JP4562469B2 - Wall structure - Google Patents

Wall structure Download PDF

Info

Publication number
JP4562469B2
JP4562469B2 JP2004265554A JP2004265554A JP4562469B2 JP 4562469 B2 JP4562469 B2 JP 4562469B2 JP 2004265554 A JP2004265554 A JP 2004265554A JP 2004265554 A JP2004265554 A JP 2004265554A JP 4562469 B2 JP4562469 B2 JP 4562469B2
Authority
JP
Japan
Prior art keywords
air
inorganic foam
wall
heat
wall structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004265554A
Other languages
Japanese (ja)
Other versions
JP2006077539A (en
Inventor
博圭 松山
晃博 小川
拓文 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp, Asahi Kasei Homes Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2004265554A priority Critical patent/JP4562469B2/en
Publication of JP2006077539A publication Critical patent/JP2006077539A/en
Application granted granted Critical
Publication of JP4562469B2 publication Critical patent/JP4562469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

本発明は、ビルや住宅などの建築物において、優れた断熱性と室内の換気を同時に満足させ、省エネルギーの実現と室内の空気質の向上ができる新規な壁構造に関するものである。   The present invention relates to a novel wall structure capable of simultaneously satisfying excellent heat insulating properties and indoor ventilation in a building such as a building or a house, realizing energy saving and improving indoor air quality.

化石燃料の枯渇、化石燃料を大量に使用することによる大気汚染や二酸化炭素による地球温暖化が大きな社会問題となっている現在、省エネルギーの必要性はますます高まっている。中でも、住宅やビルでのエネルギー消費量は、冷暖房を利用した快適な生活空間を望む傾向が強まるとともに上昇していることから、建物の高断熱高気密化による省エネルギー化が取り組まれてきた。   At present, the need for energy conservation is increasing as depletion of fossil fuels, air pollution caused by the use of large amounts of fossil fuels, and global warming due to carbon dioxide have become major social problems. In particular, energy consumption in homes and buildings has risen as the tendency to desire a comfortable living space using air conditioning has increased and energy saving has been addressed by highly insulating and airtight buildings.

しかしながら、高断熱高気密化の建物における空気質悪化の対策として計画換気が必要とされ、高気密高断熱かつ計画換気を実施するための設計及び材料が求められている。   However, planned ventilation is required as a countermeasure against air quality deterioration in highly insulated and airtight buildings, and design and materials for implementing highly airtight and highly insulated and planned ventilation are required.

しかるに、従来一般的に行われている換気は壁に換気口を設ける方法が主流であり、換気によって熱損失が生じて、高気密高断熱の効果が低減するという課題がある。また、壁に開けられた小さな換気口で換気した場合、空気の流れが局所的になるために部屋の隅々まで換気することが困難であるという課題もある。   However, in general ventilation, a method of providing a ventilation port on a wall is the mainstream, and there is a problem that heat loss is caused by ventilation and the effect of high airtightness and high heat insulation is reduced. Moreover, when it ventilates with the small ventilation opening opened on the wall, since the flow of air becomes local, there also exists a subject that it is difficult to ventilate to every corner of a room.

一方では、これまで高断熱化を図るために壁に断熱材を入れることが行われ、効果を発揮しているが、断熱材に頼った熱貫流の低減にも限界が見え始めている。そのために、高気密高断熱化による省エネルギー、すなわち熱エネルギー損失低減にも限界があることがわかってきている。   On the other hand, in order to achieve high heat insulation, it has been effective to put a heat insulating material in the wall so far, but the effect has been demonstrated. However, there is a limit to the reduction of the heat flow depending on the heat insulating material. For this reason, it has been found that there is a limit to energy saving, that is, reduction of heat energy loss due to high airtightness and high thermal insulation.

このような状況下、熱エネルギー損失の低減を図りながら、同時に計画換気を行える動的断熱法が研究されている。動的断熱法では、壁や天井体内に通気性のある材料を挿入し、その材料を通して外気を室内に導入する過程で、材料内で熱交換をさせて壁や天井体内からの熱を回収しようとするものである。   Under such circumstances, a dynamic thermal insulation method capable of performing planned ventilation at the same time while reducing thermal energy loss has been studied. In the dynamic insulation method, in the process of inserting a breathable material into the wall or ceiling body and introducing outside air into the room through the material, heat is exchanged within the material to recover heat from the wall or ceiling body. It is what.

さらに、材料を通して室内に導入された空気は新鮮であるとともに、小さな換気口ではなく、壁全体から外気を導入することで部屋全体を均一に換気することが可能である。これらの結果、見かけ上の熱貫流率の低減を図りながら、給気予熱が実現され、かつ室内の高い空気質が維持される等の効果を得ることが出来る。   Furthermore, the air introduced into the room through the material is fresh, and it is possible to uniformly ventilate the entire room by introducing outside air from the entire wall, not a small ventilation port. As a result, it is possible to achieve effects such as preheating of the air supply and maintaining high indoor air quality while reducing the apparent heat transmissibility.

従来は、このような動的断熱法を実現するために、古紙パルプの粉砕物やロックウール等の無機系繊維を一定範囲に区切られた枠内に充填する方法が取られてきた。この方法によると、型枠自身の熱伝導率が、古紙パルプの粉砕物やロックウール等の無機系繊維より高いため、型枠を通して熱伝導が生じ、動的断熱の有効性が発揮しきれないという問題があった。   Conventionally, in order to realize such a dynamic heat insulation method, a method of filling inorganic fibers such as a pulverized waste paper pulp or rock wool into a frame defined by a certain range has been taken. According to this method, because the thermal conductivity of the mold itself is higher than that of inorganic fibers such as pulverized waste paper and rock wool, heat conduction occurs through the mold and the effectiveness of dynamic insulation cannot be fully demonstrated. There was a problem.

さらに、これらの材料の吹き込みの際に生じる、型枠と断熱材粉末の隙間を通して、熱損失が生じるために、実際には必要以上の厚さに断熱材を施工しなければならないという問題があった。   Furthermore, since heat loss occurs through the gap between the formwork and the heat insulating powder that occurs when these materials are blown, there is a problem that the heat insulating material must actually be installed to a thickness that is more than necessary. It was.

これに代わる材料として、ロックウールボードやガラスウールマットの使用も検討されてきた。これらの材料は、綿状あるいは繊維状の繊維が絡み合っているだけなので、曲げ強度が低く、施工時に梁や枠が必要となって施工性が低下し、かつ現場での切断時に有害とされている微細繊維が多く飛散して作業者の健康を害し、さらに通気率が高すぎるために単独では動的断熱材として用いることができず微細な穴を多数開けたプラスチックシートを室内側に配する必要がある等の如く、壁の施工が非常に煩雑になるという問題があるだけでなく、構造全体としての不燃性が低下するという問題もあった。   As an alternative material, the use of rock wool boards and glass wool mats has been studied. Since these materials are simply intertwined with cotton or fibrous fibers, the bending strength is low, beams and frames are required during construction, workability is reduced, and they are considered harmful when cutting on site. A lot of fine fibers are scattered to harm the health of the worker, and because the air permeability is too high, it can not be used alone as a dynamic heat insulating material, and a plastic sheet with many fine holes is arranged indoors As necessary, there is a problem that the construction of the wall becomes very complicated, and there is also a problem that the non-flammability of the entire structure is lowered.

本発明は、前述の従来の多くの問題点に鑑み開発された全く新規な発明であって、特に所定の通気性と熱伝導率を有する無機発泡体を空気層を介して外壁材に対面配置して構成し、かつ前記空気層と外気との間に空気流通を可能に構成した全く新しい壁構造の技術を提供するものである。   The present invention is a completely new invention developed in view of the above-mentioned many problems of the prior art, and in particular, an inorganic foam having a predetermined air permeability and thermal conductivity is arranged facing an outer wall material through an air layer. The present invention provides a completely new wall structure technology that is configured to allow air flow between the air layer and the outside air.

本発明は、前述のような壁構造に構成することによって、ビルや住宅等の建築物に於て、優れた断熱性と室内の換気を同時に実現することが出来、これによって省エネルギーを可能とすると共に、室内の空気全体の質を向上させることが出来る効果を目的としたものである。   By constructing the wall structure as described above, the present invention can simultaneously achieve excellent heat insulation and indoor ventilation in buildings such as buildings and houses, thereby enabling energy saving. At the same time, it aims at the effect of improving the quality of the whole indoor air.

本発明は、前述の従来の多くの問題点を根本的に改善した発明であって、その壁構造の第1発明の要旨は、所定の通気性と熱伝導率を有する無機発泡体を空気層を介して外壁材に対面配置して構成し、かつ前記空気層と外気との間に空気流通を可能に構成した壁構造であって、前記無機発泡体を、通気率が5×10 −4 〜1m −1 Pa −1 の範囲で、かつ熱伝導率が0.02〜0.1W/mKの範囲とし、該無機発泡体を通して外気を建物の室内に導入するように構成し、前記空気層を介して、前記無機発泡体に供給される空気量を可変に設定するための手段が設けられて構成されたことを特徴とした壁構造である。 The present invention is an invention which has fundamentally improved many of the above-mentioned conventional problems, and the gist of the first invention of the wall structure is that an inorganic foam having a predetermined air permeability and thermal conductivity is used as an air layer. The wall structure is configured such that the outer wall material is arranged to face each other and allows air to flow between the air layer and the outside air, and the air permeability of the inorganic foam is 5 × 10 −4. In the range of ˜1 m 2 h −1 Pa −1 and thermal conductivity in the range of 0.02 to 0.1 W / mK, and configured to introduce outside air into the room of the building through the inorganic foam, A wall structure characterized in that a means for variably setting the amount of air supplied to the inorganic foam through an air layer is provided .

本発明の第発明の要旨は、前記無機発泡体の熱容量が2〜40kcal/℃であることを特徴とした第1発明の壁構造である。 Summary of the second aspect of the present invention, the heat capacity of the inorganic foam is a first shot Ming wall structures characterized by a 2~40kcal / ℃.

本発明の第1発明に於ては、前述のように所定の通気性と熱伝導率を有する無機発泡体を使用し、この無機発泡体を空気層を介して外壁材に対面配置すると共に、該空気層と外気との間に空気流通を可能に構成したので、前記空気層と無機発泡体を介在して建物の室内と外気とを通じさせて効率的な換気を可能とし、室内の高い空気質を維持し、さらに建築物の省エネルギー性を向上させることが出来る。   In the first invention of the present invention, as described above, an inorganic foam having a predetermined air permeability and thermal conductivity is used, and the inorganic foam is disposed facing the outer wall material through an air layer. Since the air flow is configured between the air layer and the outside air, the air layer and the inorganic foam are interposed between the air layer and the outside air to allow efficient ventilation through the building. The quality can be maintained, and the energy conservation of the building can be improved.

さらに、本発明は前述の単純な構成を有するので、施工性に優れ、施工時の作業を簡単にすると共に、施工コストを安価にし、しかも耐火性に優れた壁構造を構成することが出来る。   Furthermore, since the present invention has the above-described simple configuration, it is possible to construct a wall structure that is excellent in workability, simplifies the work at the time of construction, reduces the construction cost, and is excellent in fire resistance.

また、無機発泡体の通気率を5×10−4〜1m−1Pa−1の範囲で、かつ熱伝導率が0.02〜0.1W/mKの範囲とし、かつ熱伝導率を0.02〜0.1W/mKの範囲としたので、該無機発泡体を通して外気を建物の室内に導入することが出来る。かつこの無機発泡体内を空気が通過する際に熱交換が充分に行われて、外気から導入された空気によって室内から無機発泡体に伝達されている熱を回収することが出来る。従って、本発明の無機発泡体は、動的断熱材としての役割をし、実質的な熱貫流率の低減及び換気を容易に実現することが出来る。 In addition, the air permeability of the inorganic foam is in the range of 5 × 10 −4 to 1 m 2 h −1 Pa −1 and the thermal conductivity is in the range of 0.02 to 0.1 W / mK, and the thermal conductivity is Since it was set as the range of 0.02-0.1 W / mK, external air can be introduce | transduced into the room | chamber interior of a building through this inorganic foam. Further, heat exchange is sufficiently performed when air passes through the inorganic foam, and the heat transferred from the room to the inorganic foam by the air introduced from the outside air can be recovered. Therefore, the inorganic foam of the present invention plays a role as a dynamic heat insulating material, and can easily realize a substantial reduction in the thermal conductivity and ventilation.

また、前述のように外気に連通された空気層を介して前記無機発泡体に供給する空気量を調節することが出来るよう構成したので、建築物の上下階層或は気候等に対応して通気量を変化させ、これによって室内に流入する空気を任意に調節することが出来る。 In addition , since the amount of air supplied to the inorganic foam can be adjusted through the air layer communicated with the outside air as described above, the air flow corresponding to the upper and lower layers of the building or the climate is provided. By changing the amount, the air flowing into the room can be arbitrarily adjusted.

本発明の第発明に於ては、無機発泡体の熱容量を2〜40kcal/℃にしたので、室内側から伝わって来る熱を充分に保持することが出来る。従って、室内側から伝わって来た熱を充分に回収することが出来ると共に、外気から無機発泡体に導入された空気との熱交換を効率良く行うことが出来る。 In the second invention of the present invention, since the heat capacity of the inorganic foam is set to 2 to 40 kcal / ° C., the heat transmitted from the indoor side can be sufficiently retained. Therefore, it is possible to sufficiently recover the heat transmitted from the indoor side and to efficiently exchange heat with the air introduced from the outside air into the inorganic foam.

図により、本発明に係る壁構造の一実施例を具体的に説明すると、図1は本発明の壁構造の第1例を示す縦断面説明図、図2は本発明の第2例を示す縦断面説明図、図3は本発明の第3例を示す縦断面説明図、図4は実施例に於て製造した本発明の具体的な壁構造の説明図、図5は本発明の壁構造の性能を測定するために作成した立方体の斜視図、図6は比較例1で製作した壁構造の説明図である。   FIG. 1 is a longitudinal sectional view showing a first example of the wall structure of the present invention, and FIG. 2 shows a second example of the present invention. FIG. 3 is a longitudinal sectional explanatory view showing a third example of the present invention, FIG. 4 is an explanatory view of a concrete wall structure of the present invention manufactured in the embodiment, and FIG. 5 is a wall of the present invention. FIG. 6 is an explanatory view of a wall structure manufactured in Comparative Example 1, and FIG. 6 is a perspective view of a cube created for measuring the performance of the structure.

図1乃至図6に於て、1は外壁、2は無機発泡体、3は外壁1と無機発泡体2との間に介在される空気層、4は上枠、5は下枠、6は桟である。また、7は空気層3の下方に設けられた外気と連通する空間、8は外壁1に取付けた換気穴、9は外壁1に設けた小穴、10は無機発泡体2と外壁1と空気層3を介して対面配置して作った二重壁で構成した立方体、11はこの立方体10に取付けられたファン、12は高性能有機断熱材、13は空気層3内に挿入されたスペーサーである。   1 to 6, 1 is an outer wall, 2 is an inorganic foam, 3 is an air layer interposed between the outer wall 1 and the inorganic foam 2, 4 is an upper frame, 5 is a lower frame, 6 is It is a pier. 7 is a space communicating with the outside air provided below the air layer 3, 8 is a ventilation hole attached to the outer wall 1, 9 is a small hole provided in the outer wall 1, and 10 is the inorganic foam 2, the outer wall 1 and the air layer. 3 is a cube composed of double walls made to face each other through 3, 11 is a fan attached to the cube 10, 12 is a high performance organic heat insulating material, and 13 is a spacer inserted in the air layer 3. .

図1乃至図4に於て、本発明の壁構造の基本的な構造は、図1乃至図4に示す如く、無機発泡体2を空気層3を介して外壁材1に対面配置し、かつ該空気層3を例えば空間7、通気穴8、小穴9等を介して外気に連通して構成した構造である。前記空気層3は、図1に例示する如く、無機発泡体2と外壁1との間にスペーサー13を介在させることによって形成されている。このように本発明の壁構造の第1番目の大きな特徴は、所定の通気性と熱伝導率を有する無機発泡体2を空気層3を介して外壁材1に対面配置し、かつ該空気層3を外気と連通させて構成した点にある。   1 to 4, the basic structure of the wall structure of the present invention is as shown in FIGS. 1 to 4, in which an inorganic foam 2 is disposed facing the outer wall material 1 through an air layer 3, and For example, the air layer 3 is configured to communicate with the outside air through a space 7, a vent hole 8, a small hole 9, and the like. As illustrated in FIG. 1, the air layer 3 is formed by interposing a spacer 13 between the inorganic foam 2 and the outer wall 1. Thus, the first major feature of the wall structure of the present invention is that the inorganic foam 2 having predetermined air permeability and thermal conductivity is disposed facing the outer wall material 1 through the air layer 3, and the air layer 3 is configured to communicate with the outside air.

本発明の壁構造は、通気率が5×10−4〜1m−1Pa−1の範囲であり、熱伝導率が0.02〜0.1W/mKの範囲である無機発泡体2を用いる。この点に本発明の第2番目の大きな特徴がある。通気率及び熱伝導率が上記範囲であることにより、外気を無機発泡体2を通して室内に導入することが可能であり、空気が通過する際に熱交換が十分行われて、つまり外気から導入された空気が室内から無機発泡体2に伝わった熱を回収し、動的断熱材として実質的な熱貫流率の低減および換気が実現できる。 The wall structure of the present invention has an air permeability of 5 × 10 −4 to 1 m 2 h −1 Pa −1 and an inorganic foam 2 having a thermal conductivity of 0.02 to 0.1 W / mK. Is used. This is the second major feature of the present invention. When the air permeability and the thermal conductivity are in the above ranges, it is possible to introduce the outside air into the room through the inorganic foam 2, and heat exchange is sufficiently performed when the air passes, that is, the air is introduced from the outside air. The heat transferred from the room to the inorganic foam 2 can be recovered, and a substantial reduction in the heat transmissibility and ventilation can be realized as a dynamic heat insulating material.

前記無機発泡体2の通気率の範囲は、5×10−4〜1m−1Pa−1であり、好ましくは1×10−3〜0.5m−1Pa−1、より好ましくは5×10−3〜0.1m−1Pa−1である。通気率が5×10−4−1Pa−1未満になると、外気を取り込むことができないために高い換気効果が発現しない。また、通気率が1m−1Pa−1を超えると、空気の流速が早くなり過ぎて熱交換を行う時間が十分とれないために、熱の回収を有効に行うことが出来ない。 The range of the air permeability of the inorganic foam 2 is 5 × 10 −4 to 1 m 2 h −1 Pa −1 , preferably 1 × 10 −3 to 0.5 m 2 h −1 Pa −1 , more preferably. Is 5 × 10 −3 to 0.1 m 2 h −1 Pa −1 . When the air permeability is less than 5 × 10 −4 m 2 h −1 Pa −1 , the outside air cannot be taken in, and thus a high ventilation effect is not exhibited. On the other hand, if the air permeability exceeds 1 m 2 h −1 Pa −1 , the air flow rate becomes too fast and time for heat exchange is not sufficient, so that heat cannot be recovered effectively.

前記無機発泡体2の熱伝導率の範囲は、0.02〜0.1W/mKであり、好ましくは0.02〜0.08W/mK、より好ましくは0.02〜0.06W/mKである。熱伝導率が0.1W/mKを超えると、無機発泡体2を伝わって逃げる熱量が大きくなるために外気から導入された空気で十分に熱回収できない。無機発泡体2の厚みを大きくすれば熱回収が可能になるが、壁全体が厚くなりすぎて施工性が悪化して好ましくない。本発明の壁構造に用いる無機発泡体2の熱伝導率の下限は、実用面から考えて、0.02W/mKである。   The range of the thermal conductivity of the inorganic foam 2 is 0.02 to 0.1 W / mK, preferably 0.02 to 0.08 W / mK, more preferably 0.02 to 0.06 W / mK. is there. If the thermal conductivity exceeds 0.1 W / mK, the amount of heat that escapes through the inorganic foam 2 increases, so that sufficient heat cannot be recovered with air introduced from the outside air. If the thickness of the inorganic foam 2 is increased, heat recovery becomes possible, but the entire wall becomes too thick and the workability deteriorates. The lower limit of the thermal conductivity of the inorganic foam 2 used for the wall structure of the present invention is 0.02 W / mK in view of practical use.

本発明の壁構造に用いられる熱交換が可能な無機発泡体2は、室内から無機発泡体2内に伝わった熱を外気から導入された空気が熱交換するが、その場合、無機発泡体2が適度な熱容量、すなわち、熱を保持する性質を有することが好ましい。熱容量の好ましい範囲は、2〜40kcal/℃であり、より好ましくは3〜30kcal/℃である。この熱容量の好ましい範囲は、発泡体の幅を60cm、長さを270cmとして換算した場合の値である。   In the inorganic foam 2 capable of heat exchange used for the wall structure of the present invention, air introduced from the outside air exchanges heat transferred from the room into the inorganic foam 2. In this case, the inorganic foam 2 Preferably have an appropriate heat capacity, that is, a property of retaining heat. A preferable range of the heat capacity is 2 to 40 kcal / ° C, more preferably 3 to 30 kcal / ° C. A preferable range of the heat capacity is a value when the width of the foam is converted to 60 cm and the length is set to 270 cm.

熱容量が前記範囲であることにより、室内から伝わった熱を十分に保持することが可能になる。熱容量が2kcal/℃未満であると、保持できる熱量が小さいために、伝わってきた熱を十分に回収できない場合がある。また熱容量が40kcal/℃を超えると、熱を保持する能力が高過ぎるために、外気から発泡体中に導入された空気と熱交換をしにくくなる場合がある。   When the heat capacity is within the above range, it is possible to sufficiently retain the heat transmitted from the room. If the heat capacity is less than 2 kcal / ° C., the amount of heat that can be retained is small, and thus the transmitted heat may not be sufficiently recovered. When the heat capacity exceeds 40 kcal / ° C., the ability to retain heat is too high, and it may be difficult to exchange heat with the air introduced into the foam from the outside air.

本発明の壁構造において、前記の通気性及び熱伝導率を有する材料として、無機発泡体2を用いる。無機物を用いることにより、外気と共に湿気が無機発泡体2に導入された場合でも材料の劣化が起こり難い。また、元来無機材料は親水性が高いため、湿気を材料内部に吸着等によって保持することが可能である。そのため、例えば、外気が非常に多くの湿気を含んでいても、一定量の湿気を発泡体に保持、室内の湿度を必要以上に高くしない効果がある。さらには、壁構造自身の不燃性を向上させることが出来る。   In the wall structure of the present invention, the inorganic foam 2 is used as the material having the above air permeability and thermal conductivity. By using an inorganic substance, even when moisture is introduced into the inorganic foam 2 together with the outside air, the material hardly deteriorates. Also, since inorganic materials are inherently highly hydrophilic, moisture can be retained inside the material by adsorption or the like. Therefore, for example, even if the outside air contains a great deal of moisture, there is an effect that a certain amount of moisture is held in the foam and the indoor humidity is not increased more than necessary. Furthermore, the nonflammability of the wall structure itself can be improved.

発泡体という硬化体であることにより、材料自身が軽くなり、またパネル形状を得ることも可能になる。そのため、ハンドリング性及び施工性が、繊維質材料と比較して各段に向上する。軽量であることから、建築物の重量低減につながって耐震性も増す。また同じ耐震設計であれば、例えば、鉄骨構造においては鉄骨の必要量を低減させることが出来る。   By being a hardened body called a foam, the material itself becomes light, and a panel shape can be obtained. Therefore, handling property and workability are improved in each stage as compared with the fibrous material. Because it is lightweight, it reduces the weight of the building and increases earthquake resistance. Moreover, if it is the same seismic design, for example, in a steel structure, the required amount of steel can be reduced.

無機発泡体2は、通気性があり、熱交換が可能であれば、その材料は制限されるものではない。例えば、発泡ガラス、気泡コンクリート、軽量気泡コンクリート、発泡アルミナ、発泡炭酸カルシウム硬化体等を挙げることができる。安価であることから発泡ガラスや軽量気泡コンクリート等が好ましい。   The material of the inorganic foam 2 is not limited as long as it has air permeability and heat exchange is possible. Examples thereof include foamed glass, cellular concrete, lightweight cellular concrete, foamed alumina, and foamed calcium carbonate cured body. Foamed glass, lightweight cellular concrete and the like are preferable because they are inexpensive.

本発明の壁構造は、無機発泡体2と外壁材1が空気層3を介して対面配置されており、外気と空気層3の間で空気の流通が可能な二重壁である。建築物として実際に使用する際には、当然ながら建築物として風雨をしのぐ外壁が必要である。しかし、無機発泡体2に隙間なく外壁材1を取り付けると無機発泡体2に外気が供給されない。そのため、無機発泡体2と外壁材1は空気層3を介して対面配置されている必要がある。   The wall structure of the present invention is a double wall in which the inorganic foam 2 and the outer wall material 1 are arranged to face each other via the air layer 3, and air can flow between the outside air and the air layer 3. When actually used as a building, it is a matter of course that the building must have an outer wall that can withstand wind and rain. However, when the outer wall material 1 is attached to the inorganic foam 2 without a gap, the outside air is not supplied to the inorganic foam 2. Therefore, the inorganic foam 2 and the outer wall material 1 need to be arranged facing each other with the air layer 3 interposed therebetween.

空気層3の厚さは制限されるものではないが、薄すぎると通気層に外気が十分に行き渡りにくく、厚すぎると壁構造全体が厚くなりすぎて建築物全体の容積が無駄に大きくなる。そのため、空気層3の厚さは、好ましくは5〜200mmの範囲であり、より好ましくは10〜150mmの範囲である。   The thickness of the air layer 3 is not limited, but if it is too thin, it is difficult for outside air to reach the ventilation layer sufficiently, and if it is too thick, the entire wall structure becomes too thick and the volume of the entire building becomes uselessly large. Therefore, the thickness of the air layer 3 is preferably in the range of 5 to 200 mm, more preferably in the range of 10 to 150 mm.

本発明の壁構造に於ては、外気と空気層3の間で空気の流通が可能であることが必要である。空気の流通が可能でないと、空気層3に外気が供給されず、したがって無機発泡体2に空気が供給されないために、室内に新鮮な空気を取り込むことができない。ここで言う、「空気の流通が可能」とは、無機発泡体2に求められる通気性とは異なり、通気層と外気が空間的につながっていて、通常に吹く風によって空気が移動できる、つまり圧力差を与えることなく空気が移動できることを意味する。   In the wall structure of the present invention, it is necessary that air can flow between the outside air and the air layer 3. If air cannot be circulated, outside air is not supplied to the air layer 3, and therefore air is not supplied to the inorganic foam 2, so that fresh air cannot be taken into the room. Here, “air circulation is possible” means that, unlike the air permeability required for the inorganic foam 2, the air-permeable layer and the outside air are spatially connected, and the air can be moved by the normally blown wind. It means that air can move without giving a pressure difference.

したがって、空気層3が外気から空間的に遮断されないことが重要であり、その方法は限定されるものではない。例えば、外壁を構成する場合、その上部もしくは下部に空間7を設ける(図1)、外壁材1の一部に換気穴8を設ける(図2)、外壁自身に多くの微細な小穴9を開ける(図3)等の構成が挙げられる。   Therefore, it is important that the air layer 3 is not spatially blocked from the outside air, and the method is not limited. For example, when the outer wall is configured, a space 7 is provided in the upper or lower part (FIG. 1), a ventilation hole 8 is provided in a part of the outer wall material 1 (FIG. 2), and many small small holes 9 are opened in the outer wall itself. (FIG. 3) etc. are mentioned.

本発明の壁構造に使用される外壁材1の材質は制限されるものではなく、従来から用いられている無機系、金属系、樹脂系等の外壁材1を使用することが出来る。中でも、無機発泡体2を用いる本発明の壁構造に於て、全体の不燃性を向上出来る点から、金属材料又は非金属の無機材料で構成されていることが好ましい。   The material of the outer wall material 1 used in the wall structure of the present invention is not limited, and the conventionally used outer wall material 1 such as inorganic, metal, or resin can be used. Among these, the wall structure of the present invention using the inorganic foam 2 is preferably composed of a metal material or a non-metallic inorganic material from the viewpoint that the entire nonflammability can be improved.

本発明の壁構造を実際の建築物に施工する方法は、限定されないが、建築物周辺の環境、建物の高さに応じ、無機発泡体2の通気性を可変に設定することにより、本発明の効果をより顕著に発現させることが出来る。通常、建築物の地面からの高さに応じ、また建築場所の周辺環境により、平均風速が異なっている。   Although the method of constructing the wall structure of the present invention on an actual building is not limited, the air permeability of the inorganic foam 2 is variably set according to the environment around the building and the height of the building. The effect of can be expressed more remarkably. Usually, the average wind speed varies depending on the height of the building from the ground and depending on the surrounding environment of the building site.

したがって、同じ通気性を有する材料を全ての高さに施工した場合、例えば、高い場所ほど平均風速が大きいのが普通であり、階下では空気が通りにくいために熱交換及び換気を十分に行うことが出来ず、階上では空気が通り過ぎるために熱交換時間が不足して有効に機能しないという場合が生ずる。また、例えば、海沿い、山沿い、都市部等の建築場所により、通常、吹いている風の強さが異なっている。   Therefore, when materials with the same air permeability are applied at all heights, for example, the average wind speed is usually higher in higher places, and air is difficult to pass downstairs, so heat exchange and ventilation should be sufficiently performed. However, there is a case where the air passes on the floor and the heat exchange time is insufficient so that it does not function effectively. For example, the strength of the blowing wind usually varies depending on the construction site such as along the sea, along the mountain, or in an urban area.

建物の地盤面からの高さに応じ、無機発泡体2の通気性を可変に設定する方法としては、例えば、本発明の壁構造における無機発泡体2の好ましい通気性の範囲で、高さに応じて通気性の異なる無機発泡体2を用いる方法、すなわち、周囲の平均風速の低い階下では、通気性がより高い無機発泡体2を用い、高い階ほど用いる無機発泡体2の通気性を下げていく方法を挙げることが出来る。   As a method of variably setting the breathability of the inorganic foam 2 according to the height from the ground surface of the building, for example, within the preferable breathability range of the inorganic foam 2 in the wall structure of the present invention, Accordingly, the method using the inorganic foam 2 having different breathability, that is, the inorganic foam 2 having higher breathability is used in the downstairs where the average wind speed is low, and the breathability of the inorganic foam 2 used in the higher floor is lowered. You can list how to go.

また、通気性を可変に設定する方法として、空気層3に、無機発泡体2に供給される空気量を可変に設定するための手段を設けた壁構造とすることも好ましく行われる。この場合、周辺環境、地盤面からの高さによらず、同じ通気性の無機発泡体2を用いる方法や周辺環境、地盤面からの高さによって、通気性を変えた無機発泡体2を用いる方法と併用してもよい。   As a method for variably setting the air permeability, a wall structure in which means for variably setting the amount of air supplied to the inorganic foam 2 is provided in the air layer 3 is also preferably performed. In this case, regardless of the surrounding environment and the height from the ground surface, the method using the same air-permeable inorganic foam 2 and the inorganic foam 2 with the air permeability changed depending on the surrounding environment and the height from the ground surface are used. You may use together with the method.

無機発泡体2に供給される空気量を可変に設定するための手段としては、限定されるものではないが、無機発泡体2の空気層側に、ブラインド様格子を設け、その開度を調節することにより、ブラインド様格子及び無機発泡体2の全体の通気性を可変する制御方法、無機発泡体2の空気層3側に、無機発泡体2に密着させる形でシャッター付きの穴あき金属板を配し、そのシャッターの開度で通気性を可変する方法等を挙げることが出来る。   The means for variably setting the amount of air supplied to the inorganic foam 2 is not limited, but a blind-like lattice is provided on the air layer side of the inorganic foam 2 and its opening degree is adjusted. A control method for changing the air permeability of the blind-like lattice and the inorganic foam 2 as a whole, and a perforated metal plate with a shutter so as to be in close contact with the inorganic foam 2 on the air layer 3 side of the inorganic foam 2 A method of changing the air permeability by the opening degree of the shutter can be mentioned.

これらの方法を用いて、付属部品を含めた無機発泡体2の通気性を可変に設定することにより、周辺環境や各地盤面からの高さに応じた適度な通気性を与えることができ、本発明の壁構造を実際に施工する際の効果をより発現させることが可能になる。   By using these methods to set the breathability of the inorganic foam 2 including the accessory parts variably, it is possible to give appropriate breathability according to the surrounding environment and the height from each board surface. It becomes possible to express the effect at the time of actually constructing the wall structure of the invention.

実施例によって本発明を具体的に説明する前に、本発明に用いられる無機発泡体2についての各種の測定方法を説明すると次の通りである。   Before specifically explaining the present invention through examples, various measurement methods for the inorganic foam 2 used in the present invention will be described as follows.

〔熱伝導率〕
低温板5℃、高温板35℃でJIS A1412の平板熱流計法に従い測定する。試験体の形状は、200×200mm、厚さ25mmであり、温度20℃、湿度60%条件下で恒量になったものを用いる。
〔Thermal conductivity〕
Measurement is performed at a low temperature plate of 5 ° C. and a high temperature plate of 35 ° C. according to the JIS A1412 plate heat flow meter method. The shape of the test body is 200 × 200 mm, the thickness is 25 mm, and a constant weight is used at a temperature of 20 ° C. and a humidity of 60%.

〔通気率〕
円柱形のサンプル(断面積(S)=50mmφ、長さ(L)=50mm)の側面をシールし、真空ポンプにより圧力を制御しながらサンプルの前後に圧力差をつけ、サンプル中を流れる空気の流量を測定し、式(1)により算出する。
[Air permeability]
Seal the side of a cylindrical sample (cross-sectional area (S) = 50 mmφ, length (L) = 50 mm), create a pressure difference before and after the sample while controlling the pressure with a vacuum pump. The flow rate is measured and calculated by equation (1).

通気率( −1 Pa −1 )=W×L/S/ΔP (1)
W:流量( −1
ΔP:圧力差(Pa)
なお試験体は、温度20℃、湿度60%条件下で恒量になったものを用いる。
Air permeability ( m 2 h −1 Pa −1 ) = W × L / S / ΔP (1)
W: Flow rate ( m 3 h −1 )
ΔP: Pressure difference (Pa)
In addition, the test body uses what became constant weight on temperature 20 degreeC and 60% of humidity conditions.

〔曲げ強度〕
JIS R 5201の曲げ強さおよび圧縮強さの測定に準じて測定する。すなわち、曲げ強度測定に用いた供試体寸法は、40mm×40mm×160mmであり、スパン幅は100mmである。なお、試験体の乾燥条件は、20℃、相対湿度60%の恒温恒湿槽中に硬化体を置き、硬化体の絶乾状態を基準とした含水量が、10±2%になった時点で測定試料とする。
[Bending strength]
Measured according to the bending strength and compressive strength measurement of JIS R 5201. That is, the specimen size used for measuring the bending strength is 40 mm × 40 mm × 160 mm, and the span width is 100 mm. In addition, the drying conditions of the test body were the time when the cured body was placed in a constant temperature and humidity chamber of 20 ° C. and a relative humidity of 60%, and the moisture content on the basis of the absolutely dry state of the cured body became 10 ± 2%. Use as a measurement sample.

先ず、本発明に使用される無機発泡体2の製造について説明する。すなわち、50℃の温水559.5重量部をミキサーに投入し、撹拌しながら普通ポルトランドセメント粉体を123.2重量部、生石灰粉体を24.6重量部、微粉珪石(ブレーン比表面積11000cm/g)を70重量部、シリカヒューム(EFACO社製)粉体を30重量部、二水石膏粉体を11.7重量部、硫酸アルミニウム粉体を10.8重量部、順次加え、ミキサーを50℃に加温しながら2時間撹拌して水性スラリーを得た。 First, manufacture of the inorganic foam 2 used for this invention is demonstrated. That is, 559.5 parts by weight of warm water at 50 ° C. was put into a mixer, and while stirring, 123.2 parts by weight of ordinary Portland cement powder, 24.6 parts by weight of quicklime powder, fine silica (brane specific surface area of 11000 cm 2). / G), 70 parts by weight of silica fume (EFACO) powder, 11.7 parts by weight of dihydrate gypsum powder, and 10.8 parts by weight of aluminum sulfate powder were sequentially added. The mixture was stirred for 2 hours while warming to 50 ° C. to obtain an aqueous slurry.

水性スラリーに、粘度調製剤としてメチルセルロースを0.18重量部、発泡剤としてアルミニウム粉1.19重量部、界面活性剤として「エマール20T」(商品名、花王株式会社製)を1.19重量部、順次加えて30秒攪拌し、型枠に注入して発泡させ、予備硬化を行った。   In an aqueous slurry, 0.18 parts by weight of methylcellulose as a viscosity modifier, 1.19 parts by weight of aluminum powder as a foaming agent, and 1.19 parts by weight of “Emar 20T” (trade name, manufactured by Kao Corporation) as a surfactant Then, the mixture was added sequentially, stirred for 30 seconds, poured into a mold and foamed, and precured.

型枠にスラリーを流し込んだ直後から、水分の蒸発を防いだ状態で60℃で保持して、予備硬化させた。次いで、予備硬化体を脱型して、オートクレーブ中で飽和水蒸気雰囲気下、190℃で4時間、高温高圧養生を行った後、乾燥して成型体を得た。得られた無機硬化体の通気率は、1.3×10−2/hPaであり、熱伝導率は、0.069W/mKであった。また、ハンドリング性に重要な指標として曲げ強度を測定したところ、0.45MPaであった。 Immediately after pouring the slurry into the mold, it was kept at 60 ° C. in a state in which the evaporation of moisture was prevented and precured. Next, the pre-cured body was removed from the mold, and after curing at 190 ° C. for 4 hours in a saturated steam atmosphere in an autoclave, drying was performed to obtain a molded body. The air permeability of the obtained inorganic cured body was 1.3 × 10 −2 m 2 / hPa, and the thermal conductivity was 0.069 W / mK. Further, when the bending strength was measured as an important index for handling properties, it was 0.45 MPa.

本発明の具体的実施に当っては、前述の方法を用いて、長さ100cm、高さ100cm、厚さ10cmの無機発泡体2を製造した。また、外壁1として市販のALCを100cm×120cmに切断したもの(厚さ7.5cm)の一部に直径5cmの孔を5個開けたものを準備した。次に、図4に示す如く、この無機発泡体2と外壁1とを10cmの空気層3を介して対面配置し、外気と空気層3の間で空気の流通が可能である二重壁を製造した。   In the concrete implementation of the present invention, an inorganic foam 2 having a length of 100 cm, a height of 100 cm, and a thickness of 10 cm was produced using the above-described method. Further, a commercially available ALC cut into 100 cm × 120 cm (thickness 7.5 cm) was prepared as a part of the outer wall 1 having five holes having a diameter of 5 cm. Next, as shown in FIG. 4, the inorganic foam 2 and the outer wall 1 are arranged to face each other via a 10 cm air layer 3, and a double wall that allows air to flow between the outside air and the air layer 3 is formed. Manufactured.

さらに、前記図4に示すような無機発泡体2と外壁1とを空気層3を介して対面配置した二重壁を一面に用いて、図5に示すような一辺が100cm〜120cm(外寸)の立方体10を作製した。その際、二重壁を用いた一面以外は熱の漏れを最小限に抑える目的で、厚さ10cmの市販の高性能有機断熱材12を使用した。また、立方体10を作製するにおいて、各角部からの熱や空気の漏れがないよう、面同士の接合部は市販の気密用シール剤でシーリングを行った。立方体10の上面の一部には、換気口を設けて、換気能力が0.2m/hであるファン11を設置し、内部には外部スイッチでオンオフが可能な小型ストーブ、また外部から自動で開閉が可能な腐卵入りの箱を設置した。 Further, using a double wall in which the inorganic foam 2 and the outer wall 1 as shown in FIG. 4 are arranged to face each other with an air layer 3 therebetween, one side as shown in FIG. ) Cube 10. At that time, a commercially available high-performance organic heat insulating material 12 having a thickness of 10 cm was used for the purpose of minimizing heat leakage except for one surface using a double wall. Moreover, when producing the cube 10, the joint part of surfaces was sealed with the commercially available airtight sealing agent so that the leak of the heat and air from each corner | angular part might not be carried out. A part of the upper surface of the cube 10 is provided with a ventilation opening, a fan 11 having a ventilation capacity of 0.2 m 3 / h is installed inside, a small stove that can be turned on and off with an external switch, and automatically from the outside Installed a box with ovum that can be opened and closed.

立方体10を室温5℃の恒温恒湿部屋に設置し、小型ストーブを稼働させ、同時に腐卵入りの箱の蓋を開にした。1時間後に小型ストーブをオフ、腐卵入りの箱の蓋を閉にし、同時に上部のファン11を稼働させた。ファン11を稼働させてから30分後に立方体10の側面である有機断熱材12の一部に直径約10cmの穴を開けて手を中に挿入したところ、暖かいと感じた。同時に穴に鼻を近接させたが、腐卵臭は感じなかった。   The cube 10 was placed in a constant temperature and humidity room at a room temperature of 5 ° C., a small stove was operated, and at the same time, the lid of the box containing the egg was opened. After 1 hour, the small stove was turned off, the lid of the box containing the egg was closed, and the upper fan 11 was operated at the same time. Thirty minutes after operating the fan 11, a hole having a diameter of about 10 cm was made in a part of the organic heat insulating material 12 on the side of the cube 10, and a hand was inserted therein. At the same time, I put my nose close to the hole, but I didn't feel the smell of rot.

〔比較例1〕
図6に示すように、無機発泡体2を用いずに外壁1のALCを単独で用いたこと以外は、前記実施例と同様にして立方体10を作製した。実施例と同様に、立方体10を室温5℃の恒温恒湿部屋に設置し、小型ストーブを稼働させ、同時に腐卵入りの箱の蓋を開にした。1時間後に小型ストーブをオフ、腐卵入りの箱の蓋を閉にし、同時に上部のファン11を稼働させた。ファン11を稼働させてから30分後に立方体11の側面である有機断熱材12の一部に直径約10cmの穴を開けて手を中に挿入したところ、冷たいと感じた。同時に穴に鼻を近接させたが、腐卵臭は感じなかった。
[Comparative Example 1]
As shown in FIG. 6, a cube 10 was produced in the same manner as in the above example except that the ALC of the outer wall 1 was used alone without using the inorganic foam 2. As in the example, the cube 10 was placed in a constant temperature and humidity room at room temperature of 5 ° C., a small stove was operated, and at the same time, the lid of the box containing the egg was opened. After 1 hour, the small stove was turned off, the lid of the box containing the egg was closed, and the upper fan 11 was operated at the same time. Thirty minutes after operating the fan 11, a hole having a diameter of about 10 cm was formed in a part of the organic heat insulating material 12 on the side of the cube 11, and a hand was inserted therein. At the same time, I put my nose close to the hole, but I didn't feel the smell of rot.

〔比較例2〕
立方体10の六面とも通気性の無い厚さ10cmの市販の高性能有機断熱材12を使用したこと以外は、実施例と同様にして立方体10を作製した。実施例と同様に立方体10を室温5℃の恒温恒湿部屋に設置し、小型ストーブを稼働させ、同時に腐卵入りの箱の蓋を開にした。1時間後に小型ストーブをオフ、腐卵入りの箱の蓋を閉にし、同時に上部のファン11を稼働させた。ファン11を稼働させてから30分後に立方体10の側面である有機断熱材12の一部に直径約10cmの穴を開けて手を中に挿入したところ、暖かいと感じた。しかし、同時に穴に鼻を近接させたが、痛烈な腐卵臭を感じた。
[Comparative Example 2]
A cube 10 was produced in the same manner as in the example except that a commercially available high-performance organic heat insulating material 12 having a thickness of 10 cm having no air permeability was used on all six surfaces of the cube 10. Similarly to the example, the cube 10 was placed in a constant temperature and humidity room at room temperature of 5 ° C., a small stove was operated, and at the same time the lid of the box containing the egg was opened. After 1 hour, the small stove was turned off, the lid of the box containing the egg was closed, and the upper fan 11 was operated at the same time. Thirty minutes after operating the fan 11, a hole having a diameter of about 10 cm was made in a part of the organic heat insulating material 12 on the side of the cube 10, and a hand was inserted therein. However, the nose was brought close to the hole at the same time.

本発明に係る壁構造は、従来の断熱材料による壁の熱貫流率低減の限界を打ち破るとともに、効率のよい換気が可能であるために、建築物省エネルギー性向上、かつ、室内の高い空気質維持が可能な建築物を提供することができる。さらに、施工性に優れるために施工時の必要エネルギー及びコストが低く、実用的な壁構造として好適である。 The wall structure according to the present invention breaks the limit of the reduction of the wall heat transmissibility of the conventional heat insulating material and enables efficient ventilation, so that the energy saving of the building is improved and the indoor air quality is high. Buildings that can be maintained can be provided. Furthermore, since it is excellent in workability, the required energy and cost at the time of construction are low, and it is suitable as a practical wall structure.

本発明の壁構造の第1例を示す縦断面説明図である。It is longitudinal cross-sectional explanatory drawing which shows the 1st example of the wall structure of this invention. 本発明の第2例を示す縦断面説明図である。It is longitudinal cross-sectional explanatory drawing which shows the 2nd example of this invention. 本発明の第3例を示す縦断面説明図である。It is longitudinal cross-sectional explanatory drawing which shows the 3rd example of this invention. 実施例に於て製造した本発明の具体的な壁構造の説明図である。It is explanatory drawing of the concrete wall structure of this invention manufactured in the Example. 本発明の壁構造の性能を測定するために作成した立方体の斜視図である。It is a perspective view of the cube created in order to measure the performance of the wall structure of this invention. 比較例1で製作した壁構造の説明図である。It is explanatory drawing of the wall structure manufactured in the comparative example 1. FIG.

1 ・・・外壁
2 ・・・無機発泡体
3 ・・・空気層
4 ・・・上枠
5 ・・・下枠
6 ・・・桟
7 ・・・空間
8 ・・・換気穴
9 ・・・小穴
10 ・・・立方体
11 ・・・ファン
12 ・・・高性能有機断熱材
13 ・・・スペーサー
DESCRIPTION OF SYMBOLS 1 ... Outer wall 2 ... Inorganic foam 3 ... Air layer 4 ... Upper frame 5 ... Lower frame 6 ... Crosspiece 7 ... Space 8 ... Ventilation hole 9 ... Small hole 10 ・ ・ ・ Cube 11 ・ ・ ・ Fan 12 ・ ・ ・ High-performance organic insulation 13 ・ ・ ・ Spacer

Claims (2)

所定の通気性と熱伝導率を有する無機発泡体を空気層を介して外壁材に対面配置して構成し、かつ前記空気層と外気との間に空気流通を可能に構成した壁構造であって
前記無機発泡体を、通気率が5×10 −4 〜1m −1 Pa −1 の範囲で、かつ熱伝導率が0.02〜0.1W/mKの範囲とし、該無機発泡体を通して外気を建物の室内に導入するように構成し、前記空気層を介して、前記無機発泡体に供給される空気量を可変に設定するための手段が設けられて構成されたことを特徴とした壁構造。
It is a wall structure in which an inorganic foam having a predetermined air permeability and thermal conductivity is arranged to face an outer wall material through an air layer, and air circulation is possible between the air layer and the outside air. And
The inorganic foam is made to have a gas permeability of 5 × 10 −4 to 1 m 2 h −1 Pa −1 and a thermal conductivity of 0.02 to 0.1 W / mK, and through the inorganic foam. It is configured to introduce outside air into a room of a building, and is provided with means for variably setting the amount of air supplied to the inorganic foam through the air layer . Wall structure.
前記無機発泡体の熱容量が2〜40kcal/℃であることを特徴とした請求項1の壁構造。 The wall structure according to claim 1, wherein the inorganic foam has a heat capacity of 2 to 40 kcal / ° C.
JP2004265554A 2004-09-13 2004-09-13 Wall structure Expired - Lifetime JP4562469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265554A JP4562469B2 (en) 2004-09-13 2004-09-13 Wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265554A JP4562469B2 (en) 2004-09-13 2004-09-13 Wall structure

Publications (2)

Publication Number Publication Date
JP2006077539A JP2006077539A (en) 2006-03-23
JP4562469B2 true JP4562469B2 (en) 2010-10-13

Family

ID=36157214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265554A Expired - Lifetime JP4562469B2 (en) 2004-09-13 2004-09-13 Wall structure

Country Status (1)

Country Link
JP (1) JP4562469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410979B1 (en) * 2017-07-07 2018-10-24 旭化成建材株式会社 Ventilation system and house

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998311B2 (en) * 2012-03-28 2016-09-28 旭化成建材株式会社 Ventilation system
CN105298172A (en) * 2015-10-17 2016-02-03 国网山东省电力公司枣庄供电公司 Electric equipment room with low energy consumption

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293834A (en) * 1991-03-20 1992-10-19 Asahi Glass Co Ltd Thermal insulation and vent roof structure and roof board slope used therefor
WO2004005215A1 (en) * 2002-07-03 2004-01-15 Asahi Kasei Kabushiki Kaisha Calcium silicate hardened article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293834A (en) * 1991-03-20 1992-10-19 Asahi Glass Co Ltd Thermal insulation and vent roof structure and roof board slope used therefor
WO2004005215A1 (en) * 2002-07-03 2004-01-15 Asahi Kasei Kabushiki Kaisha Calcium silicate hardened article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410979B1 (en) * 2017-07-07 2018-10-24 旭化成建材株式会社 Ventilation system and house
JP2019015491A (en) * 2017-07-07 2019-01-31 旭化成建材株式会社 Ventilation system and house

Also Published As

Publication number Publication date
JP2006077539A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US4843786A (en) Enclosure conditioned housing system
JP2014051874A (en) Energy-saving ventilation system for air-tightness house
JP5998311B2 (en) Ventilation system
Elgheznawy et al. An experimental study of indoor air quality enhancement using breathing walls
JP4562469B2 (en) Wall structure
CN104047447B (en) Dry ice cleaning mould room
JP2007191935A (en) Wall structure having moisture permeability and high heat insulation properties, and method of constructing wall
KR20190069744A (en) Insulation wall structure of passive house
CN104294925B (en) Inner heat-preserving system of building
JPH1151440A (en) Building with moistureproof function
JP2004211440A (en) Wall structure
JP2008063847A (en) Moisture-permeable heat-insulating airtight structure for building
JP2003138665A (en) Exterior insulating method for building
CN207620283U (en) A kind of moisture-proof ventilative integrated wall plate
JPH1181509A (en) Heat insulation wall structure of building
TWI541414B (en) To prevent the summer type of condensation outside the wall structure
JP3022999B2 (en) Basement interior structure
TWI604166B (en) Green-energy building structure
JP2005226421A (en) Exterior thermal insulation and ventilation system
CN217711188U (en) Rubber powder polyphenyl granule insulation construction
CN207469507U (en) A kind of foam concrete self-heat conserving composite wall body structure
Morse et al. Indoor air quality and mold prevention of the building envelope
RU2732555C1 (en) Energy-saving wall with controlled heat-shielding properties
CN203475647U (en) Moisture-proof sound-absorption enclosing structure with air layer
Casini Nanoinsulation Materials for Energy Efficient Buildings

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350