JP2008240924A - Vacuum heat insulation material - Google Patents

Vacuum heat insulation material Download PDF

Info

Publication number
JP2008240924A
JP2008240924A JP2007083265A JP2007083265A JP2008240924A JP 2008240924 A JP2008240924 A JP 2008240924A JP 2007083265 A JP2007083265 A JP 2007083265A JP 2007083265 A JP2007083265 A JP 2007083265A JP 2008240924 A JP2008240924 A JP 2008240924A
Authority
JP
Japan
Prior art keywords
film
layer
vacuum heat
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007083265A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kakizaki
芳信 柿崎
Yuji Katagiri
裕治 片桐
Fumihide Hibi
文秀 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2007083265A priority Critical patent/JP2008240924A/en
Publication of JP2008240924A publication Critical patent/JP2008240924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material capable of being used safely and properly and almost free from risk such as deterioration of heat insulation property, generation of gas, generation of toxic gas and fire even if continuously used in a certain temperature range from an ultra low temperature lower than -100°C or even -200°C to a high temperature of 200°C or higher in the vacuum heat insulation material wherein a core material is packaged by an outer jacket material composed of a laminated film and its inner part is decompressed and sealed. <P>SOLUTION: In the vacuum heat insulation material of this invention, the core material is packaged by the outer jacket material and the inner part is decompressed and sealed. The outer jacket material consists of a heat seal layer composed of a plastic film as an inner-most layer, a gas barrier layer composed of a metal foil and a metal deposition film and the like and the laminated film of at least two-layer-structure including a protection layer composed of a plastic film and the like as need. About the plastic film composed of a thermoplastic resin film at least used for the heat seal layer, gas generation when heated to 200°C is substantially zero and its melting point is 300°C. The core material is composed of a fibrous layer mainly consisting of inorganic fiber. About the vacuum insulation material, gas generation when heated to 200°C is substantially zero and a rise rate of heat conductivity after heated at 250°C for 24 hours (the rise rate of heat conductivity after heated at 250°C for 24 hours to a heat conductivity at a normal temperature) is equal to or lower than 10%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、−100℃以下、更には−200℃以下の超低温から200℃以上の高温までの幅広い任意の温度領域で使用可能な真空断熱材に関する。   The present invention relates to a vacuum heat insulating material that can be used in a wide arbitrary temperature range from an ultra-low temperature of −100 ° C. or lower, further −200 ° C. or lower to a high temperature of 200 ° C. or higher.

従来、真空断熱材としては、無機繊維からなるニードリングマット、フェルト、ウール等の乾式製法、または無機繊維を抄紙法などの湿式で成形した芯材を、ポリエステル、ポリエチレンなどの熱可塑性プラスチックフィルムと金属箔または金属蒸着などの金属類を積層、ラミネートしたフィルムで包み、内部の空気を除去した後、溶融密閉化して成形したものが一般的に使用されている。   Conventionally, as a vacuum heat insulating material, a dry material such as a needling mat made of inorganic fibers, felt, wool or the like, or a core material formed by wet forming inorganic fibers such as a papermaking method, a thermoplastic plastic film such as polyester or polyethylene, In general, a metal foil or a metal vapor-deposited metal is wrapped and wrapped in a laminated film, the air inside is removed, and then melt-sealed and molded.

熱可塑性プラスチックフィルムは、柔軟性と加熱による密閉化の加工性を容易化する機能を持ち、金属箔などは外部の空気の進入を阻止するガスバリア機能を持つ。また芯材は、断熱性を高めるため、熱対流空間を小さくさせ、熱の移動を遅くさせる機能を持たせるために、無機繊維径を1μm以下に細くしたり、無機繊維中のショット(未繊維化粒状物)の含有率を低下させたり、無機繊維を伝熱方向に対して垂直方向に配列させたりして熱伝導率を低くすることが行われている。   The thermoplastic film has a function of facilitating flexibility and workability of sealing by heating, and a metal foil or the like has a gas barrier function of preventing external air from entering. In addition, the core material has a function of reducing the heat convection space and slowing the movement of heat in order to enhance the heat insulation, so that the diameter of the inorganic fiber is reduced to 1 μm or less, or the shot in the inorganic fiber (non-fiber) It is practiced to reduce the thermal conductivity by reducing the content ratio of the liquefied granular material) or by arranging inorganic fibers in a direction perpendicular to the heat transfer direction.

以上のような従来の真空断熱材は、冷蔵庫、炊飯器などの家電や自動販売機用の省エネルギ推進の断熱材、医療用や各種のクーラボックスなど鮮度保持用の断熱材や、最近では、防寒衣料の断熱材への適用が考えられ、厚みを薄くして高性能な断熱性を求める需要に対応しつつある。   Conventional vacuum insulation materials such as the above are heat-saving promotion insulation materials for household appliances and vending machines such as refrigerators and rice cookers, insulation materials for maintaining freshness such as medical and various cooler boxes, and recently, The application of cold weather clothing to heat insulating materials is conceivable, and it is responding to the demand for high-performance heat insulation by reducing the thickness.

しかしながら、これら断熱材を利用する温度環境は、せいぜい−30℃程度から120℃程度の環境であり、従来の芯材や熱可塑性プラスチックフィルムでも問題はなかったが、コンピュータやフラットテレビ、高速プリンター、複写機などは発生する熱源が150℃近辺となる場合が出てきており、更に装置の小型化によって、他の部品、特に熱に弱い集積回路との距離が小さくなり、熱の排出または断熱の処理が必要になるとともに、発火の危険性も高まってきており、断熱材の材質に関して不燃または難燃性の考慮が必要になってきている。   However, the temperature environment using these heat insulating materials is at most about −30 ° C. to 120 ° C., and there are no problems with conventional core materials and thermoplastic films, but computers, flat TVs, high-speed printers, Copiers and other devices have generated heat sources around 150 ° C, and further downsizing of the device has reduced the distance from other components, especially heat-sensitive integrated circuits, and it has become a source of heat discharge or insulation. Along with the need for treatment, the risk of ignition has increased, and it has become necessary to consider incombustibility or incombustibility regarding the material of the heat insulating material.

更に150℃以上の真空断熱材用途を考えると、最近、発電機にダイレクトメタノール燃料電池(DMFC)を備えた携帯用コンピュータが登場しているが、より効率の良い改質型メタノール燃料電池がモバイル業界では求められている。   In addition, considering the use of vacuum heat insulation material at 150 ° C or higher, portable computers equipped with direct methanol fuel cells (DMFC) have recently appeared in the generator, but more efficient reformed methanol fuel cells are mobile. There is a need in the industry.

メタノールから水素を得る改質器は、内部温度が280℃で作動するので、より高い耐熱性の真空断熱材が要求される。業界では最近、体積出力密度で882W/Lを開発したことが報じられている。これは、輻射断熱したガラスケースをさらに真空断熱して気化器、改質器、CO酸化器を収め、内部温度280℃で外部温度50℃までに断熱、低温化および小型化して実用化を図ったものである。この断熱ケースは非常に高価な部品となるので、300℃までの真空断熱材を別方法で提供できれば燃料電池の市場拡大に寄与できる可能性がある。   Since the reformer that obtains hydrogen from methanol operates at an internal temperature of 280 ° C., a vacuum heat insulating material with higher heat resistance is required. The industry has recently been reported to have developed 882 W / L in volumetric power density. This is because the radiation-insulated glass case is further vacuum-insulated to contain the vaporizer, reformer, and CO oxidizer, and the internal temperature is 280 ° C and the external temperature is 50 ° C. It is a thing. Since this heat insulating case is a very expensive part, if a vacuum heat insulating material up to 300 ° C. can be provided by another method, it may contribute to the expansion of the fuel cell market.

150℃程度の中高温領域については、真空断熱材の高温側に赤外線反射成分を含む塗膜または輻射伝導抑制手段を備えた真空断熱材が提案されている。特許文献1は、赤外線反射成分を含む塗膜が金属粉体、無機粉体、金属酸化物粉体であることを特徴とし、芯材はシリカ粉体を中心に、無機繊維、導電性粉体としている。   In the middle and high temperature region of about 150 ° C., a vacuum heat insulating material having a coating film containing an infrared reflection component or a radiation conduction suppressing means on the high temperature side of the vacuum heat insulating material has been proposed. Patent Document 1 is characterized in that the coating film containing the infrared reflection component is a metal powder, an inorganic powder, or a metal oxide powder, and the core material is mainly silica powder, inorganic fiber, conductive powder. It is said.

ラミネートした外被材は3層構造で、熱融着層(ヒートシール層)、ガスバリア層、保護層からなり、それぞれ難燃性素材としている。具体的には、熱融着層は融点200℃以上のフッ素フィルム(ポリクロロ3フッ化エチレン)で、ガスバリア層は熱融着層より耐熱性のフィルム(ポリエチレンナフタレート、ポリイミド)に金属を蒸着したものが用いられている。保護層は熱融着層より高い耐熱性のフィルム(4フッ化エチレン・パーフロロアルコキシエチレン共重合体、4フッ化エチレン、ポリエーテルケトン、ポリサルフォン、ポリエーテルイミドなど)が提案されている。   The laminated jacket material has a three-layer structure, which includes a heat-sealing layer (heat seal layer), a gas barrier layer, and a protective layer, each of which is a flame-retardant material. Specifically, the heat fusion layer is a fluorine film (polychlorotrifluoride ethylene) having a melting point of 200 ° C. or higher, and the gas barrier layer is a metal film deposited on a heat resistant film (polyethylene naphthalate, polyimide) from the heat fusion layer. Things are used. As the protective layer, a film having a heat resistance higher than that of the heat fusion layer (tetrafluoroethylene / perfluoroalkoxyethylene copolymer, tetrafluoroethylene, polyetherketone, polysulfone, polyetherimide, etc.) has been proposed.

特許文献2は、輻射伝導抑制手段として金属箔(アルミニウム、ニッケル)や金属蒸着膜(アルミニウム、ニッケル)を採用している。芯材は微細粉体の乾式ヒュームドシリカ(アエロジル300)が好ましいとされている。ラミネートした外被材は3層構造で、熱融着層、ガスバリア層、保護層からなり、それぞれ難燃性素材としている。具体的には、熱融着層は融点200℃以上のポリフェニレンサルファイド(PPS)フィルムまたはフッ素フィルム(ポリクロロ3フッ化エチレン)で、ガスバリア層は熱融着層より耐熱性のフィルム(ポリエチレンナフタレート、ポリイミド)に金属を蒸着したものが用いられている。保護層は熱融着層より高い耐熱性のフィルム(4フッ化エチレン・パーフロロアルコキシエチレン共重合体、4フッ化エチレン、ポリエーテルケトン、ポリサルフォン、ポリエーテルイミドなど)が提案されている。   Patent Document 2 employs a metal foil (aluminum, nickel) or a metal vapor-deposited film (aluminum, nickel) as radiation conduction suppression means. The core material is preferably fine powdered dry fumed silica (Aerosil 300). The laminated jacket material has a three-layer structure, which is composed of a heat fusion layer, a gas barrier layer, and a protective layer, each of which is a flame retardant material. Specifically, the heat fusion layer is a polyphenylene sulfide (PPS) film or a fluorine film (polychlorotrifluoride ethylene) having a melting point of 200 ° C. or higher, and the gas barrier layer is a film (polyethylene naphthalate, A material obtained by vapor-depositing a metal on (polyimide) is used. As the protective layer, a film having a heat resistance higher than that of the heat fusion layer (tetrafluoroethylene / perfluoroalkoxyethylene copolymer, tetrafluoroethylene, polyetherketone, polysulfone, polyetherimide, etc.) has been proposed.

特開2005−24038号公報JP-A-2005-24038 特開2005−214250号公報JP 2005-214250 A

真空断熱材として150℃以上、更に200℃以上での使用を考慮すると、熱融着層の材質として、融点280℃のPPSフィルムや融点210℃のポリクロロ3フッ化エチレンフィルムでは耐熱性が不足であり、連続使用においては、熱融着層が溶融して真空を維持できず、断熱特性の低下が想定される。また、高温熱の漏れにより近辺の部品の火災を招く危険性がある。   Considering use at 150 ° C or higher as a vacuum heat insulating material, and 200 ° C or higher, PPS film having a melting point of 280 ° C and polychlorotrifluorinated ethylene film having a melting point of 210 ° C have insufficient heat resistance. In continuous use, the heat-sealed layer cannot be melted to maintain a vacuum, and a decrease in heat insulating properties is assumed. Moreover, there is a risk of causing a fire of nearby parts due to leakage of high-temperature heat.

また、熱分解によるガス発生を考慮すると、高温分解時にはフッ素系のフィルムは有毒性のフッ化水素や発ガン性のテトラフッ化エチレンを発生する危険性がある。また、PPSフィルムはキシレン、トルエン、フェノール、ジクロロベンゼン、ポリエーテルイミドフィルムはジクロムベンゼン、PEEK(ポリエーテルエーテルケトン)フィルムはトルエン、クレゾール、NNジメチルアセトアミド等のガスを発生させる危険性がある。   In consideration of gas generation due to thermal decomposition, the fluorine-based film has a risk of generating toxic hydrogen fluoride or carcinogenic tetrafluoroethylene during high-temperature decomposition. Further, there is a risk of generating gas such as xylene, toluene, phenol, dichlorobenzene, polyetherimide film, dichrome benzene, PEEK (polyether ether ketone) film such as toluene, cresol, NN dimethylacetamide, etc.

真空断熱材の使用時にガス成分が発生すると、真空断熱材の熱伝導率を低下させるので連続使用ができなくなる。また上記のガス成分は有毒または着火成分を含むので、安全性に問題を起こす危険性がある。更にPPSの場合、分子内部にS(イオウ)を持つため、硫化物などの発生で加工時に金型、プレス機械の腐食、磨耗を生じる問題がある。   If a gas component is generated during the use of the vacuum heat insulating material, the heat conductivity of the vacuum heat insulating material is lowered, so that it cannot be used continuously. Further, since the above gas components contain toxic or ignitable components, there is a risk of causing safety problems. Further, in the case of PPS, since S (sulfur) is contained inside the molecule, there is a problem that the generation of sulfides causes corrosion and wear of the mold and press machine during processing.

本発明は、このような従来の問題点に鑑み、芯材をラミネートフィルムからなる外被材で梱包し内部を減圧し密閉してなる真空断熱材において、−100℃以下、更には−200℃以下の超低温から200℃以上の高温までの任意の温度領域での連続使用においても、断熱性低下やガス発生、更には有害ガス発生や発火等の危険性が殆どなく、安全かつ良好に使用できる真空断熱材を提供することを目的とする。   In view of such a conventional problem, the present invention is a vacuum heat insulating material in which a core material is packed with a covering material made of a laminate film, and the inside is decompressed and sealed, and is −100 ° C. or lower, further −200 ° C. Even in continuous use in any temperature range from the following ultra-low temperature to a high temperature of 200 ° C. or higher, there is almost no risk of heat insulation deterioration, gas generation, and further harmful gas generation and ignition, and it can be used safely and satisfactorily. It aims at providing a vacuum heat insulating material.

本発明の真空断熱材は、前記目的を達成するべく、請求項1に記載の通り、芯材を外被材で梱包し内部を減圧し密閉してなる真空断熱材において、前記外被材は、最内層であるプラスチックフィルムからなるヒートシール層と、金属箔、金属蒸着フィルム等からなるガスバリア層と、必要に応じてプラスチックフィルム等からなる保護層を含む少なくとも2層構造のラミネートフィルムからなり、前記ヒートシール層に少なくとも用いる前記プラスチックフィルムは、200℃加熱時のガス発生が実質的にゼロで融点300℃以上の熱可塑性樹脂フィルムからなり、前記芯材は無機繊維を主体とした繊維層からなり、前記真空断熱材は、200℃加熱時のガス発生が実質的にゼロで、250℃、24h加熱後の熱伝導率上昇率(常温時の熱伝導率に対する250℃、24h加熱後の熱伝導率の上昇率)が10%以下であることを特徴とする。   In order to achieve the above object, the vacuum heat insulating material of the present invention is a vacuum heat insulating material formed by packing a core material with an outer cover material and depressurizing and sealing the inside, as described in claim 1, wherein the outer cover material is , A heat seal layer made of a plastic film as the innermost layer, a gas barrier layer made of a metal foil, a metal vapor-deposited film, etc., and a laminate film having at least a two-layer structure including a protective layer made of a plastic film or the like, if necessary, The plastic film used at least for the heat seal layer is composed of a thermoplastic resin film having substantially no gas generation when heated at 200 ° C. and a melting point of 300 ° C. or more, and the core material is a fiber layer mainly composed of inorganic fibers. The vacuum heat insulating material has substantially no gas generation when heated at 200 ° C., and the rate of increase in thermal conductivity after heating at 250 ° C. for 24 hours (heat transfer at normal temperature). 250 ° C. for rate, rate of increase in thermal conductivity after 24h heating) to equal to or less than 10%.

また、請求項2記載の真空断熱材は、請求項1記載の真空断熱材において、前記熱可塑性樹脂フィルムの材質が、ポリイミド、ポリアミドイミドまたは液晶ポリマーであることを特徴とする。   The vacuum heat insulating material according to claim 2 is characterized in that, in the vacuum heat insulating material according to claim 1, the material of the thermoplastic resin film is polyimide, polyamideimide or liquid crystal polymer.

また、請求項3記載の真空断熱材は、請求項2記載の真空断熱材において、前記熱可塑性樹脂フィルムの材質が、融点が350℃以上である熱可塑性のポリイミドであることを特徴とする。   The vacuum heat insulating material according to claim 3 is the vacuum heat insulating material according to claim 2, wherein the material of the thermoplastic resin film is thermoplastic polyimide having a melting point of 350 ° C. or higher.

本発明によれば、芯材をラミネートフィルムからなる外被材で梱包し内部を減圧し密閉してなる真空断熱材において、芯材の材料に無機繊維を使用し、外被材の材料に200℃以上の耐熱性を備えた熱可塑性プラスチックフィルムを使用することで、200℃以上での連続使用に耐える真空断熱材を提供することができる。200℃以上の連続使用においても、外被材が溶融して真空度を低下させたり、ガスを発生させたりすることがないので、初期の断熱特性を長期にわたって維持できる。更には有害ガス発生や発火等の危険性が殆どなく、安全かつ良好に使用できる。   According to the present invention, in a vacuum heat insulating material in which a core material is packed with a cover material made of a laminate film and the inside is decompressed and sealed, inorganic fibers are used as the material of the core material, and the material of the cover material is 200. By using a thermoplastic film having a heat resistance of at least ° C., a vacuum heat insulating material that can withstand continuous use at 200 ° C. or higher can be provided. Even in continuous use at 200 ° C. or higher, the jacket material does not melt to lower the degree of vacuum or generate gas, so that the initial heat insulation characteristics can be maintained over a long period of time. Furthermore, there is almost no danger of toxic gas generation or ignition, and it can be used safely and satisfactorily.

したがって、本発明の真空断熱材を用いれば、耐熱性に乏しい回路部品、配線基板などを、熱源に近いところへ設置できるようになるので、機器、装置の小型化に貢献でき、省エネルギーにも寄与することができる。   Therefore, if the vacuum heat insulating material of the present invention is used, it becomes possible to install circuit components, wiring boards, etc. that have poor heat resistance close to the heat source, which can contribute to downsizing of equipment and devices, and also contribute to energy saving. can do.

また、外被材の材料として、特に、融点が350℃以上である熱可塑性のポリイミドからなるプラスチックフィルムを使用した場合は、前記ポリイミドは260℃の加熱でも水を19ppm発生させる程度でガス発生は実質ゼロでしかも有害ガスの発生は一切なく、また−269℃までの耐性を有するので、ヒートシール層に少なくとも用いるプラスチックフィルムとして前記ポリイミドフィルムを、前記ガスバリア層として金属箔を選択したラミネートフィルムにより外被材を構成し、無機繊維からなる繊維層により芯材を構成するようにすれば、真空断熱材の構成材料のすべてを−200℃以下の超低温領域でも劣化のない材料で構成することができ、−200℃以下の超低温から200℃以上の高温までの幅広い任意の温度領域で長期にわたって安全かつ良好に使用できる真空断熱材を提供することができ、工業的価値が高い。   In addition, when a plastic film made of a thermoplastic polyimide having a melting point of 350 ° C. or higher is used as the material of the jacket material, the polyimide generates gas at such a level that 19 ppm of water is generated even when heated at 260 ° C. Since it is substantially zero and does not generate any harmful gas, and has a resistance to -269 ° C, the polyimide film is used as the plastic film used at least for the heat seal layer, and the laminate film is selected using a metal foil as the gas barrier layer. If the material is made up and the core material is made up of fiber layers made of inorganic fibers, all of the constituent materials of the vacuum heat insulating material can be made up of materials that do not deteriorate even in the ultra-low temperature region below -200 ° C. , Long-term in a wide range of temperatures from ultra-low temperature of -200 ° C or lower to high temperature of 200 ° C or higher Over to be able to provide a vacuum heat insulating material which can be used safely and satisfactorily, high industrial value.

本発明の真空断熱材は、最内層であるプラスチックフィルムからなるヒートシール層と、金属箔、金属蒸着フィルム等からなるガスバリア層と、必要に応じてプラスチックフィルム等からなる保護層を含む少なくとも2層構造のラミネートフィルムからなる外被材と、無機繊維を主体とした繊維層からなる芯材とから構成され、前記ヒートシール層に少なくとも用いる前記プラスチックフィルムが、200℃加熱時のガス発生が実質的にゼロで融点300℃以上の熱可塑性樹脂フィルムからなり、前記真空断熱材が、200℃加熱時のガス発生が実質的にゼロで、250℃、24h加熱後の熱伝導率上昇率(常温時の熱伝導率に対する250℃、24h加熱後の熱伝導率の上昇率)が10%以下であることを必要とする。   The vacuum heat insulating material of the present invention includes at least two layers including a heat seal layer made of a plastic film as an innermost layer, a gas barrier layer made of a metal foil, a metal vapor-deposited film, and the like, and a protective layer made of a plastic film or the like as necessary. It is composed of a jacket material composed of a laminated film having a structure and a core material composed of a fiber layer mainly composed of inorganic fibers, and the plastic film used at least for the heat seal layer substantially generates gas when heated at 200 ° C. It is composed of a thermoplastic resin film having a melting point of 300 ° C. or higher at zero, and the vacuum heat insulating material has substantially zero gas generation when heated at 200 ° C., and the rate of increase in thermal conductivity after heating at 250 ° C. for 24 hours (at room temperature The rate of increase in thermal conductivity after heating at 250 ° C. for 24 hours with respect to the thermal conductivity of is required to be 10% or less.

前記芯材は、前述した通り、−100℃以下、更には−200℃以下の超低温から200℃以上の高温までの幅広い任意の温度領域での連続使用に耐える材料として、無機繊維を主体とした繊維層からなることが必要である。   As described above, the core material is mainly composed of inorganic fibers as a material that can withstand continuous use in a wide range of arbitrary temperatures ranging from an ultra-low temperature of −100 ° C. or lower, more preferably −200 ° C. or lower to a high temperature of 200 ° C. or higher. It is necessary to consist of fiber layers.

前記繊維層の形態としては、前記無機繊維をシート化したもの、更に該シートを複数枚積層したもの、あるいは、シート化せずウール状の無機繊維を単に集綿積層したものなどが挙げられるが、真空断熱材組み立て時のハンドリング性を良好とする観点からは前記無機繊維をシート化したもの、特に前記無機繊維を主体として湿式抄造したシートからなることが好ましい。   Examples of the form of the fiber layer include those obtained by forming the inorganic fibers into sheets, those obtained by laminating a plurality of sheets, or those obtained by simply collecting and laminating wool-like inorganic fibers without forming sheets. From the viewpoint of improving the handling properties when assembling the vacuum heat insulating material, it is preferable that the inorganic fiber is formed into a sheet, in particular, a sheet made by wet papermaking mainly using the inorganic fiber.

前記繊維層として、無機繊維製湿式抄造シートから構成した場合、上記したウール状無機繊維を集綿積層し圧縮して得た繊維層よりも、厚さと密度の精度に優れ、シート厚さが均一であるため、芯材の外表面に凹凸がなく外被材と芯材との間に空間が形成されにくくなるので、熱対流が減少して断熱性能の向上と断熱特性の均一性がもたらされ、また無機繊維が芯材の水平方向(シートの積層方向に対して垂直方向)へ配列され易いため、芯材の表裏方向での熱伝導に対して水平方向に整列された無機繊維が熱伝導を阻害して断熱性能の向上がもたらされる。また、無機繊維製湿式抄造シートの1枚当たりの厚さを薄くし複数枚積層するように構成した場合は、芯材の水平方向への無機繊維の配列度合いが更に高められ、断熱性能が更に向上する。   When the fiber layer is composed of a wet papermaking sheet made of inorganic fibers, it is superior to the fiber layer obtained by collecting and compressing the above-mentioned wool-like inorganic fibers, and the sheet thickness is uniform. Therefore, there is no unevenness on the outer surface of the core material, and it becomes difficult to form a space between the jacket material and the core material, so that thermal convection is reduced, resulting in improved heat insulation performance and uniformity of heat insulation characteristics. In addition, since the inorganic fibers are easily arranged in the horizontal direction of the core material (perpendicular to the sheet stacking direction), the inorganic fibers aligned in the horizontal direction are heated against the heat conduction in the front and back directions of the core material. Insulation is hindered, resulting in improved thermal insulation performance. Moreover, when the thickness per sheet of the inorganic fiber wet papermaking sheet is made thin and laminated, the degree of arrangement of the inorganic fibers in the horizontal direction of the core material is further increased, and the heat insulation performance is further increased. improves.

前記無機繊維としては、ガラス繊維、セラミック繊維、スラグウール繊維、ロックウール繊維等を用いることができるが、前記繊維層として前記無機繊維を主体として湿式抄造したシートにより構成する場合にはシート化が容易になるという点で平均繊維径4μm以下程度の微細径繊維を使用することが望ましいが、このような微細径繊維が工業的に得られ易いという点でガラス繊維が好ましい。   As the inorganic fiber, glass fiber, ceramic fiber, slag wool fiber, rock wool fiber, or the like can be used. However, when the fiber layer is composed of a sheet made by wet papermaking mainly using the inorganic fiber, the sheet is formed into a sheet. Although it is desirable to use a fine fiber having an average fiber diameter of about 4 μm or less in terms of ease, glass fiber is preferred because such a fine fiber is easily obtained industrially.

前記無機繊維の平均繊維径としては、繊維同士の接合点面積を減らし、熱移動経路を複雑化して、高い断熱性能を得るため、2μm以下であることが好ましく、更には1μm以下であることが好ましい。また、平均繊維径が2μm以下であると、芯材用繊維層として無機繊維製湿式抄造シートにより構成する場合に、上述したように減圧時や真空時に水分以外の余計なガス発生をなくす観点から無機繊維のみで湿式抄造した場合にも、ハンドリングに必要なシート強度を得易い。   The average fiber diameter of the inorganic fibers is preferably 2 μm or less, and more preferably 1 μm or less in order to reduce the joint area between the fibers, complicate the heat transfer path, and obtain high heat insulation performance. preferable. In addition, when the average fiber diameter is 2 μm or less, from the viewpoint of eliminating extra gas generation other than moisture during decompression or vacuum, as described above, when the fiber layer for the core material is constituted by a wet papermaking sheet made of inorganic fibers. Even when wet papermaking is performed only with inorganic fibers, it is easy to obtain sheet strength necessary for handling.

また、前記無機繊維の平均繊維径は、0.2μm以上であることが好ましい。平均繊維径が0.2μm未満であると、芯材用繊維層として無機繊維製湿式抄造シートにより構成する場合、湿式抄造によるシート化自体は可能であるが、濾水性が低下し生産性が低下して製造コストが高くなり、工業製品として実用に適さないという不都合がある。   Moreover, it is preferable that the average fiber diameter of the said inorganic fiber is 0.2 micrometer or more. When the average fiber diameter is less than 0.2 μm, when the fiber layer for the core material is composed of a wet paper-making sheet made of inorganic fibers, it is possible to make a sheet by wet paper-making, but the drainage is lowered and the productivity is lowered. As a result, the manufacturing cost increases, and there is a disadvantage that it is not suitable for practical use as an industrial product.

前記ガラス繊維としては、例えば、耐酸性のCガラスを溶融、紡糸後、バーナの火炎でエネルギを与え、吹き飛ばして得られるガラス短繊維や、Cガラスを溶融した後、紡糸したガラス長繊維が好適に用いられる。但し、前記ガラス短繊維の場合、バーナの火炎のエネルギが不均一若しくは不足していると、本来のガラス短繊維に混じって、繊維の端部に涙滴状の塊状物が付いたもの、繊維が部分的に太くなったもの、バーナで吹き飛ばす前の太い繊維がそのまま残ったもの等の本来のガラス短繊維に対して比較的大きなサイズを有した粒状物や繊維状物(ショット)が少量混入する場合がある。   As the glass fiber, for example, a short glass fiber obtained by melting and spinning an acid-resistant C glass, applying energy with a flame of a burner and blowing it, or a long glass fiber spun after melting the C glass is suitable. Used for. However, in the case of the above short glass fiber, if the flame energy of the burner is uneven or insufficient, it is mixed with the original short glass fiber, and a teardrop-like lump is attached to the end of the fiber. A small amount of granular or fibrous materials (shots) that have a relatively large size compared to the original short glass fibers, such as those that are partially thickened and those that remain thick fibers before being blown off with a burner There is a case.

このような火炎法や、その他遠心法等の製法によって得られるガラス繊維は、その繊維構造が表面積の小さい円柱状に形成されており、パルプ繊維等のように枝分かれ(フィブリル化)していないため、芯材用繊維層としてガラス繊維製湿式抄造シートにより構成する場合には、湿式抄造時に抄紙原料液(抄紙スラリ)中の繊維が一定方向に走行するフォーミングワイヤに引っ張られても、繊維が引っ掛かってシート表面の地合が崩れたり、孔が開いたりする等の不都合がない。   Glass fiber obtained by such a flame method or other methods such as centrifugation is formed in a columnar shape with a small surface area and is not branched (fibrillated) like pulp fibers. When the fiber layer for the core material is composed of a wet papermaking sheet made of glass fiber, the fiber is caught even if the fiber in the papermaking raw material liquid (papermaking slurry) is pulled by the forming wire running in a certain direction during wet papermaking. Thus, there is no inconvenience such as collapse of the sheet surface or opening of holes.

また、芯材用繊維層としてガラス繊維製湿式抄造シートにより構成する場合には、表面凹凸等をなくして湿式抄造するためや、熱伝導率を悪化させるガラスショットや太い繊維を除去するために、例えば、ガラス繊維を分散媒体に分散させた抄紙原料液の遠心分離を行い、スクリーン・フィルタを通過させる等して、抄紙原料液中の粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率を実質上0%近くまで除去するようにして、抄造されたシート中の粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率を0.1質量%以下まで低減することができる。   Moreover, in the case of comprising a glass fiber wet papermaking sheet as the fiber layer for the core material, in order to eliminate the surface unevenness and the like, or to remove the glass shot and thick fibers that deteriorate the thermal conductivity, For example, the papermaking raw material liquid in which the glass fiber is dispersed in the dispersion medium is centrifuged and passed through a screen filter, etc., so that the granular material having a particle diameter of 30 μm or more and the fibrous material having a diameter of 10 μm or more in the papermaking raw material liquid. The content of the granular material having a particle size of 30 μm or more and the fibrous material having a diameter of 10 μm or more in the paper sheet is reduced to 0.1% by mass or less by removing the content of the material to substantially 0%. be able to.

前記外被材は、前述の通り、最内層であるプラスチックフィルムからなる真空密閉化のためのヒートシール層と、金属箔、金属蒸着フィルム等からなる熱を反射しガスを透過させないためのガスバリア層と、必要に応じてプラスチックフィルム等からなる外部からの物理的損傷を防ぐための保護層を含む少なくとも2層構造のラミネートフィルム(機能を高めるために更に多層化してもよい)からなり、前記ヒートシール層に少なくとも用いる前記プラスチックフィルムが、200℃加熱時のガス発生が実質的にゼロで融点300℃以上の熱可塑性樹脂フィルム(以下、前記熱可塑性樹脂フィルム)からなることが必要である。   As described above, the jacket material includes a heat seal layer for vacuum-sealing made of a plastic film as the innermost layer, and a gas barrier layer for reflecting heat and preventing gas from permeating from a metal foil, a metal vapor-deposited film, or the like. And a laminate film having at least a two-layer structure including a protective layer for preventing physical damage from the outside made of a plastic film or the like as necessary (which may be further multilayered to enhance the function), and the heat It is necessary that the plastic film used at least for the sealing layer is made of a thermoplastic resin film (hereinafter, referred to as the thermoplastic resin film) having a melting point of 300 ° C. or higher with substantially no gas generation when heated at 200 ° C.

前記熱可塑性樹脂フィルムの材質としては、ポリイミド、ポリアミドイミド、液晶ポリマーから選択されるものであることが好ましい。ポリイミド、ポリアミドイミド、液晶ポリマーのフィルムは、金属箔との接着性が良好で、一般的にはフレキシブルプリント基板(FPC)の主要な基材として、銅箔のラミネート、圧着が行われている。   The material of the thermoplastic resin film is preferably selected from polyimide, polyamideimide, and liquid crystal polymer. Films of polyimide, polyamideimide, and liquid crystal polymer have good adhesion to metal foil, and generally, copper foil is laminated and pressure-bonded as a main substrate of a flexible printed circuit board (FPC).

前記熱可塑性樹脂フィルムとして、特に、融点が350℃以上である熱可塑性のポリイミドからなるフィルムを使用した場合は、前記ポリイミドは260℃の加熱でも水を19ppm発生させる程度でガス発生は実質ゼロでしかも有害ガスの発生は一切なく、また−269℃までの耐性を有するので、ヒートシール層に少なくとも用いるプラスチックフィルムとして前記ポリイミドフィルムを、前記ガスバリア層として金属箔を選択したラミネートフィルムにより外被材を構成し、無機繊維からなる繊維層により芯材を構成するようにすれば、真空断熱材の構成材料のすべてを−200℃以下の超低温領域でも劣化のない材料で構成することができ、−200℃以下の超低温から200℃以上の高温までの幅広い任意の温度領域で長期にわたって安全かつ良好に使用できる真空断熱材とすることができる。   As the thermoplastic resin film, in particular, when a film made of thermoplastic polyimide having a melting point of 350 ° C. or higher is used, the polyimide generates 19 ppm of water even when heated at 260 ° C., and gas generation is substantially zero. In addition, since no harmful gas is generated and it has a resistance to −269 ° C., the outer cover material is made of a laminate film in which the polyimide film is selected as a plastic film used at least for the heat seal layer and a metal foil is selected as the gas barrier layer. If the core material is constituted by a fiber layer composed of inorganic fibers, all the constituent materials of the vacuum heat insulating material can be made of a material that does not deteriorate even in an ultra-low temperature region of −200 ° C. or less, and −200 Over a long period of time in a wide range of temperature from ultra-low temperature below 200 ℃ to high temperature above 200 ℃ Te may be a vacuum heat insulator that can be used safely and satisfactorily.

前記熱可塑性樹脂フィルムの具体例としては、熱可塑性ポリイミド(三井化学社製オーラム)、ポリアミドイミド(東洋紡績社製バイロマックス)、液晶ポリマー(Solvey社製ザイダー)などが挙げられる。特に、300℃近辺でも使用可能な真空断熱材を得る場合には、熱可塑性ポリイミド(三井化学社製オーラム)を使用するのがよい。   Specific examples of the thermoplastic resin film include thermoplastic polyimide (Aurum manufactured by Mitsui Chemicals), polyamideimide (Vilomax manufactured by Toyobo Co., Ltd.), liquid crystal polymer (Zyder manufactured by Solvey) and the like. In particular, when obtaining a vacuum heat insulating material that can be used even near 300 ° C., it is preferable to use thermoplastic polyimide (Aurum manufactured by Mitsui Chemicals, Inc.).

前記ガスバリア層としては、金属箔が好適であり、金属箔としては、10〜100μm程度の厚さのアルミニウム箔が好適である。   The gas barrier layer is preferably a metal foil, and the metal foil is preferably an aluminum foil having a thickness of about 10 to 100 μm.

例えば、前記外被材であるラミネートフィルムとして、ヒートシール層(最内層)、ガスバリア層(中間層)および保護層(最外層)を有し、ヒートシール層と保護層をプラスチックフィルム(前記熱可塑性樹脂フィルム)、ガスバリア層を金属箔(アルミニウム箔)により構成する場合は、前記熱可塑性樹脂フィルムの上にアルミニウム箔を重ね、更に前記熱可塑性プラスチックフィルムを積層して加熱プレスすれば、一体化した3層構造のラミネートフィルムを得ることができる。   For example, the laminate film as the outer cover material has a heat seal layer (innermost layer), a gas barrier layer (intermediate layer), and a protective layer (outermost layer), and the heat seal layer and the protective layer are plastic films (the thermoplastics). Resin film), when the gas barrier layer is composed of a metal foil (aluminum foil), the aluminum foil is laminated on the thermoplastic resin film, and the thermoplastic film is further laminated and heated to be integrated. A laminate film having a three-layer structure can be obtained.

例えば、熱可塑性ポリイミドフィルム(三井化学製オーラムPL450C)と、アルミニウム箔を、加重5MPaで310℃、1分間熱プレスすると、接着強度は1.1kgf/cmの強度を示す(試験法JIS K6850)。ポリエーテルイミド(PEI)、ポリエーテルスルホン(PES)の場合は0.8kgf/cmである。   For example, when a thermoplastic polyimide film (Aurum PL450C manufactured by Mitsui Chemicals) and an aluminum foil are hot-pressed at a load of 5 MPa at 310 ° C. for 1 minute, the adhesive strength is 1.1 kgf / cm (test method JIS K6850). In the case of polyetherimide (PEI) and polyethersulfone (PES), it is 0.8 kgf / cm.

次に、本発明の実施例について比較例とともに詳細に説明する。
(芯材の作製)
平均繊維径0.7μmのCガラス短繊維100質量%の原料を用い、湿式抄造して、熱風乾燥後、厚さ1mm、密度0.16g/cmの芯材用ガラス繊維シートを得た。次に、該シートを規定サイズに裁断し乾燥機で180℃で10時間加熱処理した後、直ちに10枚積層して厚さ10mmとし、200mm×200mmサイズに裁断して芯材とした。
Next, examples of the present invention will be described in detail together with comparative examples.
(Manufacture of core material)
Using a raw material of 100% by mass of C glass short fibers having an average fiber diameter of 0.7 μm, wet papermaking was performed, and after hot air drying, a glass fiber sheet for core material having a thickness of 1 mm and a density of 0.16 g / cm 3 was obtained. Next, the sheet was cut to a specified size and heat-treated at 180 ° C. for 10 hours with a dryer, and then immediately laminated 10 sheets to a thickness of 10 mm and cut to a size of 200 mm × 200 mm to obtain a core material.

(実施例1)
ヒートシール層に融点388℃の熱可塑性ポリイミドフィルム(厚さ50μm)、ガスバリア層にアルミニウム箔(厚さ10μm)、保護層に融点388℃の熱可塑性ポリイミドフィルム(厚さ30μm)を重ね、加重5MPaで310℃、1分間熱プレスを行い、これを300×300mmサイズに裁断して外被材(ラミネートフィルム)とした。先に得た厚さ10mmの芯材を2枚の外被材に挟み、0.04torrで10分間真空引きした後、周縁部を加熱封印して真空断熱材を得た。
Example 1
A thermoplastic polyimide film (thickness 50 μm) having a melting point of 388 ° C. is laminated on the heat seal layer, an aluminum foil (thickness 10 μm) is laminated on the gas barrier layer, and a thermoplastic polyimide film (thickness 30 μm) having a melting point 388 ° C. is laminated on the protective layer. Was subjected to hot pressing at 310 ° C. for 1 minute, and this was cut into a size of 300 × 300 mm to obtain a jacket material (laminate film). The core material having a thickness of 10 mm obtained above was sandwiched between two outer cover materials and evacuated at 0.04 torr for 10 minutes, and then the peripheral portion was heat sealed to obtain a vacuum heat insulating material.

(実施例2)
ヒートシール層に融点350℃の液晶ポリマーフィルム(厚さ50μm)、ガスバリア層にアルミニウム箔(厚さ10μm)、保護層に融点388℃の熱可塑性ポリイミドフィルム(厚さ30μm)を重ね、加重5MPaで310℃、1分間熱プレスを行い、これを300×300mmサイズに裁断して外被材(ラミネートフィルム)とした。先に得た厚さ10mmの芯材を2枚の外被材に挟み、0.04torrで10分間真空引きした後、周縁部を加熱封印して真空断熱材を得た。
(Example 2)
A liquid crystal polymer film (thickness: 50 μm) having a melting point of 350 ° C. is laminated on the heat seal layer, an aluminum foil (thickness: 10 μm) is laminated on the gas barrier layer, and a thermoplastic polyimide film (thickness: 30 μm) having a melting point of 388 ° C. is laminated on the protective layer. Hot pressing was performed at 310 ° C. for 1 minute, and this was cut into a size of 300 × 300 mm to obtain an outer cover material (laminate film). The core material having a thickness of 10 mm obtained above was sandwiched between two outer cover materials and evacuated at 0.04 torr for 10 minutes, and then the peripheral portion was heat sealed to obtain a vacuum heat insulating material.

(実施例3)
ヒートシール層に融点360℃のポリアミドイミドフィルム(厚さ50μm)、ガスバリア層にアルミニウム箔(厚さ10μm)、保護層に融点388℃の熱可塑性ポリイミドフィルム(厚さ30μm)を重ね、加重5MPaで310℃、1分間熱プレスを行い、これを300×300mmサイズに裁断して外被材(ラミネートフィルム)とした。先に得た厚さ10mmの芯材を2枚の外被材に挟み、0.04torrで10分間真空引きした後、周縁部を加熱封印して真空断熱材を得た。
(Example 3)
A polyamideimide film (thickness 50 μm) having a melting point of 360 ° C. is laminated on the heat seal layer, an aluminum foil (thickness 10 μm) is laminated on the gas barrier layer, and a thermoplastic polyimide film (thickness 30 μm) having a melting point 388 ° C. is laminated on the protective layer. Hot pressing was performed at 310 ° C. for 1 minute, and this was cut into a size of 300 × 300 mm to obtain an outer cover material (laminate film). The core material having a thickness of 10 mm obtained above was sandwiched between two outer cover materials and evacuated at 0.04 torr for 10 minutes, and then the peripheral portion was heat sealed to obtain a vacuum heat insulating material.

(比較例1)
ヒートシール層に融点210℃のポリクロロ3フッ化エチレン(厚さ50μm)、ガスバリア層にアルミニウム箔(厚さ10μm)、保護層に融点327℃のポリ4フッ化エチレン(PTFE)フィルム(厚さ30μm)を重ね、加重5MPaで250℃、1分間熱プレスを行い、これを300×300mmサイズに裁断して外被材(ラミネートフィルム)とした。尚、プレス温度310℃ではポリクロロ3フッ化エチレンが溶け出しフィルム形状を保てないため温度を下げた。先に得た厚さ10mmの芯材を2枚の外被材に挟み、0.04torrで10分間真空引きした後、周縁部を加熱封印して真空断熱材を得た。
(Comparative Example 1)
Polychlorotrifluoroethylene (thickness 50 μm) with a melting point of 210 ° C. for the heat seal layer, aluminum foil (thickness 10 μm) for the gas barrier layer, and polytetrafluoroethylene (PTFE) film (melting point 30 μm) with a melting point of 327 ° C. ), And heat-pressing was performed at 250 ° C. for 1 minute at a load of 5 MPa, and this was cut into a size of 300 × 300 mm to obtain a covering material (laminate film). At a press temperature of 310 ° C., polychlorotrifluoride ethylene melted out and the film shape could not be maintained, so the temperature was lowered. The core material having a thickness of 10 mm obtained above was sandwiched between two outer cover materials and evacuated at 0.04 torr for 10 minutes, and then the peripheral portion was heat sealed to obtain a vacuum heat insulating material.

(比較例2)
ヒートシール層に融点280℃のポリフェニレンサルファイド(PPS)フィルム(厚さ50μm)、ガスバリア層にアルミニウム箔(厚さ10μm)、保護層に融点327℃のポリ4フッ化エチレン(PTFE)フィルム(厚さ30μm)を重ね、加重5MPaで310℃、1分間熱プレスを行い、これを300×300mmサイズに裁断して外被材(ラミネートフィルム)とした。先に得た厚さ10mmの芯材を2枚の外被材に挟み、0.04torrで10分間真空引きした後、周縁部を加熱封印して真空断熱材を得た。
(Comparative Example 2)
Polyphenylene sulfide (PPS) film (thickness 50 μm) with a melting point of 280 ° C. for the heat seal layer, aluminum foil (thickness 10 μm) for the gas barrier layer, and polytetrafluoroethylene (PTFE) film (thickness) with a melting point 327 ° C. for the protective layer 30 [mu] m), and a heat press was performed at 310 [deg.] C. for 1 minute at a load of 5 MPa, and this was cut into a size of 300 * 300 mm to obtain an outer cover material (laminate film). The core material having a thickness of 10 mm obtained above was sandwiched between two outer cover materials and evacuated at 0.04 torr for 10 minutes, and then the peripheral portion was heat sealed to obtain a vacuum heat insulating material.

次に、上記にて得られた実施例1〜3、比較例1〜2の真空断熱材について、常温熱伝導率、250℃、24時間加熱後の熱伝導率、加熱後の形状変化を測定した。結果を表1に示す。   Next, with respect to the vacuum heat insulating materials of Examples 1 to 3 and Comparative Examples 1 and 2 obtained above, normal temperature thermal conductivity, thermal conductivity after heating at 250 ° C. for 24 hours, and shape change after heating were measured. did. The results are shown in Table 1.

Figure 2008240924
Figure 2008240924

表1の結果から以下のことが分かった。
(1)実施例1のヒートシール層に熱可塑性のポリイミドを使用した真空断熱材は、常温の熱伝導率は0.0030W/m・Kであり、250℃、24時間加熱処理後でも形状に変化はなく、シール部にも異常は観察されなかった。この時の熱伝導率は0.0030W/m・Kと変化はなく、耐熱性のある真空断熱材を得られた。
(2)実施例2のヒートシール層に熱可塑性の液晶ポリマーを使用した真空断熱材は、常温の熱伝導率は0.0030W/m・Kであり、250℃、24時間加熱処理後でも形状に変化はなく、シール部にも異常は観察されなかった。この時の熱伝導率は0.0032W/m・Kと変化は殆どなく、耐熱性のある真空断熱材を得られた。
(3)実施例3のヒートシール層に熱可塑性のポリアミドイミドを使用した真空断熱材は、常温の熱伝導率は0.0030W/m・Kであり、250℃、24時間加熱処理後でも形状に変化はなく、シール部にも異常は観察されなかった。この時の熱伝導率は0.0032W/m・Kと実施例2と同等値を示し、耐熱性のある真空断熱材を得られた。
(4)比較例1のヒートシール層に熱可塑性のポリクロロ3フッ化エチレンを使用した真空断熱材は、常温の熱伝導率は0.0032W/m・Kであった。250℃、24時間加熱処理後の形状を観察すると熱収縮が大きく、平板形状を保てていなかった。更にシール部は剥離が見られ、内部に空気が入り厚さが厚くなっていた。形状変化が大きく熱伝導率は測定できなかった。従って、高温耐熱の真空断熱材としては不適当である。
(5)比較例2のヒートシール層に熱可塑性のポリフェニレンサルファイドを使用した真空断熱材は、常温の熱伝導率は0.0030W/m・Kであった。250℃、24時間加熱処理後の形状を観察すると形状変化およびシール部の剥離はないように見えたが、空気の流入があり、真空断熱材の初期厚さ5.6mmに対し8.7mmと厚くなっていた。この時の熱伝導率は0.051W/m・Kであり、これは単独のガラス繊維の熱伝導率に近く、耐熱性のある真空断熱材としては不適当であることがわかった。
From the results in Table 1, the following was found.
(1) The vacuum heat insulating material using thermoplastic polyimide for the heat seal layer of Example 1 has a normal temperature thermal conductivity of 0.0030 W / m · K, and is shaped even after heat treatment at 250 ° C. for 24 hours. There was no change, and no abnormality was observed in the seal part. The thermal conductivity at this time was not changed to 0.0030 W / m · K, and a heat-resistant vacuum heat insulating material was obtained.
(2) The vacuum heat insulating material using a thermoplastic liquid crystal polymer for the heat seal layer of Example 2 has a normal temperature thermal conductivity of 0.0030 W / m · K, and is shaped even after heat treatment at 250 ° C. for 24 hours. No abnormality was observed in the seal part. At this time, the thermal conductivity was hardly changed to 0.0032 W / m · K, and a heat-resistant vacuum heat insulating material was obtained.
(3) The vacuum heat insulating material using thermoplastic polyamideimide in the heat seal layer of Example 3 has a thermal conductivity of 0.0030 W / m · K at room temperature, and is shaped even after heat treatment at 250 ° C. for 24 hours. No abnormality was observed in the seal part. The thermal conductivity at this time was 0.0032 W / m · K, the same value as in Example 2, and a heat-resistant vacuum heat insulating material was obtained.
(4) The vacuum heat insulating material using thermoplastic polychlorotrifluoride ethylene for the heat seal layer of Comparative Example 1 had a thermal conductivity at room temperature of 0.0032 W / m · K. When the shape after the heat treatment at 250 ° C. for 24 hours was observed, the heat shrinkage was large and the flat plate shape was not maintained. Further, the seal portion was peeled off, and air entered into the inside to increase the thickness. The shape change was large and the thermal conductivity could not be measured. Therefore, it is unsuitable as a high temperature heat resistant vacuum heat insulating material.
(5) The vacuum heat insulating material using thermoplastic polyphenylene sulfide for the heat seal layer of Comparative Example 2 had a thermal conductivity at room temperature of 0.0030 W / m · K. When the shape after heat treatment at 250 ° C. for 24 hours was observed, it seemed that there was no change in shape and peeling of the seal part, but there was an inflow of air, and the initial thickness of the vacuum heat insulating material was 8.7 mm. It was thick. The thermal conductivity at this time was 0.051 W / m · K, which is close to the thermal conductivity of a single glass fiber, and was found to be inappropriate as a heat-resistant vacuum heat insulating material.

Claims (3)

芯材を外被材で梱包し内部を減圧し密閉してなる真空断熱材において、前記外被材は、最内層であるプラスチックフィルムからなるヒートシール層と、金属箔、金属蒸着フィルム等からなるガスバリア層と、必要に応じてプラスチックフィルム等からなる保護層を含む少なくとも2層構造のラミネートフィルムからなり、前記ヒートシール層に少なくとも用いる前記プラスチックフィルムは、200℃加熱時のガス発生が実質的にゼロで融点300℃以上の熱可塑性樹脂フィルムからなり、前記芯材は無機繊維を主体とした繊維層からなり、前記真空断熱材は、200℃加熱時のガス発生が実質的にゼロで、250℃、24h加熱後の熱伝導率上昇率(常温時の熱伝導率に対する250℃、24h加熱後の熱伝導率の上昇率)が10%以下であることを特徴とする真空断熱材。   In a vacuum heat insulating material in which a core material is packed with a jacket material and the inside is decompressed and sealed, the jacket material is composed of a heat seal layer made of a plastic film as an innermost layer, a metal foil, a metal vapor deposition film, and the like. It consists of a laminate film having at least a two-layer structure including a gas barrier layer and, if necessary, a protective layer made of a plastic film or the like. The plastic film used at least for the heat seal layer has substantially no gas generation when heated at 200 ° C. It consists of a thermoplastic resin film having a melting point of 300 ° C. or higher at zero, the core material is composed of a fiber layer mainly composed of inorganic fibers, and the vacuum heat insulating material has substantially no gas generation when heated at 200 ° C. The rate of increase in thermal conductivity after heating at 24 ° C. for 24 hours (the rate of increase in thermal conductivity after 24 hours of heating at 250 ° C. for normal temperature) is 10% or less. Vacuum heat insulating material according to claim Rukoto. 前記熱可塑性樹脂フィルムの材質が、ポリイミド、ポリアミドイミドまたは液晶ポリマーであることを特徴とする請求項1記載の真空断熱材。   2. The vacuum heat insulating material according to claim 1, wherein the thermoplastic resin film is made of polyimide, polyamideimide or liquid crystal polymer. 前記熱可塑性樹脂フィルムの材質が、融点が350℃以上である熱可塑性のポリイミドであることを特徴とする請求項2記載の真空断熱材。   The vacuum heat insulating material according to claim 2, wherein the thermoplastic resin film is a thermoplastic polyimide having a melting point of 350 ° C or higher.
JP2007083265A 2007-03-28 2007-03-28 Vacuum heat insulation material Pending JP2008240924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083265A JP2008240924A (en) 2007-03-28 2007-03-28 Vacuum heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083265A JP2008240924A (en) 2007-03-28 2007-03-28 Vacuum heat insulation material

Publications (1)

Publication Number Publication Date
JP2008240924A true JP2008240924A (en) 2008-10-09

Family

ID=39912520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083265A Pending JP2008240924A (en) 2007-03-28 2007-03-28 Vacuum heat insulation material

Country Status (1)

Country Link
JP (1) JP2008240924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241988A (en) * 2010-05-14 2011-12-01 Hitachi Appliances Inc Heat insulation box and refrigerator
JP2016070419A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Exterior materials for vacuum heat insulating material, and vacuum heat insulating material
US10001247B2 (en) 2015-04-28 2018-06-19 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat-insulating material, and heat-insulating container, dwelling wall, transport machine, hydrogen transport tanker, and LNG transport tanker equipped with vacuum heat-insulating material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260594B2 (en) * 1979-05-16 1987-12-17 Nippon Oxygen Co Ltd
JP2005024038A (en) * 2003-07-04 2005-01-27 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and method of using vacuum heat insulating material
JP2005114014A (en) * 2003-10-07 2005-04-28 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and instrument using the same
JP2005214250A (en) * 2004-01-28 2005-08-11 Matsushita Electric Ind Co Ltd Equipment using vacuum thermal insulation material
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260594B2 (en) * 1979-05-16 1987-12-17 Nippon Oxygen Co Ltd
JP2005024038A (en) * 2003-07-04 2005-01-27 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and method of using vacuum heat insulating material
JP2005114014A (en) * 2003-10-07 2005-04-28 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and instrument using the same
JP2005214250A (en) * 2004-01-28 2005-08-11 Matsushita Electric Ind Co Ltd Equipment using vacuum thermal insulation material
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241988A (en) * 2010-05-14 2011-12-01 Hitachi Appliances Inc Heat insulation box and refrigerator
JP2016070419A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Exterior materials for vacuum heat insulating material, and vacuum heat insulating material
US10001247B2 (en) 2015-04-28 2018-06-19 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat-insulating material, and heat-insulating container, dwelling wall, transport machine, hydrogen transport tanker, and LNG transport tanker equipped with vacuum heat-insulating material
US10520135B2 (en) 2015-04-28 2019-12-31 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat-insulating material, and heat-insulting container, dwelling wall, transport machine, hydrogen transport tanker, and LNG transport tanker equipped with vacuum heat-insulating material

Similar Documents

Publication Publication Date Title
JP5336531B2 (en) Airgel / PTFE composite insulation material
CN110168670A (en) Dielectric layer with improved thermal conductivity
KR20080014644A (en) Vacuum insulating panel and apparatus comprising the same
JP5107191B2 (en) Graphite composite film
JP6393902B2 (en) Composite materials and electronics
Zhao et al. A novel mica‐based composite with hybrid aramid fibers for electrical insulating applications: largely improved mechanical properties and moisture resistance
KR20170095316A (en) Graphite laminates, processes for producing graphite laminates, structural object for heat transport, and rod-shaped heat-transporting object
KR20100110279A (en) Thermal insulating multiple layer blanket
JP2007231942A (en) Electrothermal heater assembly, gas turbine engine structural element, and heater assembly forming method
WO2021031250A1 (en) Copper-clad laminated board, printed circuit board, and fabrication method for printed circuit board
JP2008240924A (en) Vacuum heat insulation material
Wei et al. Scalable Fabrication of Nacre‐Structured Graphene/Polytetrafluoroethylene Films for Outstanding EMI Shielding Under Extreme Environment
US11014336B2 (en) Circuit board and method for manufacturing the same
WO2021256093A1 (en) Insulating sheet and power supply device comprising same
Yin et al. MXene multi-functionalization of polyrotaxane based PCMs and the applications in electronic devices thermal management
Luo et al. High‐performance, multifunctional, and designable carbon fiber felt skeleton epoxy resin composites EP/CF‐(CNT/AgBNs) x for thermal conductivity and electromagnetic interference shielding
CN212499248U (en) Novel Nomex paper cladding aerogel felt heat insulating mattress
JP5323974B2 (en) Graphite composite film and method for producing the same
KR101619225B1 (en) Heat insulation sheet, method for manufacturing the same and heat insulating panel
JPH0455437A (en) Prepreg for laminated board with low dielectric constant
CN113266729A (en) Composite core material for vacuum insulation panel and preparation method thereof
Feng et al. Multifunctional melamine-based multilayer foam with heterogeneous alternating structure towards electromagnetic interference shielding
WO2021251017A1 (en) Thermal insulation sheet, and power supply device provided with same
CN113251243A (en) Film material for vacuum insulation panel, vacuum insulation panel and preparation method of vacuum insulation panel
JP4610428B2 (en) Heat resistant insulation sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108