JP2005283059A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005283059A
JP2005283059A JP2004101805A JP2004101805A JP2005283059A JP 2005283059 A JP2005283059 A JP 2005283059A JP 2004101805 A JP2004101805 A JP 2004101805A JP 2004101805 A JP2004101805 A JP 2004101805A JP 2005283059 A JP2005283059 A JP 2005283059A
Authority
JP
Japan
Prior art keywords
insulation panel
adhesive
outer box
heat insulation
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004101805A
Other languages
Japanese (ja)
Inventor
Shinya Okamoto
晋哉 岡本
Kuninari Araki
邦成 荒木
Hisashi Echigoya
恒 越後屋
Takashi Miseki
隆 三関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004101805A priority Critical patent/JP2005283059A/en
Publication of JP2005283059A publication Critical patent/JP2005283059A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refrigerator Housings (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To preclude a clearance and separation from being generated in a vacuum insulation panel, and to maintain an excellent appearance after injecting a cellular insulating material, and excellent insulating performance over a long period, irrespective of a standing temperature environmental condition after applying an adhesive. <P>SOLUTION: In this refrigerator, the vacuum insulation panel 1 is arranged in an inside of an outer box 22, using the adhesive 7, and the cellular insulating material 24 is filled between the outer box 22 and an inner box 23 to constitute an insulator. The vacuum insulation panel 1 is provided with a core material 3, an adsorption member 4, and a sheathing member 2 for storing the core material 3 and the adsorption member 4, and comprising a gas barrier film. The adhesive 7 having more than 0 to 50% or less of rosin content is used to bond the vacuum insulation panel 1 to the outer box 22, and the adhesive 7 is applied onto the vacuum insulation panel 1, with 180 μm or more of thickness. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、真空断熱パネルを用いた冷蔵庫に関する。   The present invention relates to a refrigerator using a vacuum heat insulation panel.

近年、地球温暖化に対する観点から、家電品の消費電力量削減の必要性が叫ばれている。特に、冷蔵庫は家電品の中で特に消費電力量を費やす製品であり、冷蔵庫の消費電力量削減は地球温暖化対策として必要不可欠な状況にある。冷蔵庫の消費電力は、庫内の負荷量が一定であれば、庫内冷却用圧縮機の効率と庫内からの熱漏洩量に関係する断熱材の断熱性能によってその大部分が決まるため、冷蔵庫の技術開発では圧縮機の効率と断熱材の性能向上を行う必要がある。   In recent years, from the viewpoint of global warming, the necessity of reducing the power consumption of home appliances has been screamed. In particular, a refrigerator is a product that consumes a particularly large amount of power consumption among household electrical appliances, and reducing the power consumption of the refrigerator is indispensable as a measure against global warming. If the load in the refrigerator is constant, the power consumption of the refrigerator is largely determined by the heat insulation performance of the heat insulating material related to the efficiency of the compressor for cooling the refrigerator and the amount of heat leakage from the refrigerator. In this technical development, it is necessary to improve the efficiency of the compressor and the performance of the heat insulating material.

断熱材の高性能化の例として、コア材をガスバリヤ性フィルムからなる外被材で覆って内部を減圧封止した真空断熱パネルを用いることが行われるようになってきている。   As an example of improving the performance of a heat insulating material, use of a vacuum heat insulating panel in which a core material is covered with a jacket material made of a gas barrier film and the inside is sealed under reduced pressure has been used.

従来の真空断熱パネル固定方法としては、特許文献1に示されたものがある。ここで示されている真空断熱パネルの固定方法は、真空断熱パネルを外箱に加熱硬化型両面テープで固定し、発泡断熱材が硬化するときの反応熱で硬化させることにより、真空断熱パネルを外箱に固定するものである。なお、特許文献1には、係る真空断熱パネルの固定方法が冷蔵庫等に適用されることが記載されている。   As a conventional vacuum heat insulating panel fixing method, there is one disclosed in Patent Document 1. The fixing method of the vacuum heat insulation panel shown here is that the vacuum heat insulation panel is fixed to the outer box with a heat-curing double-sided tape, and cured by the reaction heat when the foam heat insulating material is cured. It is fixed to the outer box. Patent Document 1 describes that the fixing method of the vacuum heat insulation panel is applied to a refrigerator or the like.

また、別の従来の真空断熱パネル固定方法としては、特許文献2に示されたものがある。ここで示されている真空断熱パネルの固定方法は、断熱壁面(外箱鉄板の内側)に磁石を介して真空断熱パネルを固定するものである。なお、特許文献2には、係る真空断熱パネルの固定方法が冷蔵庫等に適用されることが記載されている。   Another conventional vacuum heat insulation panel fixing method is disclosed in Patent Document 2. The fixing method of the vacuum heat insulation panel shown here fixes a vacuum heat insulation panel to a heat insulation wall surface (inside of an outer box iron plate) via a magnet. Patent Document 2 describes that the method for fixing a vacuum heat insulation panel is applied to a refrigerator or the like.

また、真空断熱パネルを冷蔵庫外箱の内側に配設する際、真空断熱パネル又は外箱に接着剤を塗布し、真空断熱パネルを外箱に貼り合わせて固定する方法が主流になってきている。特許文献3の従来技術の欄には、外板の一方側の内面に真空パネルを両面テープ又はホットメルト型接着剤によって貼着することが記載されている。   In addition, when the vacuum heat insulation panel is disposed inside the refrigerator outer box, a method of applying an adhesive to the vacuum heat insulation panel or the outer box and bonding the vacuum heat insulation panel to the outer box and fixing it has become mainstream. . In the column of the prior art in Patent Document 3, it is described that a vacuum panel is attached to the inner surface on one side of the outer plate with a double-sided tape or a hot melt adhesive.

特開平6-194030号公報Japanese Unexamined Patent Publication No. 6-194030

特開平9-166271号公報JP-A-9-166271 特開平1-263041号公報Japanese Unexamined Patent Publication No. 1-263041

しかし、特許文献1の真空断熱パネル固定方法では、真空断熱パネルを加熱硬化型両面テープで金属製外箱に固定しているため、発泡断熱材注入前の前組段階で真空断熱パネルを外箱に確実に固定することができず、真空断熱パネルが発泡断熱材注入時に所定の貼り付け位置からずれた状態又は剥れ落ちた状態にある可能性がある。真空断熱パネルが発泡断熱材注入時に所定の貼り付け位置にない場合、発泡断熱材注入後の冷蔵庫の外観を損なうのみならず、冷蔵庫の熱漏洩量や消費電力量を増大させてしまうという課題があった。   However, in the vacuum heat insulation panel fixing method of Patent Document 1, since the vacuum heat insulation panel is fixed to the metal outer box with a heat-curing double-sided tape, the vacuum heat insulation panel is attached to the outer case in the previous assembly stage before the foam heat insulating material is injected. There is a possibility that the vacuum heat insulation panel is in a state of being displaced from a predetermined attaching position or being peeled off when the foam heat insulating material is injected. If the vacuum insulation panel is not in the predetermined attachment position when injecting foam insulation, it will not only impair the appearance of the refrigerator after injection of foam insulation, but also increase the amount of heat leakage and power consumption of the refrigerator. there were.

また、特許文献2の真空断熱パネル固定方法では、断熱壁面(外箱鉄板)に磁石を介して真空断熱パネルを固定しているため、真空断熱パネルの外被材に磁性体層を用いる必要がある。真空断熱パネルの外被材に磁性体層を用いることにより、真空断熱パネル自体のヒートブリッジを増大させることとなり、その結果、その真空断熱パネルを冷蔵庫に貼り付け固定した冷蔵庫は、熱漏洩量や消費電力量が増大してしまうという課題があった。   Moreover, in the vacuum heat insulation panel fixing method of patent document 2, since the vacuum heat insulation panel is being fixed to the heat insulation wall surface (outer box iron plate) via the magnet, it is necessary to use a magnetic body layer for the jacket material of a vacuum heat insulation panel. is there. By using a magnetic material layer for the jacket material of the vacuum heat insulation panel, the heat bridge of the vacuum heat insulation panel itself is increased. As a result, the refrigerator in which the vacuum heat insulation panel is attached and fixed to the refrigerator There was a problem that power consumption increased.

また、真空断熱パネル又は外箱に接着剤を塗布し、真空断熱パネルを外箱に貼り合わせて固定する方法では次のような問題があった。冷蔵庫の製造工程において、真空断熱パネル又は外箱に接着剤を塗布した後、次の貼り合わせ工程までの間しばらく放置した場合、あるいは、真空断熱パネル又は外箱に接着剤を塗布して貼り合わせた後、次の製造工程までの間しばらく放置した場合、周囲の温度、湿度等の放置環境によっては、真空断熱パネルの浮きや剥れが生ずる場合があった。このときは、再度、接着剤を塗布する工程、真空断熱パネルを貼り合わせる工程を実施することが必要となり、効率の低下を招くこととなる。   Further, the method of applying an adhesive to the vacuum heat insulating panel or the outer box and bonding the vacuum heat insulating panel to the outer box and fixing it has the following problems. In the refrigerator manufacturing process, after applying adhesive to the vacuum insulation panel or outer box and then leaving it for a while until the next bonding process, or applying adhesive to the vacuum insulation panel or outer box and pasting After that, when left for a while until the next manufacturing process, the vacuum heat insulation panel may float or peel depending on the surrounding environment such as ambient temperature and humidity. At this time, it is necessary to perform the process of applying the adhesive again and the process of attaching the vacuum heat insulation panel again, leading to a reduction in efficiency.

本発明の目的は、冷蔵庫箱体及びドア体への真空断熱パネル配設時において、接着剤塗布後の放置温度環境条件に関わらず、真空断熱パネルの浮きや剥れが生じず、発泡断熱材注入後も良好な外観及び長期に亘る優れた断熱性能を維持できる冷蔵庫及びその製造方法を提供することにある。   The object of the present invention is to provide a foam insulation that does not float or peel off the vacuum insulation panel regardless of the ambient temperature environment conditions after application of the adhesive when the vacuum insulation panel is provided on the refrigerator box and the door. An object of the present invention is to provide a refrigerator that can maintain a good appearance and excellent heat insulation performance over a long period of time after pouring, and a method for producing the same.

前記目的を達成するために、外箱と内箱の間に真空断熱パネルを配設するとともに、前記外箱と前記内箱の間に発泡断熱材を充填して断熱材を構成した冷蔵庫において、本発明は、前記真空断熱パネルは、前記外箱の内側と接着剤を用いて接着され、この接着剤のロジン含有量が0%より多く50%以下であり、前記接着剤が真空断熱パネルに180μm以上の厚さで塗布されることを特徴とするものである。   In order to achieve the above-mentioned object, a vacuum heat insulation panel is arranged between the outer box and the inner box, and in the refrigerator configured with a heat insulating material by filling a foam heat insulating material between the outer box and the inner box, In the present invention, the vacuum heat insulation panel is adhered to the inside of the outer box using an adhesive, and the rosin content of the adhesive is greater than 0% and less than 50%, and the adhesive is applied to the vacuum heat insulation panel. It is applied with a thickness of 180 μm or more.

本発明によれば、接着剤塗工後の放置温度環境条件に関わらず、真空断熱パネルの浮きや剥れが生じず、発泡断熱材注入後も良好な外観及び長期に亘る優れた断熱性能を維持できる冷蔵庫を提供することができる。   According to the present invention, the vacuum insulation panel does not float or peel regardless of the standing temperature environment conditions after the adhesive coating, and has a good appearance and excellent heat insulation performance over a long period after the foam insulation is injected. A refrigerator that can be maintained can be provided.

(実施例)
以下、本発明の一実施例の冷蔵庫を、図1及び図2を用いて説明する。本発明で示す冷蔵庫には、家庭用及び業務用の冷蔵・冷凍庫の他に、自動販売機、商品陳列棚、商品陳列ケース、保冷庫、クーラボックス、冷蔵・冷凍車等が含まれる。
(Example)
Hereinafter, the refrigerator of one Example of this invention is demonstrated using FIG.1 and FIG.2. The refrigerator shown in the present invention includes a vending machine, a product display shelf, a product display case, a cool box, a cooler box, a refrigeration / freezer car, etc., in addition to a refrigerator and freezer for home use and business use.

まず、本実施例の冷蔵庫の構成に関して図1及び図2を参照しながら説明する。図1は本発明の一実施例を示す冷蔵庫の斜視図、図2は図1の要部断面図である。   First, the configuration of the refrigerator according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view of a refrigerator showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the main part of FIG.

冷蔵庫は、断熱体を構成する断熱箱体21と、断熱体を構成する断熱扉を備えて構成されている。断熱箱体21は、金属製の外箱22と合成樹脂製の内箱23と、外箱の内側に接着剤7を用いて配設した複数の真空断熱パネル1と、外箱22と内箱23との間に充填された発泡断熱材24とからなっている。真空断熱パネルは外箱22の内側の所定位置に接着剤7により貼り付けられている。係る真空断熱パネル1を用いた断熱箱体21とすることによって、熱漏洩量や消費電力量の少ない冷蔵庫を提供することができる。   The refrigerator includes a heat insulating box 21 that forms a heat insulator and a heat insulating door that forms the heat insulator. The heat insulating box 21 includes a metal outer box 22, a synthetic resin inner box 23, a plurality of vacuum heat insulating panels 1 arranged using an adhesive 7 inside the outer box, the outer box 22 and the inner box. And a foam heat insulating material 24 filled in between. The vacuum heat insulation panel is attached to a predetermined position inside the outer box 22 with an adhesive 7. By setting it as the heat insulation box 21 using the vacuum heat insulation panel 1 which concerns, the refrigerator with little heat leak amount and power consumption can be provided.

断熱箱体21には、前面を開口した複数の貯蔵室が形成されている。これらの貯蔵室は、冷蔵室、野菜室、冷凍室、アイスボックスに区画形成され、庫内に配置された冷却器によりそれぞれに適した所定の低温温度に冷却される。なお、断熱箱体の壁厚は、20mm〜50mm程度である。   The heat insulation box 21 is formed with a plurality of storage chambers whose front surfaces are open. These storage rooms are partitioned into a refrigeration room, a vegetable room, a freezing room, and an ice box, and are cooled to a predetermined low temperature suitable for each by a cooler disposed in the storage. In addition, the wall thickness of a heat insulation box is about 20 mm-50 mm.

断熱扉は図示していないが、各貯蔵室の前面開口を開閉するように設けられている。断熱扉は、断熱箱体21と同様に、金属製の外箱と合成樹脂製の内箱と、外箱の内側に接着剤により貼り付けられた複数の真空断熱パネルと、外箱と内箱との間に充填された発泡断熱材とからなっている。ここで、発泡断熱材24は、例えば硬質ウレタンフォーム、フェノールフォームやスチレンフォーム等の硬質樹脂フォームが例示される。   Although the heat insulation door is not illustrated, it is provided so as to open and close the front opening of each storage chamber. As with the heat insulating box 21, the heat insulating door is made of a metal outer box, a synthetic resin inner box, a plurality of vacuum heat insulating panels attached to the inner side of the outer box with an adhesive, an outer box and an inner box. It consists of a foam heat insulating material filled between. Here, the foam heat insulating material 24 is exemplified by a hard resin foam such as a hard urethane foam, a phenol foam, and a styrene foam.

この中で、シクロペンタン及び水を混合発泡剤とする硬質ポリウレタンフォームが好ましい。硬質ポリウレタンフォームは、ポリオールを基本原料として、発泡剤、整泡剤、反応触媒の存在下でイソシアネートを反応させて得られるものである。   Among these, a rigid polyurethane foam using cyclopentane and water as a mixed foaming agent is preferable. The rigid polyurethane foam is obtained by reacting an isocyanate with a polyol as a basic raw material in the presence of a foaming agent, a foam stabilizer, and a reaction catalyst.

真空断熱パネル1は、コア材3と、吸着部材4と、コア材3及び吸着部材4を収納し且つガスバリヤ性フィルムからなる外被材2とを備えて構成されている。この真空断熱パネル1は、コア材3と吸着部材4とを外被材2に挿入した状態で、外被材2の内部を減圧し、外被材2の周縁部を熱融着することにより封止することによって作製されている。真空断熱パネル1の形状は、特に限定されず、適用される箇所と作業性に応じて各種形状及び厚さのものが適用可能である。   The vacuum heat insulation panel 1 includes a core material 3, an adsorbing member 4, and an outer covering material 2 that houses the core material 3 and the adsorbing member 4 and is made of a gas barrier film. The vacuum heat insulation panel 1 has a core material 3 and an adsorbing member 4 inserted into the jacket material 2, and the inside of the jacket material 2 is depressurized and the peripheral portion of the jacket material 2 is heat-sealed. It is produced by sealing. The shape of the vacuum heat insulation panel 1 is not specifically limited, The thing of various shapes and thickness is applicable according to the location and workability | operativity applied.

コア材3は平均繊維径2μm以上4μm以下のガラス短繊維材をホウ酸バインダで接着させ、板状に成形後、200℃以上で1時間エージング処理を行うことにより作製される。この処理により、コア材3に付着している微量の水分を除去することが可能である。なお、平均繊維径2μm以上4μm以下のガラス短繊維材を水ガラスバインダで固め、板状に成形後、200℃以上で1時間エージング処理を行うことによりコア材3を作製するようにしてもよい。   The core material 3 is produced by bonding a short glass fiber material having an average fiber diameter of 2 μm or more and 4 μm or less with a boric acid binder, forming into a plate shape, and performing an aging treatment at 200 ° C. or more for 1 hour. By this treatment, it is possible to remove a trace amount of water adhering to the core material 3. The short glass fiber material having an average fiber diameter of 2 μm or more and 4 μm or less is hardened with a water glass binder, and after forming into a plate shape, the core material 3 may be produced by performing an aging treatment at 200 ° C. or more for 1 hour. .

コア材3の脱水、脱ガスを目的として、外被材2への挿入前にコア材のエージングを施すことは有効である。このときの加熱温度は最低限付着水の除去が可能であるということから、110℃以上であることが望ましく、180℃以上がより好ましい。最適エージング処理温度について、含水率および吸水率等の検討を行った結果、180℃、1時間のエージング処理では板状コア材の含水率は処理無しコア材に比べ70分の1にまで減少し、吸水率も110℃、1時間エージング処理より少なくなることが判ってきた。そこで、コア材のエージング温度は180℃以上で実施することがより好ましい。   For the purpose of dehydration and degassing of the core material 3, it is effective to perform aging of the core material before insertion into the jacket material 2. The heating temperature at this time is desirably 110 ° C. or higher, and more preferably 180 ° C. or higher, because it is possible to remove the adhering water as a minimum. As a result of examining the moisture content and water absorption rate, etc. for the optimal aging treatment temperature, the moisture content of the plate-like core material decreased to 1/70 of the core material without treatment in the aging treatment at 180 ° C. for 1 hour. It has also been found that the water absorption rate is less than that at 110 ° C. for 1 hour. Therefore, it is more preferable that the aging temperature of the core material is 180 ° C. or higher.

ガラス短繊維材としては、平均繊維径が2〜4μmであることが好ましい。ガラス短繊維材は平均繊維径により熱伝導率特性及びコストに大きく影響する。ガラス繊維の主流として用いられてきた平均繊維径が5μm以上のグラスウール等はコストの点では安価なため実用化し易い素材であるが、熱伝導率及び経時劣化が大きく劣る。その理由は、繊維が同一方向に配列して繊維の接触が線に近く繊維同士がバインダで二重に接着され接触熱抵抗が小さくなり、熱伝導率が高くなり経時劣化も急激に進行すると考えられる。一方、平均繊維径が2μm未満では1枚当たりの厚みが薄く断熱性能が劣るため、シート状の無機繊維集合体を重ねて厚みを稼ぐことで熱伝導率と経時劣化の低減は可能である。しかし、シート状の無機繊維集合体を重ねて厚みを稼ぐことでコア材に用いる枚数が増え、生産性が劣ると共にコストも高騰する。また、平均繊維径が2μm未満で真空断熱パネルを作製すると、封止前後でコア材の厚み減少率が大きくなることも判明した。   The short glass fiber material preferably has an average fiber diameter of 2 to 4 μm. The short glass fiber material greatly affects the thermal conductivity characteristics and cost depending on the average fiber diameter. Glass wool having an average fiber diameter of 5 μm or more, which has been used as the mainstream of glass fibers, is a material that is easy to put into practical use because it is inexpensive in terms of cost, but its thermal conductivity and deterioration over time are greatly inferior. The reason for this is that the fibers are arranged in the same direction and the contact of the fibers is close to the line, and the fibers are double-bonded with a binder, the contact thermal resistance is reduced, the thermal conductivity is increased, and the deterioration with time progresses rapidly. It is done. On the other hand, if the average fiber diameter is less than 2 μm, the thickness per sheet is thin and the heat insulation performance is poor. Therefore, by increasing the thickness by stacking sheet-like inorganic fiber aggregates, it is possible to reduce thermal conductivity and deterioration with time. However, by stacking sheet-like inorganic fiber aggregates to increase the thickness, the number of sheets used for the core material increases, resulting in poor productivity and high cost. It was also found that when the vacuum heat insulating panel was produced with an average fiber diameter of less than 2 μm, the thickness reduction rate of the core material increased before and after sealing.

このように、繊維径が5μm以上になると熱伝導率が高くなるために、伝熱方向に不連続で素材間の接触抵抗を有効に活用する繊維材を選定した。また、接触熱抵抗の他に熱流路がジグザグとなり、熱抵抗が増大して熱伝導率が低くなる多くの繊維材の中から、平均繊維径が3〜5μmのガラス短繊維材を選定することにより、熱伝導率や経時劣化の低減、厚み減少率の低減及び低コスト化を両立することが可能である。   As described above, since the thermal conductivity is increased when the fiber diameter is 5 μm or more, a fiber material that is discontinuous in the heat transfer direction and that effectively uses the contact resistance between the materials is selected. In addition to the contact thermal resistance, the heat flow path becomes zigzag, and a short glass fiber material having an average fiber diameter of 3 to 5 μm is selected from many fiber materials whose thermal resistance increases and thermal conductivity decreases. Therefore, it is possible to achieve both reduction in thermal conductivity and deterioration with time, reduction in thickness reduction rate, and cost reduction.

なお、ガラス短繊維材の繊維方向については、真空断熱パネルの厚み方向に対し水平方向に並んで配列するものが断熱性能の点で好ましい。   In addition, about the fiber direction of a short glass fiber material, what is arranged along with a horizontal direction with respect to the thickness direction of a vacuum heat insulation panel is preferable at the point of heat insulation performance.

無機バインダとしては、ホウ酸、水ガラス、アルミキレート、コロイダルシリカ、アルミナゾル等が例示される。この中で、熱伝導率の経時劣化に優れ、コア材に使用するガラス短繊維材に化学作用を及ぼさないホウ酸が最も好ましい。   Examples of the inorganic binder include boric acid, water glass, aluminum chelate, colloidal silica, and alumina sol. Of these, boric acid, which has excellent thermal conductivity over time and does not exert a chemical action on the short glass fiber material used for the core material, is most preferable.

外被材2は、外層より表面保護層としてアルミニウムを蒸着したポリエチレンテレフタラートフィルム(12μm)、ガスバリヤ層としてアルミニウム箔(6μm)、熱融着層として高密度ポリエチレンフィルム(50μm)、更に耐傷つき性向上のために最外層に表面保護層としてポリアミドフィルム(15μm)を用いたラミネートフィルムにより構成されており、熱融着層同士を端面で貼り合わせた袋として使用される。   The outer covering material 2 is a polyethylene terephthalate film (12 μm) on which aluminum is deposited as a surface protective layer from the outer layer, an aluminum foil (6 μm) as a gas barrier layer, a high-density polyethylene film (50 μm) as a heat-sealing layer, and scratch resistance. For improvement, the outermost layer is composed of a laminate film using a polyamide film (15 μm) as a surface protective layer, and is used as a bag in which the heat fusion layers are bonded to each other at the end surfaces.

外被材2において、最外層は衝撃などに対応するためであり、中間層はガスバリヤ性を確保するためであり、最内層は熱融着によって密閉するためである。したがって、これらの目的に適うものであれば、全ての公知材料が使用可能である。また、更に改善する手段として、最外層に表面保護層を付与することで耐突き刺し性を向上させたり、中間層にアルミニウム蒸着層を有するフィルムを2層設けたりしてもよい。熱融着する最内層としては、ポリプロピレン樹脂やポリアクリルニトリル樹脂などを用いてもよい。   This is because the outermost layer of the outer cover material 2 is to cope with impacts, the intermediate layer is to ensure gas barrier properties, and the innermost layer is hermetically sealed by heat sealing. Therefore, all known materials can be used as long as they meet these purposes. Further, as a means for further improvement, a puncture resistance may be improved by applying a surface protective layer to the outermost layer, or two films having an aluminum vapor deposition layer may be provided as an intermediate layer. As the innermost layer to be heat-sealed, polypropylene resin or polyacrylonitrile resin may be used.

外被材2について、更に具体的に説明する。外被材とは、内部に気密部を設けるためにコア材を覆うものであり、材料構成としては特に限定されるものではない。例えば、最外層にポリエチレンテレフタラート樹脂、中間層にアルミニウム箔、最内層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルム、例えば、最外層にポリエチレンテレフタラート樹脂、中間層にアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体樹脂(商品名エバール、クラレ(株)製)、最内層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルムとを袋状にしたものなどが例示される。外被材のこれら各層は、最外層は衝撃などに対応するためであり、中間層はガスバリヤ性を確保するためであり、最内層は熱融着によって密閉するためである。したがって、これらの目的に適うものであれば、全ての公知材料が使用可能である。   The jacket material 2 will be described more specifically. The jacket material covers the core material in order to provide an airtight portion inside, and the material configuration is not particularly limited. For example, a plastic laminate film made of polyethylene terephthalate resin in the outermost layer, aluminum foil in the intermediate layer, and high-density polyethylene resin in the innermost layer, for example, ethylene-vinyl having a polyethylene terephthalate resin in the outermost layer and an aluminum vapor deposition layer in the intermediate layer Examples include an alcohol copolymer resin (trade name EVAL, manufactured by Kuraray Co., Ltd.), and a plastic laminate film made of a high-density polyethylene resin in the innermost layer in a bag shape. These layers of the jacket material are for the outermost layer to cope with impacts, the intermediate layer is for securing gas barrier properties, and the innermost layer is sealed by heat fusion. Therefore, all known materials can be used as long as they meet these purposes.

更に改善する手段として、最外層にポリアミド樹脂などを付与することで耐突き刺し性を向上させたり、中間層にアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体樹脂を2層設けたりしてもよい。熱融着する最内層としては、シール性やケミカルアタック性などから高密度ポリエチレン樹脂が好ましいが、この他に、ポリプロピレン樹脂やポリアクリルニトリル樹脂などを用いてもよい。外被材の材料の具体的構成としては、例えば、最外層にポリアミド、第2層目にポリエチレンテレフタラート樹脂、第3層目にアルミ箔、最内層に高密度ポリエチレン樹脂からなるアルミラミネートフィルムである。   As a means for further improvement, puncture resistance may be improved by applying a polyamide resin or the like to the outermost layer, or two layers of an ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer may be provided as an intermediate layer. . The innermost layer to be heat-sealed is preferably a high-density polyethylene resin from the viewpoint of sealing properties, chemical attack properties, etc. In addition to this, polypropylene resin or polyacrylonitrile resin may be used. As a specific configuration of the material of the jacket material, for example, an aluminum laminated film made of polyamide for the outermost layer, polyethylene terephthalate resin for the second layer, aluminum foil for the third layer, and high-density polyethylene resin for the innermost layer. is there.

吸着部材4は、少なくとも水分を吸着する吸着剤5と、この吸着剤5を覆うと共に水滴を通さず且つ水蒸気を通す包装材6とを備えて構成されている。   The adsorbing member 4 includes an adsorbent 5 that adsorbs at least moisture, and a packaging material 6 that covers the adsorbent 5 and does not allow water droplets to pass but allows water vapor to pass.

吸着剤5は酸化カルシウムを93%以上含有する生石灰であり、2mmのメッシュを使い、これにより選別された2mm以下の粒状物質を用いている。換言すると、包装材6内に封入する吸着剤5としては、生石灰が好ましく、コア材3から放出される水蒸気及び外被材2を通して外部より侵入する水蒸気を吸湿し、真空断熱パネル1の経時劣化を低く抑えるものが好ましい。好ましくは、酸化カルシウム成分の含有量が93%以上、初期含水率が1.5%以下、吸湿率が40%以上のものを使用する。また、生石灰の形状は、粉末、細粒、顆粒、錠剤、固形状等特に限定されるものではない。   The adsorbent 5 is quicklime containing 93% or more of calcium oxide, using a 2 mm mesh, and using a granular material of 2 mm or less selected by this. In other words, the adsorbent 5 enclosed in the packaging material 6 is preferably quick lime, absorbs water vapor released from the core material 3 and water vapor entering from the outside through the jacket material 2, and degrades the vacuum heat insulation panel 1 over time. What keeps low is preferable. Preferably, a calcium oxide component having a content of 93% or more, an initial moisture content of 1.5% or less, and a moisture absorption of 40% or more is used. Moreover, the shape of quicklime is not specifically limited, such as a powder, a fine grain, a granule, a tablet, solid form.

また、本実施例では、吸着剤成分として生石灰を使用しているが、真空断熱パネルの信頼性を向上させるためには、必要に応じてドーソナイト,ハイドロタルサイト,金属水酸化物等のガス吸着剤やバリウム−リチウム合金等の合金を使用することも有効である。   In this example, quick lime is used as the adsorbent component. However, in order to improve the reliability of the vacuum heat insulating panel, gas adsorption of dosonite, hydrotalcite, metal hydroxide, etc. is performed as necessary. It is also effective to use an agent such as an agent or a barium-lithium alloy.

また、吸着部材4は、真空断熱パネル1の製造時に、コア材3の繊維層内に挿入される。この挿入により、真空断熱パネル1の製造後において、外被材2には大気圧相当の外力が加わるが、吸着部材4の粒によって外被材2を傷つけたり破断したりすることがなく、真空断熱パネル1の断熱性能に対する信頼性を損なうことがない。   The adsorbing member 4 is inserted into the fiber layer of the core material 3 when the vacuum heat insulating panel 1 is manufactured. By this insertion, an external force equivalent to the atmospheric pressure is applied to the jacket material 2 after the manufacture of the vacuum heat insulating panel 1, but the outer shell material 2 is not damaged or broken by the particles of the adsorbing member 4, and the vacuum is applied. The reliability with respect to the heat insulation performance of the heat insulation panel 1 is not impaired.

真空断熱パネル1を外箱22に配設するための接着剤7は、表1に示される、ロジンの含有量が0%より多く50%以下である仕様Aを使用する。一般に真空断熱パネルを外箱等に固定する接着剤は、ホットメルト接着剤であり、これは、熱可塑性合成ポリマーをベースとする固形の接着剤であり、熱可塑性合成ポリマー以外にワックス、タッキファイヤー、可塑剤、充填剤及び酸化防止剤を含んでいる。タッキファイヤー成分としてロジンが0%より多く50%以下の割合で含まれる接着剤を用いることにより、作業性が向上する程度に溶融粘度を適切に保つことができ、更には真空断熱パネル1と外箱22との接着性および粘着性を向上することができることが判っている。   As the adhesive 7 for disposing the vacuum heat insulating panel 1 in the outer box 22, the specification A shown in Table 1 having a rosin content of more than 0% and 50% or less is used. In general, the adhesive for fixing the vacuum heat insulation panel to the outer box or the like is a hot melt adhesive, which is a solid adhesive based on a thermoplastic synthetic polymer. In addition to the thermoplastic synthetic polymer, a wax, a tackfire is used. , Plasticizers, fillers and antioxidants. By using an adhesive containing rosin in a proportion of more than 0% and not more than 50% as a tackifier component, the melt viscosity can be maintained appropriately to the extent that workability is improved. It has been found that the adhesion and tackiness with the box 22 can be improved.

接着剤7を真空断熱パネル1の片側面に180μm以上の厚みで塗布し、塗布後すぐに外箱22の内側に貼りつけ、真空断熱パネル1の上面より手押しローラで圧着する。接着剤7が塗布された塗工厚は、薄いほど外箱22と接着層9の界面で剥離しやすく界面剥離を生じやすいため、厚い方が好ましく、特に200μm以上が好ましく、300μm以上としても界面剥離を生じない。   The adhesive 7 is applied to one side of the vacuum heat insulation panel 1 with a thickness of 180 μm or more, and immediately after application, the adhesive 7 is applied to the inside of the outer box 22, and pressed from the upper surface of the vacuum heat insulation panel 1 with a hand roller. The thinner the coating thickness to which the adhesive 7 is applied is, the easier it is to peel off at the interface between the outer box 22 and the adhesive layer 9, and the interface peeling tends to occur. Therefore, the thicker one is preferable, and the thickness is preferably 200 μm or more. Does not cause peeling.

一方、塗工厚を厚くしすぎると、塗布された接着剤自体が剥離する凝集剥離が生ずる場合があり、本例の接着剤を用いた場合、特に180μmから300μmの塗工厚で接着剤を塗布することが好ましい。   On the other hand, if the coating thickness is made too thick, cohesive peeling may occur in which the applied adhesive itself peels off. When the adhesive of this example is used, the adhesive is particularly applied with a coating thickness of 180 μm to 300 μm. It is preferable to apply.

上記の仕様、条件に基づいて作製した真空断熱パネル1を上記の接着剤7の塗布条件で外箱22に配設した後、1昼夜常温(5〜10℃)環境に立掛けて放置し、その後60℃恒温室に立掛けて放置して、真空断熱パネル1の剥れ具合を検討した。その結果を表2に示す。60℃恒温室放置10時間放置後まで、隙、剥れ、落下がなく、貼りつけ固定状態は良好であった。   After the vacuum insulation panel 1 produced based on the above specifications and conditions is disposed in the outer box 22 under the application condition of the adhesive 7, the product is left standing in a room temperature (5 to 10 ° C.) for one day and night, After that, it was left standing in a 60 ° C. constant temperature room, and the degree of peeling of the vacuum insulation panel 1 was examined. The results are shown in Table 2. There was no gap, peeling, or dropping until after standing at 60 ° C. in a constant temperature room for 10 hours, and the stuck and fixed state was good.

また、上記の条件で真空断熱パネル1に接着剤7を塗布して貼りつけ固定した外箱22を前組し、発泡断熱材24を注入した断熱箱体21は、真空断熱パネル1の外箱22からの剥れが生じないため、外観が良好であった。   Further, the heat insulating box body 21 in which the outer box 22 is applied in advance and bonded and fixed to the vacuum heat insulating panel 1 under the above-described conditions and the foam heat insulating material 24 is injected is the outer box of the vacuum heat insulating panel 1. Since peeling from 22 did not occur, the appearance was good.

また、真空断熱パネル1は、断熱箱体21の金属製の外箱22の内側に接着剤7を用いて配設されているため、この真空断熱パネル1の近傍にホットガスパイプ等の高温の配管が配設される場合においても本例の接着剤を用いれば、接着剤が溶けずに信頼性の高い冷蔵庫を提供することが可能となる。また、温度変化によっても必要な接着力が維持できるために設計自由度の向上も図れる。
(比較例)
真空断熱パネル1を構成する各種部材を実施例記載のものと同様とする。真空断熱パネル1を外箱22に配設するための接着剤8は、表1に示される、ロジンを含まない仕様Bを使用する。接着剤8の塗工条件は、実施例記載のものと同様である。
Moreover, since the vacuum heat insulation panel 1 is arrange | positioned using the adhesive agent 7 inside the metal outer box 22 of the heat insulation box 21, in the vicinity of this vacuum heat insulation panel 1, high temperature piping, such as a hot gas pipe, is provided. If the adhesive of this example is used even when is disposed, it is possible to provide a highly reliable refrigerator without melting the adhesive. Further, since the necessary adhesive force can be maintained even with temperature changes, the degree of freedom in design can be improved.
(Comparative example)
Various members constituting the vacuum heat insulation panel 1 are the same as those described in the examples. The adhesive 8 for disposing the vacuum heat insulation panel 1 in the outer box 22 uses the specification B shown in Table 1 that does not contain rosin. The coating conditions for the adhesive 8 are the same as those described in the examples.

実施例と同様の仕様、条件に基づいて作製した真空断熱パネル1を上記の接着剤8の塗工条件で外箱22に配設した後、1昼夜常温(5〜10℃)環境に立掛けて放置し、その後60℃恒温室に立掛けて放置して、真空断熱パネル1の剥れ具合を検討した。その結果を表2に示す。60℃恒温室に50分放置後において、既に真空断熱パネル1と外箱22との間に隙が生じ、10時間放置後に真空断熱パネル1は外箱22より剥れて落下したものが存在した。また、60℃恒温室に50分放置後に隙や剥れがなかったものでも、10時間放置後には隙が生じた。   The vacuum insulation panel 1 produced based on the same specifications and conditions as in the example was placed in the outer box 22 under the above-described adhesive 8 coating conditions, and then stood in a room temperature (5 to 10 ° C.) for one day and night. And then left standing in a constant temperature room at 60 ° C. to examine how the vacuum insulation panel 1 was peeled off. The results are shown in Table 2. After leaving in a constant temperature room at 60 ° C. for 50 minutes, there was already a gap between the vacuum heat insulation panel 1 and the outer box 22, and after leaving for 10 hours, the vacuum heat insulation panel 1 was peeled off from the outer box 22 and dropped. . In addition, even if there was no gap or peeling after leaving in a constant temperature room at 60 ° C. for 50 minutes, a gap was formed after leaving for 10 hours.

実際に、外箱22と内箱23を前組した後、もしくは発泡断熱材24を注入中、もしくは発泡断熱材24を注入した後に真空断熱パネル1が外箱22より剥れた断熱箱体21は、外箱22に歪が生じ、外観不良であった。   Actually, the heat insulating box 21 in which the vacuum heat insulating panel 1 is peeled off from the outer box 22 after the outer box 22 and the inner box 23 are assembled, or during the injection of the foam heat insulating material 24 or after the foam heat insulating material 24 is injected. The outer box 22 was distorted and the appearance was poor.

Figure 2005283059
表1は、真空断熱パネルを外箱に配設するための接着剤の成分を示すものである。実施例において用いた接着剤はA仕様、比較例において用いた接着剤はB仕様である。
Figure 2005283059
Table 1 shows the components of the adhesive for disposing the vacuum heat insulation panel in the outer box. The adhesive used in the examples is A specification, and the adhesive used in the comparative example is B specification.

Figure 2005283059
表2は、真空断熱パネルを接着剤を用いて外箱に配設し、所定の条件で立掛けて放置した後の、真空断熱パネルと外箱の剥れ具合を検討した結果を示すものである。
Figure 2005283059
Table 2 shows the results of examining the degree of peeling between the vacuum heat insulation panel and the outer box after the vacuum heat insulation panel was placed in the outer box using an adhesive, and left standing under predetermined conditions. is there.

真空断熱パネルを、本発明または従来の接着剤で配設した冷蔵庫箱体の斜視模式図である。It is a perspective schematic diagram of the refrigerator box which arrange | positioned the vacuum heat insulation panel with this invention or the conventional adhesive agent. 真空断熱パネルを、本発明で用いた接着剤で配設した冷蔵庫の要部断面図である。It is principal part sectional drawing of the refrigerator which arrange | positioned the vacuum heat insulation panel with the adhesive agent used by this invention. 真空断熱パネルを、従来の接着剤で配設した冷蔵庫の要部断面図である。It is principal part sectional drawing of the refrigerator which arrange | positioned the vacuum heat insulation panel with the conventional adhesive agent.

符号の説明Explanation of symbols

1…真空断熱パネル、2…外被材、3…コア材、4…吸着部材、5…吸着剤、6…包装材、7…本発明で用いた接着剤、8…従来用いられてきた接着剤、9…接着層、21…断熱箱体、22…外箱、23…内箱、24…発泡断熱材。
DESCRIPTION OF SYMBOLS 1 ... Vacuum insulation panel, 2 ... Cover material, 3 ... Core material, 4 ... Adsorption member, 5 ... Adsorbent, 6 ... Packaging material, 7 ... Adhesive used by this invention, 8 ... Adhesion used conventionally Agent, 9 ... adhesive layer, 21 ... heat insulation box, 22 ... outer box, 23 ... inner box, 24 ... foam insulation.

Claims (1)

外箱と内箱の間に真空断熱パネルを配設するとともに、前記外箱と前記内箱の間に発泡断熱材を充填して断熱材を構成した冷蔵庫において、
前記真空断熱パネルは、前記外箱の内側と接着剤を用いて接着され、この接着剤のロジン含有量が0%より多く50%以下であり、前記接着剤が真空断熱パネルに180μm以上の厚さで塗布されることを特徴とする冷蔵庫。
While disposing a vacuum heat insulation panel between the outer box and the inner box, and filling the foam heat insulating material between the outer box and the inner box, the refrigerator configured the heat insulating material,
The vacuum insulation panel is bonded to the inside of the outer box using an adhesive, and the rosin content of the adhesive is greater than 0% and less than 50%, and the adhesive has a thickness of 180 μm or more on the vacuum insulation panel. A refrigerator characterized by being applied.
JP2004101805A 2004-03-31 2004-03-31 Refrigerator Pending JP2005283059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101805A JP2005283059A (en) 2004-03-31 2004-03-31 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101805A JP2005283059A (en) 2004-03-31 2004-03-31 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005283059A true JP2005283059A (en) 2005-10-13

Family

ID=35181644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101805A Pending JP2005283059A (en) 2004-03-31 2004-03-31 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005283059A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147102A1 (en) * 2008-06-03 2009-12-10 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance in particular refrigerator and method for producing a composite body and pre-expansion mould for carrying out said method
JP2014009849A (en) * 2012-06-28 2014-01-20 Toshiba Corp Heat insulation box
JP2016183858A (en) * 2016-07-26 2016-10-20 東芝ライフスタイル株式会社 Heat insulation box body
KR20170045649A (en) * 2015-10-19 2017-04-27 삼성전자주식회사 Refrigerator amd producing method of same
JP2018128245A (en) * 2018-02-07 2018-08-16 東芝ライフスタイル株式会社 Heat insulation box body
JP2019207102A (en) * 2019-09-04 2019-12-05 東芝ライフスタイル株式会社 Heat insulation box body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147102A1 (en) * 2008-06-03 2009-12-10 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance in particular refrigerator and method for producing a composite body and pre-expansion mould for carrying out said method
JP2014009849A (en) * 2012-06-28 2014-01-20 Toshiba Corp Heat insulation box
KR20170045649A (en) * 2015-10-19 2017-04-27 삼성전자주식회사 Refrigerator amd producing method of same
WO2017069439A1 (en) * 2015-10-19 2017-04-27 삼성전자주식회사 Refrigerator and manufacturing method therefor
US11098947B2 (en) 2015-10-19 2021-08-24 Samsung Electronics Co., Ltd. Refrigerator and manufacturing method therefor
KR102442071B1 (en) * 2015-10-19 2022-09-13 삼성전자주식회사 Refrigerator amd producing method of same
JP2016183858A (en) * 2016-07-26 2016-10-20 東芝ライフスタイル株式会社 Heat insulation box body
JP2018128245A (en) * 2018-02-07 2018-08-16 東芝ライフスタイル株式会社 Heat insulation box body
JP2019207102A (en) * 2019-09-04 2019-12-05 東芝ライフスタイル株式会社 Heat insulation box body
JP2021105514A (en) * 2019-09-04 2021-07-26 東芝ライフスタイル株式会社 Heat insulation box

Similar Documents

Publication Publication Date Title
KR100950834B1 (en) Vacuum heat insulating material, hot water supply apparatus using vacuum heat insulating material, and electric water heating apparatus
KR100507783B1 (en) Heat insulation box, and vacuum heat insulation material used therefor
TWI277707B (en) Vacuum insulation panel and refrigerator incorporating the same
US9404663B2 (en) High temperature vacuum insulation panel
WO2005119118A1 (en) Vacuum heat insulation material and cold reserving apparatus with the same
WO2010137081A1 (en) Refrigerator equipped with vacuum insulation material
JP2009063064A (en) Vacuum heat insulating material and refrigerator using the same
WO2012111311A1 (en) Heat insulation box body
JP2008528884A (en) Vacuum insulation panel
WO2003102460A1 (en) Vacuum thermal insulating material, process for producing the same and refrigerator including the same
JP2011058537A (en) Vacuum heat insulating material, and cooling equipment or insulated container using the same
JP2011058538A (en) Vacuum heat insulating material, and cooling equipment or insulated container using the same
JP2005147591A (en) Refrigerator
JP4966903B2 (en) refrigerator
JP2008030790A (en) Heat insulating container
JP2007040391A (en) Vacuum heat insulating material and heat insulating housing using the same
JP5899395B2 (en) Heat insulation box
JP2010060045A (en) Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material
JP2005106312A (en) Refrigerator, vacuum heat insulating panel and its manufacturing method
JP2006084077A (en) Vacuum heat insulating material and refrigerator using the same
WO2016006186A1 (en) Gas-adsorbing device, vacuum insulation material including same, and refrigerator and heat-insulating wall
JP2011153721A (en) Refrigerator
JP2005283059A (en) Refrigerator
JP6446901B2 (en) Vacuum heat insulating material, exterior material for vacuum heat insulating material, and heat insulating article
JP2008106816A (en) Door device and refrigerator