JP2013204294A - Ventilation system - Google Patents

Ventilation system Download PDF

Info

Publication number
JP2013204294A
JP2013204294A JP2012073797A JP2012073797A JP2013204294A JP 2013204294 A JP2013204294 A JP 2013204294A JP 2012073797 A JP2012073797 A JP 2012073797A JP 2012073797 A JP2012073797 A JP 2012073797A JP 2013204294 A JP2013204294 A JP 2013204294A
Authority
JP
Japan
Prior art keywords
chamber
space
indoor space
air
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012073797A
Other languages
Japanese (ja)
Other versions
JP5998311B2 (en
Inventor
Takayuki Kamata
能之 鎌田
Akihiro Ogawa
晃博 小川
Hirofumi Watanabe
拓文 渡邉
Sayaka Murata
さやか 村田
Tsukasa Tsukidate
司 月館
Akira Fukushima
明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Hokkaido Research Organization
Original Assignee
Asahi Kasei Construction Materials Corp
Hokkaido Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp, Hokkaido Research Organization filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2012073797A priority Critical patent/JP5998311B2/en
Publication of JP2013204294A publication Critical patent/JP2013204294A/en
Application granted granted Critical
Publication of JP5998311B2 publication Critical patent/JP5998311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Ventilation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ventilation system capable of achieving energy saving by excellent heat insulation performance and improving air quality by introducing fresh air into a room while realizing reduction of heat loss at the time of evacuation.SOLUTION: A ventilation system comprises: an inorganic foam 2A provided in a first room A and partitioning it into an outdoor space WC and a first indoor space WA so as to be ventilatable therebetween; an inorganic foam 2B provided in a second room B and partitioning it into an outdoor space WC and a second indoor space WB so as to be ventilatable therebetween; air blowers 8A, 8B capable of switching the direction of ventilation between the first indoor space WA and the second indoor space WB, and reducing the air pressure in the indoor space which is a ventilation source of air to below that in the outdoor space WC and increasing the air pressure in the indoor space of a ventilation destination to above that in the outdoor space WC; and a ventilation control part 100 for switching the ventilation from the first indoor space WA to the second indoor space WB and the ventilation from the second indoor space WB to the first indoor space WA in the air blowers 8A, 8B at a predetermined timing.

Description

本発明は、排気時の熱損失を低減しながら部屋の換気を行う換気システムに関するものである。   The present invention relates to a ventilation system that ventilates a room while reducing heat loss during exhaust.

化石燃料の枯渇、化石燃料を大量に使用することによる大気汚染や二酸化炭素による地球温暖化が大きな社会問題となっている現在、省エネルギー化の必要性はますます高まっている。中でも、住宅やビルでのエネルギー消費量は冷暖房を利用した快適な生活空間を望む傾向が強まるとともに上昇していることから、建物の高断熱高気密化による省エネルギー化が求められている。一方で、高断熱高気密化により密閉された空間においては、生活活動によりその空気質が悪化することから、高断熱高気密化の建物に対して計画換気が必要とされ、両者の機能を併せ持つ設計及び材料が求められている。   At present, the need for energy saving is increasing as depletion of fossil fuels, air pollution due to the use of large amounts of fossil fuels, and global warming due to carbon dioxide have become major social problems. Above all, the energy consumption in houses and buildings is rising as the tendency to desire a comfortable living space using air conditioning is increasing, so energy saving is required by highly insulating and airtight building. On the other hand, in a space sealed by high insulation and high airtightness, the air quality deteriorates due to daily activities, so planned ventilation is required for highly insulated and airtight buildings, and both functions are combined. Design and materials are needed.

従来、一般的に行われている換気は壁に換気口を設ける方法が主流であるが、換気によって熱損失が生じる。これを解決する1つの方法として、換気口に熱交換器を設置し、排気時の熱損失を低減させる装置もある。しかしながら、この装置は、熱回収能力が低く、また壁に開けられた換気口が小さいために空気の流れが局所的になり、部屋の隅々まで換気することが困難である。   Conventionally, in general ventilation, a method of providing a ventilation opening on a wall has been the mainstream, but heat loss is caused by ventilation. One method for solving this problem is to install a heat exchanger in the ventilation port to reduce heat loss during exhaust. However, this apparatus has a low heat recovery capability and a small ventilation opening opened in the wall, so that the air flow becomes local and it is difficult to ventilate every corner of the room.

このような状況下、熱エネルギー損失の低減を図りながら、同時に計画換気が可能な動的断熱法が研究されている。この動的断熱法とは、室内を減圧状態にし、通気性を有する断熱材を通して外気を室内に給気する過程において断熱材内で熱交換をさせ、室内から断熱材に伝達した熱を回収する方法である。この方法では、断熱材を通して室内に導入された空気は新鮮であるとともに、小さな換気口ではなく断熱材全体から外気を導入することで、部屋全体を均一に換気することが可能であり、熱貫流率の低減を実現することができる。このような、動的断熱法を用いて換気を行う構成が、例えば特許文献1に開示されている。   Under such circumstances, a dynamic thermal insulation method capable of planned ventilation while simultaneously reducing thermal energy loss has been studied. In this dynamic heat insulation method, the room is depressurized, heat is exchanged in the heat insulating material in the process of supplying the outside air to the room through the air-permeable heat insulating material, and the heat transferred from the room to the heat insulating material is recovered. Is the method. In this method, the air introduced into the room through the heat insulating material is fresh, and it is possible to uniformly ventilate the entire room by introducing outside air from the whole heat insulating material instead of a small ventilation port. A reduction in rate can be realized. Such a configuration in which ventilation is performed using a dynamic thermal insulation method is disclosed in Patent Document 1, for example.

特開2006−77539号公報JP 2006-77539 A

しかしながら、上記特許文献1に記載の構成においては、室内の空気を屋外へ排気することによって室内を減圧しているため、室内の空気を排気する過程での熱損失が大きく、部屋全体の熱回収能力が低下してしまうといった問題がある。   However, in the configuration described in Patent Document 1, since the indoor air is decompressed by exhausting the indoor air to the outdoors, the heat loss in the process of exhausting the indoor air is large, and the heat recovery of the entire room There is a problem that the ability is reduced.

そこで本発明は、このような従来技術の有する課題を解決するものであり、ビル、住宅、倉庫などの建物の室内において、優れた断熱性能による省エネルギー化が実現でき、室内への新鮮な空気の導入による空気質の改善と同時に、排気時の熱損失の低減が実現できる換気システムを提供することを目的とする。   Therefore, the present invention solves such problems of the prior art, and can achieve energy saving by excellent heat insulation performance in the interior of buildings such as buildings, houses, warehouses, etc. It aims at providing the ventilation system which can implement | achieve the improvement of the air quality by introduction | transduction, and reduction of the heat loss at the time of exhaust.

上記課題を解決すべく、本発明は、第1室内及び第2室内の換気を行う換気システムであって、第1室に設けられ、第1室の室外空間と室内空間とを通気可能に区画する第1の無機発泡体と、第2室に設けられ、第2室の室外空間と室内空間とを通気可能に区画する第2の無機発泡体と、第1室の室内空間から第2室の室内空間への空気の送風、及び、第2室の室内空間から第1室の室内空間への空気の送風の切り替えが可能であり、空気の送風元の室内空間を第1室の室外空間及び第2室の室外空間よりも減圧し、空気の送風先の室内空間を第1室の室外空間及び第2室の室外空間よりも加圧する送風機と、送風機における第1室の室内空間から第2室の室内空間への送風及び第2室の室内空間から第1室の室内空間への送風を所定のタイミングで切り替える送風制御部と、を備えることを特徴とする。   In order to solve the above problems, the present invention is a ventilation system that ventilates a first room and a second room, and is provided in the first room, and partitions the outdoor space and the indoor space of the first room so as to allow ventilation. The first inorganic foam, the second inorganic foam provided in the second chamber and partitioning the outdoor space and the indoor space of the second chamber so as to allow ventilation, and the indoor space of the first chamber to the second chamber It is possible to switch the air blowing to the indoor space and the air blowing from the indoor space of the second chamber to the indoor space of the first chamber, and the indoor space from which the air is blown is used as the outdoor space of the first chamber And a blower that depressurizes the outdoor space of the second chamber more than the outdoor space of the first chamber and the outdoor space of the second chamber, and the first space from the indoor space of the first chamber in the blower. The air flow to the indoor space of the two rooms and the air flow from the indoor space of the second room to the indoor space of the first room are predetermined. Characterized in that it and a blower control unit for switching in ring.

この発明では、送風機を作動させることにより、第1室と第2室との間で空気が移動し、第1室の室内空間及び第2室の室内空間のうちの一方が減圧空間となり他方が加圧空間となる。加圧空間は、第1室の室外空間及び第2室の室外空間の空気圧力よりも高い圧力を有し、減圧空間は第1室の室外空間及び第2室の室外空間の空気圧力よりも低い圧力を有する。   In this invention, by operating the blower, air moves between the first chamber and the second chamber, and one of the indoor space of the first chamber and the indoor space of the second chamber becomes a decompression space, and the other It becomes a pressurized space. The pressurized space has a pressure higher than the air pressure of the outdoor space of the first chamber and the outdoor space of the second chamber, and the decompressed space is higher than the air pressure of the outdoor space of the first chamber and the outdoor space of the second chamber. Has a low pressure.

第1室の室内空間及び第2室の室内空間のうち、加圧空間では、室内の空気が加圧空間側の無機発泡体を通して室外に排気されるため、室内の空気が持つ熱が無機発泡体に熱交換され、無機発泡体に蓄熱される。また、加圧空間では、送風機によって減圧空間からの空気が導入される。   Among the indoor space of the first chamber and the indoor space of the second chamber, in the pressurized space, the indoor air is exhausted to the outside through the inorganic foam on the pressurized space side. Heat is exchanged with the body, and heat is stored in the inorganic foam. In the pressurized space, air from the reduced pressure space is introduced by a blower.

一方、減圧空間では、減圧空間側の無機発泡体を通して外気(第1室外及び第2室外の空気)が室内に給気される。このとき、室内から無機発泡体に伝達された熱が無機発泡体を通気する空気に熱交換され、室内から無機発泡体に伝達された熱を回収することができる。即ち、減圧空間において、無機発泡体を通して外気を取り入れることで、無機発泡体を通気する外気を減圧空間内の温度と同じ或いは同程度にすることができ、減圧空間内の温度の変動を抑えることができる。これと同時に減圧空間では、新鮮な外気が室内に導入されることにより、高い空気質を維持することができる。   On the other hand, in the decompression space, outside air (air outside the first chamber and the second chamber) is supplied into the room through the inorganic foam on the decompression space side. At this time, the heat transferred from the room to the inorganic foam is heat-exchanged with the air flowing through the inorganic foam, and the heat transferred from the room to the inorganic foam can be recovered. That is, by taking outside air through the inorganic foam in the decompression space, the outside air that passes through the inorganic foam can be made to be the same as or similar to the temperature in the decompression space, and fluctuations in temperature in the decompression space can be suppressed. Can do. At the same time, high fresh air quality can be maintained in the decompression space by introducing fresh outside air into the room.

なお、加圧空間では室内の空気の熱が加圧空間側の無機発泡体に熱交換され、無機発泡体で蓄熱されるが、この状態が長時間続くと、無機発泡体の熱容量を超える熱は室外に放出され、熱を損失してしまう。そこで、送風制御部が、送風機による送風の向きを切り替えることで、第1室の室内空間及び第2室の室内空間のうち、加圧空間であった空間が減圧空間に切り替わる。加圧空間から切り替えられた減圧空間では、無機発泡体を通して外気を室内に給気する際に、無機発泡体に蓄えられた熱を外気に熱交換して空内に取り込むことで、第1室及び第2室全体の熱回収能力を高めることができる。このように、加圧空間と減圧空間とを切り替えることにより、いずれの空間でも新鮮な外気を室内に取り入れることができ、第1室の室内空間及び第2室の室内空間全体において高い空気質を維持することもできる。   In the pressurized space, the heat of indoor air is heat-exchanged to the inorganic foam on the pressurized space side, and heat is stored in the inorganic foam. If this state continues for a long time, the heat exceeding the heat capacity of the inorganic foam is exceeded. Is released outside and loses heat. Then, the ventilation control part switches the direction of the ventilation by a blower, and the space which was the pressurization space is switched to the decompression space among the indoor space of the first chamber and the indoor space of the second chamber. In the decompression space switched from the pressurization space, when the outside air is supplied into the room through the inorganic foam, the heat stored in the inorganic foam is exchanged with the outside air and taken into the air. And the heat recovery capability of the entire second chamber can be increased. In this way, by switching between the pressurized space and the decompressed space, fresh outside air can be taken into the room in any space, and high air quality is achieved in the whole indoor space of the first chamber and the second chamber. It can also be maintained.

また、第1及び第2の無機発泡体の材料である無機材料は親水性が高いため、湿気を材料内部に吸着等によって保持することが可能である。第1及び第2の無機発泡体を通して、室内から室外、室外から室内に空気が移動する際に湿気も移動するため、第1及び第2の無機発泡体内部で結露が発生することを防ぐこともできる。   In addition, since the inorganic material that is the material of the first and second inorganic foams has high hydrophilicity, moisture can be held inside the material by adsorption or the like. Moisture moves when the air moves from the room to the room and from the room to the room through the first and second inorganic foams, thus preventing dew condensation from occurring inside the first and second inorganic foams. You can also.

また、第1及び第2の無機発泡体は、発泡体という複数の微小空間を有する形状に形成されていることにより、材料自身が軽くなり、またパネル形状を得ることも可能になる。そのため、ハンドリング性及び施工性が、繊維質材料と比較して格段に向上する。さらに、軽量であることから、建築物の重量低減につながって耐震性も増す。さらに、外気が第1及び第2の無機発泡体を通気する際、外気に含まれる汚染物質が第1及び第2の無機発泡体で除去され、フィルターの効果も期待できる。   Moreover, since the first and second inorganic foams are formed in a shape having a plurality of minute spaces called foams, the material itself becomes light, and a panel shape can be obtained. Therefore, handling property and workability are significantly improved as compared with the fibrous material. Furthermore, the light weight leads to a reduction in the weight of the building and increases the earthquake resistance. Furthermore, when the outside air passes through the first and second inorganic foams, the contaminants contained in the outside air are removed by the first and second inorganic foams, and the effect of the filter can also be expected.

以上のように、ビル、住宅、倉庫などの建物の室内において、優れた断熱性能による省エネルギー化が実現でき、室内への新鮮な空気の導入による空気質の改善と同時に、排気時の熱損失の低減が実現できる。   As described above, in buildings such as buildings, houses, warehouses, etc., energy can be saved with excellent heat insulation performance, improving air quality by introducing fresh air into the room, and reducing heat loss during exhaust. Reduction can be realized.

また、第1室と第2室とは隣接しており、送風機は、第1室と第2室とを区画する仕切り材に設けられ、仕切り材に設けられた開口部を介して送風を行うことが好ましい。この場合には、仕切り材に設けられた開口部を介して一方の室内から他方の室内への送風を容易に行うことができる。また、第1室と第2室とが隣接していることにより、一方の室内から他方の室内へ空気を移動させる際の熱損失を低減することができる。   In addition, the first chamber and the second chamber are adjacent to each other, and the blower is provided in a partition material that partitions the first chamber and the second chamber, and blows air through an opening provided in the partition material. It is preferable. In this case, air can be easily blown from one room to the other room through the opening provided in the partition member. Further, since the first chamber and the second chamber are adjacent to each other, heat loss when air is moved from one room to the other can be reduced.

また、第1の無機発泡体及び第2の無機発泡体の少なくともいずれかは、通気率が5×10−4〜1m−1Pa−1であり、かつ、熱伝導率が0.02〜0.1W/mKであることが好ましい。通気率が5×10−4−1Pa―1未満になると、第1室の室内空間及び第2室の室内空間のうち、減圧空間において減圧空間側の無機発泡体を通して外気を室内へ給気することが困難になり、一方、加圧空間において室内の空気を加圧空間側の無機発泡体を通して室外へ排気することが困難になり、高い換気効果が得られない。また、通気率が1m−1Pa―1を超えると、無機発泡体を通気する空気量が多くなりすぎて、加圧空間では室外への熱損失が大きくなり、減圧空間では外気が無機発泡体と熱交換を行う時間が十分とれなくなり、第1室及び第2室全体の熱回収率が低下する。また、熱伝導率が0.1W/mKを超えると、第1及び第2の無機発泡体を伝わって室外に逃げる熱量が大きくなるために第1室及び第2室全体の熱回収率が低下する。本発明の第1及び第2の無機発泡体の熱伝導率の下限は実用面から考えて、0.02W/mKが好ましい。従って、第1の無機発泡体及び第2の無機発泡体の少なくともいずれかは、通気率が5×10−4〜1m−1Pa−1であり、かつ、熱伝導率を0.02〜0.1W/mKとすることで、最適な換気効果、及び熱回収効果を得ることができる。 In addition, at least one of the first inorganic foam and the second inorganic foam has an air permeability of 5 × 10 −4 to 1 m 2 h −1 Pa −1 and a thermal conductivity of 0.02. It is preferable that it is -0.1W / mK. When the air permeability becomes less than 5 × 10 −4 m 2 h −1 Pa −1 , the outside air is passed through the inorganic foam on the decompression space side in the decompression space among the interior space of the first chamber and the interior space of the second chamber. On the other hand, it becomes difficult to exhaust indoor air through the inorganic foam on the pressurized space side in the pressurized space, and a high ventilation effect cannot be obtained. Moreover, if the air permeability exceeds 1 m 2 h −1 Pa −1 , the amount of air that passes through the inorganic foam increases so much that heat loss to the outside increases in the pressurized space, and the outside air is inorganic in the decompressed space. There is not enough time for heat exchange with the foam, and the heat recovery rate of the entire first chamber and second chamber is reduced. Also, if the thermal conductivity exceeds 0.1 W / mK, the amount of heat that escapes to the outside through the first and second inorganic foams increases, so the heat recovery rate of the entire first and second chambers decreases. To do. The lower limit of the thermal conductivity of the first and second inorganic foams of the present invention is preferably 0.02 W / mK in view of practical use. Therefore, at least one of the first inorganic foam and the second inorganic foam has an air permeability of 5 × 10 −4 to 1 m 2 h −1 Pa −1 and a thermal conductivity of 0.02 The optimal ventilation effect and heat recovery effect can be obtained by setting it to ˜0.1 W / mK.

また、送風制御部は、送風機の送風量を可変に制御することが好ましい。この場合には、第1室及び第2室の上下階層、室内空間の広さ、気候、及び、温度等に対応して、無機発泡体を通して給排気できる空気量を所定の値に調節し、室内全体の熱回収率を向上させることができる。   Moreover, it is preferable that a ventilation control part controls the ventilation volume of a fan variably. In this case, in accordance with the upper and lower layers of the first chamber and the second chamber, the size of the indoor space, the climate, the temperature, etc., the amount of air that can be supplied and exhausted through the inorganic foam is adjusted to a predetermined value, The heat recovery rate of the whole room can be improved.

また、第1の無機発泡体及び第2の無機発泡体の少なくともいずれかの熱容量は、2〜40Kcal/℃であることが好ましい。熱容量が2kcal/℃未満であると、保持できる熱量が小さいために、第1室の室内空間及び第2室の室内空間のうち、加圧空間において無機発泡体に伝達された熱を蓄えることができず、熱損失が大きくなる。また、熱容量が40kcal/℃を超えると、熱を保持する能力が高すぎるために、減圧空間において外気から無機発泡体に導入された空気と熱交換を有効に行うことができない。従って、第1の無機発泡体及び第2の無機発泡体の少なくともいずれかの熱容量を、2〜40Kcal/℃とすることで、最適な熱回収効果を得ることができる。   Moreover, it is preferable that the heat capacity of at least one of the first inorganic foam and the second inorganic foam is 2 to 40 Kcal / ° C. If the heat capacity is less than 2 kcal / ° C., the amount of heat that can be retained is small, so that heat transferred to the inorganic foam in the pressurized space can be stored in the indoor space of the first chamber and the indoor space of the second chamber. Inability to do so increases heat loss. If the heat capacity exceeds 40 kcal / ° C., the ability to retain heat is too high, so that heat exchange with the air introduced from the outside air into the inorganic foam in the reduced pressure space cannot be performed effectively. Therefore, the optimal heat recovery effect can be obtained by setting the heat capacity of at least one of the first inorganic foam and the second inorganic foam to 2 to 40 Kcal / ° C.

本発明によれば、ビル、住宅、倉庫などの建物の室内において、優れた断熱性能による省エネルギー化が実現でき、室内への新鮮な空気の導入による空気質の改善と同時に、排気時の熱損失の低減が実現できる。   According to the present invention, in a room of a building such as a building, a house, or a warehouse, it is possible to realize energy saving by excellent heat insulation performance, and at the same time as improving air quality by introducing fresh air into the room, heat loss during exhaust Can be reduced.

実施形態に係る換気システムを適用した第1室及び第2室の平面図(水平方向断面図)である。It is a top view (horizontal direction sectional view) of the 1st room and the 2nd room to which the ventilation system concerning an embodiment is applied. 図1におけるII−II線に沿った断面図である。It is sectional drawing along the II-II line in FIG. 換気システムにおける制御系の回路構成を示す模式図である。It is a schematic diagram which shows the circuit structure of the control system in a ventilation system. 実施例における第1室及び第2室の平面図(水平方向断面図)である。It is a top view (horizontal direction sectional view) of the 1st room and the 2nd room in an example. 図4におけるV−V線に沿った断面図である。It is sectional drawing along the VV line in FIG.

以下、図面を参照しつつ、本発明に係る換気システムの好適な一実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of a ventilation system according to the present invention will be described in detail with reference to the drawings.

図1〜図3に示すように、本実施形態の換気システム1は、建物Yの内部空間W内の換気を行うものであり、無機発泡体(第1無機発泡体)2Aと、無機発泡体(第2無機発泡体)2Bと、側部有機断熱材3,4と、下部有機断熱材5と、上部有機断熱材6と、仕切り材7と、送風機8A,8Bと、送風制御部100とを含んで構成される。無機発泡体2A,2B及び側部有機断熱材3,4は建物Yの外周を囲む外壁を形成している。   As shown in FIGS. 1-3, the ventilation system 1 of this embodiment performs ventilation in the interior space W of the building Y, 2A of inorganic foams (1st inorganic foam), and an inorganic foam (Second inorganic foam) 2B, side organic heat insulating materials 3 and 4, lower organic heat insulating material 5, upper organic heat insulating material 6, partition material 7, blowers 8A and 8B, and air blow control unit 100 It is comprised including. The inorganic foams 2A and 2B and the side organic heat insulating materials 3 and 4 form an outer wall surrounding the outer periphery of the building Y.

無機発泡体2A,2B及び側部有機断熱材3,4はそれぞれ板状を成している。無機発泡体2A及び無機発泡体2Bが対向して配置され、側部有機断熱材3及び側部有機断熱材4が対向して配置される。無機発泡体2A,2B及び側部有機断熱材3,4の側部同士を連結することで内部空間Wの側部を囲む四角枠状の壁部が形成される。なお、側部有機断熱材3,4は、無機発泡体2A,2Bを間に挟みこむようにして配置され、側部有機断熱材3,4の平面部が無機発泡体2A,2Bの側部端面に当接している。   The inorganic foams 2A and 2B and the side organic heat insulating materials 3 and 4 each have a plate shape. The inorganic foam 2A and the inorganic foam 2B are arranged to face each other, and the side organic heat insulating material 3 and the side organic heat insulating material 4 are arranged to face each other. A rectangular frame-like wall portion surrounding the side portion of the internal space W is formed by connecting the side portions of the inorganic foams 2A and 2B and the side organic heat insulating materials 3 and 4 to each other. The side organic heat insulating materials 3 and 4 are disposed so as to sandwich the inorganic foams 2A and 2B, and the flat portions of the side organic heat insulating materials 3 and 4 are disposed on the side end surfaces of the inorganic foams 2A and 2B. It is in contact.

下部有機断熱材5及び上部有機断熱材6は、それぞれ板状を成している。下部有機断熱材5は、四角枠状に配置された無機発泡体2A,2B及び側部有機断熱材3,4の開口部を下方側から覆う。なお、下部有機断熱材5の平面部が、四角枠状に配置された無機発泡体2A,2B及び側部有機断熱材3,4の下部端面に当接している。上部有機断熱材6は、四角枠状に配置された無機発泡体2A,2B及び側部有機断熱材3,4の開口部を上方側から覆う。なお、上部有機断熱材6の平面部が、四角枠状に配置された無機発泡体2A,2B及び側部有機断熱材3,4の上部端面に当接している。   The lower organic heat insulating material 5 and the upper organic heat insulating material 6 each have a plate shape. The lower organic heat insulating material 5 covers the openings of the inorganic foams 2A and 2B and the side organic heat insulating materials 3 and 4 arranged in a square frame shape from the lower side. In addition, the plane part of the lower organic heat insulating material 5 is in contact with the lower end faces of the inorganic foams 2A and 2B and the side organic heat insulating materials 3 and 4 arranged in a square frame shape. The upper organic heat insulating material 6 covers the openings of the inorganic foams 2A and 2B and the side organic heat insulating materials 3 and 4 arranged in a square frame shape from above. In addition, the plane part of the upper organic heat insulating material 6 is in contact with the upper end surfaces of the inorganic foams 2A and 2B and the side organic heat insulating materials 3 and 4 arranged in a square frame shape.

無機発泡体2A,2B、側部有機断熱材3,4、下部有機断熱材5、及び、上部有機断熱材6によって囲まれた内部空間W内に、無機発泡体2A,2Bと対向するように仕切り材7が配置される。これにより建物Y内に、無機発泡体2A、側部有機断熱材3,4、有機断熱材5,6、及び仕切り材7によって囲まれる第1室Aと、無機発泡体2B、側部有機断熱材3,4、有機断熱材5,6、及び仕切り材7によって囲まれる第2室Bと、が形成される。   In the internal space W surrounded by the inorganic foams 2A and 2B, the side organic heat insulating materials 3 and 4, the lower organic heat insulating material 5, and the upper organic heat insulating material 6, so as to face the inorganic foams 2A and 2B. A partition material 7 is arranged. Thereby, in the building Y, the first chamber A surrounded by the inorganic foam 2A, the side organic heat insulating materials 3 and 4, the organic heat insulating materials 5 and 6, and the partition material 7, the inorganic foam 2B, and the side organic heat insulating material A second chamber B surrounded by the materials 3 and 4, the organic heat insulating materials 5 and 6, and the partition material 7 is formed.

仕切り材7には、第1室Aの室内空間(以下「第1室内空間」という)WAと第2室Bの室内空間(以下「第2室内空間」という)WBとに連通する開口部7aが設けられている。なお、第1室A内及び第2室B内を加圧空間及び減圧空間とすることができるものであれば、仕切り材7を構成する部材は制限されるものではない。例えば、仕切り材7として間仕切壁や扉(ドア)が用いられる。   The partition member 7 has an opening 7 a that communicates with the indoor space of the first chamber A (hereinafter referred to as “first indoor space”) WA and the indoor space of the second chamber B (hereinafter referred to as “second indoor space”) WB. Is provided. In addition, the member which comprises the partition material 7 will not be restrict | limited, if the inside of the 1st chamber A and the 2nd chamber B can be made into a pressurization space and a pressure reduction space. For example, a partition wall or a door (door) is used as the partition member 7.

第1室A及び第2室Bを形成する過程において、各部材の接合部分には、熱や空気が漏れることがないように気密用シール剤によってシーリングされている。   In the process of forming the first chamber A and the second chamber B, the joint portion of each member is sealed with an airtight sealing agent so that heat and air do not leak.

無機発泡体2Aは、第1室Aの第1室内空間WAと、第1室A及び第2室Bの外側に位置する室外空間WCとを通気可能に区画する。また、無機発泡体2Bは、第2室Bの第2室内空間WBと、第1室A及び第2室Bの外側に位置する室外空間WCとを通気可能に区画する。無機発泡体2A,2Bは、通気性を有し、熱交換が可能であれば、その材料は制限されるものではない。例えば、無機発泡体2A,2Bの材料として、発泡ガラス、気泡コンクリート、軽量気泡コンクリート、発泡アルミナ、発泡炭酸カルシウム等を用いることができる。特に、無機発泡体2A,2Bの材料として、不燃材料であり、安価であることから軽量気泡コンクリートを用いることがより好ましい。   The inorganic foam 2A partitions the first indoor space WA of the first chamber A and the outdoor space WC located outside the first chamber A and the second chamber B so as to allow ventilation. The inorganic foam 2B partitions the second indoor space WB of the second chamber B and the outdoor space WC located outside the first chamber A and the second chamber B so as to allow ventilation. The inorganic foams 2A and 2B are not limited as long as they have air permeability and can exchange heat. For example, as the material of the inorganic foams 2A and 2B, foamed glass, cellular concrete, lightweight cellular concrete, foamed alumina, foamed calcium carbonate, or the like can be used. In particular, as the material of the inorganic foams 2A and 2B, it is more preferable to use lightweight cellular concrete because it is a non-combustible material and is inexpensive.

無機発泡体2A,2Bの通気率の範囲は、5×10―4〜1m−1Pa―1であり、好ましくは1×10−3〜0.5m−1Pa―1、より好ましくは5×10−3〜0.1m−1Pa―1である。通気率が5×10―4−1Pa―1未満になると、第1室Aの第1室内空間WA及び第2室Bの第2室内空間WBのうち、減圧空間において無機発泡体2A,2Bを通して室外空間WCの空気(以下「外気」という)を室内へ給気することが困難になり、一方、加圧空間において室内の空気を無機発泡体2A,2Bを通して室外空間WCへ排気することが困難になり、高い換気効果が得られない。また、通気率が1m−1Pa―1を超えると、無機発泡体2A,2Bを通気する空気量が多くなりすぎて、加圧空間では、室外空間WCへの熱損失が大きくなり、減圧空間では、外気が無機発泡体2A,2Bと熱交換を行う時間が十分とれなくなり、第1室A及び第2室B全体の熱回収率が低下する。 The range of the air permeability of the inorganic foams 2A and 2B is 5 × 10 −4 to 1 m 2 h −1 Pa −1 , preferably 1 × 10 −3 to 0.5 m 2 h −1 Pa −1 . Preferably, it is 5 × 10 −3 to 0.1 m 2 h −1 Pa −1 . When the air permeability becomes less than 5 × 10 −4 m 2 h −1 Pa −1 , the inorganic foam in the decompressed space out of the first indoor space WA of the first chamber A and the second indoor space WB of the second chamber B It becomes difficult to supply the air in the outdoor space WC (hereinafter referred to as “outside air”) to the room through 2A and 2B, while exhausting the indoor air to the outdoor space WC through the inorganic foams 2A and 2B in the pressurized space. It becomes difficult to do, and high ventilation effect is not obtained. Further, if the air permeability exceeds 1 m 2 h −1 Pa −1 , the amount of air that passes through the inorganic foams 2A and 2B becomes excessive, and in the pressurized space, heat loss to the outdoor space WC increases. In the decompression space, it is not possible to take sufficient time for the outside air to exchange heat with the inorganic foams 2A and 2B, and the heat recovery rates of the first chamber A and the second chamber B as a whole are reduced.

また、無機発泡体2A,2Bの熱伝導率の範囲は、0.02〜0.1W/mKであり、好ましくは0.02〜0.08W/mK、より好ましくは0.02〜0.06W/mKである。熱伝導率が0.1W/mKを超えると、無機発泡体2A,2Bを伝わって室外空間WCに逃げる熱量が大きくなるために第1室A及び第2室B全体の熱回収率が低下する。無機発泡体2A,2Bの熱伝導率の下限は実用面から考えて、0.02W/mKが好ましい。   The range of the thermal conductivity of the inorganic foams 2A and 2B is 0.02 to 0.1 W / mK, preferably 0.02 to 0.08 W / mK, more preferably 0.02 to 0.06 W. / MK. When the thermal conductivity exceeds 0.1 W / mK, the amount of heat that escapes to the outdoor space WC through the inorganic foams 2A and 2B increases, so the heat recovery rate of the first chamber A and the second chamber B as a whole decreases. . In view of practical use, the lower limit of the thermal conductivity of the inorganic foams 2A and 2B is preferably 0.02 W / mK.

また、無機発泡体2A,2Bの熱容量の範囲は、2〜40kcal/℃であり、より好ましくは3〜30kcal/℃である。熱容量が2kcal/℃未満であると、保持できる熱量が小さいために、第1室Aの第1室内空間WA及び第2室Bの第2室内空間WBのうち、加圧空間において無機発泡体2A,2Bに伝達された熱を蓄えることができず、熱損失が大きくなる。また、熱容量が40kcal/℃を超えると、熱を保持する能力が高すぎるために、減圧空間において外気から無機発泡体2A,2Bに導入された空気と熱交換を有効に行うことができない。   Moreover, the range of the heat capacity of the inorganic foams 2A and 2B is 2 to 40 kcal / ° C, and more preferably 3 to 30 kcal / ° C. If the heat capacity is less than 2 kcal / ° C., the amount of heat that can be retained is small, and therefore the inorganic foam 2A in the pressurized space among the first indoor space WA of the first chamber A and the second indoor space WB of the second chamber B. , 2B cannot be stored and heat loss increases. If the heat capacity exceeds 40 kcal / ° C., the ability to retain heat is too high, so that heat exchange with the air introduced from the outside air into the inorganic foams 2A and 2B cannot be performed effectively in the reduced pressure space.

送風機8A,8Bは、仕切り材7の開口部7a周りに取り付けられる。送風機8Aは、第2室Bの第2室内空間WBから第1室Aの第1室内空間WAへの空気の送風を行う。送風機8Aは、ダンパー18Aと、ファン19Aとを含んで構成されている。ファン19Aは、回転動作によって第2室Bの第2室内空間WB内の空気を開口部7aを介して第1室A側へ送風するものである。ダンパー18Aは、開閉動作を行うことにより送風機8Aにおける第1室A及び第2室B間での空気の流通及び流通の遮断を行うものであり、開状態の時に空気を流通させ、閉状態のときに空気の流通を遮断する。   The blowers 8 </ b> A and 8 </ b> B are attached around the opening 7 a of the partition member 7. The blower 8A blows air from the second indoor space WB of the second chamber B to the first indoor space WA of the first chamber A. The blower 8A includes a damper 18A and a fan 19A. The fan 19A blows the air in the second indoor space WB of the second chamber B to the first chamber A side through the opening 7a by rotating operation. The damper 18A performs air flow between the first chamber A and the second chamber B in the blower 8A and shuts off the flow by performing an opening / closing operation. Sometimes cut off air flow.

送風機8Bは、送風機8Aと同様に、第1室Aの第1室内空間WAから第2室Bの第2室内空間WBへの空気の送風を行う。送風機8Bは、ダンパー18Bと、ファン19Bとを含んで構成されている。ファン19Bは、回転動作によって第1室Aの第1室内空間WA内の空気を開口部7aを介して第2室B側へ送風するものである。ダンパー18Bは、開閉動作を行うことにより送風機8Bにおける第1室A及び第2室B間での空気の流通及び流通の遮断を行うものであり、開状態の時に空気を流通させ、閉状態のときに空気の流通を遮断する。ダンパー18A,18Bが閉状態の場合、第1室A及び第2室B間において空気は移動しない。   The blower 8B blows air from the first indoor space WA of the first chamber A to the second indoor space WB of the second chamber B, similarly to the blower 8A. The blower 8B includes a damper 18B and a fan 19B. The fan 19B blows air in the first indoor space WA of the first chamber A to the second chamber B side through the opening 7a by a rotating operation. The damper 18B performs an open / close operation to block the air flow between the first chamber A and the second chamber B in the blower 8B and shut off the flow. Sometimes cut off air flow. When the dampers 18A and 18B are closed, air does not move between the first chamber A and the second chamber B.

送風機8A或いは送風機8Bを作動させて、第1室A及び第2室B間で空気を移動させることで、第1室Aの第1室内空間WA及び第2室Bの第2室内空間WBのうちの一方が減圧空間となり他方が加圧空間となる。加圧空間とは、室外空間WCの空気圧力よりも高い圧力を有する空間、減圧空間とは室外空間WCの空気圧力よりも低い圧力を有する空間である。   By operating the blower 8A or the blower 8B to move the air between the first chamber A and the second chamber B, the first indoor space WA of the first chamber A and the second indoor space WB of the second chamber B are moved. One of them becomes a decompression space and the other becomes a pressurization space. The pressurizing space is a space having a pressure higher than the air pressure in the outdoor space WC, and the decompression space is a space having a pressure lower than the air pressure in the outdoor space WC.

加圧空間及び減圧空間は、それぞれ外気との圧力差の範囲が2〜100Paであることが好ましく、より好ましくは5〜50Pa、さらにより好ましくは5〜20Paである。圧力差が2Pa未満になると、加圧空間又は減圧空間と、外気との間での空気の移動量が少なくなり、高い換気効果が得られない。また、圧力差が100Paを超えると、第1室A及び第2室Bに設けられた扉の開閉が困難となる。   The pressure space and the decompression space each preferably have a pressure difference range of 2 to 100 Pa, more preferably 5 to 50 Pa, and even more preferably 5 to 20 Pa. When the pressure difference is less than 2 Pa, the amount of movement of air between the pressurized space or the decompressed space and the outside air decreases, and a high ventilation effect cannot be obtained. Moreover, when the pressure difference exceeds 100 Pa, it becomes difficult to open and close the doors provided in the first chamber A and the second chamber B.

送風制御部100は、送風機8A,8Bにおけるダンパー18A,18Bの開閉動作の制御、及び、ファン19A,19Bの作動の制御を行う。より詳細には、送風制御部100は、ダンパー18A及びファン19Aの作動を制御することによって送風機8Aを用いた第2室Bから第1室Aへの空気の送風の制御と、ダンパー18B及びファン19Bの作動を制御することによって送風機8Bを用いた第1室Aから第2室Bへの空気の送風の制御と、を切り替える。また、送風制御部100は、第1室A及び第2室Bの上下階層、室内空間の広さ、気候、及び、温度等に対応して、ファン19A,19Bの作動を制御することで送風機8A,8Bの送風量を可変に制御することができる。なお、送風制御部100は、送風機8A,8Bの近傍など、適宜の位置に設けられている。   The air blow control unit 100 controls the opening / closing operation of the dampers 18A and 18B in the blowers 8A and 8B and the operation of the fans 19A and 19B. More specifically, the air blow control unit 100 controls the air blow from the second chamber B to the first chamber A using the blower 8A by controlling the operation of the damper 18A and the fan 19A, and the damper 18B and the fan. By controlling the operation of 19B, the control of the air blowing from the first chamber A to the second chamber B using the blower 8B is switched. The blower control unit 100 controls the operation of the fans 19A and 19B in accordance with the upper and lower layers of the first chamber A and the second chamber B, the size of the indoor space, the climate, the temperature, and the like. The blast volume of 8A and 8B can be variably controlled. In addition, the ventilation control part 100 is provided in appropriate positions, such as the vicinity of the air blowers 8A and 8B.

次に、送風制御部100による送風機8A,8Bの制御、及び、各部の状態の変化について説明する。まず、送風制御部100が、ダンパー18Aを開状態に制御すると共にファン19Aを作動させ、送風機8Aを用いた第2室Bから第1室Aへの空気の送風の制御を行っているものとする。この場合、図1に示すように、第1室Aの第1室内空間WAが加圧空間となり、第1室内空間WA内の空気が無機発泡体2Aを通して室外空間WCに排気される。このとき、第1室内空間WA内の空気が持つ熱が無機発泡体2Aに熱交換され、無機発泡体2Aに蓄熱される。なお、図1では、空気の移動を白抜き矢印で示し、熱の移動を波線矢印で示している。また、第1室Aの第1室内空間WA内には、送風機8Aの作動により減圧空間となる第2室Bの第2室内空間WBからの空気が導入される。   Next, the control of the fans 8A and 8B by the air blowing control unit 100 and the change in the state of each unit will be described. First, the air blow control unit 100 controls the damper 18A to be in an open state and operates the fan 19A to control the air blow from the second chamber B to the first chamber A using the blower 8A. To do. In this case, as shown in FIG. 1, the first indoor space WA of the first chamber A becomes a pressurized space, and the air in the first indoor space WA is exhausted to the outdoor space WC through the inorganic foam 2A. At this time, the heat of the air in the first indoor space WA is exchanged with the inorganic foam 2A and stored in the inorganic foam 2A. In FIG. 1, the movement of air is indicated by a white arrow, and the movement of heat is indicated by a wavy arrow. In addition, air from the second indoor space WB of the second chamber B, which is a reduced pressure space, is introduced into the first indoor space WA of the first chamber A by the operation of the blower 8A.

一方、図1に示すように、減圧空間となる第2室B側では、無機発泡体2Bを通して室外空間WCから外気が第2室内空間WB内に給気される。このとき、第2室Bの第2室内空間WBから無機発泡体2Bに伝熱されて蓄えられた熱が無機発泡体2Bを通気する空気に熱交換され、第2室Bの第2室内空間WBから無機発泡体2Bに伝達された熱を回収することができる。即ち、減圧空間となる第2室Bの第2室内空間WBにおいて、無機発泡体2Bを通して外気を取り入れることで、無機発泡体2Bを通気する外気を第2室内空間WB内の温度と同じ或いは同程度にすることができ、第2室Bの第2室内空間WB内の温度の変動を抑えることができる。これと同時に第2室Bでは、新鮮な外気が第2室Bの第2室内空間WB内に給気されることにより、高い空気質が維持される。   On the other hand, as shown in FIG. 1, outside air is supplied from the outdoor space WC into the second indoor space WB through the inorganic foam 2B on the second chamber B side serving as a decompression space. At this time, heat transferred from the second indoor space WB of the second chamber B to the inorganic foam 2B is heat-exchanged with the air passing through the inorganic foam 2B, so that the second indoor space of the second chamber B is exchanged. The heat transferred from the WB to the inorganic foam 2B can be recovered. That is, in the second indoor space WB of the second chamber B serving as a decompression space, outside air is taken in through the inorganic foam 2B, so that the outside air flowing through the inorganic foam 2B is the same as or the same as the temperature in the second indoor space WB. The temperature fluctuation in the second indoor space WB of the second chamber B can be suppressed. At the same time, in the second chamber B, fresh air is supplied into the second indoor space WB of the second chamber B, so that high air quality is maintained.

加圧空間となる第1室の第1室内空間WAでは室内の空気の熱が無機発泡体2Aに熱交換され、無機発泡体2Aで蓄熱されるが、この状態が長時間続くと、無機発泡体2Aの熱容量を超えた熱が第1室A外に放出され、熱を損失してしまう。そこで、送風制御部100は、無機発泡体2Aによって蓄熱できる熱容量を超える前に、第1室A及び第2室B間での空気の送風の向きを切り替える。具体的には、送風制御部100は、ダンパー18Aを閉状態に制御すると共にファン19Aを停止させて、送風機8Aにおける送風を停止させる。そして、送風制御部100は、ダンパー18Bを開状態に制御すると共にファン19Bを作動させ、送風機8Bを用いた第1室Aから第2室Bへの空気の送風の制御を開始する。   In the first indoor space WA of the first chamber serving as a pressurized space, the heat of the indoor air is heat-exchanged with the inorganic foam 2A and is stored in the inorganic foam 2A. Heat exceeding the heat capacity of the body 2A is released outside the first chamber A, and heat is lost. Therefore, the air blowing control unit 100 switches the direction of air blowing between the first chamber A and the second chamber B before exceeding the heat capacity that can be stored by the inorganic foam 2A. Specifically, the air blowing control unit 100 controls the damper 18A to be closed and stops the fan 19A to stop the air blowing in the blower 8A. And the ventilation control part 100 controls the damper 18B to an open state, operates the fan 19B, and starts control of the ventilation of the air from the 1st chamber A to the 2nd chamber B using the air blower 8B.

第1室A及び第2室B間での送風の向きを切り替えることで、第1室Aの第1室内空間WAが減圧空間に切り替わり、第2室Bの第2室内空間WBが加圧空間に切り替わる。これにより、上述の場合と同様に、減圧空間となる第1室Aの第1室内空間WA内には、無機発泡体2Aを介して外気が給気される。このとき、無機発泡体2Aに蓄えられた熱が無機発泡体2Aを通気する空気に熱交換され、熱交換された空気が第1室内空間WA内に給気される。また、加圧空間となる第2室Bの第2室内空間WBでは、第2室Bの第2室内空間WB内の空気が第2室B外へ排出されると共に、無機発泡体2Bを通気する空気の熱が無機発泡体2Bで熱交換され、無機発泡体2Bで蓄熱される。送風制御部100は、第1室A及び第2室B間での送風の向きを所定タイミングで繰り返し切り替える。   By switching the direction of the air flow between the first chamber A and the second chamber B, the first indoor space WA of the first chamber A is switched to the reduced pressure space, and the second indoor space WB of the second chamber B is the pressurized space. Switch to Thereby, similarly to the above-mentioned case, the outside air is supplied into the first indoor space WA of the first chamber A serving as the decompression space via the inorganic foam 2A. At this time, the heat stored in the inorganic foam 2A is heat-exchanged with the air flowing through the inorganic foam 2A, and the heat-exchanged air is supplied into the first indoor space WA. Further, in the second indoor space WB of the second chamber B serving as a pressurized space, air in the second indoor space WB of the second chamber B is discharged to the outside of the second chamber B, and the inorganic foam 2B is ventilated. The heat of the air to be heat-exchanged in the inorganic foam 2B is stored in the inorganic foam 2B. The air blowing control unit 100 repeatedly switches the direction of air blowing between the first chamber A and the second chamber B at a predetermined timing.

なお、送風制御部100の制御によって、加圧空間と減圧空間とを切り替えるタイミングは、第1室A及び第2室Bの大きさ、外気と第1室A及び第2室B内との圧力差、無機発泡体2A,2Bの熱容量、無機発泡体2A,2Bを通気する空気量に依存するが、30秒以上1時間以内であることが好ましく、より好ましくは、1分以上30分以内であり、さらに好ましくは2分以上15分以内である。切り替える時間が30秒未満の場合、切り替え時間内に加圧空間及び減圧空間を形成することが困難となる。また、切り替える時間が1時間を越えると、加圧空間から室外空間WCに放出される熱が大きくなり、第1室A及び第2室B全体の熱回収能力が低下する。   Note that the timing of switching between the pressurized space and the decompressed space under the control of the air blowing control unit 100 is the size of the first chamber A and the second chamber B, the pressure of the outside air and the first chamber A and the second chamber B. Although it depends on the difference, the heat capacity of the inorganic foams 2A and 2B, and the amount of air flowing through the inorganic foams 2A and 2B, it is preferably 30 seconds or more and 1 hour or less, more preferably 1 minute or more and 30 minutes or less. More preferably, it is 2 minutes or more and 15 minutes or less. When the switching time is less than 30 seconds, it is difficult to form the pressurized space and the decompressed space within the switching time. When the switching time exceeds 1 hour, the heat released from the pressurized space to the outdoor space WC increases, and the heat recovery capability of the first chamber A and the second chamber B as a whole decreases.

次に、図1〜図3に示す換気システム1を用いて換気を行った場合の実施例について説明する。ここで、下記の実施例で用いる無機発泡体2A,2Bについての各値の測定方法、無機発泡体2A,2Bの製造方法及び形状、側部有機断熱材3,4、有機断熱材5,6、及び、仕切り材7の形状を説明する。   Next, the Example at the time of ventilating using the ventilation system 1 shown in FIGS. 1-3 is demonstrated. Here, the measuring method of each value about the inorganic foams 2A and 2B used in the following examples, the manufacturing method and shape of the inorganic foams 2A and 2B, the side organic heat insulating materials 3 and 4, the organic heat insulating materials 5 and 6 And the shape of the partition material 7 is demonstrated.

(熱伝導率)
低温板5℃、高温板35℃でJIS A1412の平板熱流計法に従い測定する。試験体の形状は、300mm×300mm、厚さ50mmであり、温度20℃、湿度60%の条件下で恒量になったものを用いる。
(Thermal conductivity)
Measurement is performed at a low temperature plate of 5 ° C. and a high temperature plate of 35 ° C. according to the JIS A1412 plate heat flow meter method. The shape of the test body is 300 mm × 300 mm, the thickness is 50 mm, and a constant weight is used under the conditions of a temperature of 20 ° C. and a humidity of 60%.

(通気率)
円柱形のサンプル(断面積(S)=1962.5mm、長さ(L)=50mm)の側面をシールし、真空ポンプにより圧力を制御しながらサンプルの前後に圧力差をつけ、サンプル中を流れる空気の流量を測定し、式(1)により算出する。
通気率(m−1Pa―1)=W×L/S/ΔP (1)
W:流量(m−1
ΔP:圧力差(Pa)
なお試験体は、温度20℃、湿度60%の条件下で恒量になったものを用いる。
(Air permeability)
Seal the side of the cylindrical sample (cross-sectional area (S) = 1962.5 mm 2 , length (L) = 50 mm), create a pressure difference before and after the sample while controlling the pressure with a vacuum pump. The flow rate of the flowing air is measured and calculated by equation (1).
Air permeability (m 2 h −1 Pa −1 ) = W × L / S / ΔP (1)
W: Flow rate (m 3 h −1 )
ΔP: Pressure difference (Pa)
In addition, the test body uses what became constant weight on the conditions of temperature 20 degreeC and humidity 60%.

(温度回収率)
換気システムの熱回収能力を算定するために、温度回収率を式(2)で算出する。
温度回収率(%)=(SA−OA)/(RA−OA)×100 (2)
SA:給気側の無機発泡体の室内側の平均表面温度(℃)
RA:排気側の室内の平均空気温度(℃)
OA:室外平均温度(℃)
(Temperature recovery rate)
In order to calculate the heat recovery capability of the ventilation system, the temperature recovery rate is calculated by equation (2).
Temperature recovery rate (%) = (SA−OA) / (RA−OA) × 100 (2)
SA: Average surface temperature (° C) on the indoor side of the inorganic foam on the air supply side
RA: Average air temperature in the exhaust side room (℃)
OA: Outdoor average temperature (° C)

(無機発泡体の製造方法)
55℃の温水316.8重量部をミキサーに投入し、攪拌しながら微粉珪砂100重量部、二水石膏粉体8.8重量部、硫酸アルミニウム粉体7.7重量部を順次加える。スラリー温度が50℃になったところで、早強ポルトランドセメント粉体78.4重量部、生石灰粉体29.0重量部、粘度調製剤としてメチルセルロース0.019重量部、界面活性剤として「EK−45」(商品名、松本油脂株式会社製)0.038重量部を順次加えて2分間攪拌する。その後、発泡剤として、アルミニウム粉0.38重量部を加え、30秒間攪拌し、型枠に注入して発泡させ、予備硬化を行う。
(Method for producing inorganic foam)
316.8 parts by weight of warm water of 55 ° C. is put into a mixer, and 100 parts by weight of fine silica sand, 8.8 parts by weight of dihydrate gypsum powder, and 7.7 parts by weight of aluminum sulfate powder are sequentially added while stirring. When the slurry temperature reached 50 ° C., 78.4 parts by weight of early strength Portland cement powder, 29.0 parts by weight of quicklime powder, 0.019 parts by weight of methylcellulose as a viscosity adjusting agent, and “EK-45 as a surfactant. “0.038 parts by weight (trade name, manufactured by Matsumoto Yushi Co., Ltd.) are sequentially added and stirred for 2 minutes. Thereafter, 0.38 parts by weight of aluminum powder is added as a foaming agent, stirred for 30 seconds, poured into a mold and foamed, and precured.

型枠にスラリーを流し込んだ直後から、水分の蒸発を防いだ状態で60℃に保持して、予備硬化させる。次いで、予備硬化体を脱型して、オートクレーブ中で飽和水蒸気雰囲気下、180℃で4時間、高温高圧養生を行った後、乾燥させて無機発泡体を得た。無機発泡体の通気率は、3.0×10−2/hPaであり、熱伝導率は0.069W/mKであった。 Immediately after pouring the slurry into the mold, it is kept at 60 ° C. in a state in which the evaporation of moisture is prevented, and is pre-cured. Next, the pre-cured body was removed from the mold, and after curing at 180 ° C. for 4 hours in a saturated steam atmosphere in an autoclave, drying was performed to obtain an inorganic foam. The air permeability of the inorganic foam was 3.0 × 10 −2 m 2 / hPa, and the thermal conductivity was 0.069 W / mK.

得られた無機発泡体を長さ45cm、幅45cm、厚さ10cmに切断し、その無機発泡体を4枚、市販の気密用シール剤で貼り合わせることで、長さ90cm、幅90cm、厚さ10cmの無機発泡体2A,2Bを作製した。   The obtained inorganic foam was cut into a length of 45 cm, a width of 45 cm, and a thickness of 10 cm, and the four inorganic foams were bonded together with a commercially available airtight sealant, so that the length was 90 cm, the width was 90 cm, and the thickness was 10 cm inorganic foams 2A and 2B were prepared.

側部有機断熱材3,4、下部有機断熱材5、及び、上部有機断熱材6を、それぞれ、長さ110cm、幅110cm、厚さ10cmの板状に形成した。仕切り材7を、長さ90cm、幅90cm、厚さ1.2cmの板状に形成した。即ち、建物Yは、外側の一辺が110cmの立方体状に形成されている。   The side organic heat insulating materials 3 and 4, the lower organic heat insulating material 5, and the upper organic heat insulating material 6 were each formed into a plate shape having a length of 110 cm, a width of 110 cm, and a thickness of 10 cm. The partition material 7 was formed in a plate shape having a length of 90 cm, a width of 90 cm, and a thickness of 1.2 cm. That is, the building Y is formed in a cubic shape with an outer side of 110 cm.

また、本実施例に係る換気システム1において、図4及び図5に示すように、熱電対を用いて、測定点P1,P3A,P3B,P4A,P4Bの温度を測定した。測定点P1は、室外空間WCの温度測定点である。測定点P3Aは、無機発泡体2Aの室内側の表面温度測定点である。測定点P3Aは、無機発泡体2Aの継ぎ目を避け、中央位置付近とした。測定点P4Aは、第1室Aの第1室内空間WA内の温度測定点である。測定点P4Aは、第1室内空間WAの中心付近とした。同様に、測定点P3Bは、無機発泡体2Bの室内側の表面温度測定点である。測定点P3Bは、無機発泡体2Bの継ぎ目を避け、中央位置付近とした。測定点P4Bは、第2室Bの第2室内空間WB内の温度測定点である。測定点P4Aは、第2室内空間WBの中心付近とした。   Moreover, in the ventilation system 1 which concerns on a present Example, as shown in FIG.4 and FIG.5, the temperature of the measurement points P1, P3A, P3B, P4A, P4B was measured using the thermocouple. The measurement point P1 is a temperature measurement point of the outdoor space WC. The measurement point P3A is a surface temperature measurement point on the indoor side of the inorganic foam 2A. The measurement point P3A was near the center position, avoiding the joint of the inorganic foam 2A. The measurement point P4A is a temperature measurement point in the first indoor space WA of the first chamber A. The measurement point P4A is set near the center of the first indoor space WA. Similarly, the measurement point P3B is a surface temperature measurement point on the indoor side of the inorganic foam 2B. The measurement point P3B was near the center position, avoiding the joint of the inorganic foam 2B. The measurement point P4B is a temperature measurement point in the second indoor space WB of the second chamber B. The measurement point P4A is set near the center of the second indoor space WB.

また、本実施例に係る換気システム1において、第1室内空間WAと室外空間WCとの圧力差を測定するために差圧計20Aを設けた。差圧計20Aは、上部有機断熱材6における第1室内空間WAの上部位置に設けられ、上部有機断熱材6に設けられた測定孔21Aを介して第1室内空間WAと接続されている。同様に、第2室内空間WBと室外空間WCとの圧力差を測定するために差圧計20Bを設けた。差圧計20Bは、差圧計20Aと同様に、上部有機断熱材6における第2室内空間WBの上部位置に設けられ、上部有機断熱材6に設けられた測定孔を介して第2室内空間WBと接続されている。   In the ventilation system 1 according to the present embodiment, a differential pressure gauge 20A is provided to measure a pressure difference between the first indoor space WA and the outdoor space WC. The differential pressure gauge 20 </ b> A is provided at an upper position of the first indoor space WA in the upper organic heat insulating material 6, and is connected to the first indoor space WA through a measurement hole 21 </ b> A provided in the upper organic heat insulating material 6. Similarly, a differential pressure gauge 20B is provided to measure the pressure difference between the second indoor space WB and the outdoor space WC. Similarly to the differential pressure gauge 20A, the differential pressure gauge 20B is provided at an upper position of the second indoor space WB in the upper organic heat insulating material 6, and is connected to the second indoor space WB via a measurement hole provided in the upper organic heat insulating material 6. It is connected.

また、本実施例に係る換気システム1において、第1室内空間WA及び第2室内空間WB内に、それぞれ20Wの電球22A,23A及び電球22B,23Bを設置した。これらの電球22A,23A,22B,23Bは、各室内の温度を一定に保つための熱源として用いられるものであり、各室内の温度(測定点P4A,P4Bでの温度)に基づいてオンオフが制御される。電球22A,23Aは下部有機断熱材5の上面近傍に設置し、電球22B,23Bは上部有機断熱材6の上面近傍に設置した。また、これらの電球22A,23A,22B,23B、及び、送風機8A,8Bが消費する電力量を測定した。   Further, in the ventilation system 1 according to the present embodiment, the 20 W light bulbs 22A and 23A and the light bulbs 22B and 23B are installed in the first indoor space WA and the second indoor space WB, respectively. These light bulbs 22A, 23A, 22B, and 23B are used as heat sources for keeping the temperature in each room constant, and on / off is controlled based on the temperature in each room (temperature at the measurement points P4A and P4B). Is done. The light bulbs 22A and 23A were installed near the upper surface of the lower organic heat insulating material 5, and the light bulbs 22B and 23B were installed near the upper surface of the upper organic heat insulating material 6. Moreover, the electric energy which these light bulbs 22A, 23A, 22B, and 23B and the air blowers 8A and 8B consume was measured.

また、本実施例に係る換気システム1において、送風機8Bのダンパー18Bを閉状態とし、送風機8Aのダンパー18Aを開状態としてファン19Aを作動させると、差圧計20A,20Bによる測定の結果、加圧空間となる第1室内空間WAは+9Pa(外気に対して+9Pa)、減圧空間となる第2室内空間WBは−7Pa(外気に対して−7Pa)となった。一方、送風機8Aのダンパー18Aを閉状態とし、送風機8Bのダンパー18Bを開状態としてファン19Bを作動させると、差圧計20A,20Bによる測定の結果、減圧空間となる第1室内空間WAは−7Pa、加圧空間となる第2室内空間WBは、+9Paとなった。   Further, in the ventilation system 1 according to the present embodiment, when the damper 18B of the blower 8B is closed and the damper 18A of the blower 8A is opened and the fan 19A is operated, as a result of measurement by the differential pressure gauges 20A and 20B, pressurization is performed. The first indoor space WA serving as a space was +9 Pa (+9 Pa with respect to the outside air), and the second indoor space WB serving as a decompressed space was −7 Pa (−7 Pa with respect to the outside air). On the other hand, when the fan 18B is operated with the damper 18A of the blower 8A being closed and the damper 18B of the blower 8B being opened, the first indoor space WA that becomes a decompression space as a result of measurement by the differential pressure gauges 20A and 20B is −7 Pa. The second indoor space WB serving as the pressurized space was +9 Pa.

以下の実施例では、第1室内空間WA及び第2室内空間WB内に、それぞれ腐った卵が入った箱を5分間設置したのちに箱を取り出し、建物Yを0℃(測定点P1の温度)の恒温空間である室外空間WC内に設置した。その後、第1室内空間WA内及び第2室内空間WB内の温度が20℃となるように、電球22A,23A,22B,23Bのオンオフを制御した。そして、第1室内空間WA内及び第2室内空間WB内の温度が20℃の恒温状態になった後、送風制御部100によって送風機8A,8Bの制御を行い、第1室内空間WAから第2室内空間WBへの送風、及び、第2室内空間WBから第1室内空間WAへの送風の切り替えを交互に繰り返し行った。送風機8A,8Bの作動の合計時間は120分とした。   In the following examples, after the boxes containing rotten eggs are placed in the first indoor space WA and the second indoor space WB for 5 minutes, the boxes are taken out and the building Y is set to 0 ° C. (the temperature at the measurement point P1). ) In the outdoor space WC which is a constant temperature space. Then, on / off of the light bulbs 22A, 23A, 22B, and 23B was controlled so that the temperature in the first indoor space WA and the second indoor space WB became 20 ° C. Then, after the temperature in the first indoor space WA and the second indoor space WB reaches a constant temperature state of 20 ° C., the blower control unit 100 controls the blowers 8A and 8B, and the second indoor space WA is controlled from the second indoor space WA. The air blowing to the indoor space WB and the switching of the air blowing from the second indoor space WB to the first indoor space WA were repeated alternately. The total operation time of the fans 8A and 8B was 120 minutes.

(実施例1)
実施例1では、上述の実施例に係る換気システム1において、第1室内空間WAから第2室内空間WBへの送風、及び、第2室内空間WBから第1室内空間WAへの送風の切り替えを、2分毎に繰り返し行った。以下に、電球22A,23A,22B,23B及び送風機8A,8Bが消費する電力量、給気側の無機発泡体2A,2Bの室内側の平均表面温度(測定点P3A,P3Bでの温度)、排気側の室内空間の平均空気温度(測定点P4A,P4Bでの温度)、室外平均温度(測定点P1での温度)、温度回収率、送風機8A,8Bを合計120分間作動させた後、第1室内空間WA内及び第2室内空間WB内の臭いを鼻で嗅いだ場合の腐卵臭の有無、を示す。なお、ここでの温度は、平均値を用いた。
Example 1
In the first embodiment, in the ventilation system 1 according to the above-described embodiment, switching between blowing from the first indoor space WA to the second indoor space WB and switching of blowing from the second indoor space WB to the first indoor space WA is performed. Repeated every 2 minutes. Below, the electric energy consumed by the light bulbs 22A, 23A, 22B, 23B and the fans 8A, 8B, the average surface temperature of the indoor side of the inorganic foams 2A, 2B on the air supply side (temperatures at the measurement points P3A, P3B), After operating the average air temperature of the indoor space on the exhaust side (temperature at the measurement points P4A and P4B), the outdoor average temperature (temperature at the measurement point P1), the temperature recovery rate, and the fans 8A and 8B for a total of 120 minutes, The presence / absence of an odor of slaughter when smelling the odor in the first indoor space WA and the second indoor space WB with the nose is shown. In addition, the average value was used for the temperature here.

電球及び送風機の消費電力:57.3Wh
給気側の無機発泡体の室内側の平均表面温度:18.7℃
排気側の室内空間の平均空気温度:19.6℃
室外平均温度:1.3℃
温度回収率:95.1%
腐卵臭の有無:なし
Power consumption of light bulb and blower: 57.3Wh
Indoor average surface temperature of the inorganic foam on the air supply side: 18.7 ° C
Average air temperature in the indoor space on the exhaust side: 19.6 ° C
Average outdoor temperature: 1.3 ° C
Temperature recovery rate: 95.1%
Presence or absence of scent odor: None

(実施例2)
実施例2では、上述の実施例に係る換気システム1において、第1室内空間WAから第2室内空間WBへの送風、及び、第2室内空間WBから第1室内空間WAへの送風の切り替えを、5分毎に繰り返し行った。以下に、測定結果、及び、温度回収率等を示す。
(Example 2)
In the second embodiment, in the ventilation system 1 according to the above-described embodiment, the blowing from the first indoor space WA to the second indoor space WB and the blowing from the second indoor space WB to the first indoor space WA are switched. Repeated every 5 minutes. Below, a measurement result, a temperature recovery rate, etc. are shown.

電球及び送風機の消費電力:57.1Wh
給気側の無機発泡体の室内側の平均表面温度:18.8℃
排気側の室内空間の平均空気温度:19.8℃
室外平均温度:1.4℃
温度回収率:94.6%
腐卵臭の有無:なし
Power consumption of light bulb and blower: 57.1Wh
Average surface temperature on the indoor side of the inorganic foam on the air supply side: 18.8 ° C
Average air temperature in the indoor space on the exhaust side: 19.8 ° C
Average outdoor temperature: 1.4 ° C
Temperature recovery rate: 94.6%
Presence or absence of scent odor: None

(実施例3)
実施例3では、上述の実施例に係る換気システム1において、第1室内空間WAから第2室内空間WBへの送風、及び、第2室内空間WBから第1室内空間WAへの送風の切り替えを、10分毎に繰り返し行った。以下に、測定結果、及び、温度回収率等を示す。
(Example 3)
In the third embodiment, in the ventilation system 1 according to the above-described embodiment, the blowing from the first indoor space WA to the second indoor space WB and the blowing from the second indoor space WB to the first indoor space WA are switched. Repeated every 10 minutes. Below, a measurement result, a temperature recovery rate, etc. are shown.

電球及び送風機の消費電力:57.6Wh
給気側の無機発泡体の室内側の平均表面温度:18.6℃
排気側の室内空間の平均空気温度:19.7℃
室外平均温度:1.4℃
温度回収率:94.0%
腐卵臭の有無:なし
Power consumption of light bulb and blower: 57.6Wh
Indoor average surface temperature of the inorganic foam on the air supply side: 18.6 ° C
Average air temperature in the indoor space on the exhaust side: 19.7 ° C
Average outdoor temperature: 1.4 ° C
Temperature recovery rate: 94.0%
Presence or absence of scent odor: None

(比較例1)
比較例1では、上述の実施例1に係る換気システム1において、送風の切り替えを行わずに送風機8Aのみを作動させ続けて、第2室内空間WBから第1室内空間WAへの送風のみを行った。その結果、送風の開始から120分後においても第1室内空間WA内及び第2室内空間WB内の空気温度は設定温度の20℃を維持できずに下がり続けたため、運転から7時間以上経過して定常状態となったときに室内温度を測定すると11.5℃であった。設定温度の20℃に到達しないため、温度回収率の計算はできなかった。電球22A,23A,22B,23B及び送風機8Aが消費する電力量は82.5Whであった。送風機8Aを合計120分間作動させた後、第1室内空間WA内及び第2室内空間WB内の臭いを鼻で嗅いだところ、腐卵臭は感じなかった。
(Comparative Example 1)
In Comparative Example 1, in the ventilation system 1 according to Example 1 described above, only the air blower 8A is continuously operated without switching the air flow, and only air is blown from the second indoor space WB to the first indoor space WA. It was. As a result, even after 120 minutes from the start of air blowing, the air temperature in the first indoor space WA and the second indoor space WB continued to decrease without being able to maintain the set temperature of 20 ° C., and thus more than 7 hours passed from the operation. When the room temperature was measured when the steady state was reached, it was 11.5 ° C. Since the set temperature of 20 ° C was not reached, the temperature recovery rate could not be calculated. The amount of power consumed by the light bulbs 22A, 23A, 22B, 23B and the blower 8A was 82.5 Wh. After operating the air blower 8A for a total of 120 minutes, the smell of the inside of the first indoor space WA and the second indoor space WB was sniffed with the nose, and no odor of rot was felt.

(比較例2)
比較例2では、上述の実施例1に係る換気システム1において、送風機8A,8Bを作動させず、送風を行わなかった。その結果、第1室内空間WA内及び第2室内空間WB内の空気温度は20℃を維持しており、電球22A,23A,22B,23Bが消費する電力量は53.6Whであった。試験開始から120分経過後、第1室内空間WA内及び第2室内空間WB内の臭いを鼻で嗅いだところ、痛烈な腐卵臭が感じられた。
(Comparative Example 2)
In the comparative example 2, in the ventilation system 1 which concerns on the above-mentioned Example 1, the air blowers 8A and 8B were not operated and ventilation was not performed. As a result, the air temperature in the first indoor space WA and the second indoor space WB was maintained at 20 ° C., and the amount of power consumed by the light bulbs 22A, 23A, 22B, and 23B was 53.6 Wh. After 120 minutes from the start of the test, when the smell in the first indoor space WA and the second indoor space WB was sniffed with a nose, a painful odor of scent was felt.

実施例1〜3に示すように、第1室内空間WA及び第2室内空間WB間での送風の向きを切り替えることで、94.0%以上の温度回収率を得ることができた。また、実施例1〜3に示すように、送風機8A,8Bの作動終了後、第1室内空間WA内及び第2室内空間WB内で腐卵臭がせず、第1室内空間WA内及び第2室内空間WB内の換気が適切に行われていた。   As shown in Examples 1 to 3, a temperature recovery rate of 94.0% or more could be obtained by switching the direction of air blowing between the first indoor space WA and the second indoor space WB. In addition, as shown in the first to third embodiments, after the operation of the blowers 8A and 8B is finished, there is no odor of stagnation in the first indoor space WA and the second indoor space WB, and the first indoor space WA and the first indoor space WA. Ventilation in the indoor space WB was properly performed.

以上のように、本実施形態に係る換気システム1は、送風機8A,8Bにおける送風の向きを切り替えることで、第1室内空間WAを加圧空間とし第2室内空間WBを減圧空間とすることと、第1室内空間WAを減圧空間とし第2室内空間WBを加圧空間とすることと、を交互に切り替えることができる。このため、加圧空間側では、無機発泡体2A,2Bを介して排気しつつ排気される空気の熱を無機発泡体2A,2Bに蓄熱させることができる。また、減圧空間側では、無機発泡体2A,2Bを介して給気しつつ、無機発泡体2A,2Bに蓄えられた熱を給気する空気に熱交換することができる。これにより、減圧空間内の温度の変動を抑えることができる。これと同時に減圧空間では、新鮮な外気が室内に導入されることにより、高い空気質を維持することができる。   As described above, the ventilation system 1 according to the present embodiment switches the direction of air blowing in the blowers 8A and 8B, thereby setting the first indoor space WA as the pressurized space and the second indoor space WB as the reduced pressure space. The first indoor space WA can be switched to the decompressed space, and the second indoor space WB can be switched to the pressurized space. For this reason, on the pressurized space side, the heat of the air exhausted through the inorganic foams 2A and 2B can be stored in the inorganic foams 2A and 2B. Moreover, in the decompression space side, heat can be exchanged with air for supplying the heat stored in the inorganic foams 2A and 2B while supplying air through the inorganic foams 2A and 2B. Thereby, the fluctuation | variation of the temperature in decompression space can be suppressed. At the same time, high fresh air quality can be maintained in the decompression space by introducing fresh outside air into the room.

また、無機発泡体2A,2Bに蓄えられる熱が、加圧空間側における無機発泡体2A,2Bの熱容量を超える前に、送風制御部100が送風機8A,8Bにおける送風の向きを切り替える。これにより、加圧空間側において熱が室外に放出されることがなく、第1室A及び第2室B全体の熱回収能力を高めることができる。このように、加圧空間と減圧空間を切り替えることにより、いずれの空間でも新鮮な外気を室内に入れることができ、第1室Aの第1室内空間WA及び第2室Bの第2室内空間WBにおいて高い空気質を維持することもできる。   Moreover, before the heat | fever stored in inorganic foam 2A, 2B exceeds the heat capacity of inorganic foam 2A, 2B in a pressurization space side, the ventilation control part 100 switches the direction of ventilation in the air blowers 8A, 8B. As a result, heat is not released outside the pressurized space, and the heat recovery capability of the entire first chamber A and second chamber B can be increased. In this way, by switching between the pressurized space and the decompressed space, fresh outdoor air can be introduced into any room, and the first indoor space WA of the first chamber A and the second indoor space of the second chamber B. High air quality can also be maintained in WB.

また、無機発泡体2A,2Bの材料である無機材料は親水性が高いため、湿気を材料内部に吸着等によって保持することが可能である。無機発泡体2A,2Bを通して、第1室内空間WA及び第2室内空間WBから室外空間WCへ、室外空間WCから第1室内空間WA及び第2室内空間WB内に空気が移動する際に湿気も移動するため、無機発泡体2A,2B内部で結露が発生することを防ぐこともできる。   In addition, since the inorganic material that is the material of the inorganic foams 2A and 2B has high hydrophilicity, moisture can be held inside the material by adsorption or the like. Moisture is also generated when air moves from the first indoor space WA and the second indoor space WB to the outdoor space WC through the inorganic foams 2A and 2B, and from the outdoor space WC into the first indoor space WA and the second indoor space WB. Since it moves, it can also prevent that dew condensation generate | occur | produces inside inorganic foam 2A, 2B.

また、無機発泡体2A,2Bは、発泡体という複数の微小空間を有する形状に形成されていることにより、材料自身が軽くなり、またパネル形状を得ることも可能になる。そのため、ハンドリング性及び施工性が、繊維質材料と比較して格段に向上する。さらに、無機発泡体2A,2Bが軽量であることから、建築物の重量低減につながって耐震性も増す。さらに、無機発泡体2A,2Bを外気が通気する際、外気に含まれる汚染物質が無機発泡体2A,2Bで除去され、フィルターの効果も期待できる。   In addition, since the inorganic foams 2A and 2B are formed in a shape having a plurality of minute spaces called foams, the material itself is lightened, and a panel shape can be obtained. Therefore, handling property and workability are significantly improved as compared with the fibrous material. Furthermore, since inorganic foam 2A, 2B is lightweight, it leads to the weight reduction of a building and an earthquake resistance also increases. Furthermore, when the outside air passes through the inorganic foams 2A and 2B, the contaminants contained in the outside air are removed by the inorganic foams 2A and 2B, and the effect of the filter can be expected.

以上のように、ビル、住宅、倉庫などの建物Yの第1室A内及び第2室B内において、優れた断熱性能による省エネルギー化が実現でき、第1室A内及び第2室B内への新鮮な空気の導入による空気質の改善と同時に、排気時の熱損失の低減が実現できる。   As described above, in the first room A and the second room B of the building Y such as a building, a house, a warehouse, etc., energy saving can be realized by excellent heat insulation performance, and the inside of the first room A and the second room B. In addition to improving air quality through the introduction of fresh air, it is possible to reduce heat loss during exhaust.

また、第1室Aと第2室Bとは隣接し、第1室Aと第2室Bとを区画する仕切り材7に送風機8A,8Bを設けた。この場合には、仕切り材7に設けられた開口部7aを介して第1室内空間WA及び第2室内空間WB間での送風を容易に行うことができる。また、第1室Aと第2室Bとが隣接していることにより、一方の室内から他方の室内へ空気を移動させる際の熱損失を低減することができる。   Further, the first chamber A and the second chamber B are adjacent to each other, and the fans 8A and 8B are provided in the partition material 7 that partitions the first chamber A and the second chamber B. In this case, it is possible to easily blow air between the first indoor space WA and the second indoor space WB through the opening 7a provided in the partition member 7. Further, since the first chamber A and the second chamber B are adjacent to each other, heat loss when air is moved from one room to the other room can be reduced.

また、無機発泡体2A及び無機発泡体2Bの通気率を5×10−4〜1m−1Pa−1とし、かつ、熱伝導率を0.02〜0.1W/mKとすることで、最適な換気効果、及び熱回収効果を得ることができる。 Moreover, the air permeability of the inorganic foam 2A and the inorganic foam 2B is 5 × 10 −4 to 1 m 2 h −1 Pa −1 and the thermal conductivity is 0.02 to 0.1 W / mK. The optimal ventilation effect and heat recovery effect can be obtained.

また、送風制御部100は、送風機8A,8Bの送風量を可変に制御することで、第1室A及び第2室Bの上下階層、室内空間の広さ、気候、及び、温度等に対応して、無機発泡体2A,2Bを通して給排気できる空気量を所定の値に調節し、室内全体の熱回収率を向上させることができる。   Moreover, the ventilation control part 100 respond | corresponds to the upper and lower hierarchy of the 1st chamber A and the 2nd chamber B, the width of an indoor space, a climate, temperature, etc. by variably controlling the ventilation volume of air blower 8A, 8B. Then, the amount of air that can be supplied and exhausted through the inorganic foams 2A and 2B can be adjusted to a predetermined value, and the heat recovery rate of the entire room can be improved.

また、無機発泡体2A及び無機発泡体2Bの熱容量を、2〜40Kcal/℃とすることで、最適な熱回収効果を得ることができる。   Moreover, the optimal heat recovery effect can be acquired by the heat capacities of the inorganic foam 2A and the inorganic foam 2B being 2 to 40 Kcal / ° C.

以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。例えば、第1室Aと第2室Bとが隣接していなくてもよい。この場合、たとえば、第1室Aと第2室Bとの間をつなぐ送風用配管等を通じて第1室内空間WA及び第2室内空間WB間での送風を行うことができる。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, the first chamber A and the second chamber B may not be adjacent to each other. In this case, for example, the air can be blown between the first indoor space WA and the second indoor space WB through a blow pipe connecting the first chamber A and the second chamber B.

また、送風機8A,8Bの構成は、実施形態において開示した構成に限定されず、他の構成であってもよい。例えば、送風の向きを切り替え可能な送風機であれば、実施形態で説明したように2台の送風機8A,8Bを用いる必要がなく、1台の送風機のみを用いてもよい。また、建物Yにおいて、無機発泡体2A,2Bの外側面が室外空間WCに通じていれば、側部有機断熱材3,4に隣接して他の空間が設けられていてもよい。   Moreover, the structure of air blower 8A, 8B is not limited to the structure disclosed in embodiment, Other structures may be sufficient. For example, if it is a fan which can change the direction of ventilation, it is not necessary to use two fans 8A and 8B as explained in the embodiment, and only one fan may be used. Moreover, in the building Y, if the outer side surfaces of the inorganic foams 2A and 2B communicate with the outdoor space WC, another space may be provided adjacent to the side organic heat insulating materials 3 and 4.

1…換気システム、2A…無機発泡体(第1の無機発泡体)、2B…無機発泡体(第2の無機発泡体)、7…仕切り材、7a…開口部、8A,8B…送風機、100…送風制御部、A…第1室、B…第2室、WA…第1室内空間(第1室の室内空間)、WB…第2室内空間(第2室Bの室内空間)。   DESCRIPTION OF SYMBOLS 1 ... Ventilation system, 2A ... Inorganic foam (1st inorganic foam), 2B ... Inorganic foam (2nd inorganic foam), 7 ... Partition material, 7a ... Opening part, 8A, 8B ... Blower, 100 ... Blower control part, A ... First chamber, B ... Second chamber, WA ... First indoor space (first chamber indoor space), WB ... Second indoor space (second chamber B indoor space).

Claims (5)

第1室内及び第2室内の換気を行う換気システムであって、
前記第1室に設けられ、前記第1室の室外空間と室内空間とを通気可能に区画する第1の無機発泡体と、
前記第2室に設けられ、前記第2室の室外空間と室内空間とを通気可能に区画する第2の無機発泡体と、
前記第1室の室内空間から前記第2室の室内空間への空気の送風、及び、前記第2室の室内空間から前記第1室の室内空間への空気の送風の切り替えが可能であり、空気の送風元の室内空間を前記第1室の室外空間及び前記第2室の室外空間よりも減圧し、空気の送風先の室内空間を前記第1室の室外空間及び前記第2室の室外空間よりも加圧する送風機と、
前記送風機における前記第1室の室内空間から前記第2室の室内空間への送風及び前記第2室の室内空間から前記第1室の室内空間への送風を所定のタイミングで切り替える送風制御部と、
を備えることを特徴とする換気システム。
A ventilation system for ventilating a first room and a second room,
A first inorganic foam which is provided in the first chamber and divides the outdoor space and the indoor space of the first chamber so as to allow ventilation;
A second inorganic foam that is provided in the second chamber and partitions the outdoor space and the indoor space of the second chamber so as to allow ventilation;
It is possible to switch air blowing from the indoor space of the first chamber to the indoor space of the second chamber, and air blowing from the indoor space of the second chamber to the indoor space of the first chamber, The indoor space from which the air is blown is depressurized more than the outdoor space in the first chamber and the outdoor space in the second chamber, and the indoor space from which the air is blown is outside the outdoor space in the first chamber and the second chamber. A blower that pressurizes more than space;
A blower control unit that switches the air blow from the indoor space of the first chamber to the indoor space of the second chamber and the blow from the indoor space of the second chamber to the indoor space of the first chamber at a predetermined timing in the blower; ,
Ventilation system characterized by comprising.
前記第1室と前記第2室とは隣接しており、前記送風機は、前記第1室と前記第2室とを区画する仕切り材に設けられ、前記仕切り材に設けられた開口部を介して前記送風を行うことを特徴とする請求項1に記載の換気システム。   The first chamber and the second chamber are adjacent to each other, and the blower is provided in a partition material that partitions the first chamber and the second chamber, and through an opening provided in the partition material. The ventilation system according to claim 1, wherein the ventilation is performed. 前記第1の無機発泡体及び前記第2の無機発泡体の少なくともいずれかは、通気率が5×10−4〜1m−1Pa−1であり、かつ、熱伝導率が0.02〜0.1W/mKであることを特徴とする請求項1又は2に記載の換気システム。 At least one of the first inorganic foam and the second inorganic foam has an air permeability of 5 × 10 −4 to 1 m 2 h −1 Pa −1 and a thermal conductivity of 0.02. It is -0.1W / mK, The ventilation system of Claim 1 or 2 characterized by the above-mentioned. 前記送風制御部は、前記送風機の送風量を可変に制御することを特徴とする請求項1〜3のいずれか一項に記載の換気システム。   The ventilation system according to any one of claims 1 to 3, wherein the air blowing control unit variably controls an air blowing amount of the blower. 前記第1の無機発泡体及び前記第2の無機発泡体の少なくともいずれかの熱容量は、2〜40Kcal/℃であることを特徴とする請求項1〜4のいずれか一項に記載の換気システム。   The ventilation system according to any one of claims 1 to 4, wherein a heat capacity of at least one of the first inorganic foam and the second inorganic foam is 2 to 40 Kcal / ° C. .
JP2012073797A 2012-03-28 2012-03-28 Ventilation system Active JP5998311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073797A JP5998311B2 (en) 2012-03-28 2012-03-28 Ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073797A JP5998311B2 (en) 2012-03-28 2012-03-28 Ventilation system

Publications (2)

Publication Number Publication Date
JP2013204294A true JP2013204294A (en) 2013-10-07
JP5998311B2 JP5998311B2 (en) 2016-09-28

Family

ID=49523686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073797A Active JP5998311B2 (en) 2012-03-28 2012-03-28 Ventilation system

Country Status (1)

Country Link
JP (1) JP5998311B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188567A (en) * 2015-03-27 2016-11-04 旭化成建材株式会社 Ventilation system and house
JP2016188752A (en) * 2015-03-27 2016-11-04 旭化成建材株式会社 Ventilation system and house
JP2018004181A (en) * 2016-07-04 2018-01-11 旭化成建材株式会社 Ventilation system and house
JP6410979B1 (en) * 2017-07-07 2018-10-24 旭化成建材株式会社 Ventilation system and house
SE1751279A1 (en) * 2017-10-13 2019-04-14 Flexit Sverige Ab Rotating heat exchanger with improved heat transfer capacity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4510625Y1 (en) * 1967-11-13 1970-05-14
JPS55159046A (en) * 1979-02-15 1980-12-10 Haugeneder Hans Wall of building
JPS6347802Y2 (en) * 1983-04-18 1988-12-09
JP2004136593A (en) * 2002-10-18 2004-05-13 Asahi Kasei Corp Dynamic heat-insulating material
JP2004360235A (en) * 2003-06-03 2004-12-24 Akira Fukushima Thermal insulation performance improvement method of building exterior wall by recovery of heat transmission
JP2006077539A (en) * 2004-09-13 2006-03-23 Asahi Kasei Corp Wall structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4510625Y1 (en) * 1967-11-13 1970-05-14
JPS55159046A (en) * 1979-02-15 1980-12-10 Haugeneder Hans Wall of building
JPS6347802Y2 (en) * 1983-04-18 1988-12-09
JP2004136593A (en) * 2002-10-18 2004-05-13 Asahi Kasei Corp Dynamic heat-insulating material
JP2004360235A (en) * 2003-06-03 2004-12-24 Akira Fukushima Thermal insulation performance improvement method of building exterior wall by recovery of heat transmission
JP2006077539A (en) * 2004-09-13 2006-03-23 Asahi Kasei Corp Wall structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188567A (en) * 2015-03-27 2016-11-04 旭化成建材株式会社 Ventilation system and house
JP2016188752A (en) * 2015-03-27 2016-11-04 旭化成建材株式会社 Ventilation system and house
JP2018004181A (en) * 2016-07-04 2018-01-11 旭化成建材株式会社 Ventilation system and house
JP6410979B1 (en) * 2017-07-07 2018-10-24 旭化成建材株式会社 Ventilation system and house
JP2019015491A (en) * 2017-07-07 2019-01-31 旭化成建材株式会社 Ventilation system and house
SE1751279A1 (en) * 2017-10-13 2019-04-14 Flexit Sverige Ab Rotating heat exchanger with improved heat transfer capacity

Also Published As

Publication number Publication date
JP5998311B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5998311B2 (en) Ventilation system
JP4294784B2 (en) Air conditioning equipment and air conditioning method
JP2014051874A (en) Energy-saving ventilation system for air-tightness house
JP2010111992A (en) Air heat-insulation method for exterior wall structure and roof structure
JP2013053439A (en) Air purification type building
JP4562469B2 (en) Wall structure
JP6524506B2 (en) Ventilation system and house
CN208518101U (en) A kind of external wall Rainproof moisture-proof gas permeable devices
CN103397715A (en) Three-layer thermal-insulating wall with ventilating function
JP6519750B2 (en) Ventilation system and house
JP6525157B2 (en) Ventilation system and house
JP2001132123A (en) Ventilating system for house
JP2010243075A (en) Ventilation air-conditioning system and building
JP2006200331A (en) Foundation packing
JP2008063847A (en) Moisture-permeable heat-insulating airtight structure for building
JP2006241773A (en) Thermally insulated building
JP2005042958A (en) Heating system
JP2013136877A (en) Wall structure of building
JP2005226421A (en) Exterior thermal insulation and ventilation system
RU2732555C1 (en) Energy-saving wall with controlled heat-shielding properties
JP5866532B2 (en) Air purification type building and air purification method for building
CN214905441U (en) Lead to wet type glass showcase system of cabinet type outdoor stone historical relic accuse
Beregovoi et al. Energy Saving Effect in Conditions of Air Infiltration through External Wall Made of Air-Permeable Materials
WO2018109798A1 (en) Air conditioning system
JP6410979B1 (en) Ventilation system and house

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160311

R150 Certificate of patent or registration of utility model

Ref document number: 5998311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350