JP2013211961A - 圧電アクチュエータ、圧電アクチュエータ制御方法、レンズ鏡筒及びカメラ - Google Patents

圧電アクチュエータ、圧電アクチュエータ制御方法、レンズ鏡筒及びカメラ Download PDF

Info

Publication number
JP2013211961A
JP2013211961A JP2012079234A JP2012079234A JP2013211961A JP 2013211961 A JP2013211961 A JP 2013211961A JP 2012079234 A JP2012079234 A JP 2012079234A JP 2012079234 A JP2012079234 A JP 2012079234A JP 2013211961 A JP2013211961 A JP 2013211961A
Authority
JP
Japan
Prior art keywords
piezoelectric element
base
piezoelectric
piezoelectric actuator
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012079234A
Other languages
English (en)
Inventor
Masamitsu Kimura
将光 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012079234A priority Critical patent/JP2013211961A/ja
Publication of JP2013211961A publication Critical patent/JP2013211961A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】駆動性能の低下を抑制できる圧電アクチュエータ、圧電アクチュエータ制御方法、及びそれを用いたレンズ鏡筒及びカメラの提供を目的とする。
【解決手段】所定軸を中心に回転可能なロータを駆動する圧電アクチュエータであって、ロータが対向する先端部、及び所定軸の周方向に先端部を移動可能に支持する基部を有する駆動部材と、周方向に関して基部の一方の面に接触するように配置され、所定軸と実質的に平行に基部を移動可能な第1圧電素子と、周方向に関して基部の他方の面に接触するように配置され、所定軸と実質的に平行に基部を移動可能な第2圧電素子と、を備え、第1圧電素子及び第2圧電素子は、基部が所定軸と平行な軸に対して傾斜して移動する。
【選択図】図7

Description

本発明は、圧電アクチュエータ、圧電アクチュエータ制御方法、レンズ鏡筒及びカメラに関する。
圧電素子を用いた圧電アクチュエータ(駆動装置)において、例えば特許文献1に開示されているような、圧電素子により振動する駆動部材(振動子)と相対運動材とを接触させ、その相対運動部材を駆動する圧電アクチュエータが知られている。
特開平6−261565号公報
圧電アクチュエータにおいて、例えば駆動部材の振幅が小さいと、駆動性能が低下する可能性がある。
本発明は、駆動性能の低下を抑制できる圧電アクチュエータ、圧電アクチュエータ制御方法、及びそれを用いたレンズ鏡筒及びカメラの提供を目的とする。
上記目的を達成するため、本発明に係る圧電アクチュエータは、所定軸を中心に回転可能なロータを駆動する圧電アクチュエータであって、前記ロータが対向する先端部、及び前記所定軸の周方向に前記先端部を移動可能に支持する基部を有する駆動部材と、前記周方向に関して前記基部の一方の面に接触するように配置され、前記所定軸と実質的に平行に前記基部を移動可能な第1圧電素子と、前記周方向に関して前記基部の他方の面に接触するように配置され、前記所定軸と実質的に平行に前記基部を移動可能な第2圧電素子と、を備え、前記第1圧電素子及び前記第2圧電素子は、前記基部が前記所定軸と平行な軸に対して傾斜して移動することを特徴としている。
上記目的を達成するため、本発明は、所定軸を中心に回転可能なロータを駆動する圧電アクチュエータ制御方法であって、前記ロータが対向する先端部、及び前記所定軸の周方向に前記先端部を移動可能に支持する基部を有する駆動部材のうち、前記周方向に関して前記基部の一方の面に接触するように配置され、前記所定軸と実質的に平行に前記基部を移動可能な第1圧電素子、及び前記周方向に関して前記基部の他方の面に接触するように配置され、前記所定軸と実質的に平行に前記基部を移動可能な第2圧電素子の少なくとも一方に駆動電圧を供給して、前記所定軸に対して傾斜するように前記基部を移動させることを含むことを特徴としている。
また、本発明に係るレンズ鏡筒は、上記に記載の圧電アクチュエータを備えることを特徴としている。
また、本発明に係るカメラは、上記に記載の圧電アクチュエータを備えることを特徴としている。
本発明の駆動装置によれば、駆動力を向上できる圧電アクチュエータを提供することができる。また、本発明によれば、この駆動装置を備えたレンズ鏡筒及びカメラを提供することができる。
本発明の一実施形態に係る圧電アクチュエータの正面図である。 同実施形態に係る圧電アクチュエータの断面図である。 同実施形態に係る圧電アクチュエータの支持駆動部の斜視図である。 同実施形態に係る圧電アクチュエータの支持駆動部の正面図である。 同実施形態に係る保持部及び駆動駒を拡大した組立正面図である。 同実施形態に係る保持部及び駆動駒を拡大した正面図である。 同実施形態に係る第1圧電素子〜第6圧電素子の模式的な配線図である。 図9に示す駆動電圧を供給した場合の駆動駒の動作を説明する図である。 第1圧電素子と第2圧電素子、第3圧電素子に供給する駆動電圧の波形の一例を説明する図である。 異なる位相の駆動電圧を供給した場合の駆動駒の動作を説明する図である。 位相を算出する際に用いる定数を説明する図である。 高さ方向の変位と周方向の変位を説明する図である。 回転中心が第1圧電素子の上端部の高さにある場合を説明する図である。 各αにおけるリサ−ジュ曲線を算出した例を説明する図である。 各βにおけるリサ−ジュ曲線を算出した例を説明する図である。 回転中心が第1圧電素子の中心部の高さにある場合を説明する図である。 各αにおけるリサ−ジュ曲線を算出した例を説明する図である。 各βにおけるリサ−ジュ曲線を算出した例を説明する図である。 第1組と第2組の駆動電圧の位相差の関係を説明する図である。 ロータを時計回りの駆動する場合の駆動電圧の一例を説明する図である。 第1組と第2組の駆動駒の動作と、ロータの動作とを示す正面図である。 第1組と第2組の駆動駒の動作と、ロータの動作とを示す正面図である。 ロータを反時計回りの駆動する場合の駆動電圧の一例を説明する図である。 先端部の他の形状の一例を説明する断面図である。 同実施形態に係る圧電アクチュエータを備えたレンズ鏡筒及びカメラの概略構成図である。
本発明の一実施形態に係る圧電アクチュエータを、図面を参照しながら以下に説明する。本実施形態の圧電アクチュエータ(駆動装置)1は、例えばロータ等と駆動駒等とを相対的に変位させる相対駆動を行うことで、カメラのレンズ鏡筒等の光学機器や電子機器を駆動するためのものである。
図1は本実施形態の圧電アクチュエータ1の正面図であり、図2はその断面図である。
図1及び図2に示すように、圧電アクチュエータ1は、複数の保持部2aが設けられたベース部2、保持部2aに保持された駆動駒(駆動部材)3(31(第1駆動部材)、32(第2駆動部材))、駆動駒3に隣接して配置されたロータ4、ベース部2に挿通された支持軸(所定軸)5、第1圧電素子61、第2圧電素子62、第3圧電素子71、第4圧電素子63、第5圧電素子64、第6圧電素子72及びを備えている。
ベース部2は、例えばステンレス鋼等の金属材料により中空円筒状に形成され、支持軸5が挿通されることで、支持軸5を囲むように設けられている。また、ベース部2は、例えば、導電性を有するWC(タングステンカーバイド)等により設けられる。
ロータ4は、ベアリング5bを介して支持軸5によって支持(軸支)され、支持軸5を回転軸として回転自在に設けられている。ロータ4の外周面には、例えばカメラのレンズ鏡筒等を駆動するための歯車4aが形成されている。ロータ4のベース部2側の面は、複数の駆動駒3によって支持されている。
ベース部2の一方の端部は、例えば不図示のボルト等により、取付部101aに固定されている。ベース部2の取付部101aに対向する面の中央部には、凹部2bが形成されている。凹部2bには、支持軸5の基端に形成された拡径部5aが挿入(嵌入)されている。この状態でベース部2が取付部101aに固定されることで、支持軸5がベース部2及び取付部101aに固定されている。
ベース部2の他方の端部には、凹状の保持部2aが、ベース部2の周方向、すなわちロータ4の回転方向Rに、複数設けられている。保持部2aは、駆動駒3を支持軸5に垂直かつロータ4の回転方向Rに沿う方向の両側から支持するとともに、駆動駒3(31,32)を支持軸5に平行な方向、及び支持軸5に対して斜めの方向に駆動可能に保持している。また、図1に示すように、ベース部2のロータ4側の端部の角部には、面取り部(露出形成部)2hが設けられている。面取り部2hは、ベース部2のロータ4側の端部の外周側の角部及び内周側の角部の双方に、ベース部2の全周に亘って設けられている。
図2に示すように、ベース部2の側面2cは、支持軸5と略平行に設けられている。側面2cの保持部2aと取付部101a側の端部との間には、取付部101aから保持部2aへの振動の伝達を抑制する振動抑制部としての溝部2dが形成されている。すなわち、溝部2dは、支持軸5に略垂直でかつロータ4の回転方向Rに沿う方向と交差するベース部2の側面2cに設けられている。溝部2dは、ベース部2の周方向に連続的に設けられ、保持部2aと取付部101a側の端部との中間よりも取付部101a側の端部に近い位置に設けられている。
溝部2dの深さd1は、例えばベース部2の半径r1の40%以上かつ80%以下の範囲である。また、支持軸5に平行な方向の溝部2dの幅w1は、ベース部2の振動の振幅よりも大きく、後述する第1圧電素子61、第2圧電素子62、第3圧電素子71、第4圧電素子63、第5圧電素子64、第6圧電素子72(図1参照)、駆動駒31、32、及びベース部2からなる支持駆動部1aの共振振動の振幅よりも大きくなるように形成されている。一例において、溝部2dの幅w1は、ベース部2の半径よりも短い。
図2に示すように、ベース部2と支持軸5との間には、取付部101aから保持部2aへの振動を抑制するための間隙(振動抑制部)2eが設けられている。間隙2eは、支持軸5と平行な方向に、ベース部2の保持部2a側の端部から溝部2dの取付部101a側の縁と同様の位置まで設けられている。また、間隙2eの幅w2は、溝部2dの幅w1と同様に、ベース部2の振動の振幅よりも大きく、後述する支持駆動部1aの共振振動の振幅よりも大きくなるように形成されている。
図3は図1に示す圧電アクチュエータ1の支持駆動部1aの斜視図であり、図4は図1に示す圧電アクチュエータ1の支持駆動部1aの平面図である。
図3及び図4に示すように、駆動駒3は、断面が山形の六角柱形状を有する先端部3aと、略直方体形状を有する基部3bとを有している。先端部3aは、例えばステンレス鋼等により形成されている。基部3bは、例えば軽金属合金等により構成されている。基部3bは、保持部2aによって、支持軸5と平行な方向に駆動可能に支持されている。先端部3aは、保持部2aから突出してロータ4を支持する。先端部3aは、ロータ4に接触する上面の面積が基部3b側の底面の面積よりも小さくなる先細状の形状に設けられている。
図3及び図4に示すように、第1組の駆動駒(第1駆動部材)31は、先端部31aと基部31bとの間に一対の第3圧電素子71,71を備え、基部31bの側面に一対の第1圧電素子61,第2圧電素子62を二対備えている。第2組の駆動駒(第2駆動部材)32は、先端部32aと基部32bとの間に一対の第6圧電素子72,72を備え、基部32bの側面に一対の第4圧電素子63,第5圧電素子64を二対備えている。
第1組の駆動駒31と第2組の駆動駒32とは、同一の円周上に配置されている。また、各々の組の駆動駒31,32は、ロータ4の回転方向R1またはR2に、それぞれ均等に配置されている。異なる組の駆動駒31,32は、回転方向R1またはR2に、交互に(順番に)配置されている。
なお、以下では、回転方向R1を時計回りの方向、回転方向R2を反時計回りの方向とする。また、回転方向R1、回転方向R2を各々、回転方向R(第3方向)ともいう。また、支持軸5に平行な方向を高さ方向とし、支持軸5に垂直な方向及びロータ4の回転方向を周方向とする。支持軸5(図1参照)に平行な方向において、ベース部2からロータ4への方向を高さ方向における正方向とする。
次に、第1圧電素子61〜第6圧電素子72について、図3及び図4を用いて説明する。
まず、第1圧電素子61及び第2圧電素子62について説明する。
図3及び図4に示すように、駆動駒31の幅w3(w31)方向には、駆動駒31の基部31bを幅w3(w31)方向の両側から挟みこむ一対の第1圧電素子61,第2圧電素子62が、二対設けられている。駆動駒31の幅方向w3は、支持軸5に垂直でロータ4の回転方向Rに沿う方向であって、ベース部2の平面視における中心線CLと略垂直な方向である。第1圧電素子61は、保持部2aの深さd2方向に沿って延びる細長い長方形状に形成され、基部31bと保持部2aとの間に挟持されている。これにより、第1圧電素子61は、ベース部2に設けられた溝部2d(図1及び図2参照)とロータ4との間に配置されている。
また、駆動駒32の幅w3(w32)方向には、駆動駒32の基部32bを幅w3(w32)方向の両側から挟みこむ一対の第4圧電素子63,第5圧電素子64が、二対設けられている。
第1圧電素子61及び第2圧電素子62は、例えば導電性の接着剤により、駆動駒31の基部31bと保持部2aとに接着されている。また、ベース部2の中心を通る中心線CLと略平行な駆動駒31の奥行p1方向に配置された2つの第1圧電素子61及び第2圧電素子62は、互いに略平行になっている。各々の第1圧電素子61及び第2圧電素子62の形状及び寸法は、全て略等しくなっている。また、第1圧電素子61及び第2圧電素子62は、互いの分極方向を同じ向きにして、基部31bの両面に接着されている。
例えば、第1圧電素子61及び第2圧電素子62は、正電圧が印加されたとき、高さ方向における正方向に変位するように基部31bに接着されている。
第4圧電素子63及び第5圧電素子64は、例えば導電性の接着剤により、駆動駒32の基部32bと保持部2aとに接着されている。また、ベース部2の中心を通る中心線CLと略平行な駆動駒32の奥行p1方向に配置された2つの第4圧電素子63及び第5圧電素子64は、互いに略平行になっている。各々の第4圧電素子63及び第5圧電素子64の形状及び寸法は、全て略等しくなっている。また、第4圧電素子63及び第5圧電素子64は、互いの分極方向を同じ向きにして、基部32bの両面に接着されている。
例えば、第4圧電素子63及び第5圧電素子64は、正電圧が印加されたとき、高さ方向における正方向に変位するように基部32bに接着されている。
次に、第3圧電素子71及び第6圧電素子72について説明する。
駆動駒31の基部31bと先端部31aとの間には、一対の第3圧電素子71,71が、互いに略平行に設けられている。第3圧電素子71は、駆動駒31の幅w3方向と略平行に延びる細長い長方形状に形成されている。
第3圧電素子71は、先端部31aの底面と基部31bの上面との間に挟持され、例えば導電性の接着剤により、先端部31aの底面と基部31bの上面とに接着されている。各々の第3圧電素子71の形状及び寸法は、全て略等しくなっている。
第3圧電素子71は、正電圧が印加されたとき、回転方向R1に変位するように基部31bに接着されている。
駆動駒32の基部32bと先端部32aとの間には、一対の第6圧電素子72,72が、互いに略平行に設けられている。第6圧電素子72は、駆動駒31の幅w3方向と略平行に延びる細長い長方形状に形成されている。
第6圧電素子72は、先端部32aの底面と基部32bの上面との間に挟持され、例えば導電性の接着剤により、先端部32aの底面と基部32bの上面とに接着されている。各々の第6圧電素子72の形状及び寸法は、全て略等しくなっている。
第6圧電素子72は、正電圧が印加されたとき、回転方向R1に変位するように基部32bに接着されている。
第1圧電素子61、第2圧電素子62、第3圧電素子71、第4圧電素子63、第5圧電素子64、第6圧電素子72は、厚み方向に分極されていて、例えばチタン酸ジルコン酸鉛(PZT)により形成され、その振動モードは厚み滑り振動である。
第1圧電素子61と第2圧電素子62、または第4圧電素子63と第5圧電素子64は、駆動駒31または32を、保持部2aの深さd2方向と略平行に、または深さd2方向に対して斜めの方向に傾けて、ベース部2に対して相対的に駆動させる。
また、第3圧電素子71または第6圧電素子72は、駆動駒3の先端部3aを駆動駒3の幅w3方向の周方向に、基部3b及びベース部2に対して相対的に駆動させる。
これら複数の第1圧電素子61〜第6圧電素子72、駆動駒3、及びベース部2により、ロータ4を支持し、かつロータ4を駆動駒3及びベース部2と相対的に駆動させる支持駆動部1aが構成されている。
図3に示すように、保持部2aはベース部2の端部に設けられ、ベース部2に王冠状の凹凸を形成している。図4に示すように、保持部2aはベース部2の周方向の略60°毎に均等に形成されている。保持部2aは平面視でベース部2の中心を通る中心線CLと略平行に設けられた一対の支持面2f,2fを備えている。支持面2fは、駆動駒3の基部3bを、ベース部2の中心線CLと略垂直な保持部2aの幅w4方向の両側から一対の第1圧電素子61,第2圧電素子62(または第4圧電素子63、第5圧電素子64)を介して挟み込むように保持している。
次に、図3における駆動駒3の保持部2aについて、図5と図6を用いて説明する。なお、以下では、第1組の駆動駒31を用いて説明する。
図5は、本実施形態における保持部2a及び駆動駒31を拡大した組立正面図であり、図6は、本実施形態に係るは保持部2a及び駆動駒31を拡大した正面図である。
図5及び図6に示すように、ベース部2に設けられた凹状の保持部2aの支持面2fは、図2に示す支持軸5と略平行な保持部2aの深さd2方向に対して、傾斜させて設けられている。
支持面2fは、図1に示す駆動駒31の先端部31aに支持されたロータ4からの距離が遠ざかるほど、対向する支持面2f,2f同士の間隔が漸次狭くなるように傾斜している。換言すると、保持部2aは、底面2gに近づくほど、幅w4が狭くなっている。保持部2aの深さd2方向に対する支持面2fの傾斜角度αは、各部材の寸法や公差等の関係から、2°以上6°以下であることが好ましい。本実施形態において、支持面の傾斜角度αは4°である。
また、図5及び図6に示すように、支持面2fに対向する駆動駒31の基部31bの側面3cは、支持面2fと同様に、支持軸5と略平行な駆動駒31の高さh1方向に対して、傾斜させて設けられている。これにより、駆動駒31の基部31bの側面3cは、支持面2fと略平行に設けられている。
ここで、基部31bの保持部2aの底面2g側の端部における基部31b及び一対の第1圧電素子61、第2圧電素子62の幅w5は、保持部2aの開口部における幅w4よりも小さく、保持部2aの深さd2方向の途中における幅w4’よりも大きくなっている。
そのため、駆動駒31の基部31b及び一対の第1圧電素子61、第2圧電素子62を、保持部2aに保持させると、図6に示すように、駆動駒31の底面3dと保持部2aの底面2gとが離間した状態で、基部31bが、保持部2aの幅w4方向の両側から、一対の第1圧電素子61、第2圧電素子62を介して支持面2fによって支持される。すなわち、支持面2fは、駆動駒31を、保持部2aの幅w4方向の両側から支持するとともに、支持軸5と略平行な保持部2aの深さd2方向において位置決めをするように、深さd2方向に対して、傾斜させて設けられている。
次に、第1圧電素子61〜第6圧電素子72の配線について説明する。図7は第1圧電素子61〜第6圧電素子72の模式的な配線図である。
図7に示すように、本実施形態の圧電アクチュエータ1は、第1配線21〜第6配線26を介して、第1圧電素子61〜第6圧電素子72の各々に駆動電圧を供給する制御部10に接続されている。
制御部10は、図3及び図4に示す第1組及び第2組のそれぞれの駆動駒31,32の先端部31a,32aが、順次、図1及び図2に示すロータ4との接触、ロータ4の回転方向R1またはR2への送り、ロータ4からの離間、ロータ4の回転方向R1と回転方向R2の戻り、を繰り返すように、第1圧電素子61〜第6圧電素子72に制御電圧を供給する。
また、制御部10は、位相演算部11が算出した第1圧電素子61〜第6圧電素子72毎の位相を示す情報に基づいて、第1圧電素子61〜第6圧電素子72毎の駆動電圧を生成する。
位相演算部11は、後述するように、第1圧電素子61、第2圧電素子62、第4圧電素子63、第5圧電素子64の最大振幅値、基部3の円周方向の幅、基部3の変位の回転中心等に基づいて、第1圧電素子61〜第6圧電素子72毎の位相を示す情報を算出する。位相演算部11は、算出した第1圧電素子61〜第6圧電素子72毎の位相を示す情報を制御部10に出力する。なお、位相演算部11には、第1圧電素子61〜第6圧電素子72毎の位相を示す情報を記憶させておき、制御部10がこの情報を読み出して使用するようにしてもよい。
図7の左に示すように、第1圧電素子61は、第1配線21を介して制御部10の端子T1に接続されている。第2圧電素子62は、第2配線22を介して制御部10の端子T2に接続されている。第4圧電素子63は、第3配線23を介して制御部10の端子T3に接続されている。第5圧電素子64は、第4配線24を介して制御部10の端子T4に接続されている。
図7の右に示すように、第3圧電素子71は、第5配線25を介して制御部10の第5端子T5に接続されている。第6圧電素子72は、第6配線26を介して制御部10の第6端子T6に接続されている。
なお、図7において、図示は省略するが、駆動駒31,32の基部31b,32bは接地されている。
なお、制御部10の各端子から第1圧電素子、第2圧電素子へ供給する電圧を、正弦波や正弦波状の電圧波形としてもよい。また、ベース部2が導電性を有している場合はベース部2に供給するようにしてもよい。
図7に示したように、第1圧電素子61と第2圧電素子62とには、各々、第1配線21、第2配線22を介して、制御部10の第1端子T1、第2端子T2とに接続されている。また、第4圧電素子63と第5圧電素子64とには、各々、第3配線23、第4配線24を介して、制御部10の第3端子T3、第4端子T4とに接続されている。
このような構成により本実施形態では、所定軸(支持軸5)を中心に回転可能なロータ4を駆動する圧電アクチュエータ1であって、ロータが対向する先端部(31aまたは32a)、及び所定軸の周方向に先端部を移動可能に支持する基部(31bまたは32b)を有する駆動部材(駆動駒31)と、周方向に関して基部の一方の面に接触するように配置され、所定軸と実質的に平行に基部を移動可能な第1圧電素子(第1圧電素子61または第3圧電素子63)と、周方向に関して基部の他方の面に接触するように配置され、所定軸と実質的に平行に基部を移動可能な第2圧電素子(第2圧電素子62または第5圧電素子64)と、を備え、第1圧電素子及び第2圧電素子は、基部が所定軸と平行な軸に対して傾斜して移動する。
ここで、駆動駒3の動作について、図8〜図10を用いて説明する。なお、以下の説明では、第1組の駆動駒31の動作について説明する。
図8は、図9に示す駆動電圧が供給された場合の駆動駒31の動作を説明する図である。図9は、第1圧電素子61と第2圧電素子62、第3圧電素子71に供給する駆動電圧の波形の一例を説明する図である。図8において、高さ方向をY軸方向で表し、水平方向をX軸方向で表す。
まず、第1圧電素子61、第2圧電素子62、及び第3圧電素子71に、図9に示す駆動電圧が供給された場合の駆動駒31の動作について説明する。
図9において、横軸は位相軸を表し、縦軸は駆動電圧の大きさを表している。また、図9において、波形s1は、第1圧電素子61及び第2圧電素子62に供給される駆動電圧(以下、第1駆動電圧という)の波形である。また、波形s2は、第3圧電素子71に供給される駆動電圧(以下、第2駆動電圧という)の波形である。なお、図9に示した例では、波形s1の駆動電圧0[V]を位相0度として表している。
図9に示すように、第1駆動電圧は、サイン波であり、周期が360度である。
位相0度の時、第1駆動電圧は0[V(ボルト)]である。以下、位相90度の時、第1駆動電圧は+V[V]であり、位相180度の時、第1駆動電圧は0[V]である。位相270度の時、第1駆動電圧は−V[V]であり、位相360度の時、第1駆動電圧は0[V]である。
また、図9に示すように、第2駆動電圧は、サイン波であり、周期が360度であり、位相が第1駆動電圧に対して90度の位相差がある。
図8に示すように、第1駆動電圧(図9)が第1圧電素子61及び第2圧電素子62に供給された場合、第1圧電素子61及び第2圧電素子62は、支持面2fに対して、各々、変位方向m1、m2の方向に変位する。このため、基部31bは、変位方向m3に示すように、Y軸方向に変位する。例えば、基部31bの変位は、位相90度のとき、Y軸方向における正方向の変位が最大になり、位相270度のとき、Y軸方向における負方向の変位が最大になる。
図8に示すように、第2駆動電圧(図9)が第3圧電素子71に供給された場合、第3圧電素子71は、基部31bに対して、変位方向m4の方向に変位する。このため、先端部31aは、変位方向m5に示すように、X軸方向に変位する。例えば、先端部31aの変位は、位相0度のとき、X軸方向における負方向の変位が最大になり、位相180度のとき、X軸方向における正方向の変位が最大になる。
このように、第1圧電素子61及び第2圧電素子62に、同じ位相の第1駆動電圧を印加し、第3圧電素子71に第2駆動電圧を印加した場合、ロータ4は、先端部31aによるX軸方向への振動によって、周方向に駆動される。
次に、第1圧電素子61及び第2圧電素子62に、異なる位相の駆動電圧を供給した場合について、図10を用いて説明する。
図10は、異なる位相の駆動電圧を供給した場合の駆動駒31の動作を説明する図である。図10において、高さ方向をY軸方向で表し、水平方向をX軸方向で表している。また、一点鎖線VEは、支持軸5に平行かつ基部31bの回転運動の中心点c(振動の回転中心位置)を通る線を表している。また、図10の左図は、状態state1を説明する図であり、図10の右図は、状態state2を説明する図である。
状態state1では、例えば、第1圧電素子61に+V[V]の駆動電圧が供給され、第2圧電素子62に0[V]の駆動電圧が供給された状態である。この場合、第1圧電素子61は、変位方向m11に示すように、Y軸方向の正方向に変位する。一方、第2圧電素子62は変位しない。この結果、駆動駒31は、回転中心cを軸として、線VEに対して反時計回りの方向に角度α1、傾く(以下、チルトするという)。
状態state2は、状態state1に対して、第1圧電素子61に−V[V]、第2圧電素子62に+V[V]の駆動電圧が供給された状態である。この場合、第1圧電素子61は、変位方向m12に示すように、Y軸方向の負方向に変位する。一方、第2圧電素子62は、変位方向m13に示すように、Y軸方向の正方向に変位する。この結果、駆動駒31は、回転中心cを軸として、線VEに対して時計回りに角度α2、チルトする。従って、状態state1から状態state2に変位した場合、駆動駒31は、変位方向m14に示したように、反時計回り方向のチルトから時計回りの方向のチルトに変化する。換言すると、状態state1から状態state2にかけて、駆動駒31は、反時計回り方向から時計回り方向への首振り振動が発生する。この変位方向m14の水平方向の成分(X軸方向の成分)は、ロータ4を水平方向に振動させる成分となる。
本実施形態では、このように、第1圧電素子61と第2圧電素子62とを、独立に振動させて、駆動駒31に首振り振動を生じさせる。このときの水平方向の成分と、さらに、本実施形態では、第3圧電素子71によって先端部31aが変位する水平方向の成分とが加算されるように、第1圧電素子61、第2圧電素子62、第3圧電素子71に供給する駆動電圧の位相を設定する。換言すると、制御部10は、基部31bが所定軸(支持軸5)と平行な軸に対して傾斜して移動するように、第1圧電素子61及び第2圧電素子62の少なくとも一方に駆動電圧を供給する。さらに、先端部31aが周方向の一側に移動する期間の少なくとも一部において、制御部10は、基部31bが一側に移動するように、第1圧電素子61及び第2圧電素子62の少なくとも一方に駆動電圧を供給する。なお、先端部31aが周方向の一側に移動する期間とは、後述するように、先端部31aが、周方向へ移動する最大の振幅のうち、時計回りの方向または反時計回りの最大の振幅値の位置へ移動する期間である。
これにより、本実施形態では、図8で説明した第1圧電素子61及び第2圧電素子62に同じ位相の駆動電圧を供給した場合と比べて、ロータ4を振動させるための水平方向の成分を増すことができ、駆動力を向上できる。
<周方向の振動の式と高さ方向の振動の式の説明>
次に、位相演算部11による第1圧電素子61〜第6圧電素子72毎の位相を示す情報の算出方法を説明する。
図11は、位相を算出する際に用いる定数を説明する図である。図12は、高さ方向の変位と周方向の変位を説明する図である。図11及び図12において、縦軸方向をY軸方向で表し、横軸方向をX軸方向で表す。なお、図11及び図12では、第1組の駆動駒31を用いて説明する。
図11において、符号c1は、駆動駒31の回転中心を表し、符号c2は、第1圧電素子61及び第2圧電素子62に供給される駆動電圧の位相をずらしたときのリサ−ジュ曲線を算出するための基準点を表している。符号hは、先端部31aの表面から、回転中心c1を通るY軸方向の高さを表している。符号Tは、X軸方向における、回転中心c1からの基部31bと第2圧電素子62までの幅を表している。
また、図12において、符号g1は、基部31bが、回転中心c1を軸として左右に角度θ分、チルトしたときのX軸方向の変位Δx、Y軸方向の変位Δyを図示したものである。符号g2は、先端部31aが回転中心c1を軸として左右に角度θ分、チルトしたときのX軸方向の変位Δxを図示したものである。
図12において、周方向の振動の式は、次式(1)のように表される。
Figure 2013211961
式(1)において、xは周方向の変位位置(ただし中心位置を0とする)、mは第1圧電素子61または第2圧電素子62の最大振幅値、nは第3圧電素子71の最大振幅値である。また、ωtは第1圧電素子61、第2圧電素子62及び第3圧電素子71の位相、αは第2圧電素子62の第1圧電素子61に対する位相差、βは第3圧電素子71の第1圧電素子61に対する位相差である。
第1圧電素子61、第2圧電素子62、及び第3圧電素子71の各振幅に対して、振動子である駆動駒31の大きさが十分に大きいとすると、式(1)は次式(2)のように近似できる。
Figure 2013211961
同様に、第1圧電素子61、第2圧電素子62、及び第3圧電素子71の各振幅に対して、振動子である駆動駒31の大きさが十分に大きいとすると、Y軸方向(高さ方向)の振動式は、次式(3)のように表される。
Figure 2013211961
<回転中心c1が第1圧電素子61の上端部の高さにある場合>
次に、図13を用いて、回転中心c1が第1圧電素子61の上端部の高さにある場合を説明する。図13において、縦軸方向をY軸方向で表し、横軸方向をX軸方向(周方向)で表す。
図13に示すように、回転中心c1は、第1圧電素子61及び第2圧電素子62との上端部を結ぶ高さにある。この場合、例えば、幅Tは1350[μm]、高さhは2000[μm]である。また、第1圧電素子61及び第2圧電素子62の各最大振幅値は2[μm]、第3圧電素子71の最大振幅値は1[μm]である。
この条件を上述した式(2)及び式(3)に代入すると、式(2)及び式(3)は、次式(4)、次式(5)のように表される。
Figure 2013211961
Figure 2013211961
この式(4)及び式(5)において、αを変更してリサ−ジュ曲線を算出すると、図14のようになる。図14は、各αにおけるリサ−ジュ曲線を算出した例を説明する図である。ただし、図14において、リサ−ジュ曲線に傾きが発生しないように、βの値を、((α/2)+90度)として、リサ−ジュ曲線を算出した。
図14において、波形l1〜l8は、αが0度から315度まで45度毎のリサ−ジュ曲線である。図14に示すように、αが90度のときが、最もリサ−ジュ曲線の大きさが大きくなっている。具体的には、αが90度のリサ−ジュ曲線の大きさは、αが0度に対して、高さ方向の振幅は1/(√2)倍、周方向の振幅は約3倍である。例えば、αが135度のとき、αが0度に対して周方向の振幅は約4倍になるが、高さ方向の振幅は1/2以下になってしまう。このため、回転中心c1が第1圧電素子61の上端部の高さにある場合、最適なα、すなわち第1圧電素子61と第2圧電素子62との位相差は、90度である。
次に、式(4)及び式(5)において、αを90度に固定し、第1圧電素子61に対する第3圧電素子71の位相であるβをずらしてリサ−ジュ曲線を算出した結果の一例を図15に示す。図15は、各βにおけるリサ−ジュ曲線を算出した例を説明する図である。図15において、波形l11〜l18は、βが0度から315度まで45度毎のリサ−ジュ曲線である。
図15に示すように、第3圧電素子71の位相を変えると、例えば45度のときのように、リサ−ジュ曲線は、傾きが発生する。一方、135度のとき、リサ−ジュ曲線は、傾きが発生しない。このため、回転中心c1が第1圧電素子61の上端部の高さにある場合、最適なβ、すなわち第3圧電素子71の第1圧電素子61に対する位相差は、135度である。
<回転中心c2が第1圧電素子61の中心部の高さにある場合>
次に、図16を用いて、回転中心c2が第1圧電素子61の中心部の高さにある場合を説明する。図16において、縦軸方向をY軸方向で表し、横軸方向をX軸方向(周方向)で表す。
図16に示すように、回転中心c2は、第1圧電素子61及び第2圧電素子62のY軸方向における中心部の高さにある。この場合、例えば、幅Tは1350[μm]、高さhは3350[μm]である。また、第1圧電素子61及び第2圧電素子62の各最大振幅値は2[μm]、第3圧電素子71の最大振幅値は1[μm]である。
この条件を上述した式(2)及び式(3)に代入すると、式(2)及び式(3)は、次式(6)、次式(7)のように表される。
Figure 2013211961
Figure 2013211961
この式(6)及び式(7)において、αを変更してリサ−ジュ曲線を算出すると、図17のようになる。図17は、各αにおけるリサ−ジュ曲線を算出した例を説明する図である。ただし、図17において、リサ−ジュ曲線に傾きが発生しないように、βの値を、((α/2)+90度)として、リサ−ジュ曲線を算出した。
図17において、波形l21〜l28は、αが0度から315度まで45度毎のリサ−ジュ曲線である。図17に示すように、αが90度のときが、最もリサ−ジュ曲線の大きさが大きくなっている。具体的には、αが90度のリサ−ジュ曲線の大きさは、αが0度に対して、高さ方向の振幅は1/(√2)倍、周方向の振幅は約4.5倍である。例えば、αが135度のとき、αが0度に対して周方向の振幅は約6倍になるが、高さ方向の振幅は1/2以下になってしまう。このため、回転中心c2が第1圧電素子61の上端部の高さにある場合、最適なα、すなわち第1圧電素子61と第2圧電素子62との位相差は、90度である。
次に、式(6)及び式(7)において、αを90度に固定し、第3圧電素子71の位相であるβをずらしてリサ−ジュ曲線を算出した結果の一例を図18に示す。図18は、各βにおけるリサ−ジュ曲線を算出した例を説明する図である。
図18において、波形l31〜l38は、βが0度から315度まで45度毎のリサ−ジュ曲線である。図18に示すように、第3圧電素子71の位相を変えると、例えば45度のときのように、リサ−ジュ曲線は、傾きが発生する。一方、135度のとき、リサ−ジュ曲線は、傾きが発生しない。このため、回転中心c2が第1圧電素子61の中心部の高さにある場合、最適なβ、すなわち第3圧電素子71の第1圧電素子61に対する位相差は、135度である。
上述したように、最も大きいリサージュ曲線を描く位相は、第1圧電素子61に対する第2圧電素子62の位相差が90度であり、このときの第1圧電素子61に対する第3圧電素子71の位相差が135度である。位相演算部11は、第1圧電素子61に対する回転中心の高さ等に応じて、式(2)及び式(3)に定数T、h等を代入し、位相差α及びβを変えたリサ−ジュ曲線を算出して、最適な位相差を演算する。
さらに、位相演算部11は、第1組の第1圧電素子61に対する第2組の第4圧電素子63の位相差は、180度に設定する。また、第2組の第4圧電素子63、第5圧電素子64、第6圧電素子72の位相差は、第1組の位相差と同様である。すなわち、第4圧電素子63に対する第5圧電素子64の位相差が90度であり、このときの第4圧電素子63に対する第6圧電素子72の位相差が135度である。
なお、図14及び図17に示したように、第1圧電素子61に対する第2圧電素子62の位相差が180度の場合、リサ−ジュ曲線の高さ方向の成分が無くなる。この場合、高さ方向の振動が得られないことを意味している。従って、位相演算部11は、このように高さ方向の振動が得られない位相差を避けて、駆動電圧の位相差を演算する。
なお、回転中心が予め決まっている場合、位相演算部11には、予め第1圧電素子61〜第6圧電素子72毎の位相を示す情報を記憶させておくようにしてもよい。
図19は、第1組と第2組の駆動電圧の位相差の関係を説明する図である。
図19に示すように、第1圧電素子61の位相を基準(0度)とすると、第2圧電素子62に供給される駆動電圧の位相差は90度であり、第3圧電素子71に供給される駆動電圧の位相差は135度である。第4圧電素子63に供給される駆動電圧の位相差は180度であり、第5圧電素子64に供給される駆動電圧の位相差は270度であり、第6圧電素子72に供給される駆動電圧の位相差は315度である。
なお、第1圧電素子61の位相が45度、または225度の場合のみ、第1組の先端部31a及び第2組の先端部32aの両方の上部が、相対運動部材であるロータ4と接触する。
次に、本実施形態の圧電アクチュエータ1の動作について説明する。
図20は、ロータ4を時計回りの駆動する場合の駆動電圧の一例を説明する図である。図21及び図22は、第1組と第2組の駆動駒31、32の動作と、ロータ4の動作とを示す正面図である。
図20において、横軸は時間軸を表し、縦軸は駆動電圧の大きさを表している。波形s11は、第1圧電素子61に供給される駆動電圧であり、波形s12は、第2圧電素子62に供給される駆動電圧である。波形s13は、第3圧電素子71に供給される駆動電圧である。波形s13は、第4圧電素子63に供給される駆動電圧であり、波形s14は、第5圧電素子64に供給される駆動電圧である。波形s16は、第6圧電素子72に供給される駆動電圧である。なお、図20に示した例では、第1圧電素子61の位相を基準(0度)として表している。
図20に示したように、第1圧電素子61に供給される駆動電圧を基準とした場合、第2圧電素子62、第3圧電素子71に供給される駆動電圧の位相差は、各々90度、135度である。また、第1圧電素子61に供給される駆動電圧を基準とした場合、第2組の第4圧電素子63、第5圧電素子64、第6圧電素子72に供給される駆動電圧の位相差は、各々、180度、270度、315度である。
図21及び図22に示した例では、駆動電圧が+V[V]のとき、第1圧電素子61、第2圧電素子62、第4圧電素子63、及び第5圧電素子64は、Y軸方向の正方向に変位する。また、駆動電圧が+V[V]のとき、第3圧電素子71、及び第6圧電素子72は、時計回りの方向に変位する。
なお、図21及び図22において、符号m21a、m31a、m41a、m51a、及びm61aは、第1圧電素子61の変位方向を表している。符号m22a、m32a、m42a、m52a、及びm62aは、第2圧電素子62の変位方向を表している。符号m24a、m34a、m44a、m54a、及びm64aは、第3圧電素子71の変位方向を表している。符号m23a、m33a、m43a、m53a、及びm63aは、基部31bの変位方向を表している。符号m25a、m35a、m45a、m55a、及びm65aは、先端部31aの変位方向を表している。
また、図21及び図22において、符号m21b、m31b、m41b、m51a、及びm61bは、第4圧電素子63の変位方向を表している。符号m22b、m32b、m42b、m52b、及びm62bは、第5圧電素子64の変位方向を表している。符号m24b、m34b、m44b、m54b、及びm64bは、第6圧電素子72の変位方向を表している。符号m23b、m33b、m43b、m53b、及びm63bは、基部32bの変位方向を表している。符号m25b、m35b、m45b、m55b、及びm65bは、先端部32aの変位方向を表している。
<0度の説明>
制御部10は、図20に示すように、第1圧電素子61に0[V]、第2圧電素子62に−V[V]、第3圧電素子71に−0.7V[V]の駆動電圧を供給する。また、図20に示すように、制御部10は、異なる位相の駆動電圧を、第1圧電素子61と第2圧電素子62とに供給する。
この結果、図21に示すように、第1圧電素子61は変位方向m21aに変位し、第2圧電素子62は変位方向m22aに変位し、基部31bは変位方向m23aに変位する。また、第3圧電素子71は変位方向m24aに変位し、先端部31aは変位方向m25aに変位する。すなわち、基部31bは、反時計回りの方向にチルトし、先端部31aは反時計回りの方向に移動する(以下、シフトするという)。
このように、基部31bにおける変位方向m23aのX1軸方向の成分の方向と、先端部31aにおける変位方向m25aのX1軸方向の成分の方向は等しくなるように、制御部10は、各駆動電圧を生成して供給する。
制御部10は、図20に示すように、第4圧電素子63に0[V]、第5圧電素子64に+V[V]、第3圧電素子71に+0.7V(ブイ)[V]の駆動電圧を供給する。
この結果、図21に示すように、第4圧電素子63は変位方向m21bに変位し、第5圧電素子64は変位方向m22bに変位し、基部32bは変位方向m23bに変位する。また、第6圧電素子72は変位方向m24bに変位し、先端部32aは変位方向m25bに変位する。すなわち、基部32bは、時計回りの方向にチルトし、先端部32aは時計回りの方向にシフトする。
この基部32bにおける変位方向m23bのX1軸方向の成分の方向と、先端部32aにおける変位方向m25bのX1軸方向の成分の方向は等しい。換言すると、先端部32aは、所定周波数で振動するように周方向の一側及び他側に移動し、制御部10は、所定周波数と実質的に等しい周波数で、所定軸(支持軸5)と傾斜するように基部32bを振動させる。
<90度の説明>
制御部10は、図20に示すように、第1圧電素子61に+V[V]、第2圧電素子62に0[V]、第3圧電素子71に−0.7V[V]の駆動電圧を供給する。
この結果、図21に示すように、第1圧電素子61は変位方向m31aに変位し、第2圧電素子62は変位方向m32aに変位し、基部31bは変位方向m33aに変位する。また、第3圧電素子71は変位方向m34aに変位し、先端部31aは変位方向m35aに変位する。すなわち、基部31bは、高さ方向の正方向に持ち上がりながら反時計回りの方向にチルトし、先端部31aは時計回りの方向にシフトする。
制御部10は、図20に示すように、第4圧電素子63に−V[V]、第5圧電素子64に0[V]、第3圧電素子71に+0.7V[V]の駆動電圧を供給する。
この結果、図21に示すように、第4圧電素子63は変位方向m31bに変位し、第5圧電素子64は変位方向m32bに変位し、基部32bは変位方向m33bに変位する。また、第6圧電素子72は変位方向m34bに変位し、先端部32aは変位方向m35bに変位する。すなわち、基部32bは、時計回りの方向にチルトしたまま高さ方向の負方向に下がり、先端部32aは反時計回りの方向にシフトする。なお、90度において、図21に示すように、第1組の先端部31aがロータ4に接触されている。
<180度の説明>
制御部10は、図20に示すように、第1圧電素子61に0[V]、第2圧電素子62に+V[V]、第3圧電素子71に+0.7V[V]の駆動電圧を供給する。
この結果、図21に示すように、第1圧電素子61は変位方向m41aに変位し、第2圧電素子62は変位方向m42aに変位し、基部31bは変位方向m43aに変位する。また、第3圧電素子71は変位方向m44aに変位し、先端部31aは変位方向m45aに変位する。すなわち、基部31bは、時計回りの方向にチルトし、先端部31aは時計回りの方向にシフトする。
制御部10は、図20に示すように、第4圧電素子63に0[V]、第5圧電素子64に−V[V]、第3圧電素子71に−0.7V[V]の駆動電圧を供給する。
この結果、図21に示すように、第4圧電素子63は変位方向m41bに変位し、第5圧電素子64は変位方向m42bに変位し、基部32bは変位方向m43bに変位する。また、第6圧電素子72は変位方向m44bに変位し、先端部32aは変位方向m45bに変位する。すなわち、基部32bは反時計回りの方向にチルトし、先端部32aは反時計回りの方向にシフトする。
90度から180度にかけて、図21に示すように、第1組の先端部31aがロータ4に接触されている。図21に示すように、90度から180度にかけて、第1組の基部31bは、反時計回りの方向から時計回りの方向へチルトし、変位方向m43aが発生する。さらに、90度から180度にかけて、第1組の先端部31aは、反時計回りの方向から時計回りの方向へシフトし、変位方向m45aが発生する。この場合、ロータ4を駆動する力は、基部32bにおける変位方向m43aのX1軸方向の成分と、先端部31aにおける変位方向m45aのX1軸方向の成分とが加算されたものである。すなわち、第3圧電素子71を振動させて先端部31aを駆動し、X1軸方向の負方向に変位させた場合と比べて、ロータ4の駆動力を向上できる。換言すると、先端部31aは、所定周波数で振動するように周方向の一側及び他側に移動し、制御部10は、所定周波数と実質的に等しい周波数で、所定軸(支持軸5)と傾斜するように基部31bを振動させる。
<270度の説明>
制御部10は、図20に示すように、第1圧電素子61に−V[V]、第2圧電素子62に0[V]、第3圧電素子71に+0.7V[V]の駆動電圧を供給する。
この結果、図22に示すように、第1圧電素子61は変位方向m51aに変位し、第2圧電素子62は変位方向m52aに変位し、基部31bは変位方向m53aに変位する。また、第3圧電素子71は変位方向m54aに変位し、先端部31aは変位方向m55aに変位する。すなわち、基部31bは、高さ方向の負方向に下がりながら時計回りの方向にチルトし、先端部31aは反時計回りの方向にシフトする。
制御部10は、図20に示すように、270度において、第4圧電素子63に+V[V]、第5圧電素子64に0[V]、第3圧電素子71に−0.7V[V]の駆動電圧を供給する。
この結果、図22に示すように、第4圧電素子63は変位方向m51bに変位し、第5圧電素子64は変位方向m52bに変位し、基部32bは変位方向m53bに変位する。また、第6圧電素子72は変位方向m54bに変位し、先端部32aは変位方向m55bに変位する。すなわち、基部32bは、高さ方向に持ち上がりながら反時計回りの方向にチルトし、先端部32aは、時計回りの方向にシフトする。なお、270度においては、図22に示すように、第2組の先端部32aがロータ4に接触されている。
<360度の説明>
制御部10は、図20に示すように、第1圧電素子61に0[V]、第2圧電素子62に−V[V]、第3圧電素子71に−0.7V[V]の駆動電圧を供給する。
この結果、図22に示すように、第1圧電素子61は変位方向m61aに変位し、第2圧電素子62は変位方向m62aに変位し、基部31bは変位方向m63aに変位する。また、第3圧電素子71は変位方向m64aに変位し、先端部31aは変位方向m65aに変位する。すなわち、基部31bは、反時計回りの方向にチルトし、先端部31aは、反時計回りの方向にシフトする。
この基部31bにおける変位方向m63aのX1軸方向の成分の方向と、先端部31aにおける変位方向m65aのX1軸方向の成分の方向は等しい。
制御部10は、図20に示すように、第4圧電素子63に0[V]、第5圧電素子64に−V[V]、第3圧電素子71に+0.7V[V]の駆動電圧を供給する。
この結果、図22に示すように、第4圧電素子63は変位方向m61bに変位し、第5圧電素子64は変位方向m62bに変位し、基部32bは変位方向m63bに変位する。また、第6圧電素子72は変位方向m64bに変位し、先端部32aは変位方向m65bに変位する。すなわち、基部32bは、時計回りの方向にチルトし、先端部32aは、時計回りの方向にシフトする。
この基部32bにおける変位方向m23bのX1軸方向の成分の方向と、先端部32aにおける変位方向m65bのX1軸方向の成分の方向は等しい。
270度から360度にかけて、図22に示すように、第2組の先端部32aがロータ4に接触している。
図22に示すように、270度から360度にかけて、第2組の基部32bは、反時計回りの方向から時計回りの方向へチルトし、変位方向m64bが発生する。さらに、270度から360度にかけて、第2組の先端部32aは、反時計回りの方向から時計回りの方向へシフトし、変位方向m65bが発生する。この場合、ロータ4を駆動する力は、基部32bにおける変位方向m63bのX2軸方向の成分と、先端部32aにおける変位方向m65bのX2軸方向の成分とが加算されたものである。すなわち、第6圧電素子72を振動させて先端部32aを駆動し、X2軸方向の負方向に変位させた場合と比べて、ロータ4の駆動力を向上させている。
次に、ロータ4を反時計回りに駆動する場合について説明する。
図23は、ロータ4を反時計回りの駆動する場合の駆動電圧の一例を説明する図である。
図23において、横軸は時間軸を表し、縦軸は駆動電圧の大きさを表している。波形s21は、第1圧電素子61に供給される駆動電圧であり、波形s22は、第2圧電素子62に供給される駆動電圧であり、波形s23は、第3圧電素子71に供給される駆動電圧である。また、波形s24は、第4圧電素子63に供給される駆動電圧であり、波形s25は、第5圧電素子64に供給される駆動電圧である。波形s26は、第6圧電素子72に供給される駆動電圧である。なお、図20に示した例では、第1圧電素子61の位相を基準(0度)として表している。
図23に示したように、第1圧電素子61に印加される駆動電圧を基準とした場合、第2圧電素子62、第3圧電素子71に供給される駆動電圧の位相差は、各々−90度、1−35度である。この状態は、図14に示した270度のリサ−ジュ曲線に相当する。また、第1圧電素子61に供給される駆動電圧を基準とした場合、第2組の第4圧電素子63、第5圧電素子64、第6圧電素子72に供給される駆動電圧の位相差は、各々、−180度、−270度、−315度である。
制御部10は、図23に示した駆動電圧を、第1圧電素子61〜第6圧電素子72に供給することで、ロータ4を反時計回りの方向に駆動する。この場合においても、制御部10は、第1組の先端部31aのシフト方向と、基部31bのチルト方向が一致するように制御する。また、制御部10は、先端部31aのシフト方向と、基部31bのチルト方向が一致するように、第1圧電素子61、第2圧電素子62及び第3圧電素子71の振動周波数を制御する。この結果、ロータ4を駆動する力は、基部31bにおける変位方向のX2軸方向の成分と、先端部31aにおける変位方向のX2軸方向の成分とが加算されたものになる。
同様に、制御部10は、第2組の先端部32aのシフト方向と、基部32bのチルト方向が一致するように制御する。また、制御部10は、先端部32aのシフト方向と、基部32bのチルト方向が一致するように、第4圧電素子63、第5圧電素子64及び第6圧電素子72の振動周波数を制御する。この結果、ロータ4を駆動する力は、基部32bにおける変位方向のX2軸方向の成分と、先端部32aにおける変位方向のX2軸方向の成分とが加算されたものになる。
以上のように、本実施形態では、基部31bに接着されている第1圧電素子61と第2圧電素子62とに、各々、第1配線21と第2配線22を介して、異なる位相の駆動電圧を供給するようにした。このため、第1圧電素子61及び第2圧電素子62は、独立に振動することができる。さらに、本実施形態では、基部31bがチルトする方向と、先端部31aがシフトする方向とが一致するように制御する。そして、本実施形態では、基部31bがチルトする振動周波数と、先端部31aがシフトする振動周波数とが一致するように制御する。
この結果、本実施形態では、先端部31aがシフトする水平方向の駆動力と、基部31bがチルトする水平方向の駆動力が加算された駆動力で、ロータ4を、周方向に回転させることができる。従って、本実施形態によれば、駆動力を向上できる。
また、上述の実施形態では、駆動駒3の組を二組備える場合について説明したが、駆動駒の組は三組以上であってもよい。また、駆動駒の組が備える駆動駒の数は、1つ、2つ、若しくは4つ以上であってもよい。例えば、上述の実施形態において、ベース部2の対角に配置された配置された2つの駆動駒を1組として、駆動駒の組を3組構成してもよい。第1組の駆動駒31と、第2組の駆動駒32とが同数であればよく、この場合であっても、駆動駒31と駆動駒32とが、交互に周方向に配置されていればよい。この場合には、各組の電圧の位相差を例えば120度とすることができる。これにより、常に2組の駆動駒によってロータを支持・回転させることができる。駆動駒の各組の電圧の位相差は、360度を組数で除した値(すなわち二組の場合は180度、三組の場合は120度)とすればよい。
また、本実施形態では、図20に示したように、第1圧電素子61及び第2圧電素子62に異なる位相の駆動電圧を供給する例を説明したが、これに限られない。制御部10は、用途や求められる駆動力等に応じて、第1圧電素子61及び第2圧電素子62に供給する駆動電圧を、図9に示したように同じ位相の駆動電圧と、異なる位相の駆動電圧とを切り替えて制御するようにしてもよい。
また、本実施形態では、第1圧電素子61及び第2圧電素子62と、第3圧電素子71とに供給する駆動電圧の振幅が同じ例を説明したが、駆動電圧の振幅は異なっていてもよい。
また、本実施形態では、駆動駒3の先端部31a及び32aの断面の形状が、山形の六角柱形状の例を説明したが、これに限られない。例えば、図24に示すように、先端部31a及び32aの形状は、ロータ4と接触する部分を多角形に形成してもよい。図24は、先端部の他の形状の一例を説明する断面図である。この場合、図21及び図22に示したように、ロータ4と、各先端部31a’及び32a’との間に、摩擦が発生する形状であればよい。
なお、本実施形態では、ロータ4が上から見たときに円形の場合について説明したが、例えばロータ4は線状であってもよい。この場合においても、第1圧電素子61と第2圧電素子62と第3圧電素子71とを有する駆動駒31と、第4圧電素子63と第5圧電素子64と第6圧電素子72とを有する駆動駒32とを、線状のロータ4に沿って交互に配置する。そして、制御部10が、第1圧電素子61〜第6圧電素子72に、各々第1配線21〜第6配線26を介して駆動電圧を供給することで、線状のロータ4を直線方向に沿って駆動することができる。
また、基部3bを挟み込む一対の第1圧電素子61、第2圧電素子62、第4圧電素子63、第5圧電素子64の寸法及び形状は、略等しくするようにしてもよい。これにより、駆動駒3の幅w3方向の剛性を均等にできる。したがって、駆動駒3の基部3bの幅w3方向の振動を抑制できる。また、第1圧電素子61、第2圧電素子62、第4圧電素子63、第5圧電素子64を、同一の形状及び寸法とすることで、製造を容易にして、生産性を向上できる。
次に、本実施形態の圧電アクチュエータ1を備えたレンズ鏡筒の一例として、交換レンズについて説明する。本実施形態の交換レンズは、カメラ本体とともにカメラシステムを形成するものであり、カメラ本体に着脱可能に装着される。交換レンズは、公知のAF(オートフォーカス)制御に応じて合焦動作を行うAFモードと、撮影者からの手動入力に応じて合焦動作を行うMF(マニュアルフォーカス)モードとが切り替え可能になっている。
次に、本実施形態の圧電アクチュエータ1を備えたレンズ鏡筒及びカメラの一例について説明する。本実施形態の交換レンズは、カメラボディとともにカメラシステムを形成するものである。交換レンズは、公知のAF(オートフォーカス)制御に応じて合焦動作を行うAFモードと、撮影者からの手動入力に応じて合焦動作を行うMF(マニュアルフォーカス)モードとが切り替え可能になっている。
図25は、本実施形態における圧電アクチュエータ1を備えたレンズ鏡筒及びカメラの概略構成図である。図25に示すように、カメラ201は、撮像素子208が内蔵されたカメラボディ202と、レンズ207を有するレンズ鏡筒203とを備えている。
レンズ鏡筒203は、カメラボディ202に着脱可能な交換レンズである。レンズ鏡筒203は、レンズ207、カム筒206、圧電アクチュエータ1等を備えている。圧電アクチュエータ1は、カメラ201のフォーカス動作時にレンズ207を駆動する駆動源として用いられている。圧電アクチュエータ1のロータ4から得られた駆動力は、直接、カム筒206に伝えられる。レンズ207は、カム筒206に保持されており、圧電アクチュエータ1の駆動力により、光軸方向Lに略平行に移動して、焦点調節を行うフォーカスレンズである。
カメラ201の使用時には、レンズ鏡筒203内に設けられたレンズ群(レンズ207を含む)によって、撮像素子208の撮像面に被写体像が結像される。撮像素子208によって、結像された被写体像は電気信号に変換され、その信号をA/D(アナログ−デジタル)変換することによって、画像データが得られる。
以上説明したように、カメラ201及びレンズ鏡筒203は、上述の圧電アクチュエータ1を備えている。したがって、従来よりもロータ4を効率よく回転させ、レンズ207を効率よく駆動することができる。
本実施形態では、レンズ鏡筒203は、交換レンズである例を示したが、これに限らず、例えば、カメラボディと一体型のレンズ鏡筒としてもよい。
以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
例えば、圧電素子は厚みすべり変形ではなく、厚み方向に変形してもよい。この場合、第1圧電素子の縦弾性係数と、第2圧電素子の縦弾性係数との比が、駆動駒の全体の質量及び先端部の質量の和と、駆動駒の先端部の質量との比と同一であってもよい。この場合でも、厚みすべり変形をする圧電素子を用いた場合と同様の効果を得ることができる。
なお、制御部10、位相演算部11の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD−ROM等の可搬媒体、USB(Universal Serial Bus) I/F(インタフェース)を介して接続されるUSBメモリー、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、サーバーやクライアントとなるコンピュータシステム内部の揮発性メモリーのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
1・・・圧電アクチュエータ、1a・・・支持駆動部、2・・・ベース部、3・・・駆動駒(駆動部材)、3a・・・先端部、3b・・・基部、4・・・ロータ、5・・・支持軸、10・・・制御部、11・・・位相演算部、31・・・駆動駒(駆動部材、第1駆動部材)、31a・・・先端部、31b・・・基部、32・・・駆動駒(駆動部材、第2駆動部材)、32a・・・先端部、32b・・・基部、61・・・第1圧電素子、62・・・第2圧電素子、63・・・第4圧電素子、64・・・第5圧電素子、71・・・第3圧電素子、72・・・第6圧電素子、201・・・カメラ、203・・・レンズ鏡筒

Claims (12)

  1. 所定軸を中心に回転可能なロータを駆動する圧電アクチュエータであって、
    前記ロータが対向する先端部、及び前記所定軸の周方向に前記先端部を移動可能に支持する基部を有する駆動部材と、
    前記周方向に関して前記基部の一方の面に接触するように配置され、前記所定軸と実質的に平行に前記基部を移動可能な第1圧電素子と、
    前記周方向に関して前記基部の他方の面に接触するように配置され、前記所定軸と実質的に平行に前記基部を移動可能な第2圧電素子と、
    を備え、
    前記第1圧電素子及び前記第2圧電素子は、前記基部が前記所定軸と平行な軸に対して傾斜して移動する圧電アクチュエータ。
  2. 前記先端部と前記基部との間に配置され、前記基部に対して前記先端部を前記周方向に移動可能な第3圧電素子を備える請求項1に記載の圧電アクチュエータ。
  3. 前記基部が前記所定軸と平行な軸に対して傾斜して移動するように、前記第1圧電素子及び前記第2圧電素子の少なくとも一方に駆動電圧を供給する制御部、
    を備える請求項1又は請求項2に記載の圧電アクチュエータ。
  4. 前記先端部が前記周方向の一側に移動する期間の少なくとも一部において、
    前記制御部は、前記基部が前記一側に移動するように、前記第1圧電素子及び前記第2圧電素子の少なくとも一方に駆動電圧を供給する請求項3に記載の圧電アクチュエータ。
  5. 前記先端部は、所定周波数で振動するように前記周方向の一側及び他側に移動し、
    前記制御部は、前記所定周波数と実質的に等しい周波数で、前記所定軸と傾斜するように前記基部を振動させる請求項3又は請求項4のいずれか一項に記載の圧電アクチュエータ。
  6. 前記駆動部材は、前記所定軸の周囲に配置される第1駆動部材及び第2駆動部材を含み、
    前記制御部は、前記第1駆動部材の前記基部と、前記第2駆動部材の前記基部とを、180度の位相差で振動させる請求項5に記載の圧電アクチュエータ。
  7. 前記制御部は、異なる位相の駆動電圧を前記第1圧電素子と前記第2圧電素子とに供給する請求項3から請求項6のいずれか一項に記載の圧電アクチュエータ。
  8. 前記第1圧電素子と前記第2圧電素子とに供給する駆動電圧の位相を演算する位相演算部を備え、
    前記位相演算部は、前記第1圧電素子及び前記第2圧電素子の各最大振幅値、前記駆動部材の大きさ、前記第1圧電素子及び前記第2圧電素子の大きさ、前記駆動部材の振動の中心位置に基づいて、前記位相を演算する
    請求項1から請求項7のいずれか一項に記載の圧電アクチュエータ。
  9. 所定軸を中心に回転可能なロータを駆動する圧電アクチュエータ制御方法であって、
    前記ロータが対向する先端部、及び前記所定軸の周方向に前記先端部を移動可能に支持する基部を有する駆動部材のうち、前記周方向に関して前記基部の一方の面に接触するように配置され、前記所定軸と実質的に平行に前記基部を移動可能な第1圧電素子、及び前記周方向に関して前記基部の他方の面に接触するように配置され、前記所定軸と実質的に平行に前記基部を移動可能な第2圧電素子の少なくとも一方に駆動電圧を供給して、前記所定軸に対して傾斜するように前記基部を移動させることを含む圧電アクチュエータ制御方法。
  10. 前記第1圧電素子及び前記第2圧電素子の各最大振幅値、前記駆動部材の大きさ、前記第1圧電素子及び前記第2圧電素子の大きさ、及び前記駆動部材の振動の中心位置に基づいて、前記第1圧電素子と前記第2圧電素子とに供給する駆動電圧の位相を演算することを含む請求項9に記載の圧電アクチュエータ制御方法。
  11. 請求項1から請求項8のいずれか1項に記載の圧電アクチュエータを備えたレンズ鏡筒。
  12. 請求項1から請求項8のいずれか1項に記載の圧電アクチュエータを備えたカメラ。
JP2012079234A 2012-03-30 2012-03-30 圧電アクチュエータ、圧電アクチュエータ制御方法、レンズ鏡筒及びカメラ Pending JP2013211961A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012079234A JP2013211961A (ja) 2012-03-30 2012-03-30 圧電アクチュエータ、圧電アクチュエータ制御方法、レンズ鏡筒及びカメラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079234A JP2013211961A (ja) 2012-03-30 2012-03-30 圧電アクチュエータ、圧電アクチュエータ制御方法、レンズ鏡筒及びカメラ

Publications (1)

Publication Number Publication Date
JP2013211961A true JP2013211961A (ja) 2013-10-10

Family

ID=49529333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079234A Pending JP2013211961A (ja) 2012-03-30 2012-03-30 圧電アクチュエータ、圧電アクチュエータ制御方法、レンズ鏡筒及びカメラ

Country Status (1)

Country Link
JP (1) JP2013211961A (ja)

Similar Documents

Publication Publication Date Title
US8693116B2 (en) Piezoelectric actuator and lens barrel
JP2014018027A (ja) 振動型アクチュエータ、撮像装置、及びステージ
US8159763B2 (en) Vibrating element, vibration actuator, lens barrel, camera system and method for driving vibration actuator
US8675295B2 (en) Piezoelectric actuator, lens barrel, and camera
US20170279380A1 (en) Method of driving vibration actuator, drive device, and image pickup apparatus
JP2013211961A (ja) 圧電アクチュエータ、圧電アクチュエータ制御方法、レンズ鏡筒及びカメラ
JP2012080606A (ja) 駆動装置、レンズ鏡筒及びカメラ
JP6619827B2 (ja) 振動型モータ及びレンズ駆動装置
JP2013150446A (ja) 駆動装置、レンズ鏡筒及びカメラ
JP2016027780A (ja) 振動型アクチュエータ、レンズ鏡筒、撮像装置及び自動ステージ
JP5640334B2 (ja) 駆動装置、レンズ鏡筒及びカメラ
JP6649729B2 (ja) 振動波モータ
JP4981427B2 (ja) 振動駆動装置
JP5521404B2 (ja) 駆動装置、レンズ鏡筒及びカメラ
JP2017079554A (ja) 振動波モータ
JP5482118B2 (ja) 駆動装置、レンズ鏡筒及びカメラ
JP5493426B2 (ja) 駆動装置及びレンズ鏡筒
JP5470970B2 (ja) 駆動装置及びレンズ鏡筒
US9362850B2 (en) Vibration type driving apparatus and driving circuit thereof
JP5664089B2 (ja) 駆動装置、レンズ鏡筒及びカメラ
JP2013186301A (ja) 駆動装置、レンズ鏡筒、及びカメラ
JP5402271B2 (ja) 駆動装置、レンズ鏡筒及びカメラ
JP2016039756A (ja) 振動子、振動型アクチュエータ、撮像装置及びステージ装置
JP2017185435A (ja) 振動型アクチュエータ及び光学機器
JP2013148706A (ja) 駆動装置、駆動装置の製造方法、レンズ鏡筒及びカメラ