WO2014148156A1 - Crucible for growing sapphire monocrystal and method for growing sapphire monocrystal - Google Patents

Crucible for growing sapphire monocrystal and method for growing sapphire monocrystal Download PDF

Info

Publication number
WO2014148156A1
WO2014148156A1 PCT/JP2014/053296 JP2014053296W WO2014148156A1 WO 2014148156 A1 WO2014148156 A1 WO 2014148156A1 JP 2014053296 W JP2014053296 W JP 2014053296W WO 2014148156 A1 WO2014148156 A1 WO 2014148156A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
single crystal
sapphire
sapphire single
growing
Prior art date
Application number
PCT/JP2014/053296
Other languages
French (fr)
Japanese (ja)
Inventor
大 田賀
聖一 星
博 横山
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to JP2014528748A priority Critical patent/JP5650869B1/en
Publication of WO2014148156A1 publication Critical patent/WO2014148156A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Definitions

  • the present invention relates to a crucible for growing a sapphire single crystal and a method for growing a sapphire single crystal.
  • Sapphire single crystal is a material excellent in transmittance and mechanical properties, and is widely used, for example, as an optical material, and has been increasingly used as an epitaxial substrate for GaN growth.
  • This sapphire single crystal has been conventionally used by using a pulling method (also called Czochralski method, CZ method, etc.) EFG method (Edge-defined.fFilm-fed Growth) method or Kyropoulos method using a crucible made of iridium, tungsten, molybdenum or the like. It was obtained by growing from a seed crystal.
  • a pulling method also called Czochralski method, CZ method, etc.
  • EFG method Edge-defined.fFilm-fed Growth
  • Kyropoulos method using a crucible made of iridium, tungsten, molybdenum or the like. It was obtained by growing from a seed crystal.
  • the HEM (Heat-Exchange Method) method has come to be used as a growth method that can cope with an increase in the size of the sapphire single crystal (Non-patent Document 1).
  • molybdenum is widely used as a crucible material because it is less expensive than iridium and tungsten (Patent Document 1).
  • prescribed internal angle dimension may be formed in the part which connects the bottom part and side part of a crucible (patent documents 5, 6).
  • molten alumina erodes the molybdenum crystal grain boundary, and as a result, molybdenum particles of the order of several tens of ⁇ m to mm fall off and enter the sapphire crystal, thereby coloring the sapphire crystal. In some cases, the crystallinity is deteriorated.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a crucible for growing a sapphire single crystal having a structure capable of suppressing mixing of crucible components into dissolved sapphire.
  • the present inventor examined again the conditions necessary for the crucible capable of suppressing the mixing of the crucible components into the melted sapphire, particularly the shape of the inner peripheral surface of the crucible in contact with sapphire.
  • the inventor of the present invention paid attention to the shape of the R portion that connects the cylindrical portion and the flat bottom portion in an equal-thickness cylindrical crucible.
  • the shape of the R part is desirably larger to some extent from the viewpoint of workability when manufacturing a crucible.
  • the portion corresponding to the R portion is different from the portion corresponding to the cylindrical portion in size and shape, and is therefore discarded when a wafer or the like is cut out from the sapphire single crystal. Part.
  • a sapphire single crystal can be manufactured with a high yield when the R portion is as small as possible.
  • the present inventor can suppress the mixing of the crucible component into the melted sapphire by increasing the R portion to a certain size, and can improve the yield.
  • the inventors have found that this is possible and have come to make the present invention.
  • the first aspect of the present invention is composed of molybdenum or tungsten, or an alloy of molybdenum and tungsten, and inevitable impurities, and is integrated with the cylindrical portion and one end portion of the cylindrical portion via the R portion.
  • a second aspect of the present invention is a sapphire single crystal growth method using the sapphire single crystal growth crucible described in the first aspect.
  • a crucible for growing a sapphire single crystal having a structure capable of suppressing mixing of crucible components into dissolved sapphire.
  • the crucible 1 for growing a sapphire single crystal a crucible for growing a single crystal using a CZ method, an EFG method or the like is illustrated.
  • the crucible 1 for growing a sapphire single crystal has a cylindrical portion 3 and a flat bottom 7 that is integrally provided at one end of the cylindrical portion 3 with an R portion 5 without a joint. It is a uniform cylindrical shape.
  • molybdenum, tungsten, or an alloy of molybdenum and tungsten is preferably used as a metal material that can withstand the melting temperature of sapphire (alumina) and has high strength.
  • tungsten and molybdenum can form a solid solution type alloy.
  • alloys include 90 mass% molybdenum-10 mass% tungsten alloy (abbreviation 9 MW), 70 mass% molybdenum-30 mass% tungsten alloy (7 MW), 50 mass% molybdenum-50 mass% tungsten alloy (5 MW), and the like. is there.
  • the minimum tungsten content necessary for exhibiting the effect of alloying is 5% by mass. Therefore, the tungsten content is preferably at least 5% by mass.
  • the upper limit of the alloy amount is 50% by mass.
  • the purity of the above material is preferably 99.9% by mass or more, and the remainder is inevitable impurities. This is because erosion of the molten sapphire on the inner surface of the crucible is unavoidable, but a high-purity material of this level requires very little impurity contamination, and problems such as coloring can be avoided.
  • TMIAS tungsten-molybdenum industry association standard
  • the cylindrical portion 3 has an inner diameter (opening portion diameter D) corresponding to the diameter of the sapphire single crystal wafer to be grown.
  • the diameter of the wafer includes a 4-inch wafer and a 6-inch wafer.
  • it is desirable that at least the opening diameter D of the crucible is 200 mm. Further, in the future, it is predicted that a crucible having an opening diameter of 400 mm and a crucible having an opening diameter of 660 mm will be generated. Therefore, the opening diameter D is in a range where a range of 200 mm or more and 660 mm or less is assumed. is there.
  • the flat bottom 7 is a bottom portion having a flat shape.
  • the cylindrical portion 3 and the flat bottom 7 have a thickness of 5 mm or more and 15 mm or less.
  • the weight of a sapphire ingot is about 25 kg for a diameter of 200 mm and a height of 200 mm, and about 85 kg for a diameter of 300 mm and a height of 300 mm.
  • increasing the thickness of the crucible is one measure. This is because the thickness needs to be increased as the diameter of the crucible opening increases, so that it needs to be at least 5 mm.
  • the weight of the crucible increases.
  • the weight of a molybdenum crucible having an opening diameter of 300 mm, a height of 300 mm, and a thickness of 15 mm is about 55 kg. If the weight exceeds this value, the load-carrying countermeasures of the crystal growth apparatus become large, so the thickness is preferably 15 mm or less.
  • the R portion 5 is a portion that connects the cylindrical portion 3 and the flat bottom 7, and the cross-sectional shape parallel to the axial direction of the crucible has an arc shape.
  • the present inventors have found that mixing the crucible component into the melted sapphire can be suppressed by setting the inner angle dimension 5a (arc radius) of the R portion 5 within a predetermined range.
  • the inner angle dimension 5a of the R portion 5 is set to 20 mm or more and 40 mm or less, it is possible to suppress the metal particles constituting the R portion 5 from dropping out and mixing into the sapphire crystal during sapphire growth. Become.
  • sapphire melted in the crucible is a high-temperature fluid, but when the inner angle dimension 5a of the R portion 5 is less than 20 mm, the convection of sapphire during melting is not smooth, so the temperature in the R portion 5 is other than that. It is considered that a so-called “heat pool”, which is higher than the portion, occurs, and the metal particles constituting the crucible component of the R portion 5 drop off and enter the sapphire crystal.
  • the inner angle dimension 5a of the R part 5 is less than 20 mm, the convection is turbulent in the R part 5 and the sapphire solution vortex becomes more intense than the others, which is considered to promote erosion.
  • the inner angle dimension 5a of the R portion 5 is 20 mm or more.
  • the crucible shape becomes a shape close to a round bottom instead of a flat bottom, and the portion discarded when cutting a wafer or the like from a sapphire single crystal increases, resulting in a deterioration in yield.
  • the convection of the molten sapphire is different from that of a flat bottom, and mixing of crucible components may not be suppressed, which is not preferable.
  • the surface shape of the sapphire single crystal growth crucible 1 is desirably a shape capable of suppressing the mixing of the crucible components into the melted sapphire.
  • the inner circumference in contact with sapphire is Ry 7 ⁇ m or less and Ra 1 ⁇ m or less. Is desirable.
  • H / D which is a ratio of the crucible height (H) and the opening diameter (D)
  • H / D which is a ratio of the crucible height (H) and the opening diameter (D)
  • H / D is 1.4 or less.
  • a tall crucible is advantageous for the production of a larger ingot, but from the viewpoint of the design and production of growth equipment, a tall crucible has an external heating structure and arrangement, This is because there are many problems such as the vertical holding structure of the crucible, and on the other hand, from the standpoint of crucible production, there are restrictions on the molding technology into the crucible shape. Therefore, the limit of H / D is 1.4.
  • the method for producing the sapphire single crystal growth crucible 1 is not particularly limited as long as the sapphire single crystal growth crucible having the above-mentioned shape and composition can be produced. Examples thereof are as follows. be able to. Hereinafter, an example of the manufacturing method will be described with reference to FIG.
  • raw materials for the crucible are prepared. Specifically, when pure molybdenum is used as the material for the sapphire single crystal growth crucible 1, the raw material is a molybdenum powder having an Fsss (Fisher Sub-Sieve Sizer) particle size of 4 to 5 ⁇ m and a purity of 99.9% by mass or more. It is desirable to use
  • Fsss Fisher Sub-Sieve Sizer
  • tungsten-molybdenum alloy when used, a tungsten powder having a Fsss particle size of 2 to 3 ⁇ m and a purity of 99.9% by mass or more as a raw material for the crucible, and a molybdenum having a Fsss particle size of 4 to 5 ⁇ m and a purity of 99.9% by mass or more.
  • the powder is weighed at the desired alloy weight ratio.
  • Typical alloy types are 90 mass% Mo-10 mass% W (abbreviated as 9 MW), 70 mass% Mo-30 mass% W (7 MW), 50 mass% Mo-50 mass% W (5 MW). .
  • tungsten powder having a Fsss particle size of 2 to 3 ⁇ m and a purity of 99.9% by mass or more.
  • the raw material powder is filled into a rubber having the shape of a desired molded body, the open port is sealed with a stopper, and then the rubber is evacuated. After the evacuation is completed, the rubber is loaded into a CIP (Cold Isostatic Pressing) apparatus and molded by applying water pressure according to a predetermined procedure. After depressurization, the rubber is taken out from the CIP device to wipe off moisture on the surface, the stopper is opened, and the powder compact is taken out.
  • CIP Cold Isostatic Pressing
  • the powder compact is sintered at 2000 ° C. or higher for 20 hours in a batch type or continuous hydrogen sintering furnace.
  • a higher temperature and longer sintering treatment is preferable for improving the sintered density.
  • the sintered material is a plate-like sintered body having a thickness of 30 mm, a width of 300 mm, a length of 300 mm, and a weight of about 28 kg.
  • the crucible shape is formed by sintering, Is a crucible-shaped sintered body.
  • the theoretical density ratio of the obtained sintered body is 95% or more. This is because if the theoretical density ratio is 95% or more, the densification of the powder particles proceeds, or the high-density strength is improved by high densification due to plastic deformation, and the erosion resistance is further improved.
  • the theoretical density ratio here means a value obtained by measurement by the Archimedes method. In the case of an as-sintered crucible (a crucible without surface polishing), the crucible is completed here.
  • the above-described hot-rolled material has an oxidized surface and is covered with a light yellow or dark oxide. Therefore, after reducing the surface oxide at a temperature of 900 ° C. using a hydrogen reduction furnace, this is dissolved and removed with a strong acid to form the surface of the metal background.
  • the rolled sheet is cut by an appropriate cutting method such as discharge wire cutting or plasma cutting to obtain a disk-shaped blank for drawing.
  • the crucible 1 for growing a sapphire single crystal is composed of molybdenum, tungsten, or an alloy of molybdenum and tungsten and an inevitable impurity, and includes a cylindrical portion 3 and one end portion of the cylindrical portion 3.
  • the inner portion 5a of the R portion 5 has a flat bottom 7 which is integrally provided through the R portion 5 without a joint, and the inner angle dimension 5a of the R portion 5 is 20 mm or more and 40 mm or less.
  • the crucible 1 for growing a sapphire single crystal has a structure capable of suppressing mixing of crucible components into the dissolved sapphire.
  • Example 1 An attempt was made to produce a crucible 1 for growing a sapphire single crystal of a 9 MW alloy (theoretical density: 10.70 g / cm 3 ) by sintering.
  • the specific procedure is as follows.
  • the inside of the rubber was evacuated for about 30 minutes to confirm that there was no air leak.
  • the rubber surface was washed with water to remove the adhering powders, and then inserted into a CIP apparatus and subjected to hydrostatic pressure. After holding at a pressure of 2 ton / cm 2 for about 10 minutes, the pressure was released and the CIP molding operation was completed. After removing the rubber from the CIP apparatus and wiping and removing the moisture on the surface, the stopper was removed and opened. Thereafter, a crucible-shaped tungsten-molybdenum mixed powder molded body was taken out from the rubber, and burrs and protrusions were removed by sanding or the like.
  • the molded body is inserted into a hydrogen sintering furnace, sintered at 2000 ° C. for 20 hours, and a tungsten-molybdenum alloy sintered crucible material having a specific gravity of about 10.2 (theoretical density ratio of about 95%).
  • the sintered crucible material was made into the required shape and dimensions by cutting such as a lathe.
  • the obtained crucible was placed in a wet blasting apparatus, and surface treatment was performed by spraying alumina abrasive grains (particle size 100 mesh) on the inner and outer surfaces. Thereafter, the abrasive grains remaining on the crucible surface were removed with jet water and dried. Furthermore, after the dried crucible is placed in the electrolyte bath and filled with the electrolyte solution, a negative electrode material is placed in the electrolyte solution inside the crucible, and electrical connection is made so that the crucible becomes a positive electrode. Applied to start electropolishing. After processing for about 1 hour, the connection was removed, the electrode was removed, the chemical solution was discharged, and the crucible was taken out from the liquid bath. Further, the crucible was placed in a neutralization chemical solution tank and neutralized with the adhering chemical solution, and then washed with water, washed with hot water and dried to finish a product crucible.
  • alumina abrasive grains particle size 100 mesh
  • a 7 MW alloy (theoretical density of 11.88 g / cm 3 ) crucible and a 5 MW (theoretical density of 13.35 g / cm 3 ) crucible can be manufactured in the same procedure. Further, by using pure tungsten and pure molybdenum as raw materials, a tungsten crucible and molybdenum can be obtained in the same manner.
  • Example 2 A 9 MW alloy crucible having an opening diameter of 300 mm, a height of 300 mm, and a thickness of 10 mm was manufactured by a spatula drawing. The specific procedure is as follows.
  • a mixed powder was prepared in the same manner as in Example 1.
  • CIP molding was performed on the mixed powder.
  • a blank material is produced by performing plastic working such as rolling on the molded body after sintering.
  • the other conditions were the same as in Example 1.
  • sintering was performed in the same manner as in Example 1 to obtain a sintered alloy sintered material for rolling (theoretical density ratio: about 95%) having a thickness of 30 mm, a length and width of 370 mm, and a specific gravity of about 10.2.
  • the sintered material was rolled using a four-high rolling mill for hot rolling.
  • the size of the blank material necessary for molding into a crucible having an opening diameter of 300 mm, a height of 300 mm, and a thickness of 10 mm was set to a thickness of 12 mm and a diameter of 550 mm, and was executed based on a rolling schedule.
  • a sintered body heated to 1400 ° C. in a hydrogen furnace is rolled out to about 570 mm and hot-rolled, then the rolling direction is changed, and finally the heating temperature is lowered appropriately to 800 ° C.
  • Unidirectional rolling was repeated to obtain a hot-rolled cross-rolled alloy sheet having a thickness of approximately 12 mm, a width of 570 mm, and a length of 570 mm.
  • the alloy plate whose surface is covered with a light yellow oxide is inserted into a hydrogen annealing furnace for annealing heat treatment maintained at 930 ° C., heated and maintained for about 30 minutes, and then placed in a hydrogen atmosphere cooling zone. It was moved, cooled to room temperature, and taken out of the furnace. After this treatment, the reduced surface deposits were dissolved and removed in strong acid, washed with water and dried to obtain an alloy plate with a flat alloy background.
  • a 5 MW alloy sheet obtained a rolled sheet having a theoretical density ratio of 98.9% (specific gravity: 13.20) and a purity of 99.9% by mass.
  • a blank material to be subjected to spatula drawing was cut out from the obtained rolled plate to a thickness of 12 mm and a diameter of 550 mm with a discharge wire cutting machine.
  • This blank material is applied to the portion corresponding to the bottom of the drawing type crucible attached to the spatula drawing machine, and the blank material is fixed with a push rod while taking out the center of rotation.
  • the drawing die / blank material / push bar integrated in series are simultaneously rotated, the blank material is heated to a red hot state of 600 ° C. to 700 ° C. with a burner. In this state, the roller (spar) was drawn out and formed into a crucible shape following the drawing die.
  • the phenomenon caused by the characteristics and quality of the blank material is caused by intragranular cracks that appear during the work to follow the dimensions and shape of the outer angle close to the bottom, and the opening at the time that is close to the end of processing.
  • intragranular cracks that appear during the work to follow the dimensions and shape of the outer angle close to the bottom, and the opening at the time that is close to the end of processing.
  • layered delamination and intergranular cracking are mainly caused by low blank material strength and crystal grain size.
  • the particle size is about 10 ⁇ m to 50 ⁇ m, the material strength is high and it can withstand deformation, but if it is a coarse particle of about 300 ⁇ m to 500 ⁇ m, it is too low to endure deformation and breaks.
  • the obtained crucible having an opening diameter of 300 mm and a height of 300 mm was inserted into a hydrogen annealing furnace for annealing and heat treatment, and the surface oxide film was reduced, followed by dissolution / removal of surface deposits in a strong acid solution. A rough crucible with an alloy background was obtained.
  • the above-mentioned sintered crucible material or rough crucible was set on a lathe and processed into a desired shape and size with a cutting blade to obtain a cutting finished crucible.
  • the crucible 1 for growing a sapphire single crystal using a spatula drawing process could be manufactured by the above procedure.
  • Example 3 In order to confirm the effect of reducing the erosion due to the alumina inside the wall, which is influenced by the inner angle dimension of the R portion 5, 9 MW alloy and pure molybdenum are used as materials, the opening diameter is 300 mm, and the height is the same as in Example 1.
  • a crucible with 300 mm, a thickness of 10 mm, and an internal angle dimension of the R portion 5 of 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm, respectively, is prepared for sapphire growth, and the degree of erosion is evaluated by measuring the coloration and thickness change did.
  • Sapphire growth was performed at 2150 ° C. using a sapphire growth apparatus, and sapphire growth was repeated 10 times.
  • the observation site of the thickness change was performed in a portion where the wall portion where the most erosion occurred was transferred to the R portion 5.
  • the size of the crucible before use was measured with a three-dimensional shape measuring instrument (Faro-Edge), and the crucible after 10 uses was broken at the time of disposal and measured with an optical microscope.
  • the inner surface of the crucible was subjected to the same electrolytic polishing treatment as in Example 1 and subjected to an erosion experiment.
  • the results are shown in Tables 1 and 2.
  • Table 1 shows the results when a 9 MW alloy was used as the crucible material
  • Table 2 shows the results when pure molybdenum was used.
  • the change in thickness and the presence or absence of coloring were the same as in the case of 20 mm.
  • the effective diameter of the obtained sapphire single crystal becomes small, and deterioration of the yield of sapphire becomes a problem.
  • Example 4 A 9 MW, 7 MW, and 5 MW alloy crucible with an inner angle dimension of the R portion 5 of 30 mm was manufactured in the same procedure as in Example 3.
  • an electrolytic polishing treatment was performed in the same procedure as described above.
  • the crucible was installed in a wet blasting apparatus, and alumina abrasive grains (particle size 100 mesh) were sprayed on the inner and outer surfaces to perform surface treatment. After blasting, the abrasive grains remaining on the crucible surface were removed with jet water and dried.
  • the electrolytic polishing conditions were the following two types A and B, respectively.
  • Condition A Voltage 35 V, current density 300 mA / cm 2 , polishing time 60 minutes
  • Condition B Voltage 35 V, current density 1300 mA / cm 2 , polishing time 30 minutes
  • a 9 MW alloy crucible in which the inner angle dimension of the R portion 5 was 30 mm was manufactured under the same conditions as the electrolytic polishing conditions: voltage 35V, current density 1500 mA / cm 2 , polishing time 30 minutes, and other conditions. .
  • the prepared crucible was used to dissolve sapphire using the same sapphire growing apparatus as in Example 3 and held at 2150 ° C. for 50 hours, and then the sapphire was taken out and the presence or absence of coloring was observed in the same manner as in Example 3. .
  • the obtained sapphire ingot was not colored and was a normal sapphire ingot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The problem addressed by the present invention is to provide a crucible that is for growing a sapphire monocrystal and that has a structure that can suppress the contamination of molten sapphire by crucible components. The crucible (1) for growing a sapphire monocrystal is configured from unavoidable impurities and molybdenum, tungsten, or an alloy of molybdenum and tungsten, and has a cylindrical tube shape having a cylindrical tube section (3) and a flat floor (7) provided integrally to one end of the cylindrical tube section (3) with an R section (5) therebetween.

Description

サファイア単結晶育成用坩堝およびサファイア単結晶育成方法Crucible for growing sapphire single crystal and method for growing sapphire single crystal
 本発明は、サファイア単結晶育成用坩堝およびサファイア単結晶育成方法に関する。 The present invention relates to a crucible for growing a sapphire single crystal and a method for growing a sapphire single crystal.
 サファイア単結晶は透過率と機械的特性に優れた材料であり、例えば光学材料として広く用いられたり、GaN育成用のエピタキシャル基板として更に多くの使用がなされたりするようになってきている。 Sapphire single crystal is a material excellent in transmittance and mechanical properties, and is widely used, for example, as an optical material, and has been increasingly used as an epitaxial substrate for GaN growth.
 このサファイア単結晶は、従来、イリジウム、タングステン、モリブデン等の坩堝を用いて、引きあげ法(Czochralski法、CZ法などとも言う)EFG(Edge-defined. Film-fed Growth)法やKyropoulos法を用いて種結晶から成長させることにより、得られていた。 This sapphire single crystal has been conventionally used by using a pulling method (also called Czochralski method, CZ method, etc.) EFG method (Edge-defined.fFilm-fed Growth) method or Kyropoulos method using a crucible made of iridium, tungsten, molybdenum or the like. It was obtained by growing from a seed crystal.
 一方で、近年はサファイアの歩留向上のために、サファイア単結晶が大型化しており、上述した引き上げ法においても坩堝をはじめ装置の大型化が図られている。 On the other hand, in recent years, sapphire single crystals have been increased in size to improve the yield of sapphire, and the crucible and other devices have been increased in size even in the above-described pulling method.
 そこで、このようなサファイア単結晶の大型化に対応可能な成長方法として、HEM(Heat Exchange Method)法も用いられるようになって来ている(非特許文献1)。 Therefore, the HEM (Heat-Exchange Method) method has come to be used as a growth method that can cope with an increase in the size of the sapphire single crystal (Non-patent Document 1).
 ここで、上記した坩堝材料のうち、モリブデンはイリジウム、タングステンと比較して安価であるため、坩堝の材料として広く用いられている(特許文献1)。 Here, among the crucible materials described above, molybdenum is widely used as a crucible material because it is less expensive than iridium and tungsten (Patent Document 1).
 一方で、サファイアの融点は2000℃を超えるため、モリブデンにタングステンを含有させたモリブデン-タングステン合金も用いられている(特許文献2~4)。 On the other hand, since the melting point of sapphire exceeds 2000 ° C., molybdenum-tungsten alloys in which tungsten is contained in molybdenum are also used (Patent Documents 2 to 4).
 なお、坩堝の底部と側部を連結する部分は、所定の内角寸法を持つR部が形成される場合がある(特許文献5、6)。 In addition, the R part which has a predetermined | prescribed internal angle dimension may be formed in the part which connects the bottom part and side part of a crucible (patent documents 5, 6).
特開2010-270345号公報JP 2010-270345 A 特開2011-127150号公報JP 2011-127150 A 特開2011-127839号公報JP 2011-127839 A 特許第3917208号明細書Japanese Patent No. 3917208 特開平11-169993号公報Japanese Patent Laid-Open No. 11-169993 特開2001-323302号公報JP 2001-323302 A
 しかしながら、上記文献記載の坩堝では、溶融したアルミナがモリブデンの結晶粒界を浸食し、その結果、数十μmからmmオーダーのモリブデン粒子が脱落してサファイア結晶の中に混入し、サファイア結晶の着色や、結晶性の悪化がもたらされる場合があった。 However, in the crucible described in the above document, molten alumina erodes the molybdenum crystal grain boundary, and as a result, molybdenum particles of the order of several tens of μm to mm fall off and enter the sapphire crystal, thereby coloring the sapphire crystal. In some cases, the crystallinity is deteriorated.
 本発明は上記課題に鑑みてなされたものであり、その目的は、溶解したサファイアへの坩堝成分の混入を抑制可能な構造のサファイア単結晶育成用坩堝を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a crucible for growing a sapphire single crystal having a structure capable of suppressing mixing of crucible components into dissolved sapphire.
 上記した課題を解決するため、本発明者は、溶解したサファイアへの坩堝成分の混入を抑制可能な坩堝に必要な条件について、特にサファイアと接触する坩堝内周面の形状について再度検討した。 In order to solve the above-mentioned problems, the present inventor examined again the conditions necessary for the crucible capable of suppressing the mixing of the crucible components into the melted sapphire, particularly the shape of the inner peripheral surface of the crucible in contact with sapphire.
 この際、本発明者は等厚円筒状の坩堝において、円筒部と平底部を連結するR部の形状に着目した。 At this time, the inventor of the present invention paid attention to the shape of the R portion that connects the cylindrical portion and the flat bottom portion in an equal-thickness cylindrical crucible.
 R部の形状は、坩堝を製造する際の加工性という観点からは、ある程度大きいほうが望ましい。 The shape of the R part is desirably larger to some extent from the viewpoint of workability when manufacturing a crucible.
 一方で、育成されたサファイア単結晶のうち、R部に対応する形状の部分は、寸法・形状が円筒部に対応する部分と異なるため、サファイア単結晶からウェハ等を切り出す際には廃棄される部分である。 On the other hand, of the grown sapphire single crystal, the portion corresponding to the R portion is different from the portion corresponding to the cylindrical portion in size and shape, and is therefore discarded when a wafer or the like is cut out from the sapphire single crystal. Part.
 そのため、サファイア単結晶育成用坩堝としては、従来はR部が極力小さい方が歩留まり良くサファイア単結晶を製造できると考えられていた。 Therefore, as a crucible for growing a sapphire single crystal, it has been conventionally considered that a sapphire single crystal can be manufactured with a high yield when the R portion is as small as possible.
 しかしながら、本発明者はさらに検討を重ねた結果、逆にR部をある程度大きくした所定の寸法とすることによって、溶解したサファイアへの坩堝成分の混入を抑制可能であり、歩留まりを向上させることが可能であることを見出し、本発明をするに至った。 However, as a result of further investigations, the present inventor can suppress the mixing of the crucible component into the melted sapphire by increasing the R portion to a certain size, and can improve the yield. The inventors have found that this is possible and have come to make the present invention.
 即ち、本発明の第1の態様は、モリブデンまたはタングステン、もしくはモリブデンとタングステンの合金と不可避不純物で構成され、円筒部と、前記円筒部の一方の端部にR部を介して一体となって設けられた平底と、を有する円筒状であり、前記R部の内角寸法が20mm以上、40mm以下である、サファイア単結晶育成用坩堝である。 That is, the first aspect of the present invention is composed of molybdenum or tungsten, or an alloy of molybdenum and tungsten, and inevitable impurities, and is integrated with the cylindrical portion and one end portion of the cylindrical portion via the R portion. A crucible for growing a sapphire single crystal, wherein the crucible has a flat bottom and an inner angle dimension of the R portion is 20 mm or more and 40 mm or less.
 本発明の第2の態様は、第1の態様に記載のサファイア単結晶育成用坩堝を用いたサファイア単結晶育成方法である。 A second aspect of the present invention is a sapphire single crystal growth method using the sapphire single crystal growth crucible described in the first aspect.
 本発明によれば、溶解したサファイアへの坩堝成分の混入を抑制可能な構造のサファイア単結晶育成用坩堝を提供することができる。 According to the present invention, it is possible to provide a crucible for growing a sapphire single crystal having a structure capable of suppressing mixing of crucible components into dissolved sapphire.
サファイア単結晶育成用坩堝1を示す断面図である。It is sectional drawing which shows the crucible 1 for sapphire single crystal growth. サファイア単結晶育成用坩堝1の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the crucible 1 for sapphire single crystal growth.
 以下、図面を参照して本発明に好適な実施形態を詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
 まず、図1を参照して本発明の実施形態に係るサファイア単結晶育成用坩堝1の形状について、説明する。 First, the shape of the sapphire single crystal growing crucible 1 according to the embodiment of the present invention will be described with reference to FIG.
 ここではサファイア単結晶育成用坩堝1として、CZ法やEFG法等を用いた単結晶育成用坩堝が例示されている。 Here, as the crucible 1 for growing a sapphire single crystal, a crucible for growing a single crystal using a CZ method, an EFG method or the like is illustrated.
 図1に示すように、サファイア単結晶育成用坩堝1は、円筒部3と、円筒部3の一方の端部にR部5を介して一体となってつなぎ目なしで設けられた平底7を有する等厚円筒状である。 As shown in FIG. 1, the crucible 1 for growing a sapphire single crystal has a cylindrical portion 3 and a flat bottom 7 that is integrally provided at one end of the cylindrical portion 3 with an R portion 5 without a joint. It is a uniform cylindrical shape.
 以下、サファイア単結晶育成用坩堝1を構成する部材の形状、組成、およびサファイア単結晶育成用坩堝1の製造方法について説明する。 Hereinafter, the shape and composition of the members constituting the crucible 1 for growing a sapphire single crystal and the method for producing the crucible 1 for growing a sapphire single crystal will be described.
<材料>
 サファイア単結晶育成用坩堝1を構成する材料としては、サファイア(アルミナ)溶融温度に耐え高温強度が高い金属材料として、モリブデン、タングステン、またはモリブデンとタングステンの合金が好適に用いられる。
<Material>
As a material constituting the sapphire single crystal growing crucible 1, molybdenum, tungsten, or an alloy of molybdenum and tungsten is preferably used as a metal material that can withstand the melting temperature of sapphire (alumina) and has high strength.
 モリブデンとタングステンの合金を用いる場合、タングステンとモリブデンは全率固溶型の合金ができる。合金の例としては、90質量%モリブデン-10質量%タングステン合金(略称9MW)、70質量%モリブデン-30質量%タングステン合金(7MW)、50質量%モリブデン-50質量%タングステン合金(5MW)等がある。 When an alloy of molybdenum and tungsten is used, tungsten and molybdenum can form a solid solution type alloy. Examples of alloys include 90 mass% molybdenum-10 mass% tungsten alloy (abbreviation 9 MW), 70 mass% molybdenum-30 mass% tungsten alloy (7 MW), 50 mass% molybdenum-50 mass% tungsten alloy (5 MW), and the like. is there.
 なお、モリブデンにタングステンを含有させる場合、合金化の効果が表れるために必要な最小のタングステン含有量は5質量%であるため、タングステン含有量は少なくとも5質量%以上であるのが望ましい。 When molybdenum is contained in molybdenum, the minimum tungsten content necessary for exhibiting the effect of alloying is 5% by mass. Therefore, the tungsten content is preferably at least 5% by mass.
 一方で、タングステン含有量が50質量%を越えると特性がタングステンに酷似してくるため、合金とする技術的意義が無くなる。そのため、合金量上限は50質量%である。 On the other hand, if the tungsten content exceeds 50% by mass, the characteristics are very similar to those of tungsten, so the technical significance of the alloy is lost. Therefore, the upper limit of the alloy amount is 50% by mass.
 また、上記材料の純度は99.9質量%以上で、残部は不可避不純物であるのが望ましい。これは、溶融サファイアの坩堝内面における浸食は避けられないが、このレベルの高純度材であればごくわずかの不純物汚染で済み、着色などの不具合は回避できるためである。 Also, the purity of the above material is preferably 99.9% by mass or more, and the remainder is inevitable impurities. This is because erosion of the molten sapphire on the inner surface of the crucible is unavoidable, but a high-purity material of this level requires very little impurity contamination, and problems such as coloring can be avoided.
 なお、ここでいう純度は、タングステン・モリブデン工業会規格(TMIAS)規格番号0001(タングステン粉及びモリブデン分析方法)に準拠する分析によるものである。 In addition, the purity here is based on the analysis based on tungsten-molybdenum industry association standard (TMIAS) standard number 0001 (tungsten powder and molybdenum analysis method).
<円筒部3および平底7>
 円筒部3は、育成するサファイア単結晶のウェハの直径に対応した内径(開口部径D)を有する。ウェハの直径としては4インチウエハ、6インチウエハが挙げられるが、これらのウエハサイズに対応するためには少なくとも坩堝の開口部径Dは200mmであるのが望ましい。また、将来的には開口部径が400mmの坩堝、更に開口部径が660mm坩堝の需要が生じると予測されているため、開口部径Dが200mm以上、660mm以下の範囲が想定される範囲である。 
 平底7は平坦な形状を有する底部である。
<Cylindrical part 3 and flat bottom 7>
The cylindrical portion 3 has an inner diameter (opening portion diameter D) corresponding to the diameter of the sapphire single crystal wafer to be grown. The diameter of the wafer includes a 4-inch wafer and a 6-inch wafer. In order to cope with these wafer sizes, it is desirable that at least the opening diameter D of the crucible is 200 mm. Further, in the future, it is predicted that a crucible having an opening diameter of 400 mm and a crucible having an opening diameter of 660 mm will be generated. Therefore, the opening diameter D is in a range where a range of 200 mm or more and 660 mm or less is assumed. is there.
The flat bottom 7 is a bottom portion having a flat shape.
 ここで、円筒部3および平底7は、厚さが5mm以上、15mm以下であるのが望ましい。これは、サファイアインゴットの重量は例えば、直径200mm、高さ200mmでは約25kg、直径300mm、高さ300mmでは約85kgとなるが、坩堝の強度増大には厚さを増すことが対策の一つであり、坩堝開口部径の拡大に伴い、厚さを増大する必要があるため、少なくとも5mm以上である必要があるためである。 Here, it is desirable that the cylindrical portion 3 and the flat bottom 7 have a thickness of 5 mm or more and 15 mm or less. For example, the weight of a sapphire ingot is about 25 kg for a diameter of 200 mm and a height of 200 mm, and about 85 kg for a diameter of 300 mm and a height of 300 mm. However, increasing the thickness of the crucible is one measure. This is because the thickness needs to be increased as the diameter of the crucible opening increases, so that it needs to be at least 5 mm.
 一方で、厚さを増大させると坩堝の重量が増加することとなり、例えば開口部径300mm、高さ300mm、厚さ15mmのモリブデン坩堝の重量は約55kgとなる。これ以上の重量では、結晶育成装置の耐荷重対策が大掛かりとなるので、厚さは15mm以下であるのが好ましい。 On the other hand, when the thickness is increased, the weight of the crucible increases. For example, the weight of a molybdenum crucible having an opening diameter of 300 mm, a height of 300 mm, and a thickness of 15 mm is about 55 kg. If the weight exceeds this value, the load-carrying countermeasures of the crystal growth apparatus become large, so the thickness is preferably 15 mm or less.
<R部5>
 R部5は円筒部3と平底7を連結する部分であり、坩堝の軸方向に平行な断面形状が円弧状を有している。
<R part 5>
The R portion 5 is a portion that connects the cylindrical portion 3 and the flat bottom 7, and the cross-sectional shape parallel to the axial direction of the crucible has an arc shape.
 上記の通り、本発明者は、R部5の内角寸法5a(円弧の半径)を所定の範囲とすることにより、溶解したサファイアへの坩堝成分の混入を抑制可能であることを見出した。 As described above, the present inventors have found that mixing the crucible component into the melted sapphire can be suppressed by setting the inner angle dimension 5a (arc radius) of the R portion 5 within a predetermined range.
 具体的には、R部5の内角寸法5aを20mm以上、40mm以下とすることにより、サファイア育成時にR部5を構成する金属粒子が脱落してサファイア結晶の中に混入することが抑制可能となる。 Specifically, by setting the inner angle dimension 5a of the R portion 5 to 20 mm or more and 40 mm or less, it is possible to suppress the metal particles constituting the R portion 5 from dropping out and mixing into the sapphire crystal during sapphire growth. Become.
 R部5の内角寸法5aを上記範囲とすることにより、溶解したサファイアへの坩堝成分の混入が抑制される理由については、以下のようなものが考えられる。 The reason why the crucible component is prevented from being mixed into the dissolved sapphire by setting the inner angle dimension 5a of the R portion 5 within the above range is considered as follows.
 即ち、坩堝中で溶融したサファイアは高温の流体であるが、R部5の内角寸法5aが20mm未満の場合、溶解中のサファイアの対流がスムーズでは無いため、R部5において、温度が他の部分よりも高くなる、所謂「熱溜り」が発生し、R部5の坩堝成分を構成する金属粒子が脱落してサファイア結晶の中に混入すると考えられる。 That is, sapphire melted in the crucible is a high-temperature fluid, but when the inner angle dimension 5a of the R portion 5 is less than 20 mm, the convection of sapphire during melting is not smooth, so the temperature in the R portion 5 is other than that. It is considered that a so-called “heat pool”, which is higher than the portion, occurs, and the metal particles constituting the crucible component of the R portion 5 drop off and enter the sapphire crystal.
 あるいはR部5の内角寸法5aが20mm未満の場合、R部5において対流が乱流となり、サファイア溶液の渦が他に比し激しくなり浸食を促進するものと考えられる。 Alternatively, when the inner angle dimension 5a of the R part 5 is less than 20 mm, the convection is turbulent in the R part 5 and the sapphire solution vortex becomes more intense than the others, which is considered to promote erosion.
 一方で、R部5の内角寸法5aを20mm以上とすることにより、熱溜が解消され、溶融サファイアの乱流が抑制されるため、溶解したサファイアへの坩堝成分の混入が抑制されるものと考えられる。 
 そのため、R部5の内角寸法5aは20mm以上であるのが望ましい。
On the other hand, by setting the inner angle dimension 5a of the R portion 5 to 20 mm or more, the heat accumulation is eliminated and the turbulent flow of the molten sapphire is suppressed, so that mixing of the crucible component into the dissolved sapphire is suppressed. Conceivable.
Therefore, it is desirable that the inner angle dimension 5a of the R portion 5 is 20 mm or more.
 なお、R部5の内角寸法5aが40mmを越えると、坩堝形状が平底ではなく丸底に近い形状となり、サファイア単結晶からウェハ等を切り出す際に廃棄される部分が増加し、歩留まりの悪化を招く上に、溶融サファイアの対流が平底の場合と変化してしまい、坩堝成分の混入が抑制できなくなる恐れがあるため、好ましくない。 If the internal angle dimension 5a of the R portion 5 exceeds 40 mm, the crucible shape becomes a shape close to a round bottom instead of a flat bottom, and the portion discarded when cutting a wafer or the like from a sapphire single crystal increases, resulting in a deterioration in yield. In addition, the convection of the molten sapphire is different from that of a flat bottom, and mixing of crucible components may not be suppressed, which is not preferable.
<表面形状>
 サファイア単結晶育成用坩堝1の表面形状は、溶解したサファイアへの坩堝成分の混入を抑制可能な形状であるのが望ましく、具体的にはサファイアと接触する内周がRy7μm以下、Ra1μm以下であるのが望ましい。
<Surface shape>
The surface shape of the sapphire single crystal growth crucible 1 is desirably a shape capable of suppressing the mixing of the crucible components into the melted sapphire. Specifically, the inner circumference in contact with sapphire is Ry 7 μm or less and Ra 1 μm or less. Is desirable.
 内周を当該範囲とすることにより、溶解したサファイアへの坩堝成分の混入を抑制可能となる。さらに、育成後のサファイア結晶表面が平滑となり、内部まで見通せるので、欠陥確認が容易となり、高品位の結晶を提供できるという効果も生じる。 と す る By making the inner circumference within the range, mixing of the crucible components into the dissolved sapphire can be suppressed. Furthermore, since the surface of the sapphire crystal after growth becomes smooth and can be seen through the inside, defects can be easily confirmed, and an effect that a high-quality crystal can be provided is also produced.
<H/D>
 本発明のサファイア単結晶育成用坩堝1において、坩堝高さ(H)と開口部径(D)の比率であるH/Dは1.4以下であるのが望ましい。これは、サファイア結晶育成の立場からは、背の高い坩堝がより大きなインゴットの作製に有利であるが、育成設備の設計・製作の観点からは、背の高い坩堝は、外部加熱構造・配置、坩堝の鉛直保持構造など、多くの課題を抱えることとなり、一方、坩堝作製の立場からは、坩堝形状への成型技術の制約が生じるためである。 
 そのため、H/Dは1.4が限度である。
<H / D>
In the crucible 1 for sapphire single crystal growth of the present invention, it is desirable that H / D, which is a ratio of the crucible height (H) and the opening diameter (D), is 1.4 or less. From the standpoint of sapphire crystal growth, a tall crucible is advantageous for the production of a larger ingot, but from the viewpoint of the design and production of growth equipment, a tall crucible has an external heating structure and arrangement, This is because there are many problems such as the vertical holding structure of the crucible, and on the other hand, from the standpoint of crucible production, there are restrictions on the molding technology into the crucible shape.
Therefore, the limit of H / D is 1.4.
<製造方法>
 サファイア単結晶育成用坩堝1の製造方法は、上記の形状、組成を有するサファイア単結晶育成用坩堝が製造できるものであれば、特に限定されるものではないが、以下のようなものを例示することができる。 
 以下、図2を参照して製造方法の一例を説明する。
<Manufacturing method>
The method for producing the sapphire single crystal growth crucible 1 is not particularly limited as long as the sapphire single crystal growth crucible having the above-mentioned shape and composition can be produced. Examples thereof are as follows. be able to.
Hereinafter, an example of the manufacturing method will be described with reference to FIG.
(S1:原料の用意)
 まず、坩堝の原料を用意する。 
 具体的には、サファイア単結晶育成用坩堝1の材料として、純モリブデンを用いる場合は、原料は、Fsss(Fisher Sub-Sieve Sizer)粒度で4~5μm、純度99.9質量%以上のモリブデン粉末を用いるのが望ましい。
(S1: Preparation of raw materials)
First, raw materials for the crucible are prepared.
Specifically, when pure molybdenum is used as the material for the sapphire single crystal growth crucible 1, the raw material is a molybdenum powder having an Fsss (Fisher Sub-Sieve Sizer) particle size of 4 to 5 μm and a purity of 99.9% by mass or more. It is desirable to use
 一方、タングステン-モリブデン合金を用いる場合、坩堝用原料としてFsss粒度で2~3μm、純度99.9質量%以上のタングステン粉末並びに、同じくFsss粒度で4~5μm、純度99.9質量%以上のモリブデン粉末を所望の合金重量比で計量する。合金品種としては、90質量%Mo-10質量%W(9MWと略称)、70質量%Mo-30質量%W(7MW)、50質量%Mo-50質量%W(5MW)が代表的である。 On the other hand, when a tungsten-molybdenum alloy is used, a tungsten powder having a Fsss particle size of 2 to 3 μm and a purity of 99.9% by mass or more as a raw material for the crucible, and a molybdenum having a Fsss particle size of 4 to 5 μm and a purity of 99.9% by mass or more. The powder is weighed at the desired alloy weight ratio. Typical alloy types are 90 mass% Mo-10 mass% W (abbreviated as 9 MW), 70 mass% Mo-30 mass% W (7 MW), 50 mass% Mo-50 mass% W (5 MW). .
 さらに、純タングステンを用いる場合は、原料はFsss粒度で2~3μm、純度99.9質量%以上のタングステン粉末を用いるのが望ましい。 Furthermore, when using pure tungsten, it is desirable to use a tungsten powder having a Fsss particle size of 2 to 3 μm and a purity of 99.9% by mass or more.
(S2:原料の混合)
 次に、サファイア単結晶育成用坩堝1の材料として、タングステン-モリブデン合金を用いる場合、計量された2種類の粉末を適当な装置(例えば、ボールミル、V型ミキサー、ダブルコーンミキサーなど)を用いて混合し、合金用原料粉末とする。
(S2: mixing of raw materials)
Next, when a tungsten-molybdenum alloy is used as the material for the sapphire single crystal growth crucible 1, the two kinds of measured powders are used with an appropriate apparatus (for example, a ball mill, a V-type mixer, a double cone mixer, etc.). Mix to make raw material powder for alloy.
 なお、サファイア単結晶育成用坩堝1の材料として、純モリブデンまたは純タングステンを用いる場合においては、原料を混合する必要は無い。 When pure molybdenum or pure tungsten is used as the material for the sapphire single crystal growth crucible 1, it is not necessary to mix the raw materials.
(S3:原料の成形)
 次に、原料粉末を所望する成形体の形状のラバー内に充填し、開放口を止め具でシールした後ラバー内を真空引きする。真空引きを終えた後、ラバーをCIP(Cold Isostatic Pressing、冷間等方圧加圧)装置内に装填し、所定の手順で水圧を掛けて成形を行う。除圧後、CIP装置内からラバーを取り出して表面の水気を拭き取り、止め具を開放し、粉末成形体を取り出す。
(S3: Raw material molding)
Next, the raw material powder is filled into a rubber having the shape of a desired molded body, the open port is sealed with a stopper, and then the rubber is evacuated. After the evacuation is completed, the rubber is loaded into a CIP (Cold Isostatic Pressing) apparatus and molded by applying water pressure according to a predetermined procedure. After depressurization, the rubber is taken out from the CIP device to wipe off moisture on the surface, the stopper is opened, and the powder compact is taken out.
(S4:原料の焼結)
 次に、粉末成形体をバッチ式或いは連続式水素焼結炉で、2000℃以上で20時間焼結する。より高温度、長時間の焼結処理が、焼結密度向上に好ましい。焼結素材は例えば、ヘラ絞りで坩堝形状を形成する場合は、厚さ30mm、幅300mm、長さ300mm、重量28kg程度の板状の焼結体であり、焼結で坩堝形状を形成する場合は、坩堝形状の焼結体である。
(S4: Raw material sintering)
Next, the powder compact is sintered at 2000 ° C. or higher for 20 hours in a batch type or continuous hydrogen sintering furnace. A higher temperature and longer sintering treatment is preferable for improving the sintered density. For example, when the crucible shape is formed with a spatula, the sintered material is a plate-like sintered body having a thickness of 30 mm, a width of 300 mm, a length of 300 mm, and a weight of about 28 kg. When the crucible shape is formed by sintering, Is a crucible-shaped sintered body.
 焼結の際には、得られる焼結体の理論密度比が95%以上であるのが望ましい。これは、理論密度比が95%以上であれば、粉末粒子の緻密化が進行し、あるいは塑性加工変形による高緻密化により高温強度が向上し、耐浸食性の向上が進むためである。なお、ここでいう理論密度比とはアルキメデス法による測定で得た値を意味する。 
 なお、焼結ままの坩堝(表面研磨を行わない坩堝)の場合、ここで坩堝が完成する。
In sintering, it is desirable that the theoretical density ratio of the obtained sintered body is 95% or more. This is because if the theoretical density ratio is 95% or more, the densification of the powder particles proceeds, or the high-density strength is improved by high densification due to plastic deformation, and the erosion resistance is further improved. The theoretical density ratio here means a value obtained by measurement by the Archimedes method.
In the case of an as-sintered crucible (a crucible without surface polishing), the crucible is completed here.
(S5:塑性加工)
 ヘラ絞りで坩堝形状を加工する場合は、以下のS5~S7に記載の加工を行う。 
 具体的には、まず、焼結により得た板状の焼結体に対し、板圧延を4段式熱間圧延機で行う。この熱間圧延による塑性加工工程において、ブランク材並びに絞り成型後の坩堝の品質を作り出す。この際、パススケジュール(落とし率、加熱温度×時間、通し方向など)に工夫を行うことで、更に理論密度比98%以上の絞り加工に好適な圧延材が得られる。
(S5: Plastic working)
When processing the crucible shape with a spatula drawing, the processing described in S5 to S7 below is performed.
Specifically, first, plate rolling is performed on a plate-like sintered body obtained by sintering with a four-stage hot rolling mill. In this plastic working process by hot rolling, the blank material and the quality of the crucible after drawing are created. At this time, a rolling material suitable for drawing with a theoretical density ratio of 98% or more can be obtained by devising the pass schedule (drop rate, heating temperature × time, threading direction, etc.).
(S6:表面酸化物除去処理)
 上記した熱間圧延を行った材料は表面が酸化し、薄黄色ないし浅黒い酸化物で覆われている。そのため、水素還元炉を用いて、温度900℃で表面の酸化物を還元した後、強酸によってこれを溶解除去し、金属地肌の表面とする。この圧延板を放電ワイヤカット或いはプラズマ切断など適宜の切断法で切断して、円盤状の絞り加工用ブランク材を得る。
(S6: Surface oxide removal treatment)
The above-described hot-rolled material has an oxidized surface and is covered with a light yellow or dark oxide. Therefore, after reducing the surface oxide at a temperature of 900 ° C. using a hydrogen reduction furnace, this is dissolved and removed with a strong acid to form the surface of the metal background. The rolled sheet is cut by an appropriate cutting method such as discharge wire cutting or plasma cutting to obtain a disk-shaped blank for drawing.
(S7:ヘラ絞り)
 次に、ブランク材を坩堝形状に加工するため、ヘラ絞りを行う。 
 具体的には、ヘラ絞り装置に金型をセットし、これにブランク材を押し当て、押し棒でブランク材を固定する。次に、この状態で金型、ブランク材、押し棒を一体回転させる。さらに、ブランク材を赤熱程度に大気中加熱しながら、ローラー(ヘラ)を繰り出してS6と同じ表面酸化物除去処理を行い、金属地肌の坩堝を得る。
(S7: Spatula stop)
Next, in order to process the blank material into a crucible shape, spatula drawing is performed.
Specifically, a mold is set on a spatula squeezing device, a blank material is pressed against this, and the blank material is fixed with a push bar. Next, in this state, the mold, the blank material, and the push rod are integrally rotated. Further, while heating the blank material in the air to the extent of red heat, the roller (spar) is drawn out and the same surface oxide removal treatment as that in S6 is performed to obtain a crucible with a metal background.
(S8:成形加工)
 得られた坩堝に対し、刃具類を用いて、製品寸法・形状に切削加工、研磨加工による仕上げ加工を行う。切削加工には旋盤、マシニングセンター等を使用する。
(S8: Molding process)
The obtained crucible is subjected to finishing processing by cutting and polishing into product dimensions and shapes using cutting tools. A lathe or machining center is used for cutting.
(S9:電解研磨処理)
 成形加工の際に表面に酸化変色を認めた場合、先ず、S6(表面酸化物除去処理)と同様の処理によって、金属地肌の表面を出す。その後、ブラスト処理を行い、電解研磨処理の下準備を行う。切削加工仕上げでは、バイト目などの模様が残るため、ブラスト処理を行う。ブラスト処理は乾式あるいは湿式いずれの処理でも同様な効果が得られる。電解研磨処理は坩堝内面に対してのみ実施する。このブラスト処理と電解研磨処理の結果、Ry7μm以下、Ra1μm以下の表面粗さの坩堝製品が完成する。
(S9: Electropolishing process)
When oxidative discoloration is recognized on the surface during the molding process, first, the surface of the metal background is brought out by the same treatment as S6 (surface oxide removal treatment). Thereafter, blasting is performed and preparation for electrolytic polishing is performed. In the cutting finish, a pattern such as bite remains, so blasting is performed. The same effect can be obtained by either dry or wet blasting. The electrolytic polishing process is performed only on the inner surface of the crucible. As a result of the blast treatment and the electropolishing treatment, a crucible product having a surface roughness of Ry 7 μm or less and Ra 1 μm or less is completed.
 なお、S8:成形加工で前記の表面粗さが得られた場合等は、ブラスト処理、電解研磨処理の片方あるいは両方の処理を省略しても良い。 
 以上がサファイア単結晶育成用坩堝1の製造方法の一例である。
S8: When the surface roughness is obtained by molding, one or both of the blasting process and the electrolytic polishing process may be omitted.
The above is an example of the manufacturing method of the crucible 1 for sapphire single crystal growth.
 このように、本実施形態によれば、サファイア単結晶育成用坩堝1は、モリブデンまたはタングステン、もしくはモリブデンとタングステンの合金と不可避不純物で構成され、円筒部3と、円筒部3の一方の端部にR部5を介して一体となってつなぎ目なしで設けられた平底7を有する等厚円筒状であり、R部5の内角寸法5aが20mm以上、40mm以下である。 Thus, according to the present embodiment, the crucible 1 for growing a sapphire single crystal is composed of molybdenum, tungsten, or an alloy of molybdenum and tungsten and an inevitable impurity, and includes a cylindrical portion 3 and one end portion of the cylindrical portion 3. The inner portion 5a of the R portion 5 has a flat bottom 7 which is integrally provided through the R portion 5 without a joint, and the inner angle dimension 5a of the R portion 5 is 20 mm or more and 40 mm or less.
 そのため、サファイア単結晶育成用坩堝1は溶解したサファイアへの坩堝成分の混入を抑制可能な構造である。 Therefore, the crucible 1 for growing a sapphire single crystal has a structure capable of suppressing mixing of crucible components into the dissolved sapphire.
 以下、実施例に基づき、本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically based on examples.
(実施例1)
 焼結により9MW合金(理論密度:10.70g/cm)のサファイア単結晶育成用坩堝1の製造を試みた。具体的な手順は以下の通りである。
(Example 1)
An attempt was made to produce a crucible 1 for growing a sapphire single crystal of a 9 MW alloy (theoretical density: 10.70 g / cm 3 ) by sintering. The specific procedure is as follows.
 まず、原料としてFsss粒度2.3μm、純度99.9質量%のタングステン粉末4.2kgと、Fsss粒度4.3μm、純度99.9質量%のモリブデン粉末37.8kgを秤量し、V型ミキサーで1時間混合して、タングステンーモリブデン混合粉末42kgを得た。 First, 4.2 kg of tungsten powder having an Fsss particle size of 2.3 μm and a purity of 99.9% by mass and 37.8 kg of molybdenum powder having an Fsss particle size of 4.3 μm and a purity of 99.9% by mass were measured using a V-type mixer. By mixing for 1 hour, 42 kg of tungsten-molybdenum mixed powder was obtained.
 次に、坩堝成形用ラバーの中心に金属製の中子をセットし、ラバーと中子の間の空間に上記タングステンーモリブデン混合粉末を充填し、さらに中子の上端部を厚く覆うようにさらに混合粉末を充填した。 Next, set a metal core in the center of the rubber for crucible molding, fill the space between the rubber and the core with the tungsten-molybdenum mixed powder, and further cover the upper end of the core thickly The mixed powder was filled.
 止め具を使ってラバーをシールした後、ラバー内を約30分間真空引きして空気漏れがないことを確認した。このラバー表面を水洗浄して付着粉末類を除去した後、CIP装置内に挿入し、静水圧をかけた。圧力2ton/cmで約10分間保持した後、除圧し、CIP成型作業を終えた。CIP装置内からラバーを取り出し、表面の水分を拭き取り・除去した後、止め具を外し開放した。その後、ラバーから坩堝形状のタングステンーモリブデン混合粉末成型体を取り出し、バリや突起をヤスリがけなどにより除去した。 After sealing the rubber with a stopper, the inside of the rubber was evacuated for about 30 minutes to confirm that there was no air leak. The rubber surface was washed with water to remove the adhering powders, and then inserted into a CIP apparatus and subjected to hydrostatic pressure. After holding at a pressure of 2 ton / cm 2 for about 10 minutes, the pressure was released and the CIP molding operation was completed. After removing the rubber from the CIP apparatus and wiping and removing the moisture on the surface, the stopper was removed and opened. Thereafter, a crucible-shaped tungsten-molybdenum mixed powder molded body was taken out from the rubber, and burrs and protrusions were removed by sanding or the like.
 次に、この成型体を水素焼結炉中に挿入し、2000℃で20時間の焼結を行い、比重約10.2(理論密度比約95%)のタングステン-モリブデン合金製焼結坩堝素材を得た。さらに、この焼結上がり坩堝素材を旋盤などの切削加工により所要の形状寸法とした。 Next, the molded body is inserted into a hydrogen sintering furnace, sintered at 2000 ° C. for 20 hours, and a tungsten-molybdenum alloy sintered crucible material having a specific gravity of about 10.2 (theoretical density ratio of about 95%). Got. Furthermore, the sintered crucible material was made into the required shape and dimensions by cutting such as a lathe.
 次に、得られた坩堝を湿式ブラスト処理装置に設置し、アルミナ砥粒(粒度100メッシュ)を内外面に吹きつけて面処理を行った。その後、坩堝表面に残った砥粒を噴流水で除去し、乾燥させた。さらに、乾燥後の坩堝を電解液浴槽に設置し、電解薬液を充満した後、坩堝内側の電解薬液中にマイナス極の電極材を配置し、坩堝がプラス極に成るよう電気結線し、電圧を印加し電解研磨を開始した。約1時間処理した後、結線を外し、電極を除去し、薬液を排出し、坩堝を液浴槽から取り出した。さらに、坩堝を中和薬液槽に入れ、付着薬液と中和させた後、水洗・湯洗・乾燥し製品坩堝に仕上げた。 Next, the obtained crucible was placed in a wet blasting apparatus, and surface treatment was performed by spraying alumina abrasive grains (particle size 100 mesh) on the inner and outer surfaces. Thereafter, the abrasive grains remaining on the crucible surface were removed with jet water and dried. Furthermore, after the dried crucible is placed in the electrolyte bath and filled with the electrolyte solution, a negative electrode material is placed in the electrolyte solution inside the crucible, and electrical connection is made so that the crucible becomes a positive electrode. Applied to start electropolishing. After processing for about 1 hour, the connection was removed, the electrode was removed, the chemical solution was discharged, and the crucible was taken out from the liquid bath. Further, the crucible was placed in a neutralization chemical solution tank and neutralized with the adhering chemical solution, and then washed with water, washed with hot water and dried to finish a product crucible.
 なお、粉末混合比を変えることにより、7MW合金(理論密度11.88g/cm)坩堝、5MW(理論密度13.35g/cm)坩堝も同様の手順で作製することが可能である。また原料を純タングステン、純モリブデンとすることにより、タングステン坩堝、モリブデンも同様の方法で得ることができる。 By changing the powder mixing ratio, a 7 MW alloy (theoretical density of 11.88 g / cm 3 ) crucible and a 5 MW (theoretical density of 13.35 g / cm 3 ) crucible can be manufactured in the same procedure. Further, by using pure tungsten and pure molybdenum as raw materials, a tungsten crucible and molybdenum can be obtained in the same manner.
(実施例2)
 開口部径300mm、高さ300mm、厚さ10mmの9MW合金坩堝をヘラ絞りにより製作した。具体的な手順は以下の通りである。
(Example 2)
A 9 MW alloy crucible having an opening diameter of 300 mm, a height of 300 mm, and a thickness of 10 mm was manufactured by a spatula drawing. The specific procedure is as follows.
 まず、実施例1と同様に混合した粉末を用意した。次に、混合した粉末にCIP成型を行った、ここで、ヘラ絞り工法の場合、焼結後の成型体に圧延等の塑性加工を施すことによりブランク材を作製するため、平板成型用ラバーを用い、他の条件は実施例1と同様とした。次に、実施例1と同様焼結を施し厚さ30mm、縦横370mm、比重約10.2の圧延用合金焼結素材(理論密度比約95%)を得た。 First, a mixed powder was prepared in the same manner as in Example 1. Next, CIP molding was performed on the mixed powder. Here, in the case of the spatula drawing method, a blank material is produced by performing plastic working such as rolling on the molded body after sintering. The other conditions were the same as in Example 1. Next, sintering was performed in the same manner as in Example 1 to obtain a sintered alloy sintered material for rolling (theoretical density ratio: about 95%) having a thickness of 30 mm, a length and width of 370 mm, and a specific gravity of about 10.2.
 なお、粉末混合比を変えることにより、7MW合金(理論密度11.88g/cm)坩堝、5MW(理論密度13.35g/cm)坩堝も同様の手順で作製し、理論密度比約95%の圧延用合金焼結素材を得た。タングステン坩堝用ブランク材、モリブデン用ブランク材も同様の方法で得ることができる。 By changing the powder mixing ratio, a 7 MW alloy (theoretical density 11.88 g / cm 3 ) crucible and a 5 MW (theoretical density 13.35 g / cm 3 ) crucible were prepared in the same procedure, and the theoretical density ratio was about 95%. An alloy sintered material for rolling was obtained. A blank material for tungsten crucible and a blank material for molybdenum can be obtained in the same manner.
 次に、焼結素材に熱間圧延用4段圧延機を利用して圧延を行った。この際、開口部径300mm、高さ300mm、厚さ10mmの坩堝に成型するのに必要なブランク材のサイズを厚さ12mm、直径550mmに設定し、圧延スケジュールに基づき実行した。先ず、水素炉内で1400℃に加熱した焼結体を約570mmに板幅だし熱間圧延を行い、その後圧延方向を変更し、適宜加熱温度を低下させながら最終的には800℃の加熱で一方向圧延を繰り返して大略、厚さ12mm、幅570mm、長さ570mmの熱間圧延仕上げのクロス圧延合金板を得た。 Next, the sintered material was rolled using a four-high rolling mill for hot rolling. At this time, the size of the blank material necessary for molding into a crucible having an opening diameter of 300 mm, a height of 300 mm, and a thickness of 10 mm was set to a thickness of 12 mm and a diameter of 550 mm, and was executed based on a rolling schedule. First, a sintered body heated to 1400 ° C. in a hydrogen furnace is rolled out to about 570 mm and hot-rolled, then the rolling direction is changed, and finally the heating temperature is lowered appropriately to 800 ° C. Unidirectional rolling was repeated to obtain a hot-rolled cross-rolled alloy sheet having a thickness of approximately 12 mm, a width of 570 mm, and a length of 570 mm.
 なお、加熱温度を低下させながら圧延を行う理由は、圧延加工中に生じる再結晶現象を防止するためである。次に、表面が薄黄色の酸化物で覆われたこの合金板を、930℃に保持した焼鈍加熱処理用水素アニール炉内へ挿入し、約30分間加熱保持した後、水素雰囲気冷却ゾーン内に移動させて室温まで冷却し、炉外に取り出した。この処理を施した後、還元された表面付着物の溶解・除去処理を強酸中で行い、水洗、乾燥し、合金地肌の平らな合金板を得た。 The reason why rolling is performed while lowering the heating temperature is to prevent a recrystallization phenomenon that occurs during rolling. Next, the alloy plate whose surface is covered with a light yellow oxide is inserted into a hydrogen annealing furnace for annealing heat treatment maintained at 930 ° C., heated and maintained for about 30 minutes, and then placed in a hydrogen atmosphere cooling zone. It was moved, cooled to room temperature, and taken out of the furnace. After this treatment, the reduced surface deposits were dissolved and removed in strong acid, washed with water and dried to obtain an alloy plate with a flat alloy background.
 ここで、この合金板の密度、純度を調査するために、厚さ12mm、縦横10mmの端材を放電ワイヤカット機で切り出して測定に供したところ、理論密度比99.1%(比重10.60)、純度99.9質量%であった。 Here, in order to investigate the density and purity of this alloy plate, an end material having a thickness of 12 mm and a length and width of 10 mm was cut out by a discharge wire cutting machine and subjected to measurement. As a result, a theoretical density ratio of 99.1% (specific gravity of 10. 60) and the purity was 99.9% by mass.
 また、7MW合金板も同様の手順で作製した結果、理論密度比99.5%(比重11.82)、純度99.9質量%の圧延板を得た。 Further, as a result of producing a 7 MW alloy plate in the same procedure, a rolled plate having a theoretical density ratio of 99.5% (specific gravity of 11.82) and a purity of 99.9% by mass was obtained.
 同じく5MW合金板は理論密度比98.9%(比重13.20)、純度99.9質量%の圧延板を得た。 Similarly, a 5 MW alloy sheet obtained a rolled sheet having a theoretical density ratio of 98.9% (specific gravity: 13.20) and a purity of 99.9% by mass.
 また、純タングステンを用いた場合は、理論密度比98.9%(比重19.09、純度99.9質量%、)の圧延板を得た。 In addition, when pure tungsten was used, a rolled plate having a theoretical density ratio of 98.9% (specific gravity 19.09, purity 99.9% by mass) was obtained.
 さらに、純モリブデンを用いた場合は、理論密度比99.1%(比重10.11)、純度99.9質量%の圧延板を得た。 Furthermore, when pure molybdenum was used, a rolled sheet having a theoretical density ratio of 99.1% (specific gravity of 10.11) and a purity of 99.9% by mass was obtained.
 次に、得られた圧延板から、ヘラ絞り加工に供するブランク材を厚さ12mm、直径550mmに放電ワイヤカット機で切り出した。このブランク材をヘラ絞り加工機に取り付けた絞り型の坩堝底部に相当する部分にあてがい、回転中心を出しながら押し棒でブランク材を固定する。直列に一体化させた絞り型/ブランク材/押し棒を同時に回転させながら、ブランク材をバーナーで600℃~700℃の赤熱状態に加熱する。その状態でローラー(ヘラ)を繰り出して、絞り金型に倣わせながら坩堝形状に成形した。 Next, a blank material to be subjected to spatula drawing was cut out from the obtained rolled plate to a thickness of 12 mm and a diameter of 550 mm with a discharge wire cutting machine. This blank material is applied to the portion corresponding to the bottom of the drawing type crucible attached to the spatula drawing machine, and the blank material is fixed with a push rod while taking out the center of rotation. While the drawing die / blank material / push bar integrated in series are simultaneously rotated, the blank material is heated to a red hot state of 600 ° C. to 700 ° C. with a burner. In this state, the roller (spar) was drawn out and formed into a crucible shape following the drawing die.
 ヘラ絞り加工時に発生する不良のうちブランク材の特性・品質に起因する事象は、底部に近い外角の寸法・形状に倣わせる作業中に現れる粒内割れと、加工終了に間近い時期に開口部に現れる層状の剥離と粒界割れである。これらの発生原因は低いブランク材料強度、結晶粒のサイズが主である。材料強度を高めるためには粉末焼結材料への塑性加工を強度に行って密度を上げることで達成できる。結晶サイズの影響としては、10μm~50μm程度の細粒であれば材料強度は高く変形に耐えるが、300μm~500μm程度の粗大粒であると低いために変形に耐えられず破壊してしまう。 Among the defects that occur during spatula drawing, the phenomenon caused by the characteristics and quality of the blank material is caused by intragranular cracks that appear during the work to follow the dimensions and shape of the outer angle close to the bottom, and the opening at the time that is close to the end of processing. Are layered delamination and intergranular cracking. These are mainly caused by low blank material strength and crystal grain size. In order to increase the material strength, it can be achieved by increasing the density by performing plastic working on the powder sintered material to the strength. As for the influence of crystal size, if the particle size is about 10 μm to 50 μm, the material strength is high and it can withstand deformation, but if it is a coarse particle of about 300 μm to 500 μm, it is too low to endure deformation and breaks.
 得られた開口部径300mm、高さ300mmの坩堝を焼鈍加熱処理用水素アニール炉内へ挿入し、表面酸化膜の還元処理を行い、続いて表面付着物の溶解・除去処理を強酸液中で行い、合金地肌の粗坩堝を得た。 The obtained crucible having an opening diameter of 300 mm and a height of 300 mm was inserted into a hydrogen annealing furnace for annealing and heat treatment, and the surface oxide film was reduced, followed by dissolution / removal of surface deposits in a strong acid solution. A rough crucible with an alloy background was obtained.
 上記の焼結上がり坩堝素材あるいは粗坩堝を旋盤などにセットし、切削刃具により所望の形状、サイズに加工し、切削仕上げの坩堝を得た。 The above-mentioned sintered crucible material or rough crucible was set on a lathe and processed into a desired shape and size with a cutting blade to obtain a cutting finished crucible.
 以上の手順により、ヘラ絞り加工を用いたサファイア単結晶育成用坩堝1を製造できた。 The crucible 1 for growing a sapphire single crystal using a spatula drawing process could be manufactured by the above procedure.
(実施例3)
 R部5の内角寸法が及ぼす壁内側のアルミナによる浸食の低減効果を確認するために、実施例1と同様の条件にて、9MW合金および純モリブデンを材料とし、開口部径が300mm、高さ300mm、厚さ10mm、R部5の内角寸法がそれぞれ10mm、20mm、30mm、40mm、50mmの坩堝を作製し、サファイア育成に供して浸食の度合いを着色と厚さ変化を測定することにより、評価した。
(Example 3)
In order to confirm the effect of reducing the erosion due to the alumina inside the wall, which is influenced by the inner angle dimension of the R portion 5, 9 MW alloy and pure molybdenum are used as materials, the opening diameter is 300 mm, and the height is the same as in Example 1. A crucible with 300 mm, a thickness of 10 mm, and an internal angle dimension of the R portion 5 of 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm, respectively, is prepared for sapphire growth, and the degree of erosion is evaluated by measuring the coloration and thickness change did.
 サファイアの育成はサファイア育成装置を利用して、2150℃で行い、サファイアの育成を10回繰り返した。 Sapphire growth was performed at 2150 ° C. using a sapphire growth apparatus, and sapphire growth was repeated 10 times.
 厚さ変化の観察部位は浸食が最も多い壁鉛直部からR部5に移行する部分において行った。使用前の坩堝のサイズは三次元形状測定器(Faro-Edge)で計測し、10回使用後の坩堝については、廃却時に破断して、光学顕微鏡によって測定した。 The observation site of the thickness change was performed in a portion where the wall portion where the most erosion occurred was transferred to the R portion 5. The size of the crucible before use was measured with a three-dimensional shape measuring instrument (Faro-Edge), and the crucible after 10 uses was broken at the time of disposal and measured with an optical microscope.
 また、着色の評価は、本来透明であるサファイアに坩堝成分が混入すると、微灰黒色、灰黒色への変色が観察されることから、育成後のサファイアが透明である場合に着色が「正常」であると判断し、変色が認められた場合は坩堝成分が混入したものと判断した。 In addition, in the evaluation of coloring, when a crucible component is mixed in sapphire that is originally transparent, discoloration to a slightly grayish black or grayish black color is observed, so coloring is normal when the grown sapphire is transparent When discoloration was observed, it was determined that the crucible component was mixed.
 なお、坩堝内面は実施例1と同様の電解研磨処理を行って浸食実験に供した。結果を表1および表2に示す。なお、表1は坩堝材料として9MW合金を用いた場合を、表2は純モリブデンを用いた場合の結果である。 The inner surface of the crucible was subjected to the same electrolytic polishing treatment as in Example 1 and subjected to an erosion experiment. The results are shown in Tables 1 and 2. Table 1 shows the results when a 9 MW alloy was used as the crucible material, and Table 2 shows the results when pure molybdenum was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2から明らかなように、R部5の内角寸法が10mmの場合、他の寸法の場合と比較して使用後の坩堝のR部5の厚さが大きく減少しており、育成したサファイアにも着色が認められた。そのため、R部5が侵食され、サファイア中に坩堝成分が混入したものと考えられる。 As is clear from Tables 1 and 2, when the inner angle dimension of the R part 5 is 10 mm, the thickness of the R part 5 of the crucible after use is greatly reduced as compared with other dimensions. The sapphire was also colored. Therefore, it is considered that the R portion 5 was eroded and the crucible component was mixed in sapphire.
 一方で、R部5の内角寸法が20mmの場合、使用前後のR部5の厚さに大きな変化がなく、着色も認められなかった。 On the other hand, when the inner angle dimension of the R portion 5 was 20 mm, there was no significant change in the thickness of the R portion 5 before and after use, and no coloring was observed.
 なお、R部5の内角寸法を20mm以上にした場合、厚さの変化も着色の有無も、20mmの場合と変わらなかった。ただし、50mmの場合、前述のように、得られたサファイア単結晶の有効直径が小さくなりサファイアの歩留まりの悪化が問題となる。 In addition, when the inner angle dimension of the R portion 5 was 20 mm or more, the change in thickness and the presence or absence of coloring were the same as in the case of 20 mm. However, in the case of 50 mm, as described above, the effective diameter of the obtained sapphire single crystal becomes small, and deterioration of the yield of sapphire becomes a problem.
 なお、7MW合金、5MW合金、純タングステンにおいても同様な結果が得られた。 In addition, the same result was obtained also in 7MW alloy, 5MW alloy, and pure tungsten.
 そのため、R部5の内角寸法を20mm以上とすることにより、R部5の侵食を防ぐことができ、サファイア中に坩堝成分が混入するのを抑制可能であることが分かった。 Therefore, it was found that by setting the inner angle dimension of the R portion 5 to 20 mm or more, the erosion of the R portion 5 can be prevented, and mixing of crucible components into sapphire can be suppressed.
(実施例4)
 実施例3と同様の手順でR部5の内角寸法が30mmの9MW、7MW、5MW合金製坩堝を製作した。内面の面粗さがサファイア着色に及ぼす影響を調査するために、上述と同じ手順で電解研磨処理を行った。坩堝を湿式ブラスト処理装置に設置し、アルミナ砥粒(粒度100メッシュ)を内外面に吹きつけて面処理を行った。ブラスト終了後は、坩堝表面に残った砥粒を噴流水で除去し、乾燥した。
Example 4
A 9 MW, 7 MW, and 5 MW alloy crucible with an inner angle dimension of the R portion 5 of 30 mm was manufactured in the same procedure as in Example 3. In order to investigate the influence of the surface roughness on the sapphire coloring, an electrolytic polishing treatment was performed in the same procedure as described above. The crucible was installed in a wet blasting apparatus, and alumina abrasive grains (particle size 100 mesh) were sprayed on the inner and outer surfaces to perform surface treatment. After blasting, the abrasive grains remaining on the crucible surface were removed with jet water and dried.
 次に、坩堝を電解液浴槽に設置し、電解薬液を充填した後、坩堝内側の電解薬液中にマイナス極の電極材を配置し、坩堝がプラス極に成るよう電気結線し、電圧を印加し電解研磨を開始する。約1時間処理した後、結線を外し、電極を除去し、薬液を排出し、坩堝を液浴槽から取り出す。坩堝を中和薬液槽に入れ、付着薬液と中和させた後、水洗・湯洗・乾燥した。 Next, after installing the crucible in the electrolyte bath and filling the electrolyte solution, place a negative electrode material in the electrolyte solution inside the crucible, make electrical connection so that the crucible becomes a positive electrode, and apply voltage. Start electropolishing. After processing for about 1 hour, the connection is removed, the electrode is removed, the chemical solution is discharged, and the crucible is taken out from the liquid bath. The crucible was placed in a neutralization chemical solution tank, neutralized with the adhering chemical solution, then washed with water, washed with hot water, and dried.
 電解研磨条件は以下のA、Bの2通りでそれぞれ行った。 
 条件A:電圧35V、電流密度300mA/cm、研磨時間60分
 条件B:電圧35V、電流密度1300mA/cm、研磨時間30分
The electrolytic polishing conditions were the following two types A and B, respectively.
Condition A: Voltage 35 V, current density 300 mA / cm 2 , polishing time 60 minutes Condition B: Voltage 35 V, current density 1300 mA / cm 2 , polishing time 30 minutes
 次に、比較例として、電解研磨条件を電圧35V、電流密度1500mA/cm、研磨時間30分とし、他の条件は同様として、R部5の内角寸法が30mmの9MW合金製坩堝を製作した。 Next, as a comparative example, a 9 MW alloy crucible in which the inner angle dimension of the R portion 5 was 30 mm was manufactured under the same conditions as the electrolytic polishing conditions: voltage 35V, current density 1500 mA / cm 2 , polishing time 30 minutes, and other conditions. .
 製作した坩堝を用いて実施例3と同様のサファイア育成装置を用いてサファイアを溶解し、2150℃で50時間保持した後、サファイアを取り出して、実施例3と同様に、着色の有無を観察した。 The prepared crucible was used to dissolve sapphire using the same sapphire growing apparatus as in Example 3 and held at 2150 ° C. for 50 hours, and then the sapphire was taken out and the presence or absence of coloring was observed in the same manner as in Example 3. .
 以上の結果を表3に示す。なお、表3における「本発明A」が条件Aで電解研磨を行った場合に該当し、「本発明B」が条件Bで電解研磨を行った場合に該当する。 The above results are shown in Table 3. Note that “Invention A” in Table 3 corresponds to the case where electrolytic polishing is performed under condition A, and “Invention B” corresponds to the case where electrolytic polishing is performed under condition B.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表面粗さ最大高さRyが7μm以下、算術平均粗さRaが1.0μm以下の場合、得られたサファイアインゴットには着色は認められず、正常なサファイアインゴットであった。 When the maximum surface roughness height Ry was 7 μm or less and the arithmetic average roughness Ra was 1.0 μm or less, the obtained sapphire ingot was not colored and was a normal sapphire ingot.
 以上、本発明を実施形態および実施例に基づき説明したが、本発明は上記した実施形態に限定されることはない。 As mentioned above, although this invention was demonstrated based on embodiment and an Example, this invention is not limited to above-described embodiment.
 当業者であれば、本発明の範囲内で各種変形例や改良例に想到するのは当然のことであり、これらも本発明の範囲に属するものと了解される。 It will be understood by those skilled in the art that various modifications and improvements are conceived within the scope of the present invention, and these are also within the scope of the present invention.
 本出願は、2013年3月21日に出願された、日本国特許出願第2013-57840号からの優先権を基礎として、その利益を主張するものであり、その開示はここに全体として参考文献として取り込む。 This application claims its benefit on the basis of priority from Japanese Patent Application No. 2013-57840 filed on March 21, 2013, the disclosure of which is hereby incorporated by reference in its entirety. Capture as.
1    :サファイア単結晶育成用坩堝
3    :円筒部
5    :R部
5a   :内角寸法
7    :平底
1: Crucible for sapphire single crystal growth 3: Cylindrical part 5: R part 5a: Inner angle dimension 7: Flat bottom

Claims (10)

  1.  モリブデンまたはタングステン、もしくはモリブデンとタングステンの合金と不可避不純物で構成され、
     円筒部と、前記円筒部の一方の端部にR部を介して一体となって設けられた平底と、を有する円筒状であり、
     前記R部の内角寸法が20mm以上、40mm以下である、サファイア単結晶育成用坩堝。
    Consists of molybdenum or tungsten, or an alloy of molybdenum and tungsten and inevitable impurities,
    A cylindrical portion having a cylindrical portion and a flat bottom integrally provided at one end of the cylindrical portion via an R portion;
    A crucible for growing a sapphire single crystal, wherein an inner angle dimension of the R portion is 20 mm or more and 40 mm or less.
  2.  前記円筒部は、開口部径が200mm以上、660mm以下である、請求項1に記載のサファイア単結晶育成用坩堝。 The crucible for growing a sapphire single crystal according to claim 1, wherein the cylindrical part has an opening diameter of 200 mm or more and 660 mm or less.
  3.  前記円筒部は等厚円筒状であり、
     前記平底は、前記円筒部の一方の端部にR部を介して一体となってつなぎ目なしで設けられる、請求項1または2に記載のサファイア単結晶育成用坩堝。
    The cylindrical portion is an equal thickness cylindrical shape,
    The crucible for growing a sapphire single crystal according to claim 1 or 2, wherein the flat bottom is integrally provided at one end of the cylindrical portion via an R portion without a joint.
  4.  タングステンを5質量%以上、50質量%以下含有するタングステンーモリブデン合金と不可避不純物で構成される、請求項1~3のいずれか一項に記載のサファイア単結晶育成用坩堝。 The crucible for growing a sapphire single crystal according to any one of claims 1 to 3, comprising a tungsten-molybdenum alloy containing 5 mass% or more and 50 mass% or less of tungsten and unavoidable impurities.
  5.  少なくとも内周の最大高さRyが7μm以下である、請求項1~4のいずれか一項に記載のサファイア単結晶育成用坩堝。 The crucible for growing a sapphire single crystal according to any one of claims 1 to 4, wherein at least the maximum height Ry of the inner circumference is 7 µm or less.
  6.  少なくとも内周の算術平均粗さRaが1μm以下である、請求項1~5のいずれか一項に記載のサファイア単結晶育成用坩堝。 6. The crucible for growing a sapphire single crystal according to any one of claims 1 to 5, wherein the arithmetic average roughness Ra of at least the inner circumference is 1 μm or less.
  7.  高さ/開口部径の比率が1.4以下である、請求項1~6のいずれか一項に記載のサファイア単結晶育成用坩堝。 The sapphire single crystal growth crucible according to any one of claims 1 to 6, wherein a ratio of height / opening diameter is 1.4 or less.
  8.  理論密度比95%以上、純度99.9質量%以上である、請求項1~7のいずれか一項に記載のサファイア単結晶育成用坩堝。 The sapphire single crystal growth crucible according to any one of claims 1 to 7, which has a theoretical density ratio of 95% or more and a purity of 99.9% by mass or more.
  9.  粉末焼結工法、或いはヘラ絞り工法によって成型された、請求項1~8のいずれか一項に記載のサファイア単結晶育成用坩堝。 The sapphire single crystal growth crucible according to any one of claims 1 to 8, which is formed by a powder sintering method or a spatula drawing method.
  10.  請求項1~9のいずれか一項に記載のサファイア単結晶育成用坩堝を用いたサファイア単結晶育成方法。 A sapphire single crystal growth method using the sapphire single crystal growth crucible according to any one of claims 1 to 9.
PCT/JP2014/053296 2013-03-21 2014-02-13 Crucible for growing sapphire monocrystal and method for growing sapphire monocrystal WO2014148156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528748A JP5650869B1 (en) 2013-03-21 2014-02-13 Crucible for growing sapphire single crystal and method for growing sapphire single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057840 2013-03-21
JP2013057840 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148156A1 true WO2014148156A1 (en) 2014-09-25

Family

ID=51579850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053296 WO2014148156A1 (en) 2013-03-21 2014-02-13 Crucible for growing sapphire monocrystal and method for growing sapphire monocrystal

Country Status (2)

Country Link
JP (1) JP5650869B1 (en)
WO (1) WO2014148156A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091581A (en) * 2015-08-20 2015-11-25 无锡中强电碳有限公司 Efficient graphite crucible
WO2022140806A1 (en) * 2020-12-29 2022-07-07 Fametec Gmbh Device for growing an artificially produced single crystal, in particular a sapphire single crystal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102187449B1 (en) * 2019-05-28 2020-12-11 에스케이씨 주식회사 PREPERATION METHOD FOR SiC INGOT, THE SiC INGOT AND A SYSTEM THEREOF
KR102276450B1 (en) 2019-10-29 2021-07-12 에스케이씨 주식회사 PREPERATION METHOD FOR SiC INGOT, PREPERATION METHOD FOR SiC WAFER AND A SYSTEM THEREOF
WO2021246542A1 (en) * 2020-06-02 2021-12-09 주식회사 쎄닉 Silicon carbide ingot manufacturing method, silicon carbide ingots, and growth system therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196570A (en) * 1996-01-19 1997-07-31 Tokyo Tungsten Co Ltd Molybdenum crucible and its manufacture method
JP2010270345A (en) * 2009-05-19 2010-12-02 Toshiba Corp Crucible made from molybdenum and method for manufacturing the same, and method for manufacturing sapphire single crystal
JP2011127150A (en) * 2009-12-15 2011-06-30 Toshiba Corp Crucible made of tungsten molybdenum alloy, method for producing it and method for producing sapphire single crystal
JP2011127839A (en) * 2009-12-17 2011-06-30 Toshiba Corp Crucible made of tungsten, method of manufacturing the same and method of manufacturing sapphire single crystal
JP2012107782A (en) * 2010-11-15 2012-06-07 Toshiba Corp Crucible, manufacturing method of sapphire single crystal using the same, and manufacturing method of the crucible
JP2013060348A (en) * 2011-09-14 2013-04-04 Toshiba Corp Crucible, and method for manufacturing sapphire single crystal using the same
JP2013209257A (en) * 2012-03-30 2013-10-10 Sumco Corp Sapphire single crystal and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196570A (en) * 1996-01-19 1997-07-31 Tokyo Tungsten Co Ltd Molybdenum crucible and its manufacture method
JP2010270345A (en) * 2009-05-19 2010-12-02 Toshiba Corp Crucible made from molybdenum and method for manufacturing the same, and method for manufacturing sapphire single crystal
JP2011127150A (en) * 2009-12-15 2011-06-30 Toshiba Corp Crucible made of tungsten molybdenum alloy, method for producing it and method for producing sapphire single crystal
JP2011127839A (en) * 2009-12-17 2011-06-30 Toshiba Corp Crucible made of tungsten, method of manufacturing the same and method of manufacturing sapphire single crystal
JP2012107782A (en) * 2010-11-15 2012-06-07 Toshiba Corp Crucible, manufacturing method of sapphire single crystal using the same, and manufacturing method of the crucible
JP2013060348A (en) * 2011-09-14 2013-04-04 Toshiba Corp Crucible, and method for manufacturing sapphire single crystal using the same
JP2013209257A (en) * 2012-03-30 2013-10-10 Sumco Corp Sapphire single crystal and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091581A (en) * 2015-08-20 2015-11-25 无锡中强电碳有限公司 Efficient graphite crucible
WO2022140806A1 (en) * 2020-12-29 2022-07-07 Fametec Gmbh Device for growing an artificially produced single crystal, in particular a sapphire single crystal

Also Published As

Publication number Publication date
JP5650869B1 (en) 2015-01-07
JPWO2014148156A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6363992B2 (en) Crucible for growing sapphire single crystal and method for growing sapphire single crystal
JP5650869B1 (en) Crucible for growing sapphire single crystal and method for growing sapphire single crystal
EP2832895B1 (en) Silver-based cylindrical target
WO2015162986A1 (en) Material for cylindrical sputtering target
TWI532891B (en) Polycrystalline silicon wafers
EP3514249A1 (en) Metal mask material and method for manufacturing same
US9580331B2 (en) CaF2 polycrystalline body, focus ring, plasma processing apparatus, and method for producing CaF2 polycrystalline body
WO2014077110A1 (en) Cu-Ga ALLOY SPUTTERING TARGET, AND METHOD FOR PRODUCING SAME
TWI486313B (en) Silicone container for single crystal silicon pulling and its manufacturing method
JP5750393B2 (en) Cu-Ga alloy sputtering target and method for producing the same
WO2014148157A1 (en) Crucible for use in growing sapphire single crystal and method for growing sapphire single crystal
JP6390432B2 (en) Cu-Ga alloy cylindrical sputtering target, Cu-Ga alloy cylindrical ingot, method for producing Cu-Ga alloy cylindrical sputtering target, and method for producing Cu-Ga alloy cylindrical ingot
JP6827461B2 (en) Molybdenum crucible
JP5771323B1 (en) Crucible and method for producing single crystal sapphire using the same
EP3412795B1 (en) Method of manufacturing cu-ga alloy sputtering target
JP6147788B2 (en) Cu-Ga alloy sputtering target
JP6016849B2 (en) Cu-Ga alloy sputtering target
JP2002362967A (en) Member for semiconductor wafer etching consisting of silica glass sintered compact and production method therefor
JP2014162698A (en) Production method of sapphire single crystal

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014528748

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768377

Country of ref document: EP

Kind code of ref document: A1