JP2006125527A - Vacuum thermal insulation panel - Google Patents

Vacuum thermal insulation panel Download PDF

Info

Publication number
JP2006125527A
JP2006125527A JP2004314963A JP2004314963A JP2006125527A JP 2006125527 A JP2006125527 A JP 2006125527A JP 2004314963 A JP2004314963 A JP 2004314963A JP 2004314963 A JP2004314963 A JP 2004314963A JP 2006125527 A JP2006125527 A JP 2006125527A
Authority
JP
Japan
Prior art keywords
insulation panel
vacuum heat
thermal conductivity
heat insulation
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004314963A
Other languages
Japanese (ja)
Inventor
Shinya Okamoto
晋哉 岡本
Kuninari Araki
邦成 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004314963A priority Critical patent/JP2006125527A/en
Publication of JP2006125527A publication Critical patent/JP2006125527A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum thermal insulation panel capable of maintaining excellent heat insulating property for a long period by a proper highly accurate and highly reliable measurement method for heat conductance when the vacuum thermal insulation panel is used as a measured object in the method for measuring the heat conductance of the measured object by generating heat between the measured object and a heat resistance material, flowing the heat in the measured object and the heat resistance material, and measuring the heat conductivity of the measured object by using a temperature difference between at least two positions of the heat resistance material and also provide a refrigerator less consuming an electric power. <P>SOLUTION: A projected flat part 15 or a recessed flat part 16 having such a size that involves a circle of 50 mm in diameter and an irregularity of within 0.1 mm is disposed on the vacuum thermal insulation panel 11 and a thermal conductivity measuring device 21 is disposed on the projected flat part 15 or the recessed flat part 16, and then the heat conductivity is measured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷蔵庫等用に用いる真空断熱パネルの形状及びその熱伝導率測定方法に関する。   The present invention relates to a shape of a vacuum heat insulating panel used for a refrigerator or the like and a method for measuring the thermal conductivity thereof.

近年、地球温暖化に対する観点から、家電品の消費電力量削減の必要性が叫ばれている。特に、冷蔵庫は家電品の中で特に消費電力量を費やす製品であり、冷蔵庫の消費電力量削減は地球温暖化対策として必要不可欠な状況にある。冷蔵庫の消費電力は、庫内の負荷量が一定であれば、庫内冷却用圧縮機の効率と庫内からの熱漏洩量に関係する断熱材の断熱性能によってその大部分が決まるため、冷蔵庫の技術開発では圧縮機の効率と断熱材の性能向上を行う必要がある。断熱材の高性能化の例として、コア材をガスバリヤ性フィルムからなる外被材で覆って内部を減圧封止した真空断熱パネルを用いることが行われるようになってきている。その真空断熱パネルの熱伝導率性能は、冷蔵庫の消費電力量に直接的に影響するパラメータの1つであり、真空漏れを起こしている真空断熱パネルを搭載した冷蔵庫で消費電力量を低減することは不可能である。そのため真空断熱パネルは、冷蔵庫に組む前段階で熱伝導率測定を実施し、性能確認を行う必要がある。熱伝導率測定は従来、JIS A1412の平板比較法により、即ち、試験体と標準板を重ねて温度差を与え、それぞれの表面温度差を測定して、その比と標準板の熱伝導率から試験体の熱伝導率を求めることにより行っている。また、真空断熱パネルの場合は、真空断熱パネルをチャンバー等の容器の中に入れ、真空にすることにより真空断熱パネルの膨らみを目視で検査する、いわゆる逆真空法により測定している。しかし、平板比較法では、測定に長時間を要するので、大量生産による製品の全数検査には不向きであり、また、逆真空法では、正確な熱伝導率を測定できず、しかも徐々に空気が入り込むような場合には目視では判断が困難である。   In recent years, from the viewpoint of global warming, the necessity of reducing the power consumption of home appliances has been screamed. In particular, a refrigerator is a product that consumes a particularly large amount of power consumption among household electrical appliances, and reducing the power consumption of the refrigerator is indispensable as a measure against global warming. If the load in the refrigerator is constant, the power consumption of the refrigerator is largely determined by the heat insulation performance related to the efficiency of the compressor for cooling the refrigerator and the amount of heat leakage from the refrigerator. In this technical development, it is necessary to improve the efficiency of the compressor and the performance of the heat insulating material. As an example of improving the performance of a heat insulating material, use of a vacuum heat insulating panel in which a core material is covered with a jacket material made of a gas barrier film and the inside is sealed under reduced pressure has been used. The thermal conductivity performance of the vacuum heat insulation panel is one of the parameters that directly affects the power consumption of the refrigerator, and the power consumption is reduced in the refrigerator equipped with the vacuum heat insulation panel causing the vacuum leak. Is impossible. Therefore, it is necessary for the vacuum heat insulation panel to confirm the performance by performing the thermal conductivity measurement before it is assembled in the refrigerator. Conventionally, the thermal conductivity is measured by the plate comparison method of JIS A1412, that is, the test specimen and the standard plate are overlapped to give a temperature difference, the surface temperature difference is measured, and the ratio and the thermal conductivity of the standard plate are calculated. This is done by determining the thermal conductivity of the specimen. Moreover, in the case of a vacuum heat insulation panel, it measures by what is called a reverse vacuum method which puts a vacuum heat insulation panel in containers, such as a chamber, and is evacuated, and visually inspects the swelling of a vacuum heat insulation panel. However, since the plate comparison method requires a long time to measure, it is not suitable for 100% inspection of products by mass production.In addition, the reverse vacuum method cannot accurately measure the thermal conductivity, and the air gradually flows. When entering, it is difficult to judge visually.

最新の、従来の真空断熱パネルの熱伝導率測定において、特開2002−131257号公報に示されたものがある。ここで示されている真空断熱パネルの熱伝導率測定方法は、被測定物と熱抵抗材の間で熱を発生させて、被測定物内部と熱抵抗材内部に熱を流し、熱抵抗材の少なくとも2箇所の温度差から被測定物の熱伝導率を求めることを特徴とするものである。   In the latest measurement of the thermal conductivity of a conventional vacuum heat insulation panel, there is one disclosed in Japanese Patent Application Laid-Open No. 2002-131257. The thermal conductivity measurement method of the vacuum heat insulation panel shown here generates heat between the object to be measured and the heat resistance material, and flows heat inside the object to be measured and inside the heat resistance material. The thermal conductivity of the object to be measured is obtained from the temperature difference between at least two points.

特開2002−131257号公報JP 2002-131257 A

しかし、特許文献による真空断熱パネルの熱伝導率測定方法のみでは、全ての真空断熱パネルの熱伝導率測定に対応することはできない。本文献による真空断熱パネルの熱伝導率測定方法では、被測定物と、該被測定物と直接接触する熱発生装置との界面が間隙なく接触している必要がある。該被測定物と熱発生装置との間に間隙が存在すると、熱発生装置から熱が発生される際、被測定物の代わりにその隙間の空気を温めることになり、適切な熱伝導率測定を行うことができない。特許文献による熱伝導率測定方法に対応するためには、熱発生装置と被測定物との接触界面に間隙がなくなるような平坦なコア材を作製する必要がある。最近の真空断熱パネルには、コア材としてガラス短繊維材を積層したものが主流になってきているため、表面が平坦なコア材を作製するためには、ガラス短繊維材を、バインダ等を用いてボードにする方法を採用しなければならない。しかしバインダ等を用いてボードにする方法を採用することにより、熱伝導性がよくなり、断熱材としての役割を果たせなくなるとの課題があった。また、表面が平坦でないコア材を用いた真空断熱パネルでは、先述の理由により真空断熱パネルの適切な熱伝導率測定が行えないという課題があった。   However, only the method for measuring the thermal conductivity of the vacuum heat insulation panel according to the patent literature cannot cope with the measurement of the thermal conductivity of all the vacuum heat insulation panels. In the method for measuring the thermal conductivity of a vacuum heat insulation panel according to this document, the interface between the object to be measured and the heat generating device that is in direct contact with the object to be measured needs to be in contact with no gap. If there is a gap between the object to be measured and the heat generating device, when heat is generated from the heat generating device, the air in the gap is heated instead of the object to be measured, and appropriate thermal conductivity measurement is performed. Can not do. In order to cope with the thermal conductivity measurement method according to the patent literature, it is necessary to produce a flat core material that eliminates the gap at the contact interface between the heat generator and the object to be measured. In recent vacuum insulation panels, a laminate of short glass fiber materials as the core material has become mainstream. To produce a core material with a flat surface, short glass fiber materials, binders, etc. are used. The method used to make a board must be adopted. However, there is a problem that by adopting a method of forming a board using a binder or the like, the thermal conductivity is improved and the role as a heat insulating material cannot be achieved. Moreover, in the vacuum heat insulation panel using the core material whose surface is not flat, there existed a subject that appropriate thermal conductivity measurement of a vacuum heat insulation panel could not be performed for the reason mentioned above.

本発明の目的は、真空断熱パネル上に凸形又は凹形の平坦部を配設し、その平坦部上に特許文献に示された熱伝導率測定装置を配置して測定を行うことにより、該熱伝導率測定をより精度が高く信頼性の高い適切な方法にし、その結果として長期に亘る優れた断熱性能を維持できる真空断熱パネルを提供し、更には消費電力量の少ない冷蔵庫を提供することにある。   The purpose of the present invention is to arrange a convex or concave flat part on a vacuum heat insulation panel, and place the thermal conductivity measuring device shown in the patent document on the flat part to perform measurement, The heat conductivity measurement is made an appropriate method with higher accuracy and reliability, and as a result, a vacuum insulation panel capable of maintaining excellent thermal insulation performance over a long period of time is provided, and a refrigerator with low power consumption is further provided. There is.

前記目的を達成するために、本発明は、コア材と、水蒸気及び有機ガスを吸着する吸着部材と、ガスバリヤ性フィルムからなる外包材とからなる真空断熱パネルにおいて、該真空断熱パネル上に凸形又は凹形の平坦部を配設することを特徴とするものである。   In order to achieve the above object, the present invention provides a vacuum heat insulating panel comprising a core material, an adsorbing member that adsorbs water vapor and organic gas, and an outer packaging material made of a gas barrier film, and has a convex shape on the vacuum heat insulating panel. Alternatively, a concave flat portion is provided.

本発明によれば、被測定物と熱抵抗材の間で熱を発生させて、被測定物内部と熱抵抗材内部に熱を流し、熱抵抗材の少なくとも2箇所の温度差から被測定物の熱伝導率を求めることを特徴とする熱伝導率測定方法において、凸形又は凹形の平坦部を配設した真空断熱パネルを被測定物とし、該真空断熱パネルの平坦部上に熱伝導率測定装置を配置して測定を行うことにより、該熱伝導率測定をより精度が高く信頼性の高い適切な方法にし、その結果として長期に亘る優れた断熱性能を維持できる真空断熱パネルを提供し、更には消費電力量の少ない冷蔵庫を提供することにある。   According to the present invention, heat is generated between the object to be measured and the heat resistance material, and heat is caused to flow inside the object to be measured and the heat resistance material, and the object to be measured is obtained from a temperature difference between at least two locations of the heat resistance material. In the thermal conductivity measurement method characterized in that the thermal conductivity of the vacuum thermal insulation panel is determined by using a vacuum thermal insulation panel provided with a convex or concave flat part as an object to be measured. By providing a rate measuring device and making the measurement, the thermal conductivity measurement is made an appropriate method with higher accuracy and reliability, and as a result, a vacuum insulation panel that can maintain excellent thermal insulation performance over a long period of time is provided Furthermore, it is to provide a refrigerator with low power consumption.

[実施例1]
以下、本発明の一実施例の真空断熱パネルを、図1を用いて説明する。本発明で示す真空断熱パネルは、家庭用及び業務用の冷蔵・冷凍庫の他に、自動販売機、商品陳列棚、商品陳列ケース、保冷庫、クーラボックス、冷蔵・冷凍車等に適用可能である。
[Example 1]
Hereinafter, the vacuum heat insulation panel of one Example of this invention is demonstrated using FIG. The vacuum heat insulation panel shown in the present invention can be applied to vending machines, product display shelves, product display cases, cold storage, cooler boxes, refrigeration / freezer cars, etc., in addition to household and commercial refrigeration / freezers. .

真空断熱パネル11は、コア材2と、吸着部材3と、コア材2及び吸着部材3を収納し且つガスバリヤ性フィルムからなる外被材4とを備えて構成されている。この真空断熱パネル11は、コア材2と吸着部材3とを外被材4に挿入した状態で、外被材4の内部を減圧し、外被材4の周縁部を熱融着することにより封止することによって作製されている。真空断熱パネル11の形状は、特に限定されず、適用される箇所と作業性に応じて各種形状及び厚さのものが適用可能である。   The vacuum heat insulation panel 11 includes a core material 2, an adsorbing member 3, and an outer covering material 4 that houses the core material 2 and the adsorbing member 3 and is made of a gas barrier film. The vacuum heat insulating panel 11 is formed by decompressing the inside of the jacket material 4 and heat-sealing the peripheral portion of the jacket material 4 with the core material 2 and the adsorbing member 3 inserted into the jacket material 4. It is produced by sealing. The shape of the vacuum heat insulation panel 11 is not specifically limited, The thing of various shapes and thickness is applicable according to the location and workability | operativity applied.

コア材2には、一例として、平均繊維径2μm以上4μm以下のガラス短繊維材をホウ酸バインダで接着させ、200℃以上で1時間エージング処理を行うことにより作製される、バインダ付きコア材が用いられる。エージング処理により、バインダ付きコア材に付着している微量の水分を除去することが可能である。なお、平均繊維径2μm以上4μm以下のガラス短繊維材を水ガラスバインダで接着し、200℃以上で1時間エージング処理を行うことによりバインダ付きコア材を作製するようにしてもよい。   For example, a core material with a binder produced by bonding a short glass fiber material having an average fiber diameter of 2 μm or more and 4 μm or less with a boric acid binder and performing an aging treatment at 200 ° C. or more for 1 hour is used as the core material 2. Used. By the aging treatment, it is possible to remove a trace amount of water adhering to the core material with the binder. In addition, you may make it produce a core material with a binder by adhere | attaching a glass short fiber material with an average fiber diameter of 2 micrometers or more and 4 micrometers or less with a water glass binder, and performing an aging process at 200 degreeC or more for 1 hour.

バインダ付きコア材の場合、水蒸気及びガスが吸着し易い。そこで、バインダ付きコア材の脱水、脱ガスを目的として、外被材4への挿入前にバインダ付きコア材のエージングを施すことは有効である。このときの加熱温度は最低限付着水の除去が可能であるということから、110℃以上であることが望ましく、180℃以上がより好ましい。最適エージング処理温度について、含水率および吸水率等の検討を行った結果、180℃×1時間のエージング処理ではバインダ付きコア材の含水率はバインダ付き処理無しコア材に比べ70分の1にまで減少し、吸水率も110℃、1時間エージング処理より少なくなることが判ってきた。そこで、バインダ付きコア材のエージング温度は180℃以上で実施することがより好ましい。   In the case of a core material with a binder, water vapor and gas are easily adsorbed. Therefore, for the purpose of dehydration and degassing of the core material with the binder, it is effective to perform aging of the core material with the binder before insertion into the jacket material 4. The heating temperature at this time is desirably 110 ° C. or higher, and more preferably 180 ° C. or higher, because it is possible to remove the adhering water as a minimum. As a result of examining the moisture content and water absorption rate, etc. for the optimum aging treatment temperature, the moisture content of the core material with the binder is reduced to 1/70 of the core material without the binder treatment in the aging treatment at 180 ° C. × 1 hour. It has been found that the water absorption is decreased and the water absorption is less than that at 110 ° C. for 1 hour. Therefore, it is more preferable that the aging temperature of the core material with the binder is 180 ° C. or higher.

また、コア材2には、上記と別の例として、平均繊維径2μm以上4μm以下のガラス短繊維材と吸着部材3をポリエチレン製の袋に挿入し、プレス機で圧縮しながら、ポリエチレン製の袋の挿入口を仮封止することにより作製される、バインダレスコア材が用いられる。バインダレスコア材の場合、バインダ付きコア材と比べて水蒸気及びガスが吸着し難いことが判っている。しかし、真空封止にかかる時間の短縮、並びに、水蒸気及びガスによる経時的な真空断熱パネル内真空度の低真空化の要因を排除する目的で、バインダ付きコア材と同様に、予めガラス短繊維材を180℃以上でエージングすることが好ましい。   Further, as another example, the core material 2 is made of a polyethylene short fiber material having an average fiber diameter of 2 μm or more and 4 μm or less and an adsorbing member 3 inserted into a polyethylene bag and compressed with a press machine. A binderless core material produced by temporarily sealing the bag insertion opening is used. In the case of a binderless core material, it has been found that water vapor and gas are difficult to adsorb as compared with a core material with a binder. However, in order to shorten the time required for vacuum sealing and to eliminate the factor of lowering the degree of vacuum in the vacuum heat insulation panel over time due to water vapor and gas, in the same manner as the core material with the binder, a glass short fiber is previously used. It is preferable to age the material at 180 ° C. or higher.

上記、コア材の形態について2例を挙げたが、外被材4に挿入して外被材4内部を減圧し、外被材4の周縁部を熱融着することにより封止することによって作製後、形状を保持できるものであれば不問であり、公知材料が使用可能である。   Although two examples were given for the form of the core material, the core material was sealed by being inserted into the jacket material 4 to reduce the pressure inside the jacket material 4 and heat-sealing the peripheral edge of the jacket material 4. Any material can be used as long as the shape can be maintained after production, and known materials can be used.

ガラス短繊維材としては、平均繊維径が2〜4μmであることが好ましい。ガラス短繊維材は平均繊維径により熱伝導率特性及びコストに大きく影響する。ガラス繊維の主流として用いられてきた平均繊維径が5μm以上のグラスウール等はコストの点では安価なため実用化し易い素材であるが、熱伝導率及び経時劣化が大きく劣る。その理由は、繊維が同一方向に配列して繊維の接触が線に近く繊維同士がバインダで二重に接着され接触熱抵抗が小さくなり、熱伝導率が高くなり経時劣化も急激に進行すると考えられる。一方、平均繊維径が2μm未満では1枚当たりの厚みが薄く断熱性能が劣るため、シート状の無機繊維集合体を重ねて厚みを稼ぐことで熱伝導率と経時劣化の低減は可能である。しかし、シート状の無機繊維集合体を重ねて厚みを稼ぐことでコア材に用いる枚数が増え、生産性が劣ると共にコストも高騰する。また、平均繊維径が2μm未満で真空断熱パネルを作製すると、封止前後でコア材の厚み減少率が大きくなることも判明した。   The short glass fiber material preferably has an average fiber diameter of 2 to 4 μm. The short glass fiber material greatly affects the thermal conductivity characteristics and cost depending on the average fiber diameter. Glass wool having an average fiber diameter of 5 μm or more, which has been used as the mainstream of glass fibers, is a material that is easy to put into practical use because it is inexpensive in terms of cost, but its thermal conductivity and deterioration over time are greatly inferior. The reason for this is that the fibers are arranged in the same direction and the contact of the fibers is close to the line, and the fibers are double-bonded with a binder, the contact thermal resistance is reduced, the thermal conductivity is increased, and the deterioration with time progresses rapidly. It is done. On the other hand, if the average fiber diameter is less than 2 μm, the thickness per sheet is thin and the heat insulation performance is poor. Therefore, by increasing the thickness by stacking sheet-like inorganic fiber aggregates, it is possible to reduce thermal conductivity and deterioration with time. However, increasing the thickness by stacking sheet-like inorganic fiber aggregates increases the number of sheets used for the core material, resulting in inferior productivity and increased cost. It was also found that when the vacuum heat insulating panel was produced with an average fiber diameter of less than 2 μm, the thickness reduction rate of the core material increased before and after sealing.

このように、繊維径が5μm以上になると熱伝導率が高くなるために、伝熱方向に不連続で素材間の接触抵抗を有効に活用する繊維材を選定した。また、接触熱抵抗の他に熱流路がジグザグとなり、熱抵抗が増大して熱伝導率が低くなる多くの繊維材の中から、平均繊維径が3〜5μmのガラス短繊維材を選定することにより、熱伝導率や経時劣化の低減、厚み減少率の低減及び低コスト化を両立することが可能である。   As described above, since the thermal conductivity is increased when the fiber diameter is 5 μm or more, a fiber material that is discontinuous in the heat transfer direction and that effectively uses the contact resistance between the materials is selected. In addition to the contact thermal resistance, the heat flow path becomes zigzag, and a short glass fiber material having an average fiber diameter of 3 to 5 μm is selected from many fiber materials whose thermal resistance increases and thermal conductivity decreases. Therefore, it is possible to achieve both reduction in thermal conductivity and deterioration with time, reduction in thickness reduction rate, and cost reduction.

なお、ガラス短繊維材の繊維方向については、真空断熱パネルの厚み方向に対し水平方向に並んで配列するものが断熱性能の点で好ましい。   In addition, about the fiber direction of a short glass fiber material, what is arranged along with a horizontal direction with respect to the thickness direction of a vacuum heat insulation panel is preferable at the point of heat insulation performance.

外被材4の片面側のフィルム構成については、構成Aとして、外層より表面保護層としてアルミニウムを蒸着したポリエチレンテレフタラートフィルム(12μm)、ガスバリヤ層としてアルミニウム箔(6μm)、熱融着層として高密度ポリエチレンフィルム(50μm)、更に耐傷つき性向上のために最外層に表面保護層としてポリアミドフィルム(15μm)を用いたラミネートフィルム、また、構成Bとして、外層より表面保護層兼ガスバリヤ層としてアルミニウムを蒸着したポリエチレンテレフタラートフィルム(12μm)、アルミニウムを蒸着したエチレン−ビニルアルコール共重合体樹脂(商品名エバール、クラレ(株)製)(12μm)、熱融着層として高密度ポリエチレンフィルム(50μm)、更に耐傷つき性向上のために最外層に表面保護層としてポリアミドフィルム(15μm)を用いたラミネートフィルムが使用できる。外被材4の構成としては、上記の、構成A+構成A(両面箔外被材)、構成A+構成B(箔+蒸着外被材)、構成B+構成B(両面蒸着外被材)の組み合わせが可能であり、これらの構成のフィルムにおいて熱融着層同士を端面で貼り合わせた袋として使用される。   Regarding the film configuration on one side of the jacket material 4, as the configuration A, a polyethylene terephthalate film (12 μm) on which aluminum was deposited as a surface protective layer from the outer layer, an aluminum foil (6 μm) as a gas barrier layer, and a high heat sealing layer A density polyethylene film (50 μm), and a laminate film using a polyamide film (15 μm) as a surface protective layer as an outermost layer for improving scratch resistance. Also, as composition B, aluminum is used as a surface protective layer and gas barrier layer from the outer layer. Vapor-deposited polyethylene terephthalate film (12 μm), aluminum-deposited ethylene-vinyl alcohol copolymer resin (trade name EVAL, manufactured by Kuraray Co., Ltd.) (12 μm), high-density polyethylene film (50 μm) as a thermal fusion layer, To further improve scratch resistance Polyamide film (15 [mu] m) laminate film can be used used as a surface protective layer in the outermost layer. As the configuration of the jacket material 4, the combination of the above-described configuration A + configuration A (double-sided foil jacket material), configuration A + configuration B (foil + vapor deposition jacket material), configuration B + configuration B (double-sided vapor deposition jacket material) In the film of these configurations, it is used as a bag in which the heat-sealing layers are bonded to each other at the end faces.

外被材4において、最外層は衝撃などに対応するためであり、中間層はガスバリヤ性を確保するためであり、最内層は熱融着によって密閉するためである。したがって、これらの目的に適うものであれば、全ての公知材料が使用可能である。また、更に改善する手段として、中間層にアルミニウム蒸着層を有するフィルムを2層設けてもよい。熱融着する最内層としては、ポリプロピレン樹脂やポリアクリルニトリル樹脂などを用いてもよい。   This is because the outermost layer of the outer cover material 4 is for the purpose of responding to impacts, the intermediate layer is for ensuring gas barrier properties, and the innermost layer is for sealing by thermal fusion. Therefore, all known materials can be used as long as they meet these purposes. Further, as a means for further improvement, two films having an aluminum vapor deposition layer as an intermediate layer may be provided. As the innermost layer to be heat-sealed, polypropylene resin or polyacrylonitrile resin may be used.

吸着部材3とは、水蒸気及び有機ガスを吸着する合成ゼオライトであり、コア材2から放出される水蒸気、外被材4を通して外部より浸入する水蒸気および空気、および外被材4から発生する有機ガスを吸収し、真空断熱パネル11の経時劣化を低く抑えるものが好ましい。また、合成ゼオライトの形状は、粉末、細粒、顆粒、錠剤、固形状等特に限定されるものではない。   The adsorbing member 3 is a synthetic zeolite that adsorbs water vapor and organic gas, water vapor released from the core material 2, water vapor and air entering from the outside through the outer covering material 4, and organic gas generated from the outer covering material 4. It is preferable to absorb the odor and suppress the deterioration of the vacuum heat insulating panel 11 with time. Further, the shape of the synthetic zeolite is not particularly limited, such as powder, fine particles, granules, tablets, solids and the like.

また、本実施例では、吸着部材3として合成ゼオライトを使用しているが、真空断熱パネル11の信頼性を向上させるためには、必要に応じて生石灰、ドーソナイト、ハイドロタルサイト、金属水酸化物等のガス吸着剤やバリウム−リチウム合金等の合金を使用することも有効である。   Further, in this embodiment, synthetic zeolite is used as the adsorbing member 3, but in order to improve the reliability of the vacuum heat insulating panel 11, quick lime, dawsonite, hydrotalcite, metal hydroxide as necessary. It is also effective to use a gas adsorbent such as barium or an alloy such as barium-lithium alloy.

また、吸着部材3は、真空断熱パネル11の製造時に、コア材2の繊維層内に挿入される。この挿入により、真空断熱パネル11の製造後において、外被材4には大気圧相当の外力が加わるが、吸着部材3の粒によって外被材4を傷つけたり破断したりすることがなく、真空断熱パネル11の断熱性能に対する信頼性を損なうことがない。   The adsorbing member 3 is inserted into the fiber layer of the core material 2 when the vacuum heat insulating panel 11 is manufactured. By this insertion, an external force equivalent to atmospheric pressure is applied to the jacket material 4 after manufacturing the vacuum heat insulating panel 11, but the jacket material 4 is not damaged or broken by the particles of the adsorption member 3, and vacuum is applied. The reliability with respect to the heat insulation performance of the heat insulation panel 11 is not impaired.

真空断熱パネル11上に配設する凸形平坦部15は、コア材2上に平坦な薄板17を載せて外被材4に挿入し、外被材4の内部を減圧し、外被材4の周縁部を熱融着して封止することにより作製できる。平坦な薄板17の材質は、金属板やガラス板等、全ての公知材料が使用可能であるが、熱伝導率測定時のヒートブリッジによる誤判定を避けるため、熱伝導率が比較的低い材質が好ましく、特にコア材2と同じ材質であるガラス短繊維材を、バインダ等を用いて焼き固めたものが最も好ましい。   The convex flat portion 15 disposed on the vacuum heat insulating panel 11 is placed on the outer cover material 4 by placing a flat thin plate 17 on the core material 2, and the inner pressure of the outer cover material 4 is reduced. It can be produced by sealing the peripheral edge of the film by heat sealing. As the material of the flat thin plate 17, all known materials such as a metal plate and a glass plate can be used. However, in order to avoid misjudgment due to a heat bridge when measuring the thermal conductivity, a material having a relatively low thermal conductivity is used. In particular, a glass short fiber material, which is the same material as the core material 2, is most preferably baked and hardened using a binder or the like.

また、真空断熱パネル11上に、凸形平坦部15の代わりに凹形平坦部16を配設することも可能である。凹形平坦部16を配設する場合、コア材2上には何も載せずにコア材2を外被材4に挿入し、外被材4の内部を減圧し、外被材4の周縁部を熱融着して封止した後、真空断熱パネル11外部より圧力を加え、後加工することにより作製できる。   Further, a concave flat portion 16 can be disposed on the vacuum heat insulating panel 11 instead of the convex flat portion 15. When the concave flat portion 16 is provided, the core material 2 is inserted into the jacket material 4 without placing anything on the core material 2, the inside of the jacket material 4 is decompressed, and the periphery of the jacket material 4 After the parts are heat-sealed and sealed, pressure can be applied from the outside of the vacuum heat insulation panel 11 to perform post-processing.

熱伝導率測定時においては、熱伝導率測定装置21の被測定物への接触部分である熱発生装置22の大きさが直径50mmであることにより、真空断熱パネル11上に配設する凸形平坦部15の大きさは、直径50mmの円を包含できる大きさでなければならない。また、熱伝導率測定装置21を真空断熱パネル11の凸形平坦部15上に配置した場合、凸形平坦部15の凹凸がゼロであり、熱伝導率測定装置21の熱発生装置22と凸形平坦部15との間隙が完全にゼロであることが最も好ましい。しかし、凸形平坦部15に、外被材4の厚み相当である0.1mmの凹凸が存在しても熱伝導率測定装置21の熱発生装置22と凸形平坦部15との間隙はゼロに等しいことが判っており、凸形平坦部15の凹凸は0.1mm以内が好ましいと言える。真空断熱パネル11の厚さは約10mmであるため、凸形平坦部15の高さは、真空断熱パネル11全体の熱伝導率性能に与える影響が少なく、真空断熱パネル11の厚さの10分の1以下である1mm以下が好ましい。   At the time of measuring thermal conductivity, the size of the heat generating device 22 that is a contact portion of the thermal conductivity measuring device 21 with the object to be measured is 50 mm in diameter, so that the convex shape disposed on the vacuum heat insulating panel 11. The size of the flat portion 15 must be a size that can include a circle having a diameter of 50 mm. Further, when the thermal conductivity measuring device 21 is arranged on the convex flat portion 15 of the vacuum heat insulating panel 11, the convex / concave portion of the convex flat portion 15 is zero, and the heat generating device 22 of the thermal conductivity measuring device 21 is convex. Most preferably, the gap with the shaped flat portion 15 is completely zero. However, even if the convex flat portion 15 has an unevenness of 0.1 mm corresponding to the thickness of the jacket material 4, the gap between the heat generating device 22 of the thermal conductivity measuring device 21 and the convex flat portion 15 is zero. It can be said that the unevenness of the convex flat portion 15 is preferably within 0.1 mm. Since the thickness of the vacuum heat insulation panel 11 is about 10 mm, the height of the convex flat portion 15 has little influence on the thermal conductivity performance of the entire vacuum heat insulation panel 11 and is 10 minutes of the thickness of the vacuum heat insulation panel 11. It is preferably 1 mm or less, which is 1 or less.

例えば、凸形平坦部15の大きさが直径60mmの円形状かつ高さが1mmであり、熱伝導率が2.5mW/m・Kである真空断熱パネル11において、凸形平坦部上15に熱伝導率測定装置21を配置して熱伝導率測定検査を行うことにより、表1に示される通り、熱伝導率測定装置21による出力電圧は閾電圧よりも高くなるためOKと判定され、その結果、長期に亘り優れた断熱性能を維持できる真空断熱パネルを提供できる。
[実施例2]
真空断熱パネルを構成する各種部材については、全て[実施例1]に記載のものと同様である。凹形平坦部16の大きさが直径50mmの円形状であり高さが0.5mmである真空断熱パネル11において、凹形平坦部16上に熱伝導率測定装置21を配置して熱伝導率測定検査を行うことにより、表1に示される通り、熱伝導率測定装置21による出力電圧は閾電圧よりも高くなるためOKと判定され、その結果、長期に亘り優れた断熱性能を維持できる真空断熱パネルを提供できる。
[比較例1]
真空断熱パネルを構成する各種部材については、凸形平坦部に関するもの以外は[実施例1]に記載のものと同様である。凸形平坦部を配設しない真空断熱パネル1においては、コア材2の表面の凹形状部の深さが0.2mm存在する。熱伝導率測定装置21の熱発生装置22をこの凹形状部に配置して熱伝導率測定検査を行うことにより、表1に示される通り、熱伝導率測定装置21による出力電圧は閾電圧よりも低くなるためNGと判定され、高い精度の結果が得られず、その結果、性能信頼性の高い真空断熱パネルを提供することができない。
[比較例2]
真空断熱パネルを構成する各種部材については、凸形平坦部に関するもの以外は[実施例1]に記載のものと同様である。凸形平坦部5の大きさが直径40mmの円形状であり高さが1mmである真空断熱パネル1において、凸形平坦部5上に熱伝導率測定装置21を配置して熱伝導率測定検査を行うことにより、熱発生装置22と凸形平坦部との間に間隙が生じるため、表1に示される通り、熱伝導率測定装置21による出力電圧は閾電圧よりも低くなることによりNGと判定され、その結果、性能信頼性の高い真空断熱パネルを提供することができない。
For example, in the vacuum heat insulating panel 11 in which the convex flat portion 15 has a circular shape with a diameter of 60 mm, a height of 1 mm, and a thermal conductivity of 2.5 mW / m · K, By arranging the thermal conductivity measurement device 21 and conducting the thermal conductivity measurement inspection, as shown in Table 1, the output voltage from the thermal conductivity measurement device 21 is higher than the threshold voltage, so it is determined to be OK. As a result, it is possible to provide a vacuum thermal insulation panel that can maintain excellent thermal insulation performance over a long period of time.
[Example 2]
Various members constituting the vacuum heat insulation panel are all the same as those described in [Example 1]. In the vacuum heat insulating panel 11 in which the concave flat portion 16 has a circular shape with a diameter of 50 mm and a height of 0.5 mm, a thermal conductivity measuring device 21 is disposed on the concave flat portion 16 to thereby increase the thermal conductivity. By performing the measurement inspection, as shown in Table 1, the output voltage from the thermal conductivity measuring device 21 is determined to be OK because it is higher than the threshold voltage, and as a result, a vacuum that can maintain excellent heat insulation performance over a long period of time. Insulation panels can be provided.
[Comparative Example 1]
About the various members which comprise a vacuum heat insulation panel, except the thing regarding a convex-shaped flat part, it is the same as that of the thing as described in [Example 1]. In the vacuum heat insulation panel 1 in which the convex flat portion is not disposed, the depth of the concave portion on the surface of the core material 2 is 0.2 mm. By arranging the heat generating device 22 of the thermal conductivity measuring device 21 in this concave shape portion and conducting the thermal conductivity measurement inspection, as shown in Table 1, the output voltage by the thermal conductivity measuring device 21 is higher than the threshold voltage. Therefore, it is determined as NG, and a highly accurate result cannot be obtained. As a result, a vacuum heat insulating panel with high performance reliability cannot be provided.
[Comparative Example 2]
About the various members which comprise a vacuum heat insulation panel, except the thing regarding a convex-shaped flat part, it is the same as that of the thing as described in [Example 1]. In the vacuum heat insulation panel 1 in which the convex flat portion 5 has a circular shape with a diameter of 40 mm and a height of 1 mm, a thermal conductivity measuring device 21 is arranged on the convex flat portion 5 to conduct a thermal conductivity measurement inspection. As shown in Table 1, the output voltage from the thermal conductivity measuring device 21 is lower than the threshold voltage, so that a gap is generated between the heat generating device 22 and the convex flat portion. As a result, it is impossible to provide a vacuum heat insulation panel with high performance and reliability.

尚、熱発生装置22の大きさが直径40mm以下であれば平坦部の大きさが直径40mmでもよいことは云うまでもない。   Needless to say, if the size of the heat generator 22 is 40 mm or less, the size of the flat portion may be 40 mm.

Figure 2006125527
Figure 2006125527

実施例及び比較例で使用した真空断熱パネルの仕様、及び熱伝導率測定検査の結果を示す。   The specification of the vacuum heat insulation panel used by the Example and the comparative example, and the result of a heat conductivity measurement test are shown.

本発明・実施例1の真空断熱パネルの断面図である。It is sectional drawing of the vacuum heat insulation panel of this invention and Example 1. FIG. 本発明・実施例2の真空断熱パネルの断面図である。It is sectional drawing of the vacuum heat insulation panel of this invention and Example 2. FIG. 従来又は比較例1に示される真空断熱パネルの断面図である。It is sectional drawing of the vacuum heat insulation panel shown by the prior art or the comparative example 1. FIG. 比較例2に示される真空断熱パネルの断面図である。It is sectional drawing of the vacuum heat insulation panel shown by the comparative example 2.

符号の説明Explanation of symbols

1…従来又は比較例で示される真空断熱パネル、2…コア材、3…吸着部材、4…外被材、5…比較例2で示される凸形平坦部、11…本発明の真空断熱パネル、15…本発明・実施例1で示される凸形平坦部、16…本発明・実施例2で示される凹形平坦部、17…平坦な薄板、21…熱伝導率測定装置、22…熱発生装置。
DESCRIPTION OF SYMBOLS 1 ... Vacuum insulation panel shown by the prior art or a comparative example, 2 ... Core material, 3 ... Adsorption member, 4 ... Cover material, 5 ... Convex flat part shown by the comparative example 2, 11 ... Vacuum insulation panel of this invention , 15 ... convex flat part shown in the present invention / Example 1, 16 ... concave flat part shown in the present invention / Example 2, 17 ... flat thin plate, 21 ... thermal conductivity measuring device, 22 ... heat Generator.

Claims (6)

コア材と、水蒸気及び有機ガスを吸着する吸着部材と、ガスバリヤ性フィルムからなる外包材とからなる真空断熱パネルにおいて、該真空断熱パネル上に平坦部を配設することを特徴とする真空断熱パネル。   A vacuum heat insulation panel comprising a core material, an adsorbing member for adsorbing water vapor and organic gas, and an outer packaging material made of a gas barrier film, wherein a flat portion is disposed on the vacuum heat insulation panel. . 真空断熱パネル上に配設した平坦部が、平坦部以外の部分に対して凸形であることを特徴とする、請求項1に記載の真空断熱パネル。   The vacuum heat insulation panel according to claim 1, wherein the flat portion disposed on the vacuum heat insulation panel is convex with respect to a portion other than the flat portion. 真空断熱パネル上に配設した平坦部が、平坦部以外の部分に対して凹形であることを特徴とする、請求項1に記載の真空断熱パネル。   The vacuum insulation panel according to claim 1, wherein the flat part disposed on the vacuum insulation panel is concave with respect to a part other than the flat part. 真空断熱パネル上に配設した平坦部の大きさが、直径50mmの円を包含できることを特徴とする、請求項2又は3に記載の真空断熱パネル。   The vacuum heat insulating panel according to claim 2 or 3, wherein the flat portion disposed on the vacuum heat insulating panel can include a circle having a diameter of 50 mm. 真空断熱パネル上に配設した平坦部の凹凸が0.1mm以内であることを特徴とする、請求項4に記載の真空断熱パネル。   The vacuum heat insulation panel according to claim 4, wherein the unevenness of the flat portion disposed on the vacuum heat insulation panel is within 0.1 mm. 被測定物と熱抵抗材の間で熱を発生させて、被測定物内部と熱抵抗材内部に熱を流し、熱抵抗材の少なくとも2箇所の温度差から被測定物の熱伝導率を求めることを特徴とする熱伝導率測定方法において、請求項1〜5に記載の真空断熱パネルを被測定物とし、該真空断熱パネルの平坦部上に熱伝導率測定装置を配置して測定を行うことを特徴とする熱伝導率測定方法。
Heat is generated between the object to be measured and the heat resistance material, and heat is passed through the object to be measured and the heat resistance material, and the thermal conductivity of the object to be measured is obtained from the temperature difference between at least two locations of the heat resistance material. In the thermal conductivity measuring method, the vacuum heat insulation panel according to any one of claims 1 to 5 is used as an object to be measured, and a thermal conductivity measurement device is disposed on a flat portion of the vacuum heat insulation panel for measurement. A method of measuring thermal conductivity.
JP2004314963A 2004-10-29 2004-10-29 Vacuum thermal insulation panel Withdrawn JP2006125527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314963A JP2006125527A (en) 2004-10-29 2004-10-29 Vacuum thermal insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314963A JP2006125527A (en) 2004-10-29 2004-10-29 Vacuum thermal insulation panel

Publications (1)

Publication Number Publication Date
JP2006125527A true JP2006125527A (en) 2006-05-18

Family

ID=36720459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314963A Withdrawn JP2006125527A (en) 2004-10-29 2004-10-29 Vacuum thermal insulation panel

Country Status (1)

Country Link
JP (1) JP2006125527A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055757A (en) * 2006-08-31 2008-03-13 Zojirushi Corp Vacuum thermal-insulation panel
JP2010143602A (en) * 2008-12-17 2010-07-01 Nichias Corp Heat insulating container and method for examining it
KR101346515B1 (en) 2011-08-04 2013-12-31 (주)엘지하우시스 Vacuum hole structure and vacuum insulator panel including of the same
US8882344B2 (en) 2012-02-01 2014-11-11 Samsung Electronics Co., Ltd. Thermal insulation performance measurement apparatus and measurement method using the same
JP2017026385A (en) * 2015-07-17 2017-02-02 英弘精機株式会社 Heat conductivity measurement device, heat conductivity measurement method and vacuum evaluation device
AU2016216581B2 (en) * 2013-06-07 2017-04-20 Mitsubishi Electric Corporation Heat insulating box body and refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055757A (en) * 2006-08-31 2008-03-13 Zojirushi Corp Vacuum thermal-insulation panel
JP2010143602A (en) * 2008-12-17 2010-07-01 Nichias Corp Heat insulating container and method for examining it
KR101346515B1 (en) 2011-08-04 2013-12-31 (주)엘지하우시스 Vacuum hole structure and vacuum insulator panel including of the same
US8882344B2 (en) 2012-02-01 2014-11-11 Samsung Electronics Co., Ltd. Thermal insulation performance measurement apparatus and measurement method using the same
US9618402B2 (en) 2012-02-01 2017-04-11 Samsung Electronics Co., Ltd. Thermal insulation performance measurement apparatus and measurement method using the same
AU2016216581B2 (en) * 2013-06-07 2017-04-20 Mitsubishi Electric Corporation Heat insulating box body and refrigerator
JP2017026385A (en) * 2015-07-17 2017-02-02 英弘精機株式会社 Heat conductivity measurement device, heat conductivity measurement method and vacuum evaluation device

Similar Documents

Publication Publication Date Title
US6938968B2 (en) Vacuum insulating material and device using the same
JP4671897B2 (en) Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation
CN103968196B (en) Vacuum heat insulation materials, adiabatic shell unit and refrigerator
JP2008249003A (en) Vacuum insulation panel and appliance provided with it
JP2013050242A (en) Refrigerator, method of manufacturing the same, and freezer
US20150344173A1 (en) Vacuum heat insulation material, heat insulation box comprising same, and method for manufacturing vacuum heat insulation material
JP6014759B2 (en) Vacuum insulation containing annealed binderless glass fiber
JP6446901B2 (en) Vacuum heat insulating material, exterior material for vacuum heat insulating material, and heat insulating article
JP2006084077A (en) Vacuum heat insulating material and refrigerator using the same
JP2006125527A (en) Vacuum thermal insulation panel
JP5356617B2 (en) Vacuum insulation
JP2016084833A (en) Vacuum heat insulating material and heat insulating box
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP2010096291A (en) Vacuum heat insulated casing
JP2011089740A (en) Bag body and vacuum heat insulating material
WO2017029727A1 (en) Vacuum heat insulation material and heat insulation box
JP2013019475A (en) Insulating container
JP6486079B2 (en) Method for maintaining heat insulation performance of vacuum insulation panel and method for maintaining heat insulation performance of refrigerator
CN109844392A (en) Vacuum heat-insulating plate
JP5982276B2 (en) Refrigerator using vacuum heat insulating material and vacuum heat insulating material
JP2011208763A (en) Vacuum heat insulating material
JP2011094639A (en) Vacuum bag body and vacuum heat insulating material
JP2005283059A (en) Refrigerator
JP5810054B2 (en) Vacuum insulation and refrigerator
JP2011094638A (en) Vacuum bag body and vacuum heat insulating material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108