JP2013211574A - プラズマ処理装置及びプラズマ処理装置用の電極板 - Google Patents

プラズマ処理装置及びプラズマ処理装置用の電極板 Download PDF

Info

Publication number
JP2013211574A
JP2013211574A JP2013100660A JP2013100660A JP2013211574A JP 2013211574 A JP2013211574 A JP 2013211574A JP 2013100660 A JP2013100660 A JP 2013100660A JP 2013100660 A JP2013100660 A JP 2013100660A JP 2013211574 A JP2013211574 A JP 2013211574A
Authority
JP
Japan
Prior art keywords
electrode
cavity
dielectric
plasma
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013100660A
Other languages
English (en)
Other versions
JP5663056B2 (ja
Inventor
Katsuya Okumura
勝弥 奥村
Shinji Himori
慎司 檜森
Kazuya Nagaseki
一也 永関
Hiroki Matsumaru
弘樹 松丸
Shoichiro Matsuyama
昇一郎 松山
Toshiki Takahashi
俊樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Octec Inc
Original Assignee
Tokyo Electron Ltd
Octec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Octec Inc filed Critical Tokyo Electron Ltd
Priority to JP2013100660A priority Critical patent/JP5663056B2/ja
Publication of JP2013211574A publication Critical patent/JP2013211574A/ja
Application granted granted Critical
Publication of JP5663056B2 publication Critical patent/JP5663056B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】プラズマ処理装置においてプラズマ密度の均一化を効率的に達成すること。
【解決手段】このプラズマ処理装置においては、たとえば上部電極38の内部の主面側に、空洞104を有する誘電体90を設ける。そして、上部電極39の中心部における誘電体90の厚さをエッジ部における誘電体90の厚さより大きくし、誘電体90の空洞の中に流動性の誘電性物質NZを出し入れ可能に入れる。好ましくは、空洞104に誘電性流動体NZを出し入れするためのポートとして、たとえば複数本のパイプ106,108を電極38の裏面側から空洞104の異なる箇所(たとえば中心部とエッジ部)に接続してよい。
【選択図】 図42

Description

本発明は、被処理基板にプラズマ処理を施す技術に係わり、特に電極に高周波を印加してプラズマを生成する高周波放電方式のプラズマ処理装置およびプラズマ処理装置用の電極板に関する。
半導体デバイスやFPD(Flat Panel Display)の製造プロセスにおけるエッチング、堆積、酸化、スパッタリング等の処理では、処理ガスに比較的低温で良好な反応を行わせるためにプラズマが多く利用されている。一般に、プラズマ処理装置は、プラズマを生成する方式として、グロー放電または高周波放電を利用するものと、マイクロ波を利用するものとに大別される。
高周波放電方式のプラズマ処理装置は、処理容器または反応室内に上部電極と下部電極とを平行に配置し、下部電極の上に被処理基板(半導体ウエハ、ガラス基板等)を載置し、上部電極もしくは下部電極に整合器を介してプラズマ生成用の高周波電圧を印加する。この高周波電圧によって生成された高周波電界により電子が加速され、電子と処理ガスとの衝突電離によってプラズマが発生する。
最近では、製造プロセスにおけるデザインルールの微細化につれてプラズマ処理に低圧下での高密度プラズマが要求されており、上記のような高周波放電方式のプラズマ処理装置では従来(一般に27MHz以下)よりも格段に高い高周波数領域(50MHz以上)の周波数を用いるようになってきている。しかしながら、高周波放電の周波数が高くなると、高周波電源から給電棒を通って電極背面に印加される高周波電力が表皮効果により電極表面を伝わって電極主面(プラズマと対向する面)のエッジ部から中心部に向って流れる。一様な電極主面上でエッジ部から中心部に向って高周波電流が流れると、電極主面の中心部における電界強度がエッジ部における電界強度よりも高くなって、生成されるプラズマの密度も電極中心部側が電極エッジ部側より高くなる。プラズマ密度の高い電極中心部ではプラズマの抵抗率が低くなり、対向する電極においても電極中心部に電流が集中し、プラズマ密度の不均一性がさらに強まる。
この問題を解消するため、高周波電極の主面中心部を高抵抗部材で構成するものが知られている(たとえば特許文献1)。この技法は、高周波電源に接続される側の電極の主面(プラズマ接触面)の中央部を高抵抗部材で構成し、そこでより多くの高周波電力をジュール熱として消費させることで、電極の主面における電界強度を電極外周部よりも電極中心部で相対的に低下させ、上記のようなプラズマ密度の不均一性を補正するものである。
特開2000−323456号公報
しかしながら、上記のような高周波放電方式のプラズマ処理装置において、高周波電極の主面中心部を高抵抗部材で構成するものは、ジュール熱による高周波電力の消費(エネルギー損失)が多くなってしまう可能性がある。
本発明は、かかる従来技術の問題点に鑑みてなされたもので、被処理基板上のプラズマ密度の均一化を効率的に達成できる高周波放電方式のプラズマ処理装置およびプラズマ処理装置用の電極板を提供する。
本発明のプラズマ処理装置は、減圧可能な処理容器内に第1の電極を設け、前記処理容器内に高周波電界を形成するとともに処理ガスを流し込んで前記処理ガスのプラズマを生成し、前記プラズマの下で被処理基板に所望のプラズマ処理を施すプラズマ処理装置であって、前記第1の電極の内部の主面側に空洞を有する誘電体を設けて、前記第1の電極の中心部側における前記誘電体の厚さをエッジ部側における前記誘電体の厚さより大きくし、前記誘電体の空洞の中に流動性の誘電性物質を出し入れ可能に入れる。この装置構成においては、プラズマ生成用の高周波を第1の電極に印加することも可能であれば、他の電極たとえば平行平板型において第1の電極と対向する第2の電極に高周波を印加することも可能である。第1の電極に高周波を印加する場合は、第1の電極の主面と反対側の裏面から高周波を供給してよい。
本発明のプラズマ処理装置においては、第1の電極の内部の主面側に空洞を有する誘電体を設けて、第1の電極の中心部側における誘電体の厚さをエッジ部側における誘電体の厚さより大きくし、誘電体の空洞の中に流動性の誘電性物質を出し入れ可能に入れる構成によって、プラズマ空間側に対して相対的に電極中心部側のインピーダンスを高く電極エッジ部側のインピーダンスを低くして、電極エッジ部側における高周波電界を強める一方で電極中心部側の高周波電界を弱め、これによって基板上の電界強度ないしプラズマ密度の均一性を改善する。
本発明の好適な一態様においては、第1の電極の裏面側から空洞の第1および第2の箇所にそれぞれ接続される第1および第2のポートを有し、空洞に誘電性物質を入れるときは、第1のポートより空洞に誘電性物質を導入しながら、第2のポートより前記空洞内のエアーを抜き、空洞内の誘電性物質の量を減らすときは、第1のポートより空洞にエアーを送り込みながら、第2のポートより前記空洞内の誘電性物質を抜くように構成される。この場合、好ましくは、第1の箇所は空洞の中心部およびエッジ部の一方に設定され、第2の箇所は空洞の中心部およびエッジ部の他方に設定される。
また、別の好適な一態様においては、誘電体の厚さが、第1の電極の中心部を含む第1の直径の内側では一定であり、第1の直径の外側では第1の電極のエッジ部に向かってテーパ状に減少する。
本発明のプラズマ処理装置用の電極板は、高周波放電方式のプラズマ処理装置においてプラズマを生成するために処理容器内に設けられる電極板であって、プラズマと対向する前記電極の内部の主面側に空洞を有する誘電体を設けて、電極中心部側における前記誘電体の厚さを電極エッジ部側における前記誘電体の厚さより大きくし、前記誘電体の空洞の中に流動性の誘電性物質を出し入れ可能に入れる。かかる構成の電極板は、上記プラズマ処理装置における第1電極と同様の作用を奏することができる。
本発明のプラズマ処理装置またはプラズマ処理装置用の電極板によれば、上記のような構成および作用により、被処理基板上のプラズマ密度の均一化を効率的に達成することができる。
本発明の一実施形態におけるプラズマエッチング装置の構成を示す縦断面図である。 一構成例によるサセプタ構造の要部を示す平面図である。 図1のサセプタ構造の要部を示す部分拡大縦断面図である。 図1のサセプタ構造における凸部個数密度分布特性の一例を示す図である。 プラズマエッチング装置における高周波放電の仕組みを模式的に示す図である。 高周波電極の主面を流れる高周波電流の方向性を示す平面図である。 上記構成例のサセプタ構造における高周波電流の流れと高周波電力(電界)の放射を示す略縦断面図である。 導体を流れる電磁波(高周波電流)の深さ方向における減衰特性を示す特性図である。 上記構成例において電極中心部とエッジ部の凸部個数密度の比率をパラメータとしたときの電極半径方向における電界強度分布特性を示す図である。 上記構成例によるサセプタに静電チャックを一体的に設ける構成を示す部分縦断面図である。 図10の静電チャック付きサセプタ構造における凸部と底面部のインピーダンス比特性を示す図である。 図10の静電チャック付きサセプタ構造の製造方法を工程順に示す図である。 上記構成例によるサセプタ構造の一変形例を示す図である。 上記構成例による電極凸部構造を上部電極に適用した構成例を示す縦断面図である。 第2の構成例による電極構造を示す平面図である。 図15の電極構造の要部を示す部分拡大縦断面図である。 図15の電極構造における凹部の個数分布特性の一例を示す図である。 上記第2の構成例による電極構造に静電チャックを一体的に設ける構造の製造方法を工程順に示す図である。 本発明の一実施形態における下部電極構造を示す平面図である。 上記実施形態による上部電極構造を示す平面図である。 上記実施形態における平行平板電極構造の一例を示す図である。 図21の平行平板電極構造において上部電極中心部の膜厚をパラメータとする電極間の径方向の電界強度分布を示す図である。 上記実施形態における上部電極の誘電体膜に関する膜厚プロファイルのより具体的な実施例を示す図である。 図23の実施例および理想プロファイルによってそれぞれ得られる電極間の径方向の電界強度分布特性を示す図である。 上記実施形態における上部電極の誘電体膜に関する膜厚プロファイルのより具体的な別の実施例を示す図である。 図25の実施例によって得られる電極間の径方向の電界強度分布特性を示す図である。 上記実施形態における上部電極の誘電体膜に関する膜厚および膜質プロファイルのより具体的な別の実施例を示す図である。 図27の実施例によって得られる電極間の径方向の電界強度分布特性を示す図である。 図28のデータポイントから作成された実用上十分な面内均一性を与える誘電体膜の誘電率と電極中心部の膜厚との相関関係を示す図である。 有機膜エッチングのエッチング速度分布特性について第3の実施例(上部電極)と比較例とを対比して示す図である。 上記実施形態による下部電極構造を比較例と対比して示す図である。 有機膜エッチングのエッチング速度分布特性について実施形態(下部電極)と比較例とを対比して示す図である。 一実施例における上部電極構造の要部を示す部分断面図である。 図33の実施例によって得られる電極間の径方向の電界強度分布特性を示す図である。 一実施例による上部電極構造の要部を比較例および参考例と対比して示す部分断面図である。 図35の実施例、比較例および参考例によってそれぞれ得られる電極間の径方向の電界強度分布特性を示す図である。 一実施例による上部電極構造の要部を比較例と対比して示す部分断面図である。 図35の実施例および比較例によってそれぞれ得られる規格化されたエッチング速度の分布特性を示す図である。 一実施例による上部電極構造の要部を比較例および参考例と対比して示す部分断面図である。 図39の実施例、比較例および参考例によってそれぞれ得られる電極間の径方向の電界強度分布特性を示す図である。 一実施例による上部電極構造の要部を示す部分断面図である。 一実施例による上部電極構造の要部を示す部分断面図である。 図42の実施例における具体例を示す部分断面図である。 図43の実施例によって得られる電極間の径方向の電界強度分布特性を示す図である。 図42の実施例における変形例を示す部分断面図である。
以下、添付図を参照して本発明の好適な実施の形態を説明する。
図1に、本発明の一実施形態によるプラズマ処理装置の構成を示す。このプラズマ処理装置は、RIE型のプラズマエッチング装置として構成されており、たとえばアルミニウムまたはステンレス鋼等の金属製の円筒型チャンバ(処理容器)10を有している。チャンバ10は保安接地されている。
チャンバ10内には、被処理基板としてたとえば半導体ウエハWを載置する円板状の下部電極またはサセプタ12が設けられている。このサセプタ12は、たとえばアルミニウムからなり、絶縁性の筒状保持部14を介してチャンバ10の底から垂直上方に延びる筒状支持部16に支持されている。筒状保持部14の上面には、サセプタ12の上面を環状に囲むたとえば石英からなるフォーカスリング18が配置されている。
チャンバ10の側壁と筒状支持部16との間には排気路20が形成され、この排気路20の入口または途中に環状のバッフル板22が取り付けられるとともに底部に排気口24が設けられている。この排気口24に排気管26を介して排気装置28が接続されている。排気装置28は、真空ポンプを有しており、チャンバ10内の処理空間を所定の真空度まで減圧することができる。チャンバ10の側壁には、半導体ウエハWの搬入出口を開閉するゲートバルブ30が取り付けられている。
サセプタ12には、プラズマ生成用の高周波電源32が整合器34および給電棒36を介して電気的に接続されている。この高周波電源32は、所定の高周波数たとえば60MHzの高周波電力を下部電極つまりサセプタ12に印加する。なお、チャンバ10の天井部には、後述するシャワーヘッド38が接地電位の上部電極として設けられている。したがって、高周波電源32からの高周波電圧はサセプタ12とシャワーヘッド38との間に容量的に印加される。
サセプタ12の上面には半導体ウエハWを静電吸着力で保持するための静電チャック40が設けられている。この静電チャック40は導電膜からなる電極40aを一対の絶縁膜40b,40cの間に挟み込んだものであり、電極40aには直流電源42がスイッチ43を介して電気的に接続されている。直流電源42からの直流電圧により、クーロン力で半導体ウエハWをチャック上に吸着保持することができる。
サセプタ12の内部には、たとえば円周方向に延在する冷媒室44が設けられている。この冷媒室44には、チラーユニット46より配管48,50を介して所定温度の冷媒たとえば冷却水が循環供給される。冷媒の温度によって静電チャック40上の半導体ウエハWの処理温度を制御できる。さらに、伝熱ガス供給部52からの伝熱ガスたとえばHeガスが、ガス供給ライン54を介して静電チャック40の上面と半導体ウエハWの裏面との間に供給される。
天井部のシャワーヘッド38は、多数のガス通気孔56aを有する下面の電極板56と、この電極板56を着脱可能に支持する電極支持体58とを有する。電極支持体58の内部にバッファ室60が設けられ、このバッファ室60のガス導入口60aには処理ガス供給部62からのガス供給配管64が接続されている。
チャンバ10の周囲には、環状または同心状に延在する磁石66が配置されている。チャンバ10内において、シャワーヘッド38とサセプタ12との間の空間には、高周波電源32により鉛直方向のRF電界が形成される。高周波の放電により、サセプタ12の表面近傍に高密度のプラズマを生成することができる。
制御部68は、このプラズマエッチング装置内の各部たとえば排気装置28、高周波電源32、静電チャック用のスイッチ43、チラーユニット46、伝熱ガス供給部52および処理ガス供給部62等の動作を制御するもので、ホストコンピュータ(図示せず)等とも接続されている。
このプラズマエッチング装置において、エッチングを行なうには、先ずゲートバルブ30を開状態にして加工対象の半導体ウエハWをチャンバ10内に搬入して、静電チャック40の上に載置する。そして、処理ガス供給部62よりエッチングガス(一般に混合ガス)を所定の流量および流量比でチャンバ10内に導入し、排気装置28によりチャンバ10内の圧力を設定値にする。さらに、高周波電源32より所定のパワーで高周波電力をサセプタ12に供給する。また、直流電源42より直流電圧を静電チャック40の電極40aに印加して、半導体ウエハWを静電チャック40上に固定する。シャワーヘッド38より吐出されたエッチングガスは両電極12,38間で高周波の放電によってプラズマ化し、このプラズマで生成されるラジカルやイオンによって半導体ウエハWの主面がエッチングされる。
このプラズマエッチング装置では、サセプタ(下部電極)12に対して従来(一般に27MHz以下)よりも格段に高い周波数領域(50MHz以上)の高周波を印加することにより、プラズマを好ましい解離状態で高密度化し、より低圧の条件下でも高密度プラズマを形成することができる。
次に、このプラズマエッチング装置における本発明の特徴を詳細に説明する。
図2および図3に、第1の構成例による電極構造の一例としてサセプタ12の要部の構成を示す。図2は平面図、図3は部分拡大縦断面図である。図示のように、サセプタ12の主面(この構成例ではサセプタ12の上面、つまりプラズマ生成空間側の面)には、導電体または半導体からなる一定サイズの円柱形凸部70が離散的に多数設けられている。これらの凸部70は、各々がプラズマに高周波電力または高周波電界を与えるための小電極を構成するものであり、好ましくは図4に示すように電極中心部から電極エッジ部に向って次第に大きくなるような個数密度分布または面積密度分布でサセプタ12の主面上に配置される。
図5〜図9につき、この実施例によるサセプタ12の作用を説明する。図5に示すように、高周波電源32からの高周波電力がサセプタ12に供給されると、サセプタ(下部電極)12と上部電極38との間の高周波放電によってエッチングガスのプラズマPZが半導体ウエハW付近で生成し、生成したプラズマPZは四方に、特に上方および半径方向外側に拡散し、プラズマPZ中の電子電流ないしイオン電流は上部電極38やチャンバ側壁等を通ってグランドへ流れる。ここで、サセプタ12においては、高周波電源32から給電棒36を介してサセプタ裏面または背面に印加された高周波電力が表皮効果によって電極表面層を伝播し、図6に示すように、サセプタ12の主面上ではエッジ部から中心部に向って逆放射状に高周波電流iが流れる。
図7に示すように、この実施例では、高周波電流iがサセプタ12の主面上で凸部70の表面層を流れる。凸部70は、上部電極38側つまりプラズマPZ側に向って突出しているので、主面の底面部12aよりも低いインピーダンスでプラズマPZと電気的に結合する。このため、サセプタ12の主面の表面層を流れる高周波電流iによって運ばれる高周波電力は主として凸部70の頂面からプラズマPZに向けて放出される。なお、サセプタ12の主面上で凸部70と底面部12aとのインピーダンス比Z12a/Z70を大きくするために、つまり凸部70を通してプラズマPZに与える高周波波電力の比率または電力供給率を高めるために、図3に示すように、凸部70の周り(底面部12aの上)に誘電体72を設ける構成が好ましい。
このように、この構成例では、サセプタ12の主面上で離散的に設けられた多数の凸部70がそれぞれプラズマPZに高周波電力を供給するための小電極として機能する。かかる凸部70の属性(形状、サイズ、間隔、密度等)を選択することで、小電極の集合体であるサセプタ12の高周波電力供給特性を所望の特性に設定することができる。
たとえば、上記(図4)のように凸部70の個数密度を電極中心部から電極エッジ部に向って次第に大きくなるような分布特性とすることで、図9に示すように、サセプタ12よりプラズマPZに与えられる高周波電力または高周波電界の均一性(特に電極半径方向の均一性)を改善することができる。図9の例では、サセプタ12の半径を150mmとし、電極中心部における凸部70の個数密度Ncと電極エッジ部における凸部70の個数密度Neとの比率Ne/Ncを1(倍)、2(倍)、4(倍)、6(倍)、8(倍)に選んだときのサセプタ12上の半径方向の電界強度分布を示している。比率Ne/Ncを大きくするほど、電界強度の均一性が改善され、ひいてはプラズマ密度の均一性が改善されることがわかる。
凸部70の他の属性の中で特に重要なのはサイズである。凸部70の高さが小さすぎると、より正確にはスキンデップス(skin depth)δよりも小さいと、サセプタ12の主面上で高周波電流iの一部または大部分が凸部70の下を素通りすることになり、そのぶん凸部70からプラズマPZへ供給される高周波電界が弱まる。ここで、スキンデップスδは、導体の表面層を流れる高周波電流の振幅が深さδで1/eに減衰するというファクタであり、下記の式(1)で与えられる。
δ=(2/ωσμ)1/2 ‥‥‥‥(1)
ただし、ω=2πf(f:周波数)、σ:導電率、μ:透磁率
図8に示すように、表皮効果によって導体の表面層を流れる電磁波(高周波電流)の振幅は導体の深さ方向で減衰し、スキンデップスδの3倍の深さでは約5%までに減衰する。したがって、凸部70の高さをスキンデップスδの3倍以上の高さに設定することで、高周波電流iの大部分(約95%以上)を凸部70に流し込んで、凸部70からプラズマPZへ高周波電力を効率よく放出させることができる。たとえば、サセプタ12および凸部70の材質をアルミニウムとし、高周波電源32の周波数を100MHzとした場合、スキンデップスδは8μmである。したがって、凸部70の高さを24μm以上に設定すればよい。
また、凸部70の幅サイズ、特に電極半径方向の幅サイズも重要であり、凸部70の頂面まで高周波電流iを十分に流し込むには電極半径方向の幅サイズが大きいほどよく、スキンデップスδの3倍以上、好ましくは周波数100MHzで30μm〜500μmの範囲内に設定されてよい。
また、凸部70間の距離間隔も、凸部70と底面部12aとのインピーダンス比Z12a/Z70を最適化するような値に選ばれてよく、たとえば100MHzでは100μm〜1mmの範囲内に設定されるのが好ましい。
図10に、このプラズマエッチング装置においてサセプタ12の上に静電チャック40を一体に設ける構成例を示す。図示のように、サセプタ12の主面上に、より正確には凸部70および誘電体72の上に静電チャック40の下部絶縁膜40bが形成され、下部絶縁膜40bの上に電極膜40aが形成され、電極膜40aの上に上部絶縁膜40cが形成される。
この積層構造では、静電チャック40の下部絶縁膜40bの膜厚D1が重要であり、他の条件が許す限りでこの膜厚D1を相対的に小さくするのが好ましい。すなわち、凸部70の頂面から電極膜40aまでの距離(D1)とサセプタ底面部12aから電極膜40aまでの距離(D2)との比率D2/D1(図11の縦軸のパラメータ)を大きくするほど、図11に示すように、サセプタ12の主面上における凸部70のインピーダンスZ70と底面部12aのインピーダンスZ12aとの比率Z12a/Z70(図11の関数値)を大きくすることができる。図11から、この比率D2/D1は2(倍)以上の値に選ばれるのが好ましい。
図11において、横軸のパラメータS12a/S70はサセプタ12の主面上における凸部70(正確には凸部頂面)の総面積S70と底面部12aの総面積S12aとの比率である。この比率S12a/S70を小さくする手法によっても、つまり凸部70の占有面積率を高めることによっても、インピーダンス比Z12a/Z70(図11の関数値)を大きくすることができる。上記のように、インピーダンス比Z12a/Z70を大きくするほど、プラズマPZに対する凸部70からの高周波電力供給率を高めることができる。図11から、比率S12a/S70は4(倍)以下に選ばれるのが好ましい。
図12に、この静電チャック付きサセプタ構造(図10)の製造方法を工程順に示す。
先ず、図12(a)に示すように、たとえばアルミニウムからなるサセプタ本体(電極基板)12の主面上に、凸部70に対応する開口部74aを有するたとえば樹脂製のマスク74を被せる。このマスク74において、開口部74aの平面形状および平面サイズは凸部70の平面形状および平面サイズを規定し、開口部74aの深さは凸部70の高さサイズ(D2−D1:たとえば150μm)を規定する。
次に、図12(b)に示すように、マスク74の上からサセプタ本体12の主面全体に凸部70の材料たとえばアルミニウム(Al)を溶射し、マスク74の開口部74a内にアルミニウムをマスク上面の高さまで充填する。
次に、サセプタ本体12の主面上からマスク74をたとえば薬液で溶かして除去すると、図12(c)に示すようにサセプタ本体12の主面上に所定サイズの多数の凸部70が所定の分布パターンで離散的に残る。
次に、図12(d)に示すように、サセプタ本体12の主面全体に誘電体材料たとえばアルミナ(Al23)を溶射して、凸部70の頂面よりも所定の高さ(D1:たとえば50μm)に達する膜厚に誘電体膜(72,40b)を形成する。
次いで、図12(e)に示すように、サセプタ本体12の主面全体にわたって誘電体膜40bの上に静電チャック40の電極膜40aの材料たとえばタングステン(W)を溶射して、所定膜厚(D3:たとえば50μm)の電極膜40aを形成する。
次いで、図12(f)に示すように、サセプタ本体12の主面全体にわたって電極膜40aの上に誘電体材料たとえばアルミナを溶射して、静電チャック40の上部絶縁膜40cを所定の膜厚(D4:たとえば200μm)に形成する。
この構成例では、サセプタ本体12の主面上で凸部70の周りを埋める(底面部12aを覆う)ための誘電体72と静電チャック40の一部を構成する下部絶縁膜40bとを1回の溶射工程で同時に一体形成することができる。
上記構成例のサセプタ12は主面上に円柱形の凸部70を設けるものであったが、任意の形状を凸部70に与えることが可能であり、たとえば図13に示すように多数の環状凸部70を同心円状に設ける構成も可能である。すなわち、図13のサセプタ構造でも、高周波電流が電極エッジ部から中心部に向って流れる際に、底面部12aよりもインピーダンスの低い凸部70から高周波電力が効率よくプラズマPZ側に放出される。したがって、凸部70の面積密度が電極中心部から電極エッジ部に向って次第に大きくなるような分布特性とすることで、電極半径方向における電界強度の均一性を改善し、ひいてはプラズマ密度の均一化を達成することができる。
上記のように電極の主面に小電極として機能する多数の凸部70を離散的に設ける構成は、図14に示すように、対向電極つまり上部電極38に適用することも可能である。図14の構成例では、シャワーヘッド38の電極板56の主面(下面、つまりプラズマ生成空間側の面)に凸部70を設け、凸部70の周り(底面部56bの上)に誘電体72を設けている。ガス通気孔56aは、凸部70を垂直方向に貫通して設けられてよい。かかる構成によれば、上部電極38はプラズマPZからの高周波電流を主として凸部70を通じて受け取る。したがって、上部電極38においても凸部70の属性を適宜選択することで、たとえば凸部70の面積密度を電極中心部から電極エッジ部に向って次第に大きくなるような分布特性とすることで、プラズマ密度の均一性を一層向上させることができる。
図15および図16に、第2の構成例による電極構造の一例としてサセプタ12の要部の構成を示す。図15は平面図、図16は部分拡大縦断面図である。図示のように、この構成例では、サセプタ12の主面に一定サイズの円柱形凹部80が離散的に多数設けられる。これらの凹部80は、対向電極側つまりプラズマPZ側と向い合って凹んでいるので、主面の頂面部12aよりも高いインピーダンスでプラズマPZと電気的に結合する。このため、サセプタ12の主面の表面層を流れる高周波電流iによって運ばれる高周波電力は主として頂面部12aからプラズマPZに向けて放出される。サセプタ12の主面上で凹部80と頂面部12aとのインピーダンス比Z80/Z12aを大きくするために、つまり頂面部12aよりプラズマPZに与える高周波波電力の比率を高めるために、図16に示すように、好ましくは凹部80の中に誘電体82を設けてよい。
このように、この第2の構成例では、サセプタ12の主面上で離散的に設けられた多数の凹部80がそれぞれプラズマPZに対する高周波電力の供給を抑制する電極マスク部として機能する。かかる凹部80の属性(形状、サイズ、間隔、密度等)を適宜選択することで、サセプタ12における高周波電力供給特性を所望の特性に制御することができる。たとえば、図17に示すように凹部80の個数密度を電極中心部から電極エッジ部に向って次第に小さくなるような分布特性とすることで、サセプタ12よりプラズマPZに与えられる高周波電力または高周波電界の均一性(特に半径方向の均一性)を改善し、ひいてはプラズマ密度の均一性を改善することができる。凹部80の他の属性も基本的には上記実施例における凸部70と同様に扱ってよく、たとえば凹部80の深さサイズおよび幅サイズをスキンデップスδの3倍以上の値に設定してよい。
図18に、この構成例のサセプタ12に静電チャックを一体に設ける構造の製造方法を工程順に示す。
先ず、図18(a)に示すように、たとえばアルミニウムからなるサセプタ本体(電極基板)12の主面上に、凹部80に対応する開口部84aを有するたとえば樹脂製のマスク84を被せる。このマスク84において、開口部84aの平面形状および平面サイズは凹部80の平面形状および平面サイズを規定する。
次に、図18(b)に示すように、マスク84の上からサセプタ本体12の主面全体にブラスト法により固体粒子(たとえばドライアイスペレット)または流体(高圧ジェット水)を吹きつけて、マスク84の開口部84a内の部材(アルミニウム)を物理的に除去し、そこに所望の深さの凹部80を形成する。
次に、サセプタ本体12の主面上からマスク84を除去すると、図18(c)に示すように、サセプタ本体12の主面上に所定サイズの多数の凹部80が所定の分布パターンで離散的に残る。
次に、図18(d)に示すように、サセプタ本体12の主面全体に誘電体材料たとえばアルミナ(Al23)を溶射して、サセプタ頂面部12aより所定の高さに達する膜厚に誘電体膜(82,40b)を形成する。
次いで、図18(e)に示すように、サセプタ本体12の主面全体にわたって誘電体膜40bの上に静電チャック用の電極材料たとえばタングステン(W)を溶射して、所定膜厚の電極膜40aを形成する。
次いで、図18(f)に示すように、サセプタ本体12の主面全体にわたって電極膜40aの上に誘電体材料たとえばアルミナを溶射して、上部絶縁膜40cを所定の膜厚に形成する。
この第2の構成例でも、サセプタ本体12の主面上で凹部80を埋めるための誘電体82と静電チャック40の一部を構成する下部絶縁膜40bとを1回の溶射工程で同時に一体形成することができる。
また、この第2の構成例でも、電極の主面上で電極マスク部として機能する多数の凹部80を離散的に設ける構成を、図示省略するが、対向電極つまり上部電極38に適用することも可能である。したがって、サセプタ12側に凸部70を設け、上部電極38側に凹部80を設ける構成や、サセプタ12側に凹部80を設け、上部電極38側に凸部70を設ける構成等も可能である。
図19および図20に、本発明の一実施形態における電極の一構成例を示す。図19はサセプタ12に適用した構成例を示し、図20は上部電極38(正確には電極板56)に適用した構成例を示す。この実施形態では、電極の主面つまりプラズマ生成空間側の面(上部電極38の場合は下面、サセプタ12の場合は上面)に誘電体膜または誘電体層90を設け、電極中心部における誘電体膜90の膜厚を電極エッジ部における誘電体膜90の膜厚よりも大きくなるように構成する。誘電体膜90のおもて面(プラズマ生成空間側の面)は略面一になっている。この誘電体膜または誘電体層90は、たとえばアルミナ(Al23)からなるセラミックをたとえばアルミニウムからなる電極基板に溶射することによって形成されてよい。
かかる電極構造によれば、プラズマPZ側に対して相対的に電極中心部側のインピーダンスが大きく電極エッジ部側のインピーダンスが低いため、電極エッジ部側における高周波電界が強められる一方で電極中心部側の高周波電界が弱められ、電界強度ないしプラズマ密度の均一性が改善される。特に、図19の構成例においては、電極12の裏面側から表皮効果で主面側へ回った電流は誘電体膜90に流れ込むと膜厚の小さい部分(誘電体層の薄い部分)からプラズマ側へ抜けやすいため、電極エッジ部側における高周波電力の放出とプラズマ密度を強めることができる。
誘電体膜90の膜厚分布特性の中で重要なパラメータの1つは電極中心部の膜厚である。図21に示すように上部電極38に円盤状の誘電体膜90を設ける平行平板電極構造において、上部電極中心部の膜厚Dcをパラメータにして電極間の径方向の電界強度分布をシミュレーションで求めたところ、図22に示すような電界強度分布特性が得られた。このシミュレーションは、被処理基板として300mm口径の半導体ウエハを想定しており、上部電極38にはアルミニウム、誘電体膜90にはアルミナ(Al23)、下部電極12にはアルミニウムをそれぞれ用いている。図22から、0.5mm〜10mmの範囲内では、電極中心部の膜厚が大きいほど電界強度の面内均一性が向上し、8mm〜10mmの膜厚が特に好ましいことがわかる。なお、図22の横軸上で「0」の位置は電極中心点の位置を表す。
また、誘電体膜90の膜厚が電極中心部から電極エッジ部にかけて減少変化するプロファイルも重要である。図23および図24に、上部電極38の誘電体膜90に関する膜厚プロファイルの実施例を示す。
図23(A)に示す実施例[1]は、誘電体膜90の膜厚Dにつき、φ(直径)0〜30mmでD=9mm(フラットつまり一定)、φ30〜160mmでD=8mm(フラット)、φ160〜254mmでD=8〜3mm(テーパ)に設定する。
図23(B)に示す実施例[2]は、φ0〜30mmでD=9mm(フラット)、φ30〜80mmでD=8mm(フラット)、φ80〜160mmでD=8〜3mm(テーパ)に設定する。
図23(C)に示す実施例[3]は、φ0〜30mmでD=9mm(フラット)、φ30〜160mmでD=8mm(フラット)、φ160〜330mmでD=8〜3mm(テーパ)に設定する。
図23(D)に、上記実施例[1],[2],[3]のプロファイルを曲線で簡明に示す。併せて、断面形状を図示省略するが、φ0〜150mmでD=0.5mm(フラット)に設定する実施例[4]のプロファイルも示し、さらには理想的なプロファイルも示す。ここで、理想的なプロファイルは、φ0〜300mmでD=9〜0mm(アーチ型)に設定するものである。
図24に、実施例[1],[2],[3],[4]および理想プロファイルによってそれぞれ得られる電極間の径方向の電界強度分布特性を示す。図24から、理想プロファイルによる電界強度分布特性が面内均一性に最も優れており、実施例[1],[2],[3],[4]の中では理想プロファイルに近い実施例[1]および[3]の面内均一性が優れていることがわかる。
なお、図23の(A),(B),(C)に示すように、上部電極38(電極板56)においては、拡散したプラズマPZからの高周波電流を受けるため、被処理基板の口径よりも直径を大きくしてエッジ部を半径方向外側に延長してよい。ここで、上部電極38の主面において誘電体膜90の周囲または径方向外側の部分にたとえば20μmの膜厚の溶射被膜92を形成してもよい。図示省略するが、チャンバ10の内壁面にも同様の溶射被膜92を形成することができる。溶射被膜92としては、たとえばAl23、Y23などを用いることができる。また、誘電体膜90および溶射被膜92のそれぞれのおもて面つまりプラズマに曝される面は略面一になっている。
図25および図26に、誘電体膜90に関する膜厚プロファイルの別の実施例を示す。図25(A)に示す実施例[5]は、誘電体膜90の膜厚Dにつき、φ0〜250mmでD=5mm(フラット)に設定する。図25(B)の実施例[6]は、φ0〜30mmでD=9mm(フラット)、φ30〜250mmでD=8〜3mm(テーパ)に設定する。図25(C)の実施例[7]は、φ0〜30mmでD=9mm(フラット)、φ30〜250mmでD=5〜3mm(テーパ)に設定する。図23(D)に実施例[5],[6],[7]のプロファイルを曲線で簡明に示す。
図26に、実施例[5],[6],[7]によってそれぞれ得られる電極間の径方向の電界強度分布特性を示す。図26から、これらの実施例[5],[6],[7]の中では理想プロファイルに最も近い実施例[6]が面内均一性において最も優れていることと、実施例[5]も十分実用性があることがわかる。つまり、実施例[6]のように電極中心部から電極エッジ部にかけて誘電体膜90の膜厚Dがほぼ直線的またはテーパ状に減少するようなプロファイルでも、アーチ型の理想的プロファイルに近い面内均一性が得られる。また、実施例[5]のように電極中心部から電極エッジ部にかけて誘電体膜90の膜厚Dがほぼ一定(フラット)なプロファイルでも、実用性のある面内均一性が得られる。
図27および図28に、誘電体膜90に関する膜厚および膜質プロファイルの別の実施例を示す。図27(A)に示す実施例[8]は、誘電体膜90の膜厚Dにつき、φ0〜30mmでD=9mm(フラット)、φ30〜250mmでD=8〜3mm(テーパ)に設定する。図27(B)の実施例[9]は、φ0〜30mmでD=5mm(フラット)、φ30〜250mmでD=5〜3mm(テーパ)に設定する。図27(C)に実施例[8],[9]のプロファイルを曲線で簡明に示す。
ここで、誘電率εをパラメータとして、実施例[8]は、誘電体膜90の材質が誘電率ε=8.5のアルミナ(Al23)である実施例[8]−Aと、ε=3.5の酸化シリコン(SiO2)である実施例[8]−Bとに分けられる。また、実施例[9]も、ε=8.5のアルミナ(Al23)である実施例[9]−Aと、ε=3.5の酸化シリコン(SiO2)である実施例[9]−Bとに分けられる。
図28に、実施例[8]−A,[8]−B,[9]−A,[9]−Bによってそれぞれ得られる電極間の径方向の電界強度分布特性を示す。図28から、ε=8.5の実施例[8]−A,[9]−Aの間では電極中心部の膜厚Dcの大きい[8]−Aの方が[9]−Aよりも電界強度Eの面内均一性に優れており、ε=3.5の実施例[8]−B,[9]−Bの間では電極中心部の膜厚Dcの小さい[9]−Bの方が[8]−Bよりも電界強度Eの面内均一性に優れていることがわかる。
図29のグラフは、図28のデータに基づいて、実用上十分な面内均一性を与える誘電体膜90の誘電率εと中心部の膜厚Dcとの相関関係を示す。このグラフから、誘電体膜90の誘電率εに対応させて中心部の膜厚Dcを設定すればよいことがわかる。
図30に、実施形態のプラズマエッチング装置(図1)を用いる有機膜エッチングのエッチング速度分布特性(X方向,Y方向)について、上部電極38に本発明による誘電体膜90を設ける実施例(A)と、上部電極38に本発明による誘電体膜90を設けない比較例(B)とを対比して示す。なお、実施例(A)は上記実施例[1]に相当するものである。主なエッチング条件は、下記のとおりである。
ウエハ口径:300mm
エッチングガス:NH3
ガス流量:245sccm
ガス圧力:30mTorr
RF電力:下部=2.4kW
ウエハ裏面圧力(センター部/エッジ部):20/30Torr(Heガス)
温度(チャンバ側壁/上部電極/下部電極)=60/60/20゜C
図30から明らかなように、電界強度分布特性と呼応するようにエッチング速度の面内均一性においても実施例(A)の方が比較例(B)よりも格段に優れている。
図31に、本発明による誘電体膜90をサセプタ(下部電極)12に設ける実施例(A)を比較例(B)と対比して示す。たとえば口径300mmの半導体ウエハWに対応させる場合、実施例(A)ではサセプタ12における誘電体膜90の膜厚Dを電極中心部で4mm、電極エッジ部で200μmとしており、比較例(B)ではサセプタ12の上面に一様な膜厚0.5mmの誘電体膜94を設けている。誘電体膜90,94の材質はいずれもアルミナ(Al23)でよい。
図32に、実施形態のプラズマエッチング装置(図1)を用いる有機膜エッチングのエッチング速度分布特性(X方向,Y方向)について、図31(A)の実施例(A)と図31(B)の比較例(B)とを対比して示す。エッチング条件は図30のものと同じである。サセプタ(下部電極)12の場合も、実施例(A)の方が比較例(B)よりも格段にエッチング速度の面内均一性が優れていることがわかる。また、エッチング速度自体においても、実施例(A)の方が比較例(B)よりも約10%大きいことがわかる。なお、実施例(A)では電極中心部における誘電体膜90の膜厚Dを4mmに設定したが、9mm程度まで大きくしても同様の効果が得られる。
図33および図34につき、本発明の更なる実施例を説明する。この実施例は、特に誘電体膜90を上部電極38に設ける構成に適用して好適である。図33(A)、(B)に示すように、この実施例では、上部電極38の主面上に誘電体膜90の一部(通常はエッジ部周辺)を覆う導電性のシールド板100を設ける。このシールド板100は、たとえば表面をアルマイト処理(92)されたアルミニウム板からなり、ネジ102で上部電極38に着脱可能つまり交換可能に取り付けられるのが好ましい。シールド板100の中心部には、誘電体膜90と同軸で誘電体膜90の少なくとも中心部を露出させる所望の口径θの開口部100aが形成されている。シールド板100の板厚は、たとえば5mm程度に選定されてよい。
具体例として、図33(A)に示す実施例(A)ではθ=200mm、図33(B)に示す実施例(B)ではθ=150mmに設定する。両実施例(A),(B)のいずれも、誘電体膜90を直径250mmの円盤型に形成し、その膜厚プロファイルを、φ0〜160mmでD=8mm(フラット)、φ160〜250mmでD=8〜3mm(テーパ)に設定している。
図34に図33の実施例(A),(B)によってそれぞれ得られる電極間の径方向の電界強度分布特性を示す。図34から、誘電体膜90の一部を導電性のシールド板100で覆うことにより、その覆った領域における誘電体膜90の作用つまり電界強度低減効果を著しく低減またはキャンセルできることがわかる。したがって、シールド板100の開口部100aの口径θを変えることによって(シールド板100の部品交換により)、両電極12,38間の電界強度分布特性を調整することができる。
図35〜図38に、本発明の更なる実施例を示す。この実施例も、特に誘電体膜90を上部電極38に設ける構成に適用して好適である。図35(A)に示すように、この実施例では、上部電極38の主面上で、誘電体膜90よりも大きな径方向位置(口径ωの位置)から外側の電極部分38fを、誘電体膜90における電極間ギャップG0よりも電極部分38fにおける電極間ギャップGfが小さくなるように、サセプタ12側あるいはプラズマ生成空間側に向かって所望の突出量(張出量)hだけ張り出させる。
具体例として、図35(A)に示す実施例(A)では、誘電体膜90の直径が80mm、膜厚プロファイルがφ0〜60mmでD=3mm(フラット)、φ60〜80mmでD=3〜1mm(テーパ)である構成において、ω=260mmに設定し、誘電体膜90における電極間ギャップGoがGo=40mmに対して、h=10mmに設定し、外側電極張出部38fにおける電極間ギャップGfをGf=30mmにしている。なお、外側電極張出部38fの張出段部を約60゜に傾斜させている。この傾斜角は任意の大きさに選べる。
図35(B)には、比較例として、上部電極38に張出部38fを設けずに実施例(A)と同じ径サイズおよび同じ膜厚プロファイルの誘電体膜90を設ける構成を示す。また、図35(C)には、参考例として、上部電極38に張出部38fおよび誘電体膜90のいずれも設けない構成を示す。図35(B),(C)のいずれも電極間ギャップは径方向で一定であり、Go=40mmである。
図36に、図35の実施例(A)で得られる電極間の径方向の電界強度分布特性を上記比較例(B)および参考例(C)と対比して示す。図36から、実施例(A)のように、誘電体膜90の径方向外側に張出部38fを設けることにより、半導体ウエハWのエッジ部付近の領域(図示の例では、中心から半径約90mm〜150mmの領域)で電界強度Eを高める方向に電界強度分布特性を制御または調整することができる。この張出部38fによる電界強度分布制御の加減量は、張出量hで調整可能であり、好ましくはh=10mm以上としてよい。
また、図37に示すように、外側電極張出部38fの張出段部の位置(口径ωの値)を任意に選定することができる。具体的には、図37(A)の実施例ではω=350mmに設定し、図37(B)の実施例ではω=400mmに設定している。また、両実施例(A)、(B)のいずれも、誘電体膜90の膜厚プロファイルがφ0〜80mmでD=8mm(フラット)、φ80〜160mmでD=8〜3mm(テーパ)であり、誘電体膜90における電極間ギャップGoがGo=30mmに対して張出量h=10mmに設定し、外側電極張出部38fにおける電極間ギャップGfをGf=20mmにしている。また、外側電極張出部38fの張出段部を約60゜に傾斜させている。
図37(C)には、参考例として、上部電極38に張出部38fを設けずに実施例(A),(B)と同じ径サイズおよび同じ膜厚プロファイルの誘電体膜90を設ける構成を示す。電極間ギャップは径方向で一定であり、Go=30mmである。
図38に、図37の実施例(A),(B)でそれぞれ得られる酸化膜エッチングのエッチング速度(規格化値)分布特性を上記参考例(C)と対比して示す。主なエッチング条件として、ウエハ口径は300mmで、圧力は15mTorr、処理ガスにC46/Ar/O2/COを使用した。図38から、上部電極38の主面上で外側電極張出部38fの張出段部を半導体ウエハWのエッジよりも径方向外側に設ける構成では、張出段部位置をウエハエッジに近づけるほど(ωを小さくするほど)ウエハエッジ付近の領域(図示の例では中心から半径約70mm〜150mmの領域)でエッチング速度(つまり電界強度またはプラズマ電子密度)を増大させる効果が大になることがわかる。
図35〜図38の実施例では、上記のように、上部電極38の主面上で誘電体膜90より径方向外側の電極部分をプラズマ生成空間に向かって張り出させる構成とした。反対に、図39(A)に示すように、上部電極38の主面上で誘電体膜90をプラズマ生成空間に向かって所望の突出量(張出量)kだけ張り出させる構成も可能である。具体例として、図39(A)の実施例では、誘電体膜90の直径が250mmでその膜厚プロファイルがφ0〜160mmでD=8mm(フラット)、φ160〜250mmでD=8〜3mm(テーパ)である構成において、テーパ面90aをサセプタ12側に向けてk=5mmに設定し、誘電体膜90における電極間ギャップGmをGm=35mmとしている。誘電体膜90よりも径方向外側の電極部分はフラット面で、電極間ギャップGoはGo=40mmである。
図39(B)には、比較例として、上部電極38に実施例(A)と同じ膜厚プロファイルの誘電体膜90を張り出させずに逆さの向きで(テーパ90aを裏側に向けて)設けた構成を示す。また、図39(C)には、参考例として、上部電極38に誘電体膜90を設けない構成を示す。図39(B),(C)のいずれも電極間ギャップは径方向で一定であり、Go=40mmである。
図40に、図39の実施例(A)で得られる電極間の径方向の電界強度分布特性を上記参考例(B)および比較例(C)と対比して示す。図40から、実施例(A)のように、誘電体膜90を張り出させることにより、そうしない場合(B)に比べて径方向の各位置で電界強度Eを強める方向に電界強度分布特性を制御または調整することができる。この張出部38による電界強度分布制御の加減量は、張出量kで調整可能であり、好ましくはk=5mm以上としてよい。
図41に、上部電極38の主面上で誘電体膜90の径方向外側に張出部38fを設ける構成の一変形例を示す。図示のように、誘電体膜90のエッジ部を外側電極張出部38fに連続させたり、誘電体膜90のエッジ部も外側電極張出部38fと一緒に張り出させたりする構成も可能である。
図42〜図45に、本発明の更に別の実施例を示す。この実施例では、図42に示すように、上部電極38の主面に設ける誘電体膜90を内部に空洞104を有する中空の誘電体たとえば中空セラミックスで構成する。この実施例でも、中空誘電体90において径方向中心部側の厚さをエッジ部側の厚さよりも大きくするプロファイルが好ましい。
この中空誘電体90の空洞104の中には、流動性の誘電性物質NZが所望の量だけ入れられる。空洞104内の誘電性流動体NZは、その占有体積に応じて誘電体90の一部を形成する。このような誘電性流動体NZとしては、紛体等も可能であるが、特に有機溶剤(たとえばガルデン)が好ましい。空洞104に誘電性流動体NZを出し入れするためのポートとして、たとえば複数本のパイプ106,108を電極38の裏面側から空洞104の異なる箇所(たとえば中心部とエッジ部)に接続してよい。中空誘電体90の空洞104に誘電性流動体NZを入れるときは、図42(B)に示すように、一方のパイプ106から誘電性流動体NZを導入しながら、他方のパイプ106から空洞104内のエアーを抜く。空洞104内の誘電性流動体NZの量を減らすときは、図42(C)に示すように、一方のパイプ106からエアーを送り込みながら、他方のパイプ106から空洞104内の誘電性流動体NZを抜けばよい。
図43に、この実施例における一具体例を示す。中空誘電体90全体は直径210mmの円盤に形成され、厚みはφ0〜60mmでD=6mm(フラット)、φ60〜210mmでD=6〜3mm(テーパ)である。中空誘電体90の空洞104は、厚みαが2mmで、直径βが180mmである。
図44に、図43の具体例で得られる電極間の径方向の電界強度分布特性を示す。図中、ε=1の分布特性Aは、図42(A)の状態つまり中空誘電体90の空洞104を完全に空にして空気で満たした状態で得られるものである。また、ε=2.5の分布特性Bは、図42(C)の状態つまり中空誘電体90の空洞104にガルデンを満杯に充填した状態で得られるものである。空洞104に入れるガルデンの量を調整することで、両特性A,B間の任意の特性が得られる。
このように、この実施例では、中空誘電体90の空洞104に入れる流動性の誘電性物質NZの種類および量を変えることで、誘電体90全体の誘電率ないし誘電性インピーダンスを可変制御することができる。
図45に、この実施例における種々の変形例を示す。図45(A)の変形例は、誘電体90のおもて面をセラミックス板91で形成し、内側の空洞104においてセラミックス板91と対向する壁面を上部電極38の母材(アルミニウム)で形成する。つまり、上部電極38の主面に誘電体90の形状に応じた凹部38cを形成し、この凹部38cをセラミックス板91で蓋をする構成である。セラミックス板91の外周を封止するために、たとえばOリング等のシール部材110を設けるのが好ましい。この場合には、凹部38cまたは空洞104の形状が重要であり、やはり中心部側の厚みをエッジ部側の厚みよりも大きくする形状が好ましい。
図45(B),(C)の構成例は、中空誘電体90内で誘電性流動体NZに割り当てるスペースまたは空洞104を特定の領域に限定または局所化するものである。たとえば、図45(B)に示すように誘電体90の中心部領域に空洞104のスペースを局在化する構成や、図45(C)に示すようにセラミックス板91の厚みを径方向で変化させて(中心部からエッジ部に向かって次第に小さくして)空洞104のスペースを相対的に誘電体90の周辺部領域に局在化する構成等が可能である。このように、中空誘電体90において空洞104のスペースを所望の領域ないし形状に規定することで、誘電性流動体NZによる誘電率調整機能に種々のバリエーションをもたせることができる。
図45(D)の構成例は、中空誘電体90内の空洞104を複数の室に分割して各室毎に誘電性流動体NZの出し入れや充填量を独立に制御するようにしたものである。たとえば、図示のように、セラミックス板91に一体に形成した環状の隔壁板91aによって空洞104を中心部側の室104Aと周辺部側の室104Bとに2分割することができる。
以上、本発明の好適な実施形態を説明したが、上記実施形態および上記構成例におけるそれぞれの電極構造を組み合わせることも可能である。たとえば、上記実施形態による誘電体90を有する電極構造と上記第1の構成例による凸部70を有する電極構造または第2の構成例による凹部80を有する電極構造とを組み合わせることも可能である。つまり、上記実施形態による電極構造をたとえば図19のようにサセプタ12に適用して上部電極38には上記第1の構成例による電極構造(図2、図3)または上記第2の構成例による電極構造(図15、図16)を適用するアプリケーションや、上記実施形態による電極構造を図20のように上部電極38に適用してサセプタ12には上記第1の構成例による電極構造(図2,図3)または上記第2の構成例による電極構造(図15、図16)を適用するアプリケーション等も可能である。もちろん、上記実施形態または上記第1または第2の構成例による電極構造を上部電極および下部電極の双方に適用するアプリケーションや、上記実施形態または上記第1または第2の構成例による電極構造を上部電極もしくは下部電極だけに適用し、他方の電極に従来一般の電極を用いるアプリケーション等も可能である。
また、上記実施形態におけるプラズマエッチング装置(図1)は、プラズマ生成用の1つの高周波電力をサセプタ12に印加する方式であった。しかし、図示省略するが、本発明は上部電極38側にプラズマ生成用の高周波電力を印加する方式や、上部電極38とサセプタ12とに周波数の異なる第1および第2の高周波電力をそれぞれ印加する方式(上下高周波印加タイプ)や、サセプタ12に周波数の異なる第1および第2の高周波電力を重畳して印加する方式(下部2周波重畳印加タイプ)などにも適用可能であり、広義には減圧可能な処理容器内に少なくとも1つの電極を有するプラズマ処理装置に適用可能である。さらに、本発明は、プラズマCVD、プラズマ酸化、プラズマ窒化、スパッタリングなどの他のプラズマ処理装置にも適用可能である。また、本発明における被処理基板は半導体ウエハに限るものではなく、フラットパネルディスプレイ用の各種基板や、フォトマスク、CD基板、プリント基板等も可能である。
10 チャンバ
12 サセプタ
32 高周波電源
38 上部電極
90 誘電体膜
104 空洞
106,108 パイプ(ポート)

Claims (10)

  1. 減圧可能な処理容器内に第1の電極を設け、前記処理容器内に高周波電界を形成するとともに処理ガスを流し込んで前記処理ガスのプラズマを生成し、前記プラズマの下で被処理基板に所望のプラズマ処理を施すプラズマ処理装置であって、
    前記第1の電極の内部の主面側に空洞を有する誘電体を設けて、前記第1の電極の中心部側における前記誘電体の厚さをエッジ部側における前記誘電体の厚さより大きくし、前記誘電体の空洞の中に流動性の誘電性物質を出し入れ可能に入れるプラズマ処理装置。
  2. 前記第1の電極の裏面側から前記空洞の第1および第2の箇所にそれぞれ接続される第1および第2のポートを有し、
    前記空洞に前記誘電性物質を入れるときは、前記第1のポートより前記空洞に前記誘電性物質を導入しながら、前記第2のポートより前記空洞内のエアーを抜き、
    前記空洞内の前記誘電性物質の量を減らすときは、前記第1のポートより前記空洞にエアーを送り込みながら、前記第2のポートより前記空洞内の誘電性物質を抜くように構成された、請求項1に記載のプラズマ処理装置。
  3. 前記第1の箇所は前記空洞の中心部およびエッジ部の一方に設定され、前記第2の箇所は前記空洞の中心部およびエッジ部の他方に設定される、請求項2に記載のプラズマ処理装置。
  4. 前記誘電体の厚さは、前記第1の電極の中心部を含む第1の直径の内側では一定であり、前記第1の直径の外側では前記第1の電極のエッジ部に向かってテーパ状に減少する、請求項1〜3のいずれか一項に記載のプラズマ処理装置。
  5. 前記第1の電極の前記主面と反対側の裏面から前記プラズマを生成するための高周波電力を供給する、請求項1〜4のいずれか一項に記載のプラズマ処理装置。
  6. 前記処理容器内に前記第1の電極と平行に向かい合う第2の電極を設け、前記第2の電極の前記主面と反対側の裏面から前記プラズマを生成するための高周波電力を供給する、請求項1〜4のいずれか一項に記載のプラズマ処理装置。
  7. 高周波放電方式のプラズマ処理装置においてプラズマを生成するために処理容器内に設けられる電極板であって、プラズマと対向する前記電極の内部の主面側に空洞を有する誘電体を設けて、電極中心部側における前記誘電体の厚さを電極エッジ部側における前記誘電体の厚さより大きくし、前記誘電体の空洞の中に流動性の誘電性物質を出し入れ可能に入れる電極板。
  8. 前記第1の電極の裏面側から前記空洞の第1および第2の箇所にそれぞれ接続される第1および第2のポートを有し、
    前記空洞に前記誘電性物質を入れるときは、前記第1のポートより前記空洞に前記誘電性物質を導入しながら、前記第2のポートより前記空洞内のエアーを抜き、
    前記空洞内の前記誘電性物質の量を減らすときは、前記第1のポートより前記空洞にエアーを送り込みながら、前記第2のポートより前記空洞内の誘電性物質を抜くように構成された、請求項7に記載の電極板。
  9. 前記第1の箇所は前記空洞の中心部およびエッジ部の一方に設定され、前記第2の箇所は前記空洞の中心部およびエッジ部の他方に設定される、請求項8に記載の電極板。
  10. 前記誘電体の厚さは、前記第1の電極の中心部を含む第1の直径の内側では一定であり、前記第1の直径の外側では前記第1の電極のエッジ部に向かってテーパ状に減少する、請求項7〜9のいずれか一項に記載の電極板。
JP2013100660A 2003-02-03 2013-05-10 プラズマ処理装置及び電極構造体 Expired - Fee Related JP5663056B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100660A JP5663056B2 (ja) 2003-02-03 2013-05-10 プラズマ処理装置及び電極構造体

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003025899 2003-02-03
JP2003025899 2003-02-03
JP2003132810 2003-05-12
JP2003132810 2003-05-12
JP2013100660A JP5663056B2 (ja) 2003-02-03 2013-05-10 プラズマ処理装置及び電極構造体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010004960A Division JP5317992B2 (ja) 2003-02-03 2010-01-13 プラズマ処理装置及びプラズマ処理装置用の電極板

Publications (2)

Publication Number Publication Date
JP2013211574A true JP2013211574A (ja) 2013-10-10
JP5663056B2 JP5663056B2 (ja) 2015-02-04

Family

ID=42346709

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010004960A Expired - Fee Related JP5317992B2 (ja) 2003-02-03 2010-01-13 プラズマ処理装置及びプラズマ処理装置用の電極板
JP2013100660A Expired - Fee Related JP5663056B2 (ja) 2003-02-03 2013-05-10 プラズマ処理装置及び電極構造体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010004960A Expired - Fee Related JP5317992B2 (ja) 2003-02-03 2010-01-13 プラズマ処理装置及びプラズマ処理装置用の電極板

Country Status (1)

Country Link
JP (2) JP5317992B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063128A (ja) * 2015-09-25 2017-03-30 パナソニックIpマネジメント株式会社 プラズマ処理装置
JP2021040109A (ja) * 2019-09-05 2021-03-11 Toto株式会社 静電チャック
JP2021040110A (ja) * 2019-09-05 2021-03-11 Toto株式会社 静電チャック
KR102611375B1 (ko) * 2023-04-26 2023-12-06 에스케이엔펄스 주식회사 상부 전극, 이를 포함하는 반도체 소자 제조 장치 및 반도체 소자의 제조 방법
KR102615786B1 (ko) * 2023-04-26 2023-12-19 에스케이엔펄스 주식회사 상부 전극, 이를 포함하는 반도체 소자 제조 장치 및 반도체 소자의 제조 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982129B2 (ja) * 2011-02-15 2016-08-31 東京エレクトロン株式会社 電極及びプラズマ処理装置
KR102607686B1 (ko) 2018-12-06 2023-11-30 도쿄엘렉트론가부시키가이샤 샤워 플레이트, 플라스마 처리 장치 및 플라스마 처리 방법
JP7162837B2 (ja) 2018-12-06 2022-10-31 東京エレクトロン株式会社 プラズマ処理装置、及び、プラズマ処理方法
JP7117734B2 (ja) 2018-12-06 2022-08-15 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
WO2020126910A1 (en) * 2018-12-21 2020-06-25 Evatec Ag Vacuum treatment apparatus and method for vacuum plasma treating at least one substrate or for manufacturing a substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338460A (ja) * 1993-05-28 1994-12-06 Toshiba Corp 放電処理装置
WO2001011658A1 (de) * 1999-08-10 2001-02-15 Unaxis Trading Ag Plasmareaktor zur behandlung von grossflächigen substraten
JP2001185542A (ja) * 1999-12-27 2001-07-06 Hitachi Ltd プラズマ処理装置及びそれを用いたプラズマ処理方法
JP2002246368A (ja) * 2001-02-14 2002-08-30 Anelva Corp ウェハー表面径方向均一プラズマを用いるウェハー処理システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136253A (ja) * 1991-11-11 1993-06-01 Canon Inc 基体支持機構およびこれを用いた基体処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338460A (ja) * 1993-05-28 1994-12-06 Toshiba Corp 放電処理装置
WO2001011658A1 (de) * 1999-08-10 2001-02-15 Unaxis Trading Ag Plasmareaktor zur behandlung von grossflächigen substraten
JP2001185542A (ja) * 1999-12-27 2001-07-06 Hitachi Ltd プラズマ処理装置及びそれを用いたプラズマ処理方法
JP2002246368A (ja) * 2001-02-14 2002-08-30 Anelva Corp ウェハー表面径方向均一プラズマを用いるウェハー処理システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063128A (ja) * 2015-09-25 2017-03-30 パナソニックIpマネジメント株式会社 プラズマ処理装置
JP2021040109A (ja) * 2019-09-05 2021-03-11 Toto株式会社 静電チャック
JP2021040110A (ja) * 2019-09-05 2021-03-11 Toto株式会社 静電チャック
JP7362030B2 (ja) 2019-09-05 2023-10-17 Toto株式会社 静電チャック
JP7408958B2 (ja) 2019-09-05 2024-01-09 Toto株式会社 静電チャック
KR102611375B1 (ko) * 2023-04-26 2023-12-06 에스케이엔펄스 주식회사 상부 전극, 이를 포함하는 반도체 소자 제조 장치 및 반도체 소자의 제조 방법
KR102615786B1 (ko) * 2023-04-26 2023-12-19 에스케이엔펄스 주식회사 상부 전극, 이를 포함하는 반도체 소자 제조 장치 및 반도체 소자의 제조 방법

Also Published As

Publication number Publication date
JP5317992B2 (ja) 2013-10-16
JP5663056B2 (ja) 2015-02-04
JP2010135813A (ja) 2010-06-17

Similar Documents

Publication Publication Date Title
JP4472372B2 (ja) プラズマ処理装置及びプラズマ処理装置用の電極板
JP5663056B2 (ja) プラズマ処理装置及び電極構造体
TWI553729B (zh) Plasma processing method
JP5514413B2 (ja) プラズマエッチング方法
KR101124938B1 (ko) 플라즈마 처리 장치
JP7224096B2 (ja) プラズマ処理装置用部品の溶射方法及びプラズマ処理装置用部品
JP6423706B2 (ja) プラズマ処理装置
CN100517563C (zh) 等离子体处理装置和等离子体处理方法
JP2009123929A (ja) プラズマ処理装置
US8157953B2 (en) Plasma processing apparatus
CN111095498B (zh) 载置台、基板处理装置以及边缘环
JP2021128956A (ja) 載置台、プラズマ処理装置及びクリーニング処理方法
JP5323303B2 (ja) プラズマ処理装置
JP6544902B2 (ja) プラズマ処理装置
JP2023053335A (ja) 載置台及び基板処理装置
JP4753306B2 (ja) プラズマ処理装置
JP5367000B2 (ja) プラズマ処理装置
WO2020039943A1 (ja) エッチング方法及びプラズマ処理装置
JP7479236B2 (ja) 基板処理装置
JP2021108334A (ja) 載置台、基板処理装置及び伝熱ガス供給方法
JP2021012960A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141205

R150 Certificate of patent or registration of utility model

Ref document number: 5663056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees