JP2013209257A5 - - Google Patents

Download PDF

Info

Publication number
JP2013209257A5
JP2013209257A5 JP2012081574A JP2012081574A JP2013209257A5 JP 2013209257 A5 JP2013209257 A5 JP 2013209257A5 JP 2012081574 A JP2012081574 A JP 2012081574A JP 2012081574 A JP2012081574 A JP 2012081574A JP 2013209257 A5 JP2013209257 A5 JP 2013209257A5
Authority
JP
Japan
Prior art keywords
single crystal
crystal
sapphire
sapphire single
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012081574A
Other languages
Japanese (ja)
Other versions
JP5953884B2 (en
JP2013209257A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012081574A priority Critical patent/JP5953884B2/en
Priority claimed from JP2012081574A external-priority patent/JP5953884B2/en
Priority to KR1020130003851A priority patent/KR101501036B1/en
Priority to CN2013101069673A priority patent/CN103361727A/en
Publication of JP2013209257A publication Critical patent/JP2013209257A/en
Publication of JP2013209257A5 publication Critical patent/JP2013209257A5/ja
Application granted granted Critical
Publication of JP5953884B2 publication Critical patent/JP5953884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

サファイア単結晶の育成の難しさは、気泡や欠陥の導入を抑えて大口径かつ長尺なインゴットを育成する点にある。気泡や欠陥は、不規則な融液の揺らぎや対流、融液の温度分布や温度変化等によって容易に導入されてしまう。これらの不規則な要因を抑制するには、インゴットの成長に伴って変化する条件に対して適切かつ微妙な制御を加える必要がある。現在、サファイア単結晶はキプロス法による生産・供給が主流であり、CZ法で大口径なc軸サファイア単結晶を育成するには多くの課題がある。
The difficulty in growing a sapphire single crystal is that a large-diameter and long ingot is grown while suppressing the introduction of bubbles and defects. Bubbles and defects are easily introduced due to irregular melt fluctuations and convection, melt temperature distribution, temperature changes, and the like. In order to suppress these irregular factors, it is necessary to add appropriate and delicate control to the conditions that change as the ingot grows. Currently, sapphire single crystals are mainstream production and supply by kilometers prosulfuron method, in order to grow a large diameter c-axis sapphire single crystal CZ method has many problems.

本発明においては、アルミナ融液を抵抗加熱方式により加熱することが好ましい。この場合において、前記ルツボはモリブデンルツボであることが好ましく、前記モリブデンルツボの周囲に抵抗加熱ヒーターを配置し、前記抵抗加熱ヒーターからの輻射熱により前記アルミナ融液を加熱することが好ましい。抵抗加熱方式の場合、ルツボの周囲に設けられた抵抗加熱ヒーターからの輻射熱によってアルミナ融液がルツボとともに加熱される。その結果、アルミナ融液が縦方向の温度勾配を持つことになる。アルミナ融液の粘性は非常に高く、あまり撹拌されないので、縦方向の温度勾配が維持される。これにより、アルミナ融液の液面下でのc軸方向の結晶成長を促進させることができる。さらに、モリブデンルツボイリジウムルツボに比べて安価であることから、サファイア単結晶の製造コストを低減することができる。
In the present invention, the alumina melt is preferably heated by a resistance heating method. In this case, the crucible is preferably a molybdenum crucible, and it is preferable to dispose a resistance heater around the molybdenum crucible and to heat the alumina melt by radiant heat from the resistance heater. In the case of the resistance heating method, the alumina melt is heated together with the crucible by radiant heat from a resistance heater provided around the crucible. As a result, the alumina melt has a longitudinal temperature gradient. The viscosity of the alumina melt is very high and is not stirred so much that a longitudinal temperature gradient is maintained. As a result, crystal growth in the c-axis direction under the surface of the alumina melt can be promoted. Furthermore, since the molybdenum crucible is less expensive than the iridium crucible, the manufacturing cost of the sapphire single crystal can be reduced.

本発明においては、前記アルミナ融液の液面位置よりも上方に引き上げられた単結晶部分の結晶長Aと、前記アルミナ融液の液面下で成長する単結晶部分の結晶長Bとの比B/Aが0.2以上2以下となるように前記サファイア単結晶を引き上げることが好ましい。
In the present invention, the crystal length A of the single crystal portion is pulled above the liquid level position of the alumina melt, the single crystal part fraction growing under the liquid surface of the alumina melt the crystal length B The sapphire single crystal is preferably pulled up so that the ratio B / A is 0.2 or more and 2 or less.

さらに、本発明によるサファイア単結晶は、拡径部から直胴部までの単結晶部分の結晶長Aと、縮径部の単結晶部分の結晶長Bとの比B/Aが0.2以上2以下である。また、本発明の他の側面によるサファイア単結晶は、アルミナ融液にc軸サファイア種結晶を浸漬させ、前記種結晶を回転させながら上方向に引き上げることにより、前記種結晶の下端にサファイア単結晶をc軸方向に成長させてなるものであって、前記アルミナ融液の液面位置よりも上方に引き上げられた単結晶部分の結晶長Aと、前記アルミナ融液の液面下で成長する単結晶部分の結晶長Bとの比B/Aが0.2以上2以下であることを特徴とする。本発明によれば、結晶部分に気泡や欠陥が導入されていない高品質なサファイア単結晶を提供することができる。
Furthermore, in the sapphire single crystal according to the present invention, the ratio B / A between the crystal length A of the single crystal portion from the enlarged diameter portion to the straight body portion and the crystal length B of the single crystal portion of the reduced diameter portion is 0.2 or more. 2 or less. The sapphire single crystal according to another aspect of the present invention is a sapphire single crystal at the lower end of the seed crystal by immersing a c-axis sapphire seed crystal in an alumina melt and pulling the seed crystal upward while rotating. In the c-axis direction, the crystal length A of the single crystal portion pulled up above the liquid surface position of the alumina melt, and the single crystal grown below the liquid surface of the alumina melt. the ratio B / a of the crystal length B of the crystal unit content, characterized in that 0.2 to 2. According to the present invention, it is possible to provide a high-quality sapphire single crystal in which bubbles and defects are not introduced into the crystal portion.

その後、単結晶が所定の長さに達した時点で単結晶をアルミナ融液から取り出し、引き上げを終了する。このとき、引き上げ機構19によってサファイア単結晶20を引き上げて、単結晶を融液から切り離す(ステップS)。以上により、サファイア単結晶20が完成する。
Thereafter, when the single crystal reaches a predetermined length, the single crystal is taken out from the alumina melt, and the pulling is finished. At this time, by pulling sapphire single crystal 20 by pulling mechanism 19, and disconnects the single crystal from the melt (step S 8). Thus, the sapphire single crystal 20 is completed.

本実施形態により得られるサファイア単結晶20は、図3(c)に示すように、アルミナ融液の液面位置よりも上方に引き上げられた単結晶部分の結晶長Aと、前記アルミナ融液の液面下で成長する単結晶部分の結晶長Bとの比B/Aが0.2以上2以下である。換言すれば、拡径部から直胴部までの単結晶部分の結晶長Aと、縮径部の単結晶部分の結晶長Bとの比B/Aが0.2以上2以下である。このようなサファイア単結晶インゴットの形状は、上記の製造方法により製造される気泡が少ないサファイア単結晶に特有の形状である。
As shown in FIG. 3C, the sapphire single crystal 20 obtained by the present embodiment includes a crystal length A of the single crystal portion pulled upward from the liquid surface position of the alumina melt, and the alumina melt. the ratio B / a of the crystal length B of the single crystal part fraction growing under the liquid surface is 0.2 to 2. In other words, the ratio B / A between the crystal length A of the single crystal portion from the enlarged diameter portion to the straight body portion and the crystal length B of the single crystal portion of the reduced diameter portion is 0.2 or more and 2 or less. The shape of such a sapphire single crystal ingot is a shape peculiar to a sapphire single crystal with few bubbles manufactured by the above manufacturing method.

(実施例2)
次に、単結晶の目標直径を種々変化させた点以外は実施例1と同一条件下でサファイア単結晶の育成を行った。育成する単結晶の目標直径は70、100、150、180(mm)の4条件とした。また、結晶引き上げ速度を3mm/hr、結晶回転速度を12rpmとした。
(Example 2)
Next, a sapphire single crystal was grown under the same conditions as in Example 1 except that the target diameter of the single crystal was variously changed. The target diameter of the single crystal to be grown was set to four conditions of 70, 100, 150, and 180 (mm). The crystal pulling rate of 3 mm / hr, and the crystal rotation speed and 12 rp m.

表3から明らかなように、結晶回転速度が6rpmと低いときには界面形状がU字形となり、気泡が高密度に導入された。また、結晶回転速度が30rpmと高いときには結晶の界面形状にくねりが発生し、結晶成長の継続が不可能となった。一方、結晶回転速度が8rpm及び25rpmのときには界面形状がV字形となり、気泡は少なかった。さらに、結晶回転速度が10rpm及び18rpmのときには界面形状がV字形となり、気泡は無かった。以上の結果から、結晶回転速度は8rpm以上25rpm以下にすることが望ましく、10rpm以上18rpm以下にすることがさらに望ましいことが分かった。


As is clear from Table 3, when the crystal rotation speed was as low as 6 rpm, the interface shape was U-shaped, and bubbles were introduced at a high density. Further, when the crystal rotation speed was as high as 30 rpm, the crystal interface shape was twisted, making it impossible to continue crystal growth. On the other hand, when the crystal rotation speed was 8 rpm and 25 rpm, the interface shape was V-shaped and there were few bubbles. Furthermore, when the crystal rotation speed was 10 rpm and 18 rpm, the interface shape was V-shaped and there were no bubbles. From the above results, it was found that the crystal rotation speed is preferably 8 rpm or more and 25 rpm or less, more preferably 10 rpm or more and 18 rpm or less.


Claims (8)

ルツボ内のアルミナ融液にc軸サファイア種結晶を浸漬させ、前記種結晶を回転させながら上方向に引き上げて前記種結晶の下端にサファイア単結晶をc軸方向に成長させるサファイア単結晶の製造方法であって、
前記アルミナ融液の液面下で前記サファイア単結晶を成長させると共に、前記融液中で成長する単結晶成長部分が前記ルツボの底面に到達しないように前記種結晶を上方に引き上げることを特徴とするサファイア単結晶の製造方法。
A method for producing a sapphire single crystal in which a c-axis sapphire seed crystal is immersed in an alumina melt in a crucible, and the seed crystal is pulled upward while rotating the seed crystal to grow a sapphire single crystal in the c-axis direction at the lower end of the seed crystal. Because
The sapphire single crystal is grown below the surface of the alumina melt, and the seed crystal is pulled upward so that the single crystal growth portion that grows in the melt does not reach the bottom of the crucible. A method for producing a sapphire single crystal.
前記融液中で成長する単結晶成長部分の側面形状が下方向に突出した略V字形状である、請求項1に記載のサファイア単結晶の製造方法。   2. The method for producing a sapphire single crystal according to claim 1, wherein a side surface shape of a single crystal growth portion grown in the melt is a substantially V-shape protruding downward. 前記種結晶の引き上げ速度が0.5mm/hr以上10mm/hr以下である、請求項1又は2に記載のサファイア単結晶の製造方法。   The method for producing a sapphire single crystal according to claim 1 or 2, wherein a pulling rate of the seed crystal is 0.5 mm / hr or more and 10 mm / hr or less. 前記アルミナ融液から引き上げたときの前記融液中で成長する単結晶成長部分の直径が、前記ルツボの直径の2/3倍以下である、請求項1乃至3のいずれか一項に記載のサファイア単結晶の製造方法。   4. The diameter according to claim 1, wherein a diameter of a single crystal growth portion that grows in the melt when pulled up from the alumina melt is not more than 2/3 times a diameter of the crucible. A method for producing a sapphire single crystal. 前記種結晶の回転速度が8rpm以上25rpm以下である、請求項1乃至4のいずれか一項に記載のサファイア単結晶の製造方法。   The method for producing a sapphire single crystal according to any one of claims 1 to 4, wherein a rotation speed of the seed crystal is 8 rpm or more and 25 rpm or less. 前記ルツボにモリブデンルツボを用い、前記モリブデンルツボの周囲に抵抗加熱ヒーターを配置し、前記アルミナ融液を抵抗加熱方式により加熱する、請求項1乃至5のいずれか一項に記載のサファイア単結晶の製造方法。   The sapphire single crystal according to any one of claims 1 to 5, wherein a molybdenum crucible is used as the crucible, a resistance heater is disposed around the molybdenum crucible, and the alumina melt is heated by a resistance heating method. Production method. 前記アルミナ融液の液面位置よりも上方に引き上げられた単結晶部分の結晶長Aと、前記アルミナ融液の液面下で成長する単結晶部分の結晶長Bとの比B/Aが0.2以上2以下となるように前記サファイア単結晶を引き上げる、請求項1乃至6のいずれか一項に記載のサファイア単結晶の製造方法。 A crystal length A of the single crystal portion is pulled above the liquid level position of the alumina melt, the ratio B / A of the crystal length B of the single crystal part fraction growing under the liquid surface of the alumina melt is The method for producing a sapphire single crystal according to any one of claims 1 to 6, wherein the sapphire single crystal is pulled up to be 0.2 or more and 2 or less. 拡径部から直胴部までの単結晶部分の結晶長Aと、縮径部の単結晶部分の結晶長Bとの比B/Aが0.2以上2以下であることを特徴とするサファイア単結晶。   Sapphire characterized in that the ratio B / A of the crystal length A of the single crystal portion from the enlarged diameter portion to the straight body portion and the crystal length B of the single crystal portion of the reduced diameter portion is 0.2 or more and 2 or less Single crystal.
JP2012081574A 2012-03-30 2012-03-30 Method for producing sapphire single crystal Expired - Fee Related JP5953884B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012081574A JP5953884B2 (en) 2012-03-30 2012-03-30 Method for producing sapphire single crystal
KR1020130003851A KR101501036B1 (en) 2012-03-30 2013-01-14 Sapphire single crystal and process for manufacturing the same
CN2013101069673A CN103361727A (en) 2012-03-30 2013-03-29 Sapphire single crystal and making method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081574A JP5953884B2 (en) 2012-03-30 2012-03-30 Method for producing sapphire single crystal

Publications (3)

Publication Number Publication Date
JP2013209257A JP2013209257A (en) 2013-10-10
JP2013209257A5 true JP2013209257A5 (en) 2015-04-09
JP5953884B2 JP5953884B2 (en) 2016-07-20

Family

ID=49363950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081574A Expired - Fee Related JP5953884B2 (en) 2012-03-30 2012-03-30 Method for producing sapphire single crystal

Country Status (3)

Country Link
JP (1) JP5953884B2 (en)
KR (1) KR101501036B1 (en)
CN (1) CN103361727A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148156A1 (en) * 2013-03-21 2014-09-25 株式会社アライドマテリアル Crucible for growing sapphire monocrystal and method for growing sapphire monocrystal
KR101532265B1 (en) * 2013-12-03 2015-06-29 주식회사 엘지실트론 An apparatus for grpwing a single crystal
CN104651935B (en) * 2014-10-17 2017-06-13 洛阳西格马炉业股份有限公司 A kind of method that crucible rise method prepares high-quality sapphire crystal
CN109112631B (en) * 2018-10-29 2021-01-01 浙江昀丰新材料科技股份有限公司 Sapphire C-direction crystal growth method
CN111394786A (en) * 2020-03-25 2020-07-10 哈尔滨奥瑞德光电技术有限公司 Special-shaped seed crystal structure for growing sapphire single crystal by kyropoulos method and growing method thereof
CN115233299A (en) * 2022-07-14 2022-10-25 露笑新能源技术有限公司 Seeding method for growing sapphire by kyropoulos method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278592A (en) * 1996-04-18 1997-10-28 Mitsubishi Heavy Ind Ltd Production of aluminum oxide single crystal containing titanium
JP2006151745A (en) * 2004-11-29 2006-06-15 Kyocera Corp Method for producing single crystal and oxide single crystal obtained by using the same
JP4940610B2 (en) * 2005-09-29 2012-05-30 住友金属鉱山株式会社 Sapphire single crystal growth method
JP2008007353A (en) * 2006-06-28 2008-01-17 Sumitomo Metal Mining Co Ltd Apparatus for growing sapphire single crystal and growing method using the same
JP4810346B2 (en) * 2006-07-31 2011-11-09 株式会社信光社 Method for producing sapphire single crystal
JP4905171B2 (en) * 2007-02-14 2012-03-28 住友金属鉱山株式会社 Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by using this method
JP4844429B2 (en) * 2007-02-26 2011-12-28 日立化成工業株式会社 Method for producing sapphire single crystal
JP2008266078A (en) * 2007-04-23 2008-11-06 Shin Etsu Chem Co Ltd Method for producing sapphire single crystal
JP4835582B2 (en) * 2007-11-16 2011-12-14 住友金属鉱山株式会社 Method for producing aluminum oxide single crystal
JP5004881B2 (en) * 2008-06-27 2012-08-22 京セラ株式会社 Single crystal growth apparatus crucible, single crystal growth method, and single crystal growth apparatus
JP2010143781A (en) * 2008-12-17 2010-07-01 Showa Denko Kk Method for producing sapphire single crystal
JP2010150056A (en) * 2008-12-24 2010-07-08 Showa Denko Kk Method for producing sapphire single crystal
JP2010189242A (en) * 2009-02-20 2010-09-02 Showa Denko Kk Method for producing sapphire single crystal and apparatus for pulling sapphire single crystal
JP2011032104A (en) * 2009-07-29 2011-02-17 Showa Denko Kk Sapphire single crystal and method for producing sapphire single crystal

Similar Documents

Publication Publication Date Title
JP2013209257A5 (en)
JP4483729B2 (en) Silicon single crystal manufacturing method
TW201250072A (en) Method for producing sic single crystals and production device
JP2012515698A5 (en)
JP5953884B2 (en) Method for producing sapphire single crystal
CN107429421B (en) Apparatus and method for introducing volatile dopants into a melt
CN108779577A (en) The manufacturing method of monocrystalline silicon
CN107109686A (en) For the monocrystal silicon for manufacturing the method for monocrystal silicon and being prepared by the preparation method
JP2009057270A (en) Method of raising silicon single crystal
JP5170061B2 (en) Resistivity calculation program and single crystal manufacturing method
TWI635199B (en) Manufacturing method of single crystal silicon
JP6268936B2 (en) Silicon single crystal manufacturing method
CN108291327B (en) Method for producing silicon single crystal and silicon single crystal
JP5088338B2 (en) Method of pulling silicon single crystal
CN105765114A (en) Method for growing silicon single crystal
JP6237605B2 (en) Method for producing silicon single crystal
CN116334744A (en) Crystal preparation method
JP2009292662A (en) Method for forming shoulder in growing silicon single crystal
JP6039480B2 (en) Carrier, crystal manufacturing apparatus, and crystal manufacturing method
JP2016196402A (en) Supporter, crystal production apparatus, and production method of crystal
JP6217514B2 (en) Method for producing sapphire single crystal
JP4218460B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP2014214067A (en) Production method of silicon single crystal
TWI476303B (en) Method of interpreting sapphire single-crystal growth and method of growing sapphire single-crystal
JP6488975B2 (en) Pulling method of silicon single crystal