at 80 ° C. or less. That is, even if a conventional inexpensive resin film having a melting point of less than 200 ° C. is used without using a resin film having a melting point of 200 ° C. or higher for the heat-welded layer, gas does not enter from the heat-welded portion 11 without deterioration. The heat insulating performance of the vacuum heat insulating material can be insulated from the heating element 13 at 150 ° C. without deteriorating.
このとき、融点が200℃未満のフィルムとしては、無延伸ポリプロピレンフィルム、高密度ポリエチレンフィルム、直鎖状低密度ポリエチレンフィルム、及びエチレン−ビニルアルコール共重合体フィルム等を使用しても何等問題はなく、安価な材料からなる外被材で長期間真空断熱材内部への空気及び水蒸気の浸入を防ぐことができ、断熱性能を維持することができる。 At this time, there is no problem even if an unstretched polypropylene film, a high-density polyethylene film, a linear low-density polyethylene film, an ethylene-vinyl alcohol copolymer film, or the like is used as the film having a melting point of less than 200 ° C. In addition, it is possible to prevent the intrusion of air and water vapor into the vacuum heat insulating material for a long period of time by using a cover material made of an inexpensive material, and heat insulating performance can be maintained.
(実施の形態3)
図4は本発明の実施の形態3における真空断熱材の平面図である。
(Embodiment 3)
FIG. 4 is a plan view of a vacuum heat insulating material according to
図4において、真空断熱材8の構成は実施の形態2と同様であり、ヒレ部12の折り曲げを維持するように難燃性テープ14で固定している。また、フィルム間の接着剤にはエポキシ系の接着剤を使用している。このとき、外被材9の端面が露出しないようにヒレ部12の先端を完全に覆うように難燃性テープ14を貼り付けた。
In FIG. 4, the structure of the vacuum
この真空断熱材8の熱伝導率を測定したところ、0.0049W/mKであった。この真空断熱材8を150℃の雰囲気に5年間放置したと見込まれる加速試験を行った後の熱伝導率を測定したところ、0.0125W/mKであった。
It was 0.0049 W / mK when the heat conductivity of this vacuum
また、UL94安全規格の機器の部品用プラスチック材料の燃焼試験に準拠して燃焼性を確認したところ、V−0相当の結果が得られた。 Moreover, when combustibility was confirmed based on the combustion test of the plastic material for parts of the equipment of UL94 safety standard, the result equivalent to V-0 was obtained.
すなわち、外被材9の端面に露出する熱溶着層を構成する無延伸ポリプロピレンフィルム等の非難燃性フィルムが難燃性テープ14で覆われているため、真空断熱材としても難燃性を付与することができる。従って、真空断熱材使用時の安全性を向上することができる。
That is, since a non-flame retardant film such as an unstretched polypropylene film constituting the heat-welded layer exposed on the end face of the
(実施の形態4)
図5は本発明の実施の形態4における印刷装置の断面図である。
(Embodiment 4)
FIG. 5 is a sectional view of a printing apparatus according to
定着装置15を有する印刷装置16における記録紙17への印刷は、感光ドラム18の表面に静電荷画像を形成し、そこにトナー収容部19からトナーを吸着させた後、転写ドラム20を介して記録紙17に転写する。このトナー像が転写された記録紙17を定着装置15に搬入し、高温に保たれた熱定着ローラー21と加圧ローラー22の間に記録紙17を通過させることによりトナーを溶融定着させる。
Printing on the
熱定着ローラー21と加圧ローラー22の周囲には、所定の高い温度を保つために保温用真空断熱材23aを配設した。また、定着装置15の外枠には、周囲に熱影響を与えないように遮断用真空断熱材23bを側面全体及び上面に配設した。遮断用には真空断熱材23cのように配設してもよい。これらの真空断熱材23a,23b,23cは本発明の実施の形態1に示す構成とし、更にヒレ部を熱定着ローラー21とは反対側に折り曲げて使用した。
A heat insulating vacuum heat insulating material 23a is disposed around the
これにより、印字品質が向上するとともに、制御装置(図示せず)やトナー収容部19及び感光ドラム18等の転写装置は、トナーに悪影響が及ばない45℃以下に長期間維持することができた。
As a result, the printing quality is improved, and the control device (not shown), the transfer device such as the
なお、本発明による真空断熱材は、印刷装置である複写機やレーザープリンタの定着装置以外にも、同じように150℃以下の発熱体を断熱したり、保温したりする必要がある製品においても使用することができる。 Note that the vacuum heat insulating material according to the present invention is not limited to a copying machine as a printing apparatus or a fixing device for a laser printer, but also in a product that needs to insulate or keep warm a heating element of 150 ° C. or less. Can be used.
(実施の形態5)
図6は本発明の実施の形態5における電気湯沸し器の断面図である。
(Embodiment 5)
FIG. 6 is a sectional view of an electric water heater according to the fifth embodiment of the present invention.
図6において、電気湯沸し器24は本体の内部に湯を沸かすとともに貯湯する貯湯容器25を有し、上部を開閉可能な上蓋26で覆っている。
In FIG. 6, an
貯湯容器25の底面にはドーナツ状のヒーター27が密接して装着されており、湯温は制御装置28が温度検知器29からの信号を取り込み、ヒーター27を制御して所定の温度を保つ。また、同じく底面に設けた吸込口30からモーター31により駆動されるポンプ32を経て、お湯の出口である吐出口33までが出湯管34により連通しており、出湯は押しボタン35を押してモーター31を起動することにより行う。 A donut-shaped heater 27 is closely attached to the bottom surface of the hot water storage container 25, and the controller 28 takes in a signal from the temperature detector 29 and controls the heater 27 to maintain a predetermined temperature. Similarly, a hot water outlet 34 communicates with a hot water outlet 34 through a pump 32 driven by a motor 31 from a suction port 30 provided on the bottom surface. This is done by starting
更に、貯湯容器25の側面には真空断熱材36が巻かれており、同じく底面のヒーター27の外側には高温用真空断熱材37が配設され、貯湯容器25の熱が逃げて湯温が低下することを抑えている。側面の真空断熱材36は100℃に耐えられる構成で従来から配設されていたものであり、底面の真空断熱材37は実施の形態3に示した構成のものを新たに配設したものである。
Further, a vacuum
従来から高温となるために断熱材を配設できなかったところを断熱することにより、約5%の消費電力量の低減が図れ、その性能を長期間維持することができた。また、本体底面においても空間を設けて断熱する必要がなくなり、貯湯容器より下部の体積を小さくすることができ、給湯装置を小型化することができた。 By insulating the place where the heat insulating material could not be provided due to the high temperature, it was possible to reduce the power consumption by about 5% and maintain the performance for a long time. Moreover, it is not necessary to provide heat insulation by providing a space on the bottom surface of the main body, the volume below the hot water storage container can be reduced, and the hot water supply apparatus can be reduced in size.
以上のように、本発明にかかる真空断熱材は、高温雰囲気での断熱性能の低下を抑制できるので、複写機やレーザープリンタ等の印刷装置、更には給湯機器等、特に高温部分を有する機器等の断熱材として幅広く適用できる。 As described above, since the vacuum heat insulating material according to the present invention can suppress a decrease in heat insulating performance in a high temperature atmosphere, a printing apparatus such as a copying machine or a laser printer, a hot water supply device, etc., particularly a device having a high temperature portion, etc. It can be widely applied as a heat insulating material.
1 真空断熱材
2 外被材
2a,2b ラミネートフィルム
3 芯材
4a,4b 熱溶着層
5a,5b ガスバリア層
6a,6b 第一の保護層
7a,7b 第二の保護層
8 真空断熱材
8b 低温側断熱面
9 外被材
10 密着部
11 熱溶着部
12 ヒレ部
13 発熱体
14 難燃性テープ
15 定着装置
16 印刷装置
17 記録紙
18 感光ドラム
19 トナー収容部
20 転写ドラム
21 熱定着ローラー
22 加圧ローラー
23a,23b,23c 真空断熱材
24 ノート型パソコン
25 プリント基板
26 CPU
32 真空断熱材
33 キーボード
34 電気湯沸し器
35 貯湯容器
37 ヒーター
46,47 真空断熱材
DESCRIPTION OF
32 Vacuum heat insulating material 33 Keyboard 34 Electric water heater 35 Hot
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003348218A JP4281502B2 (en) | 2003-10-07 | 2003-10-07 | Vacuum insulation and equipment using vacuum insulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003348218A JP4281502B2 (en) | 2003-10-07 | 2003-10-07 | Vacuum insulation and equipment using vacuum insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005114014A true JP2005114014A (en) | 2005-04-28 |
JP4281502B2 JP4281502B2 (en) | 2009-06-17 |
Family
ID=34540487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003348218A Expired - Fee Related JP4281502B2 (en) | 2003-10-07 | 2003-10-07 | Vacuum insulation and equipment using vacuum insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4281502B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263335A (en) * | 2006-03-30 | 2007-10-11 | Hitachi Appliances Inc | Vacuum insulating material, hot water supply device using vacuum insulating material, and electric water heater |
JP2008093933A (en) * | 2006-10-11 | 2008-04-24 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating material |
JP2008240924A (en) * | 2007-03-28 | 2008-10-09 | Nippon Sheet Glass Co Ltd | Vacuum heat insulation material |
KR101257361B1 (en) | 2009-05-04 | 2013-04-23 | 한국과학기술원 | Vacuum insulator and method for fabricating thereof |
KR101355675B1 (en) | 2011-07-26 | 2014-01-27 | (주)엘지하우시스 | Flame retardant complex film and vacuum insulation panel applied the same |
JP2014137136A (en) * | 2013-01-18 | 2014-07-28 | Dainippon Printing Co Ltd | Sheath for vacuum heat insulation material, vacuum heat insulation material and equipment with vacuum heat insulation material |
JP2014202467A (en) * | 2013-04-10 | 2014-10-27 | 三菱電機株式会社 | Storage water heater |
JP2016084879A (en) * | 2014-10-27 | 2016-05-19 | 東京エレクトロン株式会社 | Heat insulation member and heat treatment device |
JP2019147357A (en) * | 2018-02-28 | 2019-09-05 | リンテック株式会社 | Flame retardant heat insulation sheet and electricity storage module |
JP2021134819A (en) * | 2020-02-25 | 2021-09-13 | パナソニックIpマネジメント株式会社 | Vacuum heat insulating material and heat insulating container |
CN114352848A (en) * | 2021-12-10 | 2022-04-15 | 广东美的厨房电器制造有限公司 | Film material for vacuum insulation panel, vacuum insulation panel and preparation method of vacuum insulation panel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105729961B (en) | 2014-12-26 | 2019-02-12 | 三星电子株式会社 | Laminate structure and vacuum heat insulation materials including laminate structure |
-
2003
- 2003-10-07 JP JP2003348218A patent/JP4281502B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263335A (en) * | 2006-03-30 | 2007-10-11 | Hitachi Appliances Inc | Vacuum insulating material, hot water supply device using vacuum insulating material, and electric water heater |
JP4671897B2 (en) * | 2006-03-30 | 2011-04-20 | 日立アプライアンス株式会社 | Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation |
JP2008093933A (en) * | 2006-10-11 | 2008-04-24 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating material |
JP2008240924A (en) * | 2007-03-28 | 2008-10-09 | Nippon Sheet Glass Co Ltd | Vacuum heat insulation material |
KR101257361B1 (en) | 2009-05-04 | 2013-04-23 | 한국과학기술원 | Vacuum insulator and method for fabricating thereof |
KR101355675B1 (en) | 2011-07-26 | 2014-01-27 | (주)엘지하우시스 | Flame retardant complex film and vacuum insulation panel applied the same |
JP2014137136A (en) * | 2013-01-18 | 2014-07-28 | Dainippon Printing Co Ltd | Sheath for vacuum heat insulation material, vacuum heat insulation material and equipment with vacuum heat insulation material |
JP2014202467A (en) * | 2013-04-10 | 2014-10-27 | 三菱電機株式会社 | Storage water heater |
JP2016084879A (en) * | 2014-10-27 | 2016-05-19 | 東京エレクトロン株式会社 | Heat insulation member and heat treatment device |
JP2019147357A (en) * | 2018-02-28 | 2019-09-05 | リンテック株式会社 | Flame retardant heat insulation sheet and electricity storage module |
JP2021134819A (en) * | 2020-02-25 | 2021-09-13 | パナソニックIpマネジメント株式会社 | Vacuum heat insulating material and heat insulating container |
JP7482437B2 (en) | 2020-02-25 | 2024-05-14 | パナソニックIpマネジメント株式会社 | Method for producing vacuum insulation material, method for producing vacuum insulation container, and method for producing thermal insulation bag |
CN114352848A (en) * | 2021-12-10 | 2022-04-15 | 广东美的厨房电器制造有限公司 | Film material for vacuum insulation panel, vacuum insulation panel and preparation method of vacuum insulation panel |
Also Published As
Publication number | Publication date |
---|---|
JP4281502B2 (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100750456B1 (en) | Vacuum thermal insulation material and device using the same | |
US7485352B2 (en) | Vacuum heat insulator and apparatus using the same | |
JP4281502B2 (en) | Vacuum insulation and equipment using vacuum insulation | |
JP4671897B2 (en) | Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation | |
JP2008045580A (en) | Vacuum heat insulating panel and equipment equipped therewith | |
JP4281607B2 (en) | Vacuum insulation | |
JPWO2005068180A1 (en) | Radiation heat conduction suppression film and heat insulating member using the same | |
JP3652402B2 (en) | Waterproof and drip-proof battery pack | |
JP2005114013A (en) | Vacuum heat insulating material | |
JP2005214250A (en) | Equipment using vacuum thermal insulation material | |
JP2005307995A (en) | Vacuum heat insulation material, method for manufacturing same and apparatus using same | |
JP2006064034A (en) | Vacuum heat insulating material, refrigerator, water heater and printer using vacuum heat insulating material | |
JP4576985B2 (en) | Laminate film, vacuum insulation material and vacuum insulation material application equipment | |
JP2007040358A (en) | Vacuum heat insulating material application member | |
US6169276B1 (en) | Electrical heating apparatus | |
JP2005024038A (en) | Vacuum heat insulating material and method of using vacuum heat insulating material | |
JP2005114123A (en) | Vacuum heat insulating material and application method of the same | |
JP2010035344A (en) | Stator of rotary electric machine, and the rotary electric machine | |
JP2006118637A (en) | Vacuum heat insulating material | |
US20220397354A1 (en) | Cold conduit insulation device | |
JP2007016835A (en) | Device applying vacuum heat insulating material | |
JP2006035475A (en) | Vacuum heat insulating material | |
WO2023144777A1 (en) | Materials, systems, and methods for foil encapsulation of aerogels and aerogel composites | |
CN114040631A (en) | Heat dissipation device and electronic equipment | |
JP2008057570A (en) | Vacuum heat insulation material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061005 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20061114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090309 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4281502 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140327 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |