JP2013217751A - 赤外分光測定装置及びそれを用いた赤外分光測定方法 - Google Patents

赤外分光測定装置及びそれを用いた赤外分光測定方法 Download PDF

Info

Publication number
JP2013217751A
JP2013217751A JP2012088153A JP2012088153A JP2013217751A JP 2013217751 A JP2013217751 A JP 2013217751A JP 2012088153 A JP2012088153 A JP 2012088153A JP 2012088153 A JP2012088153 A JP 2012088153A JP 2013217751 A JP2013217751 A JP 2013217751A
Authority
JP
Japan
Prior art keywords
infrared
window material
cell
polymer film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012088153A
Other languages
English (en)
Inventor
Masashi Nakamura
将志 中村
Nagahiro Hoshi
永宏 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2012088153A priority Critical patent/JP2013217751A/ja
Publication of JP2013217751A publication Critical patent/JP2013217751A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】窓材を液体に接触させて使用する赤外分光測定装置において、窓材と液体とを非接触にすることにより窓材の溶解を抑制し、測定感度及び測定信頼性を向上させる。
【解決手段】本発明に係る赤外分光測定装置は、枠材と高分子膜によって形成されるセルと、セルの高分子膜と間隙設けて配置される窓材と、間隙に充填された高分子膜に対する溶解度の小さい媒質層と、を有する。
また、本発明に係る赤外分光測定方法は、枠材と高分子膜によって形成されるセルと、セルの高分子膜と間隙設けて配置される窓材と、間隙に充填された高分子膜に対する溶解度の小さい媒質層と、電気化学内セルに設けられる作用極、参照極及び対極を有する赤外分光測定装置のセルに液体を充填し、窓材から赤外光を入射し、出射する反射光を受光して分光測定を行う。
【選択図】図1

Description

本発明は、赤外分光測定装置及びそれを用いた赤外分光測定方法に関する。
電極表面のその場測定は、電極反応機構の解明や、電極反応の副反応の解明の実現などにつながる。電極表面の微細な情報を提供するものであり、電気化学の発展に大きく貢献する技術である。電極表面のその場測定方法として、サイクリックボルタンメトリーやインピーダンス測定等の電気化学的手法が挙げられる。
しかしながら、電気化学的手法により得られる情報は、電極の電位や電流、電極反応の可逆性・不可逆性等ごく限られたものであり、反応に関与する化学種の構造等に関した情報を得ることは極めて困難である。
ところで、分子結合状態や官能基、配向状態等、分子レベルでの表面構造解析を可能とする手法として、赤外分光測定がある。赤外分光測定は、他の分光法と比較して感度が高く、微量成分の解析も可能であり、電極表面における電極反応機構の解明や電極反応の副反応の解明等に大きく貢献する手法として期待されている。
具体的な赤外分光測定に関する技術としては、例えば、下記特許文献1乃至2がある。
例えば特許文献1には、プリズム表面に直接又は間隙を介して試料を導入し、赤外光がプリズム中を全反射することによって試料の吸収スペクトルを測定するセルにおいて、プリズム上に直接または100μm以下の間隙を介して試料を担持した網状金属を設置したこと全反射プリズムセルが記載されている。
また、特許文献2には、前記プリズムの底面に溶解度の低い被覆膜を形成させ、窓材の溶解を防ぐ装置が記載されている。
特開平7−229829号公報 特開2009−250820号公報
赤外反射分光測定において、測定感度は、測定対象の試料に対して赤外光を入射させるとともに、該試料から反射した反射光を透過させる窓材の光学特性に大きく左右される。
窓材に求められる光学特性としては、例えば、採用する赤外反射分光法に適した屈折率を有すること、測定波長領域における赤外光の透過性が高いこと等が挙げられる。
ところで、測定対象(被測定試料)が液体試料、液体中に浸漬させた固体試料又は液体中に捕捉された気体試料の場合、採用する赤外反射分光法によっては入射光及び反射光を透過させる窓材を上記液体と接触させなければならない場合がある。この場合において、窓材が上記液体に対して溶解性を有するものであると、上記液体に窓材が溶解し窓材成分が電極反応に影響を及ぼし、また、上記液体の組成変化又は窓材表面の形状変化等により赤外反射分光測定の感度や再現性等を低下させるおそれがある。したがって、窓材を液体に接触させる場合には、窓材の液体に対する溶解性も考慮しなければならない。
しかしながら、被測定試料及び採用する測定方法に対して、適した屈折率、波長透過域及び溶媒溶解性を全て併せ持つ窓材は非常に少なく、測定感度及び測定信頼性に優れた赤外分光測定を行うことは難しい。特に、接触液体が電解液であって、この電解液中で電気化学反応が起こる場合、電解液に接触する窓材の溶解は進行しやすい傾向がある。
そこで、本発明は上記実情を鑑みて成し遂げられたものであり、窓材を液体に接触させて使用する赤外分光測定装置において、窓材と液体とを非接触にすることにより窓材の溶解を防ぎ、測定感度及び測定信頼性を向上させることを目的とする。
上記課題を解決するための一観点にかかる赤外分光測定装置は、枠材と高分子膜によって形成されるセルと、セルの高分子膜と間隙設けて配置される窓材と、間隙に充填された高分子膜に対する溶解度の小さい媒質層と、を有することを特徴とする。
また、本発明の他の観点に係る赤外分光測定方法は、枠材と高分子膜によって形成されるセルと、セルの高分子膜と間隙設けて配置される窓材と、間隙に充填された高分子膜に対する溶解度の小さい媒質層と、電気化学内セルに設けられる作用極、参照極及び対極を有する赤外分光測定装置のセルに液体を充填し、窓材から赤外光を入射し、出射する反射光を受光して分光測定を行うことを特徴とする。
以上本発明によれば、窓材を液体に接触させて使用する赤外分光測定装置において、窓材と液体とを非接触にすることにより窓材の溶解を抑制し、測定感度及び測定信頼性を向上させることができる。
実施形態に係る赤外分光測定装置の概略を示す図である。 ZnSe製の窓材を用いて実施したPt電極に吸着した一酸化炭素の赤外スペクトル。
以下、図面を用いて本実施形態に係る赤外分光測定装置(以下「本装置」という。)1について詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示にのみ限定されるわけではない。
図1は、本実施形態に係る赤外分光測定装置1の概略を示す図である。
本図で示すように、本装置1は、枠材と高分子膜4によって形成されるセル1と、セルの高分子膜4と間隙を設けて配置される窓材5と、この間隙に充填される高分子膜4に対する溶解度が小さい媒質層6と、セル内に設けられる作用極7、対極8及び参照極9、を有する。
本実施形態において、枠材は、セル2の側壁を形成する部材である。枠材の材質はこの中に被測定対象となる液体を充填した際、液体を保持することができるものであり、充填される液体と不必要な反応が起こらない限りにおいて限定されるわけではないが、例えばガラス、フッ素樹脂等を例示することができる。
本実施形態において、枠材は底部が空洞の筒状体となっているが、この底部には高分子膜4が配置され底部を覆っている。セル2はこれらの組み合わせにより、被測定対象となる液体を安定的に保持することができる。高分子膜4は枠材に接着固定されていてもよいが、枠材とは取外し自在に構成し、測定の際は枠材の端面に高分子が張られたキャップを嵌めて固定する一方、測定が終わった後はこれを取り外す等の構成としても良い。
本実施形態において、高分子膜4は、測定波長領域すなわち赤外光領域において透過性を有する物質であるとともに、セルに充填される液体及び間隙に充填される媒質層6のそれぞれに対し不溶又は溶解性が低い(難溶性)ものである。また、セル2に充填される液体が電解液3であって電解液中で起こる電気化学的挙動の分析を赤外分光測定によって行おうとする場合、この系において反応しないことが求められる。本装置1では、高分子膜4を用いることで、セル内に保持される電解液3が窓材5に対し高い溶解性を有している場合でも、窓材5が接触液体に溶解される虞が大きく抑制される。
本実施形態における高分子膜4の具体的な材質としては、測定において用いる液体、媒質層、窓材等によって適宜選択可能であり限定されるわけではないが、例えば、ポリプロピレン、ポリエステル、及びポリテトラフルオロエチレンの少なくともいずれかが好ましい。ただし、これらの高分子膜にも赤外吸収がある、具滝的にはポリプロピレンでは2800〜3000cm−1にCH伸縮振動による吸収が、1350〜1500cm−1にCH変角振動による吸収が、ポリテトラフルオロエチレンでは1000〜1200cm−1にCF伸縮振動による吸収が、それぞれあるため、測定の際、測定したい波数領域と重ならない高分子膜を適宜選択することが好ましい。
また本実施形態において、高分子膜4の膜厚は、高分子膜の種類に応じて適宜選択可能であり限定されるわけではないが、膜厚が薄すぎると、後述の作用極(電極)7を高分子膜4に押し付けた際に破れる可能性がある一方、厚すぎると、高分子膜4自体の赤外線吸収が強くなってしまうため、1μm以上100μm以下であることが好ましく、より好ましくは1μm以上10μm以下である。
また本実施形態において、セル内には測定の際、液体が注入される。測定対象は、液体を含んでいれば良く、液体試料そのものであっても、液体中に浸漬された固体試料、又は、液体中に補足された気体試料であっても良い。液体を注入することで、液体中に含有される測定対象物質の分析や、液体中に浸漬された被測定試料である固体試料又は固体試料表面に付着した化学種の分析、接触液体中に捕捉された被測定試料である気体の分析等が可能となる。
また本実施形態において、セル内に注入される液体としては、限定されるわけではないが電解液3であることは好ましい一例である。測定対象として電解液3を採用し、この電解液に電流を流すことで電気分解等を起こすことができ、これにより電気化学反応の場観察が可能となる。
なお本実施形態において、電解液3を用いる場合、分析目的に応じて適宜選択すればよく、限定されるわけではないが、例えば、水を溶媒にする場合には硫酸、過塩素酸、NaOH等の酸アルカリ類、非水溶媒の場合にはプロピレンカーボネート、エチレンカーボネート等のカーボネート類、ラクトン類、エーテル類、ケトン類等の有機溶媒、又は、これら有機溶媒にLiPF、LiBF、LiTFSI、LiClO等の電解質支持塩を添加したものを例示することができる。
また本実施形態において、電解液3を用いる場合、セル2内に、作用極7、この作用極の周囲に配置された対極8、作用極7の電位を規定する参照極9を上記電解液3中に浸漬して配置させることが好ましい。これにより電解液3内に電流を流すことが可能となり、セル内において起こる電気化学反応の電気化学測定が可能となる。
本実施形態において作用極7は、電解液3との電子の授受を行うための電極であり、電気化学反応が進行する反応場である。作用極7を構成する材料及び作用極7の構造は、目的とする電気化学反応に応じて選択すればよく、例えばリチウム電極、白金電極、金電極、ニッケル電極、アルミ電極、チタン電極、銅電極等の金属電極のほか、グラファイト、グラッシーカーボン等の炭素電極、TiO、LiCoO、LiNiO2、LiMn24、Li7Ti512等の酸化物電極等を採用することができる。
本実施形態において作用極7は、外部の電源装置、例えばポテンショスタット、ガルバノスタット、周波数応答アナライザ(FRA)、関数発生装置等に接続されていることが好ましい。これらを用いることで、例えばサイクリックボルタンメトリー、リニアスウィープボルタンメトリー、ポテンシャルステップ、ポテンシオメトリー、クロノアンペロメトリー、クーロメトリー等の直流分極測定やインピーダンス測定を行うことが可能となり、また、充放電装置等に接続し充放電挙動の観察等を行えば作用極表面の赤外分光測定と同時に作用極の電気化学測定を行うことができる。
また本実施形態において上記作用極の電極表面は、窓材5の底面と対向するように、高分子膜4に押し付けられて配置されている。ただし、作用極7と高分子膜4の間には押しつけた場合であっても、電解液3が入り込み薄膜が形成されるため、高分子膜4と作用極7は電解液3を介して対向した配置となっている。これにより、電気分解によって窓材5が溶解してしまう虞を防止することができる。
本実施形態において対極8は、観察しようとする作用極7に電流を流すことができれば、材質、形状等は特に限定されず、一般的なものを用いることができる。
また本実施形態において参照極9は、使用する電解液3内において作用極7の電位の基準となる安定な電位を示すものであればよく、標準水素電極(SHE又はNHE)や、飽和カロメル電極(SCE)、可逆水素電極(RHE)、銀−塩化銀電極(Ag/AgCl)、水銀/硫化水銀電極等、一般的な参照極の他、リチウム金属、銀線、白金線等を擬似参照極として用いることができる。
本実施形態における窓材5は、外部から入射される赤外線を測定試料に導くとともに、測定試料を通過したこの赤外線を外部に出射させるために配置される部材であり、赤外分光測定の測定波長領域において透過性を有する材料からなるものである。
本実施形態に係る窓材5の形状としては、上記機能を有する限りにおいて限定されず、プリズム等で採用されている一般的な形状、例えば、台形、半円柱、半球状等を挙げることができる。すなわち本赤外分光測定装置は、被測定試料へ赤外光を入射させ、該被測定試料からの反射光を出射する構造となっている。
本実施形態に係る窓材5の材質としては、観測したい物質の吸収波長に応じて適宜選択すればよく、上記機能を有する限りにおいて限定されるわけではないが、例えばKCl、NaCl、KBr、CaF、BaF、Si、Ge、Zn、Se、及びKRS−5の少なくともいずれかを含んで構成されていることが好ましい。
また本実施形態における媒質層6は、高分子膜4と対向して配置される窓材5の間隙に配置されるものであって、測定波長領域における赤外光透過性を有する物質であるとともに、高分子膜4と窓材5の屈折率の差を緩和するために用いられる層である。また本実施形態における媒質層6は、窓材5との界面における赤外光の全反射を防止する観点から、採用する窓材5と屈折率の近い、より好ましくは窓材5の屈折率と同等の屈折率を有するものであることが好ましい。更に、本実施形態における媒質層6は、窓材5及び高分子膜4を殆ど溶解しないものが採用される。なお、ここで媒質層6の屈折率としては、限定されるわけではないが、例えば赤外線の試料への入射角が60度、窓材5、高分子膜4の屈折率を1とした場合、この媒質層6の屈折率は、0.87以上である必要があり、好ましくは0.87以上0.95以下である。また、窓材がCaFであって、高分子膜4がポリエチレンである場合、屈折率の差が大きすぎて液体に赤外光が入る前に界面で反射してします虞があるが、この間にテトラクロロエチレンの媒質層6を挿入することで、この屈折率の差が緩和され、液体に赤外光を入射させることができる。この結果、従来の光学系の光路を変えることなく高感度、汚染の全くない環境下で広い測定波数領域を有する測定を実現できる。
本実施形態における媒質層6としては、窓材および高分子膜4の媒質液体に対する溶解性が不溶又は媒質液体に対する溶解性が低く、且つ、測定波長領域における赤外光透過性を有する物質であれば特に限定はなく、例えば、水、ヘキサン、四塩化炭素、ベンゼン、アセトン、エタノール、及びテトラクロロエチレンの少なくともいずれかを含むことが好ましく、更に、窓材がCaF、BaFである場合は媒質層が水であること、窓材がKCl、NaClである場合は媒質がヘキサン、四塩化炭素、ベンゼン、アセトン、エタノール、テトラクロロエチレンの少なくともいずれかであることが好ましい。
本実施形態における媒質層6の厚さは、上記機能を有する限りにおいて限定されるわけではないが、例えば10μm以下であることが好ましく、より好ましくは1μm以上3μm以下である。1μm以上とすることで上記高分子膜4と窓材5の屈折率差を緩和し十分に試料中に光を入射させることができる一方、3μm以下とすることで媒質による赤外線の吸収を抑え、測定への影響を少なくすることができる。なお、媒質層6の厚さを確保する方法としては、特に限定されるわけではないが、十分に薄くてよい場合は、特にスペーサーを設けることなく媒質層6を窓材5に塗布し、その上にそのままセル2の高分子膜4を直接静置するだけでもよい。実際媒質層6が存在する場合、押しつけただけでも窓材5と高分子膜4が直接張りつくことなく媒質層6の薄膜が存在し、上記厚さを確保することができる。なお厚さをより正確に保持したい場合は、スペーサーを配置し、このスペーサー上にセルを配置する一方このスペーサー、窓材5、高分子膜4により囲まれる領域に媒質層6を注入等させて保持させてもよい。
また、本実施形態に係る赤外分光測定装置には、赤外光を被測定試料に入射し、被測定試料から反射される反射光を採光する光学系が付されている。光学系は、この機能を有する限りにおいて限定されるわけではないが、例えば、赤外光を発する光源と、光源が発する赤外光を平行光、収束光にするためのレンズや反射鏡やスリット等の光学部材と、を適宜組み合わせることで実現できる。赤外光の入射角、入射位置、光束径、偏光等は、赤外分光測定の目的等に応じて適宜選択すればよい。
なお、本実施形態において、上記測定対象が電解液である場合において、電気化学測定による特定の信号に同期して赤外光が発射されるように光学系を設定すれば、電気化学測定に赤外分光測定をシンクロさせることができ、例えば、特定の電位や電流値における電極表面の観察等が可能となる。なお電気化学測定の特定の信号に赤外光の発射を同期させる方法としては、例えば、予め、目的とする電極反応や副反応が進行する又は進行すると推測される電位を調べておき、作用極の電位がその値になったら赤外光を発射し、スペクトルを測定するように設定する方法を挙げることができる。
また本実施形態に係る赤外分光測定装置には、上記光学系に、更に、反射光のスペクトルを得る赤外分光器が付されている。反射光のスペクトルを得る分光器(検出器)としては限定されるわけではないが、例えば、MCT検出器、TGS検出器、InGaAs検出器、PbSe検出器等が挙げられる。
ここで、本装置を用いた赤外分光測定方法(以下「本方法」という。)について説明する。本方法は、枠材と高分子膜4によって形成されるセル2と、セル2の高分子膜4と間隙を設けて配置される窓材5と、間隙に充填された高分子膜4に対する溶解度の小さい媒質層6と、電気化学内セルに設けられる作用極7、参照極9及び対極8を有する赤外分光測定装置1のセル2に液体を充填し、窓材5から赤外光を入射し、出射する反射光を受光して分光測定を行う。
本方法では、作用極7の電極表面と電解液3との界面には、赤外光源(図示せず)からの赤外光が、窓材5、媒質層6、高分子膜4を介して赤外反射スペクトル測定を可能とする入射角で入射される。赤外光は上記界面において反射され、その反射光は高分子膜4、媒質層6、窓材5を介して出射され、赤外分光器の検出器(図示せず)によってスペクトルが測定される。反射光のスペクトル測定により、作用極7表面をその場観察し、作用極表面における電気化学挙動を分析することができる。具体的には、作用極7の電極表面の化学種を分析することができる。ここで、電極表面の化学種とは、電極表面に吸着した化学種の他、電極表面に吸着することなく作用電極と電解液の界面近傍に浮遊しているものも含まれ、電極反応における反応生成物や反応中間体、反応副生成物等が挙げられる。この結果、作用極における電極反応機構の解明や、電極反応の副反応の解明、電極構造の最適化等が可能となる。
また本装置は、上記の窓材5、高分子膜4、媒質層6を組み合わせて用いることで、従来では、窓材の赤外光透過性が低いために測定することが不可能だった波長領域(例えば、CaFの場合1100cm−1以下、BaFの場合800cm−1以下の波長領域)にスペクトルを有する電極反応やその副反応等を測定、観察することができる。燃料電池に使用されている白金触媒の酸化物形成などの電気化学挙動を正確に且つ再現性良く分析することが可能である。
特に、本装置では、窓材5が接触する接触液体に対して、窓材5が高い溶解性を有する場合であっても、高分子膜4を採用することでセル中の液体と分離させることができるため、窓材5が溶解する虞が極めて少なくなる。この結果、接触液体に対する溶解性を考慮せずに窓材材料の選択を行うことができるようになり、測定対象である被測定試料やその電気化学的挙動、及び採用する赤外反射分光測定方法に対して、適した屈折率及び波長透過域を有しているものの、接触液体に対する溶解性が高いために測定感度や測定信頼性に問題が生じていた窓材を使用しても、優れた感度及び信頼性のある赤外反射分光測定が可能となった。更に、この高分子膜4と窓材5の間に媒質層6を設けることでこの間隙に存在する屈折率の差(空気が存在する場合は空気の屈折率とそれぞれの屈折率の差)を防ぎ、この界面における反射を防ぐことが可能となり、特に優れた感度及び信頼性のある赤外反射分光測定が可能となる。
以上、本実施形態によれば、窓材5を液体に接触させて使用する赤外分光測定装置1において、従来の光学系の光路を変えることなく、窓材5と液体とを非接触にすることにより窓材5の溶解を抑制し、測定感度及び測定信頼性を向上させた赤外分光測定装置1、赤外分光測定方法を提供できる。本装置1による測定感度及び測定信頼性の向上効果は、電気化学反応をその場測定する電気化学赤外分光測定装置において、特に高い効果を発揮する。
なお本実施形態では図1を用いて詳細に説明しているが、赤外分光測定装置これに限定されるものではなく、様々な赤外分光法、例えば、全反射法、高感度反射法等を採用し、各法に応じた構成にすることができる。必要時応じて、回転偏光子等の赤外光偏光手段、偏光変調高感度反射法等を組み込んでもよい。
ここで、上記実施形態に係る赤外分光測定装置を実際に作成し、本発明の効果について確認を行った。以下説明する。
まず、ZnSe製の窓材(屈折率:2.4)の底面に、媒質溶液として純水、高分子膜としてポリプレピレン膜(膜厚6μm)で覆った。一酸化炭素が吸着したPt(111)電極(作用極)の赤外反射吸収分光の結果を図2に示す。電解質溶液は0.1M HF溶液を用いており、試料電位は0.3VvsRHEで測定後、一酸化炭素が表面から酸化した0.8VvsRHEを参照電位で測定後に、差スペクトルとしてものである。
この結果、図2に示すように、2073cm−1に試料電位においてPt表面に吸着した一酸化炭素のCO伸縮振動が観測された。また2073cm−1に参照電位において一酸化炭素が酸化し生成した二酸化炭素のCO逆対称伸縮振動が観測された。この結果は、通常ZnSe製の窓材は酸性溶液中においてZnイオンおよびSeイオンが溶出し電極表面を汚染してしまうところ、本実施例に係る赤外分光測定装置を用いることで、高分子膜により窓材と電解質溶液とを接触させず、窓材による汚染を防ぎ、測定感度及び測定信頼性を向上させることができるのを確認した。
本発明は、赤外分光測定装置及びそれを用いた赤外分光測定方法として産業上の利用可能性がある。
1…赤外分光測定装置
2…セル
3…電解液
4…高分子膜
5…窓材
6…媒質層
7…作用極
8…対極
9…参照極

Claims (6)

  1. 枠材と高分子膜によって形成されるセルと、
    前記セルの前記高分子膜と間隙設けて配置される窓材と、
    前記間隙に充填された前記高分子膜に対する溶解度の小さい媒質層と、を有する赤外分光測定装置。
  2. 前記セルに設けられる作用極、参照極及び対極を備える請求項1記載の赤外分光測定装置。
  3. 前記高分子膜は、ポリプロピレン、ポリエステル、及びポリテトラフルオロエチレンの少なくともいずれかを含み、1μm以上100μm以下の厚さである請求項1記載の赤外分光測定装置。
  4. 前記媒質層は、水、ヘキサン、四塩化炭素、ベンゼン、アセトン、エタノール、及びテトラクロロエチレンの少なくともいずれかを含む請求項1記載の赤外分光測定装置。
  5. 前記窓材は、KCl、NaCl、KBr、CaF、BaF、Si、Ge、ZnSe、及びKRSのうちいずれかを含む請求項1記載の赤外分光測定装置。
  6. 枠材と高分子膜によって形成されるセルと、前記セルの前記高分子膜と間隙設けて配置される窓材と、前記間隙に充填された前記高分子膜に対する溶解度の小さい媒質層と、前記電気化学内セルに設けられる作用極、参照極及び対極を有する赤外分光測定装置の前記セルに液体を充填し、
    前記窓材から赤外光を入射し、出射する反射光を受光して分光測定を行う赤外分光測定方法。


JP2012088153A 2012-04-09 2012-04-09 赤外分光測定装置及びそれを用いた赤外分光測定方法 Pending JP2013217751A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012088153A JP2013217751A (ja) 2012-04-09 2012-04-09 赤外分光測定装置及びそれを用いた赤外分光測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012088153A JP2013217751A (ja) 2012-04-09 2012-04-09 赤外分光測定装置及びそれを用いた赤外分光測定方法

Publications (1)

Publication Number Publication Date
JP2013217751A true JP2013217751A (ja) 2013-10-24

Family

ID=49590016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012088153A Pending JP2013217751A (ja) 2012-04-09 2012-04-09 赤外分光測定装置及びそれを用いた赤外分光測定方法

Country Status (1)

Country Link
JP (1) JP2013217751A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061052B1 (ja) * 2015-08-21 2017-01-18 ダイキン工業株式会社 赤外分光法による含フッ素重合体の分析
CN109916827A (zh) * 2019-03-08 2019-06-21 金华职业技术学院 一种对真空中制备的样品进行电化学红外反射谱测量方法
CN112114015A (zh) * 2020-08-10 2020-12-22 华中师范大学 一种污染物界面反应电化学红外光谱联用原位表征方法及其装置
CN114791454A (zh) * 2021-01-26 2022-07-26 清华大学 电解质氧化电势的测量装置及其测量方法
CN115266857A (zh) * 2022-06-21 2022-11-01 厦门大学 一种电化学原位红外光谱atr电解池装置
CN114791454B (zh) * 2021-01-26 2024-05-10 清华大学 电解质氧化电势的测量装置及其测量方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061052B1 (ja) * 2015-08-21 2017-01-18 ダイキン工業株式会社 赤外分光法による含フッ素重合体の分析
WO2017033806A1 (ja) * 2015-08-21 2017-03-02 ダイキン工業株式会社 赤外分光法による含フッ素重合体の分析
CN109916827A (zh) * 2019-03-08 2019-06-21 金华职业技术学院 一种对真空中制备的样品进行电化学红外反射谱测量方法
CN109916827B (zh) * 2019-03-08 2023-05-26 金华职业技术学院 一种对真空中制备的样品进行电化学红外反射谱测量方法
CN112114015A (zh) * 2020-08-10 2020-12-22 华中师范大学 一种污染物界面反应电化学红外光谱联用原位表征方法及其装置
CN112114015B (zh) * 2020-08-10 2022-09-06 华中师范大学 一种污染物界面反应电化学红外光谱联用原位表征方法及其装置
CN114791454A (zh) * 2021-01-26 2022-07-26 清华大学 电解质氧化电势的测量装置及其测量方法
JP2022114428A (ja) * 2021-01-26 2022-08-05 ツィンファ ユニバーシティ 電解質の酸化電位の測定装置及び測定方法
JP7258296B2 (ja) 2021-01-26 2023-04-17 ツィンファ ユニバーシティ 電解質の酸化電位の測定装置及び測定方法
CN114791454B (zh) * 2021-01-26 2024-05-10 清华大学 电解质氧化电势的测量装置及其测量方法
CN115266857A (zh) * 2022-06-21 2022-11-01 厦门大学 一种电化学原位红外光谱atr电解池装置
CN115266857B (zh) * 2022-06-21 2024-05-03 厦门大学 一种电化学原位红外光谱atr电解池装置

Similar Documents

Publication Publication Date Title
JP4784939B2 (ja) 電気化学赤外分光装置及び電気化学赤外分光測定方法
Miele et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes
Mahne et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries
US9553465B2 (en) Battery management based on internal optical sensing
JP2013217751A (ja) 赤外分光測定装置及びそれを用いた赤外分光測定方法
Rey et al. Studies of electrochemical interfaces by broadband sum frequency generation
Stenzel et al. Chromatographic techniques in the research area of lithium ion batteries: current state-of-the-art
Cowan et al. Advanced spectroelectrochemical techniques to study electrode interfaces within lithium-ion and lithium-oxygen batteries
KR100802604B1 (ko) 엑스선 흡수 분광기용 전기화학 인-시추 셀
JP6469687B2 (ja) 電気化学センサ装置及び電気化学センシング方法
Wang et al. Oxygen electrochemistry in Li‐O2 batteries probed by in situ surface‐enhanced raman spectroscopy
Weiling et al. Vibrational Spectroscopy Insight into the Electrode| electrolyte Interface/Interphase in Lithium Batteries
Dokko et al. In situ Raman spectroscopy of single microparticle Li+− intercalation electrodes
GB2502516A (en) Electrochemical sensor apparatus and method
JP2009250820A (ja) 赤外分光装置
Meyer et al. Operando optical spectroscopy studies of batteries
Haregewoin et al. An effective In Situ drifts analysis of the solid electrolyte interface in lithium-ion battery
Sarbapalli et al. Pt/Polypyrrole Quasi-References Revisited: Robustness and Application in Electrochemical Energy Storage Research
Maibach et al. Toward operando characterization of interphases in batteries
Bawol et al. Fast and simultaneous determination of gas diffusivities and Solubilities in liquids employing a thin-layer cell coupled to a mass spectrometer, part I: setup and methodology
Ge et al. Unraveling the Unstable Nature of Tetraglyme-Based Electrolytes toward Superoxide and the Inhibitory Effect of Lithium Ions by Using In Situ Vibrational Spectroscopies
JP2015197961A (ja) リチウムイオン二次電池の製造システム及び製造方法並びに該製造方法におけるリチウムイオン二次電池の電解液の品質管理システム及び管理方法
JP5982663B2 (ja) リチウムイオン二次電池の電解液測定用赤外分光測定装置及びその測定方法
Strange et al. Scanning Electrochemical Microscopy for Chemical Imaging and Understanding Redox Activities of Battery Materials
Miele et al. Operando Raman analysis of electrolyte changes in Li-ion batteries with hollow-core optical fibre sensors